搜档网
当前位置:搜档网 › (完整)高中物理电容器资料

(完整)高中物理电容器资料

(完整)高中物理电容器资料
(完整)高中物理电容器资料

考点24 电容器和电容量

【考点知识方法解读】

1.两个彼此绝缘且又相互靠近的导体都可视为电容器。电容量是描述电容器容纳电荷本领的物理量。物理学中用电容器所带的电荷量Q 与电容器两极板之间的电势差U 的比值定义为该电容器的电容量,即C=Q/U 。电容量由电容器本身的几何尺寸和介质特性决定,与电容器是否带电、带电量多少、极板间电势差大小无关。

2.动态含电容器电路的分析方法:

①确定不变量。若电容器与电源相连,电容器两极板之间的电势差U 不变;若电容器充电后与电源断开,则电容器两极板带电荷量Q 不变。

②用平行板电容器的决定式C=

4S kd

επ分析电容器的电容变化。若正对面积S 增大,电容量增大;若两极板之间的距离d 增大,

电容量减小;若插入介电常数ε较大的电介质,电容量增大。

③用电容量定义式C=Q/U 分析电容器所带电荷量变化(电势差U 不变),或电容器两极板之间的电势差变化(电荷量Q 不变)。 ④用电荷量与电场强度的关系及其相关知识分析电场强度的变化。若电容器正对面积不变,带电荷量不变,两极板之间的距离d 变化,两极板之间的电场强度不变;若两极板之间的电势差不变,若两极板之间的距离d 变化,由E=U/d 可分析两极板之间的电场强度的变化。

【最新三年高考物理精选解析】

1.(2012·新课标理综)如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连。若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子

A ..所受重力与电场力平衡

B ..电势能逐渐增加

C ..动能逐渐增加

D ..做匀变速直线运动

2.(2012·江苏物理)一充电后的平行板电容器保持两极板的正对面积、间距和电荷量不变,在两极板间插入一电介质,其电容量C 和两极板间的电势差U 的变化情况是

A .C 和U 均增大

B .

C 增大,U 减小 C .C 减小,U 增大

D .C 和U 均减小 3:(2011天津理综第5题)板间距为d 的平行板板电容器所带电荷量为Q 时,两极板间电势差为U 1,板间场强为

E 1现将电容器所带电荷量变为2Q ,板间距变为d/2,其他条件不变,这时两极板间电势差U 2,板间场强为E 2,下列说法正确的是 A. U 2=U 1,E 2=E 1 B. U 2=2U 1,E 2=4E 1 C. U 2=U 1,E 2=2E 1 D. U 2=2U 1,E 2=2E 1 4.(2010·北京理综).用控制变量法,可以研究影响平行板电容器的因素(如题1图)。设两极板正对面积为S ,极板间的距离为d,静电计指针偏角为θ。实验中,极板所带电荷量不变,若 A. 保持S 不变,增大d ,则θ 变大 B. 保持S 不变,增大d ,则θ 变小 C. 保持d 不变,增大S ,则θ 变小 D. 保持d 不变,增大S ,则θ 不变

5.(2010·重庆理综)某电容式话筒的原理示意图如题3图所示,E 为电源,R 为电阻,薄片P 和Q 为两金属基板。对着话筒说话时,P 振动而Q 可视为不动。在P 、Q 间距增大过程中,

A .P 、Q 构成的电容器的电容增大

B .P 上电荷量保持不变

C .M 点的电势比N 点的低

D .M 点的电势比N 点的高 6.(2010·安徽理综)如题6图所示,M 、N 是平行板电容器的两个极板,R 0为定值电阻,R 1、R 2为可调电阻,用绝缘细线将质量为m 、带正电的小球悬于电容器内部。闭合电键S ,小球静止时受到悬线的拉力为F 。调节R 1、R 2,关于F 的大小判断正确的是 A .保持R 1不变,缓慢增大R 2时,F 将变大

B .保持R 1不变,缓慢增大R 2时,F 将变小

C .保持R 2不变,缓慢增大R 1时,F 将变大

D .保持R 2不变,缓慢增大R 1时,F 将变小 7. (2012·浙江理综)为了测量储罐中不导电液体的高度,将与储罐外壳绝缘的两块平行金属板构成的电

容器C 置于储罐中,电容器可通过开关S 与线圈L 或电源相连,如图所示。当开关从a 拨到b 时,由L 与C 构成的回路中产生的周期T=2πLC 的振荡电流。当罐中液面上升时( ) A. 电容器的电容减小

B. 电容器的电容增大z x x k

C. LC 回路的振荡频率减小

D. LC 回路的振荡频率增大

8. (2012·海南物理)将平行板电容器两极板之间的距离、电压、电场强度大小和极板所带的电荷量分别用d 、U 、E 和Q 表示。下列说法正确的是

A .保持U 不变,将d 变为原来的两倍,则E 变为原来的一半

B .保持E 不变,将d 变为原来的一半,则U 变为原来的两倍

C .保持d 不变,将Q 变为原来的两倍,则U 变为原来的一半

D .保持d 不变,将Q 变为原来的一半,则

E 变为原来的一半 9.(2012·全国理综)如图,一平行板电容器的两个极板竖直放置,在两极板间有一带电小球,小球用一绝缘轻线悬挂于O 点。先给电容器缓慢充电,使两级板所带电荷量分别为﹢Q 和﹣Q ,此时悬线与竖直方向的夹角为π/6。再给电容器缓慢充电,直到悬线和竖直方向的夹角增加到π/3,且小球与两极板不接触。求第二次充电使电容器正极板增加的电荷量。

电容和电容器·知识点精解

1.电容的定义

E S

R 0 R 1 R 2

M N

(1)电容器

①作用:电容器是电气设备中常用的一种重要元件,可以用来容纳电荷。

②构成:两金属板间夹上一层绝缘物质(电介质)就是一个最简单的电容器。两个金属板就是电容器的两个电极。

③充电与放电:使电容器带电叫充电;使充电后的电容器失去电荷叫放电。

④电容器所带电量:电容器的一个极板上所带电量的绝对值。

⑤击穿电压与额定电压:加在电容器两极上的电压如果超过某一极限,电介质将被击穿从而损坏电容器,这个极限电压叫击穿电压;电容器长期工作所能承受的电压叫做额定电压,它比击穿电压要低。

(2)电容的定义:电容器所带电量与两板间电势差之比叫电容。定义式为

①单位:在国际单位制中,电容单位是法(F)。常用单位有:微法(μF)和皮法(pF)。它们的换算关系是

1F=106uF=1012pF ②物理意义:表示电容器容纳电荷本领大小的物理量。

2.平行板电容器电容的决定因素

平行板电容器的电容,跟介电常量ε成正比,跟正对面积S成正比,跟极板间的距离d成反比。用公式表达为

下面表中为几种电介质的介电常量的值。

3.常用电容器:常用的电容器可分为固定电容器和可变电容器。

(1)固定电容器:固定电容器的电容是固定不变的,常用的有纸质电容器及电解电容器。

①纸质电容器:在两层锡箔或铅箔中间夹以在石蜡中浸过的纸,一起卷成圆柱体而制成的电容器(图1-49(a))。

②电解电容器:这种电容器是用铝箔作阳极,用铝箔上很薄的一层氧化膜作电介质,用浸渍过电解液的纸作阴极制成的(图

1-49(b))。由于氧化膜很薄,这种电容器的电容较大。电解电容器的极性是固定的,使用时正负极不能接错,不能接交流电。

(2)可变电容器:①特点:电容可以改变。

②构成:由两组铝片组成(图1-49(c)),固定的一组铝片叫定片,可以转动的一组铝片叫动片。使用时可以转动动片使两组铝片正对面积发生变化从而改变电容的大小。

(3)电路中常用的几种电容器的符号如图1-49(d)所示。

【例1】图1-50中平行放置的金属板A、B组成一只平行板电容器。在不断开电键K时,①使A板向上平移

拉开一些;②使A板向右平移错开一些;③往A、B间充入介电常量ε>1的电介质。试讨论电容器两板电势

差U、电量Q、板间场强E的变化情况。若断开电键K,情况又如何?

【例2】如图1-51所示,两块水平放置的平行金属板M、N,相距为d,组成一个电容为C的平行板电容器,

M板接地,M板的正中央有一小孔B。从B孔正上方h处的A点,由静止一滴一滴地滴下质量为m、电量为q

的带电油滴,油滴穿过B孔后落到N板,把全部电量传给N板,若不计空气阻力及板外电场:问:(1)第几滴油滴将在M、N板间作匀速直线运动?(2)能达到N板的液滴不会超过多少滴?

【例3】在静电复印机里,常用图1-52所示的电路来调节A、C两板间电场强度的大小,从而来控制复印件的颜色深浅。在操作时,首先对金属平板A、B组成的平行板电容器充电。该电容器的B板接地,A、B间充有介电常量为ε的电介质,充电后两板间的电势差为U。而后,断开该充电电源,将连接金属平板C和可调电源ε的开关K闭合。这样,A、C两板间的电场强度将随可调电源ε的电压变化而得以调节。已知C板与A板很近,相互平行,且各板面积相等。A、B板间距离为d1,A、C板间的距离为d2,A、C板间的空气介电常量取为1。试求:当电源ε的电压为U0时,A、C两板间某点P处的电场强度。

[例4]如图11-3所示的电路中,4个电阻的阻值均为R ,E 为直流电源,其内阻可以不计,没有标明哪一极是正极.平行板电容器两极板间的距离为d .在平行极板电容器的两个平行极板之间有一个质量为m ,电量为q 的带电小球.当电键K 闭合时,带电小球静止在两极板间的中点O 上.现把电键打开,带电小球便往平行极板电容器的某个极板运动,并与此极板碰撞,设在碰撞时没有机械能损失,但带电小球的电量发生变化.碰后小球带有与该极板相同性质的电荷,而且所带的电量恰好刚能

使它运动到平行极板电容器的另一极板.求小球与电容器某个极板碰撞后所带的电荷.

[例5]如图11-4所示,电容器C 1=6 μF ,C 2=3 μF ,电阻R 1=6 Ω,R 2=3 Ω,当电键K 断开时,A 、B 两点间的电压U AB =?当K 闭合时,电容器C 1的电量改变了多少(设电压U =18 V )?

小结:电容器是一个储存电能的元件,在直流电路中,当电容器充、放电时,电路有充电、放电电流,一旦电流达到稳定状态,电容器在电路中就相当于一个阻值无限大(只考虑电容器是理想不漏电的情况)

的元件,电容电路可看作是断路,简化电路时可去掉它,简化后若要求电容器所带电量时,可在相应的位置补上.分析和计算含有电容器的直流电路时,关键是准确地判断并求出电容器的两端的电压,其具体方法是:

1.确定电容器和哪个电阻并联,该电阻两端电压即为电容器两端电压.

2.当电容器和某一电阻串联后接在某一电路两端时,此电路两端电压即为电容器两端电压.

3.对于较复杂电路,需要将电容器两端的电势与基准点的电势比较后才能确定电容器两端的电压. 3.如图11-7所示,E =10 V ,R 1=4 Ω,R 2=6 Ω,C =30 μF ,电池内阻可忽略.

(1)闭合开关K ,求稳定后通过R 1的电流;(2)然后将开关K 断开,求这以后通过R 1的总电量.

图11—7 图11—8 图11—9

4.如图11-8所示的电路,已知电池电动势E =90 V ,内阻r=5 Ω,R 1=10 Ω,R 2=20 Ω,板面水平放置的平行板电容器的两极板M 、N 相距d =3 cm ,在两板间的正中央有一带电液滴,其电量q =-2×10-

7 C ,其质量m =4.5×10-

5 kg ,取g =10 m/s 2,问

(1)若液滴恰好能静止平衡时,滑动变阻器R 的滑动头C 正好在正中点,那么滑动变阻器的最大阻值R m 是多大? (2)将滑动片C 迅速滑到A 端后,液滴将向哪个极板做什么运动?到达极板时的速度是多大?

5.如图11-9所示.两根相距为L 的竖直金属导轨MN 和PQ 的上端接有一个电容为C 的电容器,质量为m 的金属棒ab 可紧贴竖直导轨无摩擦滑动,且滑动中ab 始终保持水平,整个装置处于磁感应强度为B 的磁场中,不计电阻,求最后通过C 的充电电流

.

11-3

图11-4

6.图11-10所示,金属棒ab 质量m =5 g ,放在相距L =1 m 的光滑金属导轨MN 、PQ 上,磁感应强度B =0.5 T ,方向竖直向上,电容器的电容C =2μF ,电源电动势E =16 V ,导轨距地面高度h =0.8 m.当单刀双掷开关先掷向1后,再掷向2,金属棒被抛到水平距离s =6.4 cm 的地面上,问电容器两端的电压还有多大?

考点24 电容器和电容量

3【答案】:C 【解析】:由板间距为d 的平形板电容器所带电荷量为Q 时,两极板间电势差为U 1,板间场强为E 1,可知板间距为d 的平形板电容器电容量C=Q/U 1;板间场强为E 1= U 1/d 。根据平行板电容器电容量决定式,将电容器板间距变为1

2

d ,其电容量为2C 。电容器所带电荷量变为2Q ,其电势差U 2=2Q /2C= U 1,板间场强E 2= U 2/(

1

2

d )=2 U 1

/d=2 E 1

,所以选项C 正确。

5.【答案】D 【解析】电容式话筒与电源串联,电压U 保持不变。在P 、Q 间距增大过程中,根据平行板电容决定式4S

C

kd

επ=

知,d 增大,电容量C 减小,选项A 错误;又根据电容量定义式C=Q/U 得电容器所带电荷量Q 减小,选项B 错误;电容器的放电电流通过R 的方向由M 到N ,所以M 点的电势比N 点的高。选项C 错误D 正确。

7【答案】:BC 【解析】当罐中液面上升时,由平行板电容器的决定式,电容器的电容增大,选项A 错误B 正确;LC 回路的振荡周期增大,振荡频率减小,选项C 正确D 错误。

8. 9【答案】:2Q 【解析】:两级板所带电荷量分别为﹢Q 和﹣Q ,此时悬线与竖直方向的夹角为π/6,小球所受电场力F 1=mgtan(π/6)。 设电容器电容量为C ,两极板之间距离d ,则两极板之间电压U 1=Q/C ,两极板之间电场强度E 1= U 1/d ,F 1=q E 1。

电容和电容器·知识点精解例1

【解题】电键K不断开时,电容器两极板间电压U不变。小。由于Q=CU,U不变,所以Q变小;平行板电客器内部电场为身强

②两板错开意味着正对面积S变小。由C∝S可知C变小,由Q=CU,

电键K断开后,意味着电容器所带电量Q不变。

②两板错开时S变小,由C∝S可知,C变小,所以U变大,而

【例2】【分析思路】带电油滴将所带的电量传给N板,因静电感应使M板带上等量异种电荷,这就使电容器带电,M、N板间存在匀强电场。当电场力等于重力时,油滴作匀速直线运动,此时油滴从A点落到N板时重力做的功等于克服电场力做的功。油滴至N板速度为零,即为最后一滴落至N板的油滴,其余以后落下的油滴来达N板即反方向向上运动。

【解题】(1)设第n滴油滴将在两板间作匀速直线运动。

所以,当第n滴油

由平衡条件可知,此时有

滴作匀速直线运动下落时,两板间的场强

(2)设能到达N板的

液滴不会超过n′滴,即第n′滴在两板间作匀减速直线运动,到达N板时的速度刚好为零。由动能定理得mg(h+d)-qU′=0,其中U′

由以上两式联立解得

为第n′油滴运动时两板间的电压,则

【例3】【分析思路】首先对平行金属板A、B组成的电容器充电时,A板带上的电荷设为Q,则Q=C1U。开关K闭合后等效电路如图1-53所示,由于金属板B和电源负极都接地,所以它们电势均为零。设此时金属板A、B间的电势差为U1,金属板A、C间的电势差为U2,则由于电源电压为U0,所以有U1+U2=U0。可见,开关K闭合后,金属板A、B间的电势差将变小,故金属板A、B上的电荷将发生变化。孤立导体A的电荷将重新分布,设其上表面带负电荷为-Q2,下表面带正电荷为+Q1,则有Q1+(-Q2)=Q。于是金属板B 上的电荷将由-Q减少为-Q1,金属板C的电荷为+Q2。下面的任务就是用尽量多的已知量表示出Q2,则

B的电荷要减少,孤立导体A上的电荷尊重新分布,充电稳定后,孤立导

体A处于静电平衡状态,是等势体,才能列出U1+U2=U0的关系式。当然,熟练运用所学公式以及运算技巧也是解答该题的必要条件。

【解题方法】处于静电平衡状态的导体的性质、电容的定义、匀

【解题】K闭合后的等效电路如图1-53所示。设A、B板间的电容为C1,电势差为U1。A、C板间的电容为C2,电势差为U2。金属板的面积为S,则

而各板表面上的电量分别为如图所示1-53的±Q1和±Q2,

于是有

另外,A板两表面上电量的代数和应该等于K闭合前该板上所带的电量,设为Q,即

而Q又可以从K闭合前A、B板间的电势差求得:、

将式⑧代入式⑦,得

将式⑨与式⑥联立消去Q1,得

由于A 、C 两板间电场可近似认为匀强电场,所以P 点的电场强度EP 为

【例4】

由电路图可以看出,因R 4支路上无电流,电容器两极板间电压,无论K 是否闭合始终等于电阻R 3上的电压U 3,当K 闭合时,

设此两极板间电压为U ,电源的电动势为E ,由分压关系可得U =U 3=

32E ①,小球处于静止,由平衡条件得d

qU

=mg ②,当K

断开,由R 1和R 3串联可得电容两极板间电压U ′为U ′=

2

E

,③,由①③得U ′=

4

3

U ④,U ′<U 表明K 断开后小球将向下极板运动,重力对小球做正功,电场力对小球做负功,表明小球所带电荷与下极板的极性相同,由功能关系mg 2d -q 2

12='U mv 2

-0⑤,

因小球与下极板碰撞时无机械能损失,设小球碰后电量变为q ′,由功能关系得q ′U ′-mgd =0-21mv 2⑥,联立上述各式解得q ′=6

7

q

即小球与下极板碰后电荷符号未变,电量变为原来的7/6.

【例5】

解题方法与技巧:在电路中电容C 1、C 2的作用是断路,当电键K 断开时,电路中无电流,B 、C 等电势,A 、D 等电势,因此U AB =U DB =18 V ,U AB =U AC =U DB =18 V ,K 断开时,电容器C 1带电量为Q 1=C 1U AC =C 1U DC =6×10-

6×18 C =1.08×10-

4 C. 当K 闭合时,电路R 1、R 2导通,电容器C 1两端的电压即电阻R 1两端的电压,由串联的电压分配关系得:U AC =2

11R R U R +=12 V

此时电容器C 1带电量为:Q 1′=C 1U AC =7.2×10-5

C ,电容器C 1带电量的变化量为:ΔQ =Q 1-Q 1′=3.6×10

-5

C ,所以C 1带电量减少了

3.6×10-

5C

参考答案:

3.电容器稳定后相当于断路,K断开前电容器相当于和R 2并联,K 断开前,电容器相当于直接接到电源上,K 断开前后通过R 1的电量即为前后两状态下电容器带电量之差.电容器稳定后相当于断路,则:(1)I1=I总=

)

64(10

21+=+R R E A =1A

(2)断开K 前,电容器相当于和R 2并联,电压为I2R 2,储存的电量为Q 1=CI 1R 2, 断开K 稳定后,总电流为零,电容器上电压为E ,储存电量为Q 2=CE ,所以通过R 1的电量为:ΔQ =Q 2-Q 1=C (E -I 1R 2)=1.2×10-

3 C

4.滑动变阻器R 的滑动触头C 正好在AB 正中点时对液滴进行受力分析知,重力G 与电场力Eq 平衡,从而求得电容器两极电压,也就是BC 间电压,然后据闭合电路欧姆定律求得R BC ,从而求得R m .。将滑片C 迅速滑到A 端后,由闭合电路欧姆定律可求得AB 间电

压,即电容器两板间电压UAB =UMN ′=

15

9090

+×90即UMN ′=77 V 大于C 在中央时电压,对液滴分析受力知电场力大于重力,所以

向M 板运动,由动量定理便可求得速度.(1)滑片C 在AB 中央时,对带电液滴由平衡条件得mg =q d

U MN

,所以UMN =

q mgd =7

2

41021031045---???? V =67.5(V ),由题意知U MN =UBC =67.5 V ,由欧姆定律得

2

1m R R r E +

+=UBC 即2

1590m R +

2m R ?=67.5,所以R m =90 Ω。(2)滑片滑到A 时,UMN ′=m 1m R R r ER ++15909090+?V =77(V )>67.5 V 所以液滴向M 板运动,设达M 板时速度为v ,由动能定理得q ·mg U MN -'2

·2d =21

mv 2 所以v =0.2 m/s

5.经分析知最终ab 棒做匀加速下滑,设最终充电电流为I ,在Δt 内电量、速率、电动势的变化量分别为ΔQ 、Δv 和ΔE 则有I =

t Q ??=C ·t

E

??=CBL ·

t

v

??=CBLa ,由牛顿第二定律有mg -BIL =ma ,解得I =

C

L B m mgCBL 22+

6.电容器充电后电量为Q =CE .开关掷向位置2时,电容器通过ab 放电,其放电电量为ΔQ ,则通过棒中电流为I =

t

Q

?? 金属棒受安培力F =BIL =BL

t Q ??①,据动量定理F Δt =mv -0 ②,由平抛运动可知v =s/h

g

s g h 22=③,由式①、②、③得

BL

t Q ??·Δt =m sh

g

2,所以ΔQ =

h

g

BL ms 2=1.6×10

-5

C ,电容器所余电量Q ′=Q -ΔQ =CE -ΔQ =1.6×10-5 C ,所以电容器两端电

压为U′=C

Q '

=8V 。

(二)重难点阐释

二、要点精析

(一)对电容的理解

电容是表示电容器容纳电荷本领的物理量.由电容器本身的介质特性与几何尺寸决定,与电容器是否带电,带电量的多少、板间电势差的大小等均无关.

(二)平行板电容器电容的决定因素

平行板电容器的电容与板间距离d 成反比,与两半正对面积S 成正比,与板间介质的介电常数ε成正比,其决定式是:

d

s kd s C επε∝=

4

(三)电容器的动态分析

平行板电容器动态分析这类问题的关键在于弄清哪些是变量,哪些是不变量,在变量中哪些是自变量.哪些是因变量,同时注意理解平行板电容器演示实验现象的实质,一般分两种基本情况:一是电容器两极板的电势差U 保持不变(与电源连接);二是电容器的带电量Q 保持不变(与电源断开)

电容器和电源连接如图,改变板间距离、改变正对面积或改变板间电解质材料,都会改变其电容,从而可能引起电容器两板间电场的变化.这里一定要分清两种常见的变化:

(1)电键K 保持闭合,则电容器两端的电压恒定(等于电源电动势),这种情况下带电量,

C CU Q

∝=而d

d U E d S kd S C 14∝=∝=,επε

(2)充电后断开K ,保持电容器带电量Q 恒定,这种情况下s

E s d U d

s

C

εεε1

,,∝∝

(四)电容器与恒定电流相联系

在直流电路中,电容器的充电过程非常短暂,除充电瞬间以外,电容器都可以视为断路.应该理解的是:电容器与哪部分电路并联,电容器两端的电压就必然与哪部分电路两端电压相等. (五)带电粒子(或带电体)在电场中的平衡问题

在历年高考试题中,常常是电场知识与力学知识联系起来考查.解答这一类题目的关键还是在力学上.当带电体在电场中处于平衡状态时,只要在对物体进行受力分析时,注意分析带电体所受的电场力,再应用平衡条件即可求解. (六)带电粒子(或带电体)在电场中的加速问题

对于此类问题,首先对物体受力分析,进而分析物体的运动情况(加速或减速,是直线还是曲线运动等),常常用能量的观点求解. (1)若选用动能定理,则要分清有多少个力做功,是恒力功还是变力功,以及初态和末态的动能增量. (2)若选用能量守恒定律,则要分清有多少种形式的能在转化,哪种能量是增加的,那种能量是减少的. (七)带电粒子(或带电体)在电场中的偏转问题

如图所示,质量为m 电荷量为q 的带电粒子以平行于极板的初速度v 0射入长L 板间距离为d 的平行板电

容器间,两板间电压为U ,求射出时的侧移、偏转角和动能增量等.

解题方法:分解为两个独立的分运动:平行极板的匀速运动(运动时间由此分运动决定)t v L

0=,垂

K

U L d v

m ,q

y

v

θ θ

高中物理选修3-1知识点归纳(完美版)学习资料

物理选修3-1 一、电场 1.两种电荷、电荷守恒定律、元电荷(e =1.60×10-19 C );带电体电荷量等于元电荷的整数倍 2.库仑定律:F K Q Q r =12 2 (真空中的点电荷){F:点电荷间的作用力(N); k:静电力常量k =9.0×109 N ?m 2 /C 2 ;Q 1、Q 2:两点电荷的电量(C);r:两点电荷间的距离(m); 作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E F q =(定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理);q :检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E KQ r =2 {r :源电荷到该位置的距离(m ),Q :源电荷的电量} 5.匀强电场的场强AB U E d = {U AB :AB 两点间的电压(V),d:AB 两点在场强方向的距离(m)} 6.电场力:F =qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:U AB =φA -φB ,U AB =W AB /q =q P E Δ 减 8.电场力做功:W AB =qU AB =qEd =ΔE P 减{W AB :带电体由A 到B 时电场力所做的功(J),q:带电量(C),U AB :电场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m);ΔE P 减 :带电体由A 到B 时势能的减少量} 9.电势能:E PA =q φA {E PA :带电体在A 点的电势能(J),q:电量(C),φA :A 点的电势(V)} 10.电势能的变化ΔE P 减=E PA -E PB {带电体在电场中从A 位置到B 位置时电势能的减少量} 11.电场力做功与电势能变化W AB =ΔE P 减=qU AB (电场力所做的功等于电势能的减少量) 12.电容C =Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容εS C 4πkd =(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器 14.带电粒子在电场中的加速(Vo =0):W =ΔE K 增或2 2 mVt qU = 15.带电粒子沿垂直电场方向以速度V 0进入匀强电场时的偏转(不考虑重力作用) : 类平抛运动(在带等量异种电荷的平行极板中:d U E = 垂直电场方向:匀速直线运动L =V 0t 平行电场方向:初速度为零的匀加速直线运动22at d =, F qE qU a m m m === 注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷 的总量平分;

(完整)高中物理电容器资料

考点24 电容器和电容量 【考点知识方法解读】 1.两个彼此绝缘且又相互靠近的导体都可视为电容器。电容量是描述电容器容纳电荷本领的物理量。物理学中用电容器所带的电荷量Q 与电容器两极板之间的电势差U 的比值定义为该电容器的电容量,即C=Q/U 。电容量由电容器本身的几何尺寸和介质特性决定,与电容器是否带电、带电量多少、极板间电势差大小无关。 2.动态含电容器电路的分析方法: ①确定不变量。若电容器与电源相连,电容器两极板之间的电势差U 不变;若电容器充电后与电源断开,则电容器两极板带电荷量Q 不变。 ②用平行板电容器的决定式C= 4S kd επ分析电容器的电容变化。若正对面积S 增大,电容量增大;若两极板之间的距离d 增大, 电容量减小;若插入介电常数ε较大的电介质,电容量增大。 ③用电容量定义式C=Q/U 分析电容器所带电荷量变化(电势差U 不变),或电容器两极板之间的电势差变化(电荷量Q 不变)。 ④用电荷量与电场强度的关系及其相关知识分析电场强度的变化。若电容器正对面积不变,带电荷量不变,两极板之间的距离d 变化,两极板之间的电场强度不变;若两极板之间的电势差不变,若两极板之间的距离d 变化,由E=U/d 可分析两极板之间的电场强度的变化。 【最新三年高考物理精选解析】 1.(2012·新课标理综)如图,平行板电容器的两个极板与水平地面成一角度,两极板与一直流电源相连。若一带电粒子恰能沿图中所示水平直线通过电容器,则在此过程中,该粒子 A ..所受重力与电场力平衡 B ..电势能逐渐增加 C ..动能逐渐增加 D ..做匀变速直线运动 2.(2012·江苏物理)一充电后的平行板电容器保持两极板的正对面积、间距和电荷量不变,在两极板间插入一电介质,其电容量C 和两极板间的电势差U 的变化情况是 A .C 和U 均增大 B . C 增大,U 减小 C .C 减小,U 增大 D .C 和U 均减小 3:(2011天津理综第5题)板间距为d 的平行板板电容器所带电荷量为Q 时,两极板间电势差为U 1,板间场强为 E 1现将电容器所带电荷量变为2Q ,板间距变为d/2,其他条件不变,这时两极板间电势差U 2,板间场强为E 2,下列说法正确的是 A. U 2=U 1,E 2=E 1 B. U 2=2U 1,E 2=4E 1 C. U 2=U 1,E 2=2E 1 D. U 2=2U 1,E 2=2E 1 4.(2010·北京理综).用控制变量法,可以研究影响平行板电容器的因素(如题1图)。设两极板正对面积为S ,极板间的距离为d,静电计指针偏角为θ。实验中,极板所带电荷量不变,若 A. 保持S 不变,增大d ,则θ 变大 B. 保持S 不变,增大d ,则θ 变小 C. 保持d 不变,增大S ,则θ 变小 D. 保持d 不变,增大S ,则θ 不变 5.(2010·重庆理综)某电容式话筒的原理示意图如题3图所示,E 为电源,R 为电阻,薄片P 和Q 为两金属基板。对着话筒说话时,P 振动而Q 可视为不动。在P 、Q 间距增大过程中, A .P 、Q 构成的电容器的电容增大 B .P 上电荷量保持不变 C .M 点的电势比N 点的低 D .M 点的电势比N 点的高 6.(2010·安徽理综)如题6图所示,M 、N 是平行板电容器的两个极板,R 0为定值电阻,R 1、R 2为可调电阻,用绝缘细线将质量为m 、带正电的小球悬于电容器内部。闭合电键S ,小球静止时受到悬线的拉力为F 。调节R 1、R 2,关于F 的大小判断正确的是 A .保持R 1不变,缓慢增大R 2时,F 将变大 B .保持R 1不变,缓慢增大R 2时,F 将变小 C .保持R 2不变,缓慢增大R 1时,F 将变大 D .保持R 2不变,缓慢增大R 1时,F 将变小 7. (2012·浙江理综)为了测量储罐中不导电液体的高度,将与储罐外壳绝缘的两块平行金属板构成的电 容器C 置于储罐中,电容器可通过开关S 与线圈L 或电源相连,如图所示。当开关从a 拨到b 时,由L 与C 构成的回路中产生的周期T=2πLC 的振荡电流。当罐中液面上升时( ) A. 电容器的电容减小 B. 电容器的电容增大z x x k C. LC 回路的振荡频率减小 D. LC 回路的振荡频率增大 8. (2012·海南物理)将平行板电容器两极板之间的距离、电压、电场强度大小和极板所带的电荷量分别用d 、U 、E 和Q 表示。下列说法正确的是 A .保持U 不变,将d 变为原来的两倍,则E 变为原来的一半 B .保持E 不变,将d 变为原来的一半,则U 变为原来的两倍 C .保持d 不变,将Q 变为原来的两倍,则U 变为原来的一半 D .保持d 不变,将Q 变为原来的一半,则 E 变为原来的一半 9.(2012·全国理综)如图,一平行板电容器的两个极板竖直放置,在两极板间有一带电小球,小球用一绝缘轻线悬挂于O 点。先给电容器缓慢充电,使两级板所带电荷量分别为﹢Q 和﹣Q ,此时悬线与竖直方向的夹角为π/6。再给电容器缓慢充电,直到悬线和竖直方向的夹角增加到π/3,且小球与两极板不接触。求第二次充电使电容器正极板增加的电荷量。 电容和电容器·知识点精解 1.电容的定义 E S R 0 R 1 R 2 M N

(完整)高中物理电容器

第12课时 电容器 电容 一、知识内容: 1、电容器: ① 电容器:任何两个相互靠近而又彼此绝缘的导体组成电容器。 ② 电容器的作用:是用来储存电荷。使电容器带电量增加的过 程是充电过程(如图双向开关接A ),使电容器带电量减少的 过程是放电过程(图中双向开关接B )。 ③ 电容器的电量:两极带等量的异种电荷,每个极板所带电量 的绝对值-----电容器电量。 2、电 容: ① 定义:电容器的带电量与两极间电势差的比值。 ② 定义式: U Q C = 单位:法拉,(F 、 F μ、pF 、) ③ 意义:表示电容器容纳电荷本领大小,大小由电容器的结构决定的,与电容器是否带 电、带多少电荷、以及电势差大小无关。 ④ 计算式:U Q U Q C ??==。 3、平行板电容器:kd S C r πε4=; (1)公式kd S C r πε4=是平行板电容器的决定式,只适用于平行 板电容器. (2)平行板电容器内部是匀强电场E=U/d . (3)电容器的电势差的测量:静电计(如右图) 静电计是可用来测量电势差的仪器,使用时将它的金属球与电容器一极板相 连,外壳与另一极板相连,从指针偏角便可比较电容器两极板间的电势差,指针 偏角越大,电势差越大.(静电计不能用伏特表代替) (4)电容器的d 、s 、r ε变化 → 电容器的Q 、U 、C 、E 的变化: A 、确定不变量。当电容器与电源线连接时两板间电势差保持不变;当电容器 带电后与电路断开时电容器的带电量保持不变. B 、用决定式kd S C r πε4= 分析平行 板电容器的电容的变化;C 、用定义式U Q C = 分析电容器所带电荷量或两极板间电 压的变化; D 、用d U E =分析电容器间场强的变化。 二、应用举例: 【例1】如图,A 、B 为水平放置的平行板电容器,正对面积为S ,板间距离为d ,电容为C , 两板间有一个质量为m 带电粒子,静止于P 点,电源电动势为U ,讨论下述问题: ⑴ 带电粒子的带电量。 ⑵ 极板靠近过程中,粒子如何运动,微安表中有无电流流过。 ⑶ 将A 、B 板错开一些,粒子如何运动,微安表中有无电流流过。 ⑷ 在A 、B 板间插入一个金属框,且P 点在金属框内,粒子如何运动,微安表中有无电 流流过。 ⑸ 在A 、P 间插入一个金属框,粒子如何运动,微安表中有无电流流过。 + + + --- B A

高中物理课本物理学家及历史资料汇总

高中物理课本物理学家及历史资料汇总 1、胡克:英国物理学家;发现了胡克定律(F弹=kx) 2、伽利略:意大利的著名物理学家;伽利略时代的仪器、设备十分简陋,技术也比较落后,但伽利略巧妙地运用科学的推理,给出了匀变速运动的定义,导出s正比于t。并给以实验检验;推断并检验得出,无论物体轻重如何,其自由下落的快慢是相同的;通过斜面实验,推断出物体如不受外力作用将维持匀速直线运动的结论。后由牛顿归纳成惯性定律。伽利略的科学推理方法是人类思想史上最伟大的成就之一。 3、牛顿:英国物理学家;动力学的奠基人,他总结和发展了前人的发现,得出牛顿定律及万有引力定律,奠定了以牛顿定律为基础的经典力学。 4、开普勒:丹麦天文学褰;发现了行星运动规律的开普勒三定律奠定了万有引力定律的基础。 5、卡文迪许:英国物理学家;巧妙的利用扭秤装置测出了万有引力常量。 6、布朗:英国植物学家;在用显微镜观察悬浮在水中的花粉时,发现了“布朗运动”。 7、焦耳:英国物理学家;测定了热功当量J=4.2焦/卡,为能的转化守恒定律的建立提供了坚实的基础。研究电流通过导体时的发热,得到了焦耳定律。 8、开尔文:英国科学褰;创立了把一273℃作为零度的热力学温标。 9、库仑:法国科学家;巧妙的利用“库仑扭秤”研究电荷之间的作用,发现了“库仑定律”。

10、密立根:美国科学家;利用带电油滴在竖直电场中的平衡,得到了基本电荷e。 11、欧姆:德国物理学察;在实验研究的基础上,欧姆把电流与水流等比较,从而引入了电流强度、电动势、电阻等概念,并确定了它们的关系。 12、奥斯特:丹麦科学察;通过试验发现了电流能产生磁场。 13、安培:法国科学家;提出了著名的分子电流假说。 14、汤姆生:英国科学家;研究阴极射线,发现电子,测得了电子的比荷e /m;汤姆生还提出了“枣糕模型”,在当时能解释一些实验现象。 15、劳伦斯:美国科学家;发明了“回旋加速器”,使人类在获得高能粒子方面迈进了一步。 16、法拉第:英国科学家;发现了电磁感应,亲手制成了世界上第一台发电机,提出了电磁场及磁感线、电场线的概念。 17、楞次:德国科学家;概括试验结果,发表了确定感应电流方向的楞次定律。 18、麦克斯韦:英国科学家;总结前人研究电磁感应现象的基础上,建立了完整的电磁场理论。 19、赫兹:德国科学寨;在麦克斯韦预言电磁波存在后二十多年,第一次用实验证实了电磁波的存在,测得电磁波传播速度等于光速,证实了光是一种电磁波。 20、惠更斯:荷兰科学家;在对光的研究中,提出了光的波动说。发明了摆钟。 21、托马斯·杨:英国物理学寨;首先巧妙而简单的解决了相干光源问题,成功地观察到光的干涉现象。(双孔或双缝干涉)

高中物理电容和电容器知识例解

高中物理电容和电容器知识例解 1.电容的定义 (1)电容器 ①作用:电容器是电气设备中常用的一种重要元件,可以用来容纳电荷。 ②构成:两金属板间夹上一层绝缘物质(电介质)就是一个最简单的电容器。两个金属板就是电容器的两个电极。 ③充电与放电:使电容器带电叫充电;使充电后的电容器失去电荷叫放电。 ④电容器所带电量:电容器的一个极板上所带电量的绝对值。 ⑤击穿电压与额定电压:加在电容器两极上的电压如果超过某一极限,电介质将被击穿从而损坏电容器,这个极限电压叫击穿电压;电容器长期工作所能承受的电压叫做额定电压,它比击穿电压要低。 (2)电容的定义 电容器所带电量与两板间电势差之比叫电容。定义式为 ①单位:在国际单位制中,电容单位是法(F)。常用单位有:微法(μF)和皮法(pF)。它们的换算关系是 1F=106uF=1012pF ②物理意义:表示电容器容纳电荷本领大小的物理量。 2.平行板电容器电容的决定因素 平行板电容器的电容,跟介电常量ε成正比,跟正对面积S成正比,跟极板间的距离d成反比。用公式表达为

下面表中为几种电介质的介电常量的值。 3.常用电容器 常用的电容器可分为固定电容器和可变电容器。 (1)固定电容器 固定电容器的电容是固定不变的,常用的有纸质电容器及电解电容器。

①纸质电容器:在两层锡箔或铅箔中间夹以在石蜡中浸过的纸,一起卷成圆柱体而制成的电容器(图1-49(a))。 ②电解电容器:这种电容器是用铝箔作阳极,用铝箔上很薄的一层氧化膜作电介质,用浸渍过电解液的纸作阴极制成的(图1-49(b))。由于氧化膜很薄,这种电容器的电容较大。电解电容器的极性是固定的,使用时正负极不能接错,不能接交流电。 (2)可变电容器 ①特点:电容可以改变。 ②构成:由两组铝片组成(图1-49(c)),固定的一组铝片叫定片,可以转动的一组铝片叫动片。使用时可以转动动片使两组铝片正对面积发生变化从而改变电容的大小。 (3)电路中常用的几种电容器的符号如图1-49(d)所示。 【例1】图1-50中平行放置的金属板A、B组成一只平行板电容器。在不断开电键K时,①使A板向上平移拉开一些;②使A板向右平移错开一些;③往A、B间充入介电常量ε>1的电介质。试讨论电容器两板电势差U、电量Q、板间场强E的变化情况。若断开电键K,情况又如何? 【分析思路】解决本题的关键在于明确电容器所涉及的不变量。不断开电键时,意味着电容器两板间的电压U保持不变;断开电键后,意味着电容器所带电量是不变的。明确以上两点,即可再根据电容的定义式及平行板电容器电容的决定因素来讨论本题。

高中物理模型:常见的磁场整理

模型/题型:常见的磁场整理 条形磁体①在磁体的外部磁感线从磁体的N极出来进入磁场的S极,在内部也有相应条数的磁感线与外部的磁感线衔接组成闭合曲线; ②磁感线分布有两个对称轴,一是磁铁的中轴线,二是磁铁的中垂线(从空间上来说为两个对称面); ③条形磁铁的磁感线在磁铁的外部的两端(磁极)最密,中间稀疏。 蹄形磁铁①与条形磁铁相同,在磁体的外部磁感线从磁体的N极出来进入磁场的S极,在内部也有相应条数的磁感线(未画出)与外部的磁感线衔接组成闭合曲线; ②磁感线分布有一个对称轴,即磁铁的对称轴; ③蹄形磁铁的磁感线在磁铁外部是两端(磁极)最密,中间稀疏。 异名磁极①当两异名磁极相距较近时,两极间的磁场除边缘区域外是匀强磁场,磁感线相互平行、疏密均匀; ②当两异名磁极相距较远时,两极间靠中心位置越近磁感应强度越弱,磁感线越稀疏。类似于两等量异种电荷(点电荷)的磁场。 同名磁极 ①两同名磁极间的磁感线分布类似于两等量同种电荷(点电荷)的磁感线分布 ②磁感线有两条对称轴,分别为(1)两磁极的中轴线(2)两磁极间的中轴线 安培定则立体图横截面图纵截面图 直 线 电 流 一组以导线上任意点为圆心的多组同心圆,距导线越远磁感线越稀疏,磁场越弱 环 形 电 流 环形电流的两侧可等效为小磁针的N极和S极,内部磁场比环外强,磁感线越向外越稀疏

通 电 螺 线 管 内部为匀强磁场且比外部强,方向由S极→N极,外部类似条形磁铁的磁场,管外为非匀强磁场 1.用右手握住导线,让伸直的大拇指所指的方向跟电流的方向一致,弯曲的四指所指的就是磁感线的环绕方向。 2.让右手弯曲的四指和环形电流的方向一致,伸直的大拇指所指的方向就是环形导线轴线上磁感线的方向。 3.让右手弯曲的四指和螺线管中的电流方向一致,伸直的大拇指所指的方向就是螺线管中轴线上磁感线的方向。 三、地磁场的特点 ①地理南北极和地磁南北极相反 ②存在磁偏角 ③地球的磁场外部由南极到北极,内部由北极到南极 ④南半球地磁场磁感线斜向上,北半球斜向下,赤道与地面平行 四、磁场基础知识梳理 (一).磁感线 1、磁感线:在磁场中画出一系列有方向的曲线,曲线上每一点的切线方向表示该点的磁场方向,曲线的疏密程度表示磁场的强弱。 2.磁感线的基本特点: (1)磁体外部磁感线从N极出发指向S极,在磁体内部由S极到N极,形成闭合曲线。 (2)磁感线上每一点的切线方向表示该处的磁场方向。 (3)磁感线的疏密程度表示该处的磁场的强弱。 (4)任意两条磁感线不相交(不相切)。 (5)磁感线是假想线。 (二).匀强磁场 1.定义:磁场强弱、方向处处相同的磁场 2.磁感线分布特点:匀强磁场的磁感线是一些间隔相同的平行直线 (三).磁通量 1.磁通量的定义 公式Φ=BS中的B应是匀强磁场的磁感应强度,S是与磁场方向垂直的面积,因此,可以理解为Φ=BS⊥.如果平面与磁场方向不垂直,应把面积S投影到与磁场垂直的方向上,求出投影面积S⊥,代入到Φ=BS⊥中计算,应避免硬套公式Φ=BSsin θ或Φ=BScos θ. 2.磁通量的变化:一般有下列三种情况: (1)磁感应强度B不变,有效面积S变化,则ΔΦ=Φt-Φ0=B·ΔS. (2)磁感应强度B变化,磁感线穿过的有效面积S不变,则穿过回路中的磁通量的变化是:ΔΦ=Φt-Φ0=ΔB·S. (3)磁感应强度B和有效面积S同时发生变化的情况,则ΔΦ=Φt-Φ0. ?特别提醒 ①平面S与磁场方向不垂直时,要把面积S投影到与磁场垂直的方向上,即求出有效面积. ②可以把磁通量理解为穿过面积S的磁感线净条数.相反方向穿过面积S的磁感线可以互相抵消.

最新高一物理选修3-1电容器练习题

高一物理选修3-1电容器练习题 一.选择题(共23小题) 1.下列说法正确的是() A.点电荷一定是电量很小的电荷 B.电场线是假想曲线,实际不存在 C.电场强度的方向就是电荷所受电场力的方向 D.根据C=可知,电容器的电容C与电量Q成正比、与电压U成反比 2.如图,一带电油滴在平行板电容器之间恰能处于静止状态,下列说法正确的是() A.保持开关S闭合,适当上移P极板,油滴向上移动 B.保持开关S闭合,适当左移P极板,油滴向上移动 C.先断开开关S,再适当上移P极板,油滴仍静止 D.先断开开关S,再适当左移P极板,油滴仍静止 3.据国外某媒体报道,一种新型超级电容器,能让手机几分钟内充满电,某同学在登山时就用这种超级电容器给手机充电,下列说法正确的是() A.电容器的电容大小取决于电容器的带电量 B.电容器的电容大小取决于两极板间的电势差 C.电容器给手机充电时,电容器存储的电能变小 D.电容器给手机充电结束后,电容器不带电,电容器的电容为零 4.超级电容器又叫双电层电容器,是一种新型储能装置.它具有功率密度高、充放电时间短、循环寿命长、工作温度范围宽等特点.如图为一款超级电容器,其标有“3V,3000F”,则可知() A.电压为0时,该电容器的电容为0 B.电压为2V时,该电容器的电容为2000F C.该电容器正常工作时的电荷量为9000C D.该电容器正常工作时的电荷量为1000C 5.超级电容器又叫双电层电容器,是一种新型储能装置,它不同于传统的化学电源,是一种介于传统

电容器与电池之间、具有特殊性能的电容器.如图为﹣款标有“2.7V,3000 F”的超级电容器,据此可知该款电容器() A.放电时电容不变 B.充电时电能减少 C.在2.7 V电压下才能工作 D.两极所加电压为2.7 V时,电容才达到3000 F 6.如图所示是一个常用的电容器,关于它的说法中正确的是() A.电容器可以储存电荷,且带电量越多电容越大 B.加在这个电容器两端的电压低于50V时它就不能工作 C.加在这个电容器两端的电压为25V时,它的电容是110PF D.这个电容器两端电压变化10V,它的带电量变化2.2×10﹣3C 7.关于电容器及其电容的叙述,正确的是() A.任何两个彼此绝缘而又相互靠近的导体,就组成了电容器,跟这两个导体是否带电无关 B.电容器所带的电荷量是指每个极板所带电荷量的代数和 C.电容器的电容与电容器所带电荷量成反比 D.以上说法都不对 8.电容器的电容单位不正确的是() A.法拉B.微法C.焦耳D.皮法 9.电容器是一种重要的电学元件;某电容器的电容为C,两极板加电压为U时,电容器所带的电荷量为Q,现将电压U减小,则() A.C不变B.C减小C.Q不变D.Q增大 10.有关电容的单位及说法正确的是() A.电容的单位是库仑 B.电容的国际单位是法拉 C.电容是描述电荷多少的物理量 D.两极板上电荷为零时电容为零 11.以下说法正确的是()

高中物理学业水平考试公式概念总结内部资料(完整资料).doc

【最新整理,下载后即可编辑】 高中物理学业水平考试公式概念总结 一、直线运动: 1、匀变速直线运动: (1)平均速度 t x v = (定义式) 平均速度的方向即为运动方向 v -平均速度 国际单位:米每秒m/s 常用单位:千米每时 km/h 换算关系 1m/s=3.6km/h (2)加速度t v v t v a 0t -=??= 加速度描述速度变化的快慢,也叫速度的变化率 {以Vo 为正方向,a 与Vo 同向(做加速运动)a>0;反向(做减速运动) 则a<0} 注:主要物理量及单位:初速度(0v ):m/s ; 加速度(a):m/s 2; 末速度(t v ):m/s ; 时间(t):秒(s); 位移(x):米(m ); 路程(s):米(m ); 三个基本物理量:长度 质量 时间 对应三个基本单位:m kg s (3) 基本规律: 速度公式 at v v t +=0 位移公式 2012 x t at v =+ 几个重要推论: (1)ax v v t 22 02=- (o v 初速度,t v 末速度 匀加速直线运动:a 为正值,匀减速直线 运动(比如刹车):a 为负值,) (2) A B 段中间时刻的即时速度: *(3) AB 段位移中点的即时速度: V =022t t V V x V t +== 2 s V =注意 都是在什么条件下用比较好?(在什么条件不知或不需要知道或者也用不到时,该用哪个公式?) (5)初速无论是否为零,匀变速直线运动的质点,在连续相邻的相等的时间间隔内的 位移之差为一常数: (a 一匀变速直线运动的加速度,T 一每个时间间隔的时间) (用来求纸带问题中的加速度,注意 单位的换算) (6)自由落体: ①初速度Vo =0 ②末速度gt V t = ③下落高度2 2 1gt h =(从Vo 位置向下计算) ④推论22t V gh = 全程平均速度 2 t V V = 平均 注:(1)自由落体运动是初速度为零的匀加速直线运动,遵循匀变速直线运动规律; (2)a =g =9.8m/s 2≈10m/s 2(重力加速度在赤道附近较小,在高山处比平地小,方向竖 直向下)。 二、相互作用: 1、重力G =mg (方向竖直向下,g =9.8m/s 2≈10m/s 2,作用点在重心,重心不一定在物体上,适 用于地球表面附近) 2、弹力,胡克定律:x F k =弹(x 为伸长量或压缩量;k 为劲度系数,只与弹簧的原长、粗细和材料有关) 3、求 1F 和2F 两个共点力的合力: 姓名: (1) 力的合成和分解都遵从平行四边行定则。 (2) 两个力的合力范围: ? F 1-F 2 ? ≤ F ≤ F 1 +F 2 (3) 合力可以大于分力、也可以小于分力、也可以等于分力。 (4)求三个力的合力方法,先求出两个力的合力范围,看第三个力在不在这个范围内,如果在,则最小值可以取到0,最大值是三个力的和 4、物体平衡条件:静止或匀速直线运动的物体,所受合外力为零 或 5、摩擦力的公式: (1) 滑动摩擦力: 说明:a 、N F 为接触面间的弹力,即支持力,可以大于G ;也可以等于G;也可以小于G b 、μ为滑动摩擦系数,只与接触面材料和粗糙程度有关,与接触面积大小、接 触面相对运动快慢以及正压力N 无关. (2) 静摩擦力: 由物体的平衡条件或牛顿第二定律求解,与正压力无关.(只要不动, 推力越大,静摩擦力越大) 大小范围: O ≤ f ≤ m ax f m (m ax f 为最大静摩擦力,与正压力有关) f=F 说明:a 、摩擦力方向可以与运动方向相同,也可以与运动方向相反,还可以与运动 2 aT x =?N f F F μ=0=合F 0=合x F 0=合y F

高中物理选修3-1知识点归纳(完美版)上课讲义

高中物理选修3-1知识点归纳(完美版)

物理选修3-1 一、电场 1.两种电荷、电荷守恒定律、元电荷(e =1.60×10-19C );带电体电荷量等于元电荷的整数倍 2.库仑定律:F K Q Q r =122(真空中的点电荷){F:点电荷间的作用力(N); k:静电力常量k =9.0×109N ?m 2/C 2;Q 1、Q 2:两点电荷的电量(C);r:两点电荷间的距离(m); 作用力与反作用力;方向在它们的连线上;同种电荷互相排斥,异种电荷互相吸引} 3.电场强度:E F q = (定义式、计算式){E:电场强度(N/C),是矢量(电场的叠加原理);q :检验电荷的电量(C)} 4.真空点(源)电荷形成的电场E KQ r =2 {r :源电荷到该位置的距离(m ),Q :源电荷的电量} 5.匀强电场的场强AB U E d = {U AB :AB 两点间的电压(V),d:AB 两点在场强方向的距离(m)} 6.电场力:F =qE {F:电场力(N),q:受到电场力的电荷的电量(C),E:电场强度(N/C)} 7.电势与电势差:U AB =φA -φB ,U AB =W AB /q =q P E Δ减 8.电场力做功:W AB =qU AB =qEd =ΔE P 减{W AB :带电体由A 到B 时电场力所做的功(J),q:带电量(C),U AB :电场中A 、B 两点间的电势差(V )(电场力做功与路径无关),E:匀强电场强度,d:两点沿场强方向的距离(m);ΔE P 减 :带电体由A 到B 时势能的减少量}

9.电势能:E PA =q φA {E PA :带电体在A 点的电势能(J),q:电量(C),φA :A 点的电势(V)} 10.电势能的变化ΔE P 减=E PA -E PB {带电体在电场中从A 位置到B 位置时电势能的减少量} 11.电场力做功与电势能变化W AB =ΔE P 减=qU AB (电场力所做的功等于电势能的减少量) 12.电容C =Q/U(定义式,计算式) {C:电容(F),Q:电量(C),U:电压(两极板电势差)(V)} 13.平行板电容器的电容εS C 4πkd =(S:两极板正对面积,d:两极板间的垂直距离,ω:介电常数)常见电容器 14.带电粒子在电场中的加速(Vo =0):W =ΔE K 增或2 2 mVt qU = 15.带电粒子沿垂直电场方向以速度V 0进入匀强电场时的偏转(不考虑重力作用) : 类平抛运动(在带等量异种电荷的平行极板中:d U E = 垂直电场方向:匀速直线运动L =V 0t 平行电场方向:初速度为零的匀加速直线运动22at d =, F qE qU a m m m === 注: (1)两个完全相同的带电金属小球接触时,电量分配规律:原带异种电荷的先中和后平分,原带同种电荷的总量平分; (2)电场线从正电荷出发终止于负电荷,电场线不相交,切线方向为场强方向,电场线密处场强大,顺着电场线电势越来越低,电场线与等势线垂直; (3)常见电场的分布要求熟记; (4)电场强度(矢量)与电势(标量)均由电场本身决定,而电场力与电势能还与带电体带的电量多少和电荷正负有关; (5)处于静电平衡导体是个等势体,表面是个等势面,导体外表面附近的电场线垂直于导体表面,导体内部合场强为零,导体内部没有净电荷,净电荷只分布于导体外表面;

高中物理电容器和电容典型例题解析

电容器和电容典型例题 【例1】平行板电容器所带的电荷量为Q=4×10-8C,电容器两板间的电压为U=2V,则该电容器的电容为;如果将其放电,使其所带电荷量为原来的一半,则两板间的电压为,两板间电场强度变为原来的倍,此时平行板电容器的电容为。 【例2】如图电路中,A、B为两块竖直放置的金属板,G是一只静电计,开关S合上时,静电计张开一个角度,下述情况中可使指针张角增大的是 A、合上S,使A、B两板靠近一些 < B、合上S,使A、B正对面积错开一些 C、断开S,使A、B间距增大一些 D、断开S,使A、B正对面积错开一些 【例3】一平行板电容器充电后与电源断开,负极板接地。两板间有一个正电荷固定在P点,如图所示,以E表示两板间的场强,U表示电容器两板间的电压,W表示正电荷在P点的电势能,若保持负极板不动,将正极板向下移到图示的虚线位置则:()( A、U变小,E不变 B、E变小,W不变 C、U变小,W不变 D、U不变,W不变 【例4】置于真空中的两块带电的金属板,相距1cm,面积均为10cm2,带电量分别为Q1=2×10-8C,Q2=-2×10-8C,若在两板之间的中点放一个电量q=5×10-9C的点电荷,求金属板对点电荷的作用力是多大 【例5】A,B两块平行带电金属板,A板带负电,B板带正电,并与大地相连接,P为两板间一点。若将一块玻璃板插入A,B两板间,则P点电势将怎样变化。 ] 【例6】一个平行板电容器,使它每板电量从Q1=30×10-6C增加到Q2=36×10-6C时,两板间的电势差从U1=10V增加到U2=12V,这个电容器的电容量多大如要使两极电势差从10V降为U2'=6V,则每板需减少多少电量. 【例7】一平行板电容器的电容量为C,充电后与电源断开,此时板上带电量为Q,两板间电势差为U,板间场强为E.现保持间距不变使两板错开一半(图1),则下列各量的变化是:电容量C′=______,带电量Q′=______,电势差U′=______,板间场强E′______.

高中物理选修3-1电容器的电容知识点

高中物理选修3-1电容器的电容知识点 一、电容器 1.电容器:任何两个彼此绝缘、相互靠近的导体可组成一个电容器,贮藏电量和能量。两个导体称为电容器的两极。 2.电容器的带电量:电容器一个极板所带电量的绝对值。 3.电容器的充电、放电. 操作:把电容器的一个极板与电池组的正极相连,另一个极板与负极相连,两个极板上就分别带上了等量的异种电荷。这个过程叫做充电。 现象:从灵敏电流计可以观察到短暂的充电电流。充电后,切断与电源的联系,两个极板间有电场存在,充电过程中由电源获得的电能贮存在电场中,称为电场能。 操作:把充电后的电容器的两个极板接通,两极板上的电荷互相中和,电容器就不带电了,这个过程叫放电。 充电——带电量Q增加,板间电压U增加,板间场强E增加,电能转化为电场能 放电——带电量Q减少,板间电压U减少,板间场强E减少,电场能转化为电能 二、电容 1.定义:电容器所带的电荷量Q与电容器两极板间的电势U的比值,叫做电容器的电容 C=Q/U,式中Q指每一个极板带电量的绝对值

①电容是反映电容器本身容纳电荷本领大小的物理量,跟电容器是否带电无关。 常用单位有微法(μF),皮法(pF)1μF=10-6F,1pF=10-12F 2.平行板电容器的电容C:跟介电常数成正比,跟正对面积S成 正比,跟极板间的距离d成反比。 3.电容器始终接在电源上,电压不变;电容器充电后断开电源, 带电量不变。 (一)预习 学习的第一个环节是预习。有的同学不注重听课前的这一环节,会说我在初中从来就没有这个习惯。这里我们需要注意,高中物理 与初中有所不同,无论是从课程要求的程度,还是课堂的容量上, 都需要我们在上课之前对所学内容进行预习。 在每次上课前,抽出一段时间(没有时间的限制,长则20分钟,短则课前的5、6分钟,重要的是过程。)将知识预先浏览一下,一 则可以帮助我们熟悉课上所要学习的知识,做好上课的知识准备和 心理准备;二则可以使我们明确课堂的重点,找出自己理解上的难点,从而做到有的放矢地去听课,有的同学感到听课十分吃力,原因就 在于此。 (二)上课 (1)主动听课. 听课可分成三种类型:即主动型、自觉型和强制型。主动型就是能够根据老师讲课的程序主动自觉地思考,在理解基础知识的基础上,对难点和重点进行推理性的思维和接受;自觉型则是能对老师讲 课的程序进行思考,能基本接受讲解的内容和基础知识,对难点和 重点一般不能进行自觉推理思维,要在老师的指导下才能完成这一 过程;而强制型则是指在课堂学习中,思维迟缓,推理滞留,必须在 老师的不断指导启发下才能完成学习任务。如果属于强制型,那要 试着改变自己,由强制型变为自觉型;如果是自觉型,还要加强主动

高中物理电学复习资料

作业1 知识点汇总 1.自然界中存在(两种)电荷,分别为(正电荷)和(负电荷).同种电荷相互 (排斥),异种电荷相互(吸引)。 2.物体所带电荷的多少叫做(电荷量),用符号Q(或q)表示.电荷量的单位是(库仑)。 3. 电子所带电荷量的数值(e=1.60×10-19)C,这个电荷量叫做元电荷。元电荷是(最小)的电荷量单位,所有带电体的电荷量等于e或者是e的(整数)倍,元电荷正由此而得名.电荷量不能连续变化。 4. 原子核由带(正电)的质子和不带电的(中子)组成,核外有带(负电)的电子.原子核所带的正电荷的数量与核外电子所带的负电荷的数量一样多,所以整个原子对外较远位置表现为中性。 5. 通过摩擦的方式实现电子的转移,从而使物体带电.得到电子的物体带(负电),失去电子的物体带(正电)。 6. 当一个带电体靠近不带电的导体时,由于电荷间相互吸引或排斥,导体中的(自由电荷)便会趋向或远离带电体,使不带电的导体靠近带电体的一端与带电体带(异号)电荷,远离的一端与带电体带(同号)电荷,这种现象叫做静电感应.利用这种方式使物体带电,叫做感应起电。 7.通过接触的方式,实现(电子)的转移,使电荷重新分布,从而使物体带电,这种带电方式叫接触起电。 8. 物体带电实质是(电子)的得失,即通过摩擦的方式、接触的方式、静电感应的方式使电子从一个物体(转移)到另一个物体上,或者从物体的一部分(转移)到另一部分。 9. 电荷既不会创生,也不会消灭,它只能从一个物体转移到另一个物体,或者从物体的一部分转移到另一部分,在转移过程中,电荷的(总量)保持不变。10. 思考题 今天我路过一处加油站,看到一条醒目的标语:“严禁用塑料桶运汽油!”你知道这是为什么吗?

高中物理选修3-1第一章 8 电容器的电容--教师版

8 电容器的电容--教师版 [学科素养与目标要求] 物理观念:1.知道什么是电容器及平行板电容器的主要构造.2.理解电容的概念及其定义式. 3.了解电容器充电和放电现象及能量转换. 科学探究:1.会正确连接电路,认真观察电容器的充放电过程.2.通过探究得出平行板电容器电容的影响因素. 科学思维:1.通过类比建立电容的概念;通过电容的定义进一步体会比值定义法.2.结合具体问题构建电容器动态分析模型. 一、电容器 1.电容器:储存电荷和电能的装置.任何两个彼此绝缘又相距很近的导体,都可以看成一个电容器. 2.电容器的充放电 (1)充电:把电容器的两极板分别与电池组的两极相连,两个极板分别带上等量的异号电荷的过程,充电过程中,由电源获得的电场能储存在电容器中. (2)放电:用导线把充电后的电容器的两极板接通,两极板上的电荷中和的过程,放电过程中,电场能转化为其他形式的能量. 二、电容 1.定义:电容器所带电荷量Q 与电容器两极板间的电势差U 的比值. 2.定义式:C =Q U . 3.单位:电容的国际单位是法拉,符号为F ,常用的单位还有微法和皮法,1 F =106 μF =1012 pF. 4.物理意义:电容器的电容是表示电容器容纳电荷本领的物理量,在数值上等于使两极板间的电势差为1 V 时电容器需要带的电荷量. 三、平行板电容器 1.结构:由两个平行且彼此绝缘的金属板构成. 2.电容的决定因素:电容C 与两极板间电介质的相对介电常数εr 成正比,跟极板的正对面积S 成正比,跟极板间的距离d 成反比. 3.电容的决定式:C = εr S 4πkd ,εr 为电介质的相对介电常数,k 为静电力常量.当两极板间是真空时,C =S 4πkd ,式中k 为静电力常量.

人教版高中物理选修3-1第一章第八节电容器的电容同步习题(附详解答案)

高中物理学习材料 金戈铁骑整理制作 第一章 第八节电容器的电容 同步习题 (附详解答案) 1.一个平行板电容器,它的电容 ( ) A .跟正对面积成正比,跟两板间的距离成正比 B .跟正对面积成正比,跟两板间的距离成反比 C .跟正对面积成反比,跟两板间的距离成正比 D .跟正对面积成反比,跟两板间的距离成反比 答案:B 2.(2009·河南宝丰一中高二检测)以下说法正确的是 ( ) A .由E =F q 可知电场中某点的电场强度E 与F 成正比 B .由公式φ=E p q 可知电场中某点的电势φ与q 成反比 C .由U ab =Ed 可知,匀强电场中的任意两点a 、b 间的距离越大,则两点间的电势差也越大 D .公式C =Q /U ,电容器的电容大小C 与电容器两极板间电势差U 无关 答案:D 3.如图所示,当被测物体在左右方向发生位移时,电介质板随之在电容器两极板之间移动.如果测出了电容的变化,就能知道物体位移的变化.若电容器的电容变大,则物体的位移可能的变化是 ( ) A .加速向右移动 B .加速向左移动 C .减速向右移动 D .减速向左移动 答案:BD 解析:本题由于相对介电常数ε发生变化而引起电容器的电容C 的变化,根据C =εS 4πkd 可知:当电容C 变大时,ε应该增大,电介质板应向左移动,所以答案B 与D 正确. 点评:本题考查相对介电常数ε对平行板电容器电容的影响.电介质板插入电容器板间的部分越多,相对介电常数ε越大,电容C 越大,故只有电介质板移动的方向会影响ε的大小,而与加速、减速无关. 4.如图所示,平行板电容器C 和电阻组成电路,当增大电容器极板间的距离时,则( ) A .在回路中有从a 经R 流向b 的电流

人教版高中物理选修3-5知识点整理及重点题型梳理] 原子结构

人教版高中物理选修3-5 知识点梳理 重点题型(常考知识点)巩固练习 原子结构 【学习目标】 1.知道电子是怎样发现的; 2.知道电子的发现对人类探索原子结构的重大意义; 3.了解汤姆孙发现电子的研究方法. 4.知道α粒子散射实验; 5.明确原子核式结构模型的主要内容; 6.理解原子核式结构提出的主要思想. 【要点梳理】要点诠释: 要点一、原子结构 1.阴极射线 (1)气体的导电特点: 通常情况下,气体是不导电的,但在强电场中,气体能够被电离而导电. 平时我们在空气中看到的放电火花,就是气体电离导电的结果.在研究气体放电时一般都用玻璃管中的稀薄气体,导电时可以看到发光放电现象. (2)1858年德国物理学家普里克发现了阴极射线. ①产生:在研究气体导电的玻璃管内有阴、阳两极.当两极间加一定电压时,阴极便发出一种射线,这种射线为阴极射线. ②阴极射线的特点:碰到荧光物质能使其发光. 2.汤姆孙发现电子 (1)从1890年起英国物理学家汤姆孙开始了对阴极射线的一系列实验研究. (2)汤姆孙利用电场和磁场能使带电的运动粒子发生偏转的原理检测了阴极射线的带电性质,并定量地测定了阴极射线粒子的比荷(带电粒子的电荷量与其质量之比,即e m ). (3)1897年汤姆孙发现了电子(阴极射线是高速电子流). 电子的电量 ()191.602177334910C e =?-, 电子的质量 319.109389710kg m =?-, 电子的比荷 111.758810C/kg e m =?.

电子的质量约为氢原子质量的 1 1836 . 3.汤姆孙对阴极射线的研究 (1)阴极射线电性的发现. 为了研究阴极射线的带电性质,他设计了如图所示装置.从阴极发出的阴极射线,经过与阳极相连的小孔,射到管壁上,产生荧光斑点;用磁铁使射线偏转,进入集电圆筒;用静电计检测的结果表明,收集到的是负电荷. (2)测定阴极射线粒子的比荷. 4.密立根实验 美国物理学家密立根在1910年通过著名的“油滴实验”简练精确地测定了电子的电量 密立根实验更重要的发现是:电荷是量子化的,即任何电荷只能是元电荷e的整数倍. 5.电子发现的意义 以前人们认为物质由分子组成,分子由原子组成,原子是不可再分的最小微粒.现在人们发现了各种物质里都有电子,而且电子的质量比最轻的氢原子质量小得多,这说明电子是原子的组成部分.电子是带负电,而原子是电中性的,可见原子内还有带正电的物质,这些带正电的物质和带负电的电子如何构成原子呢?电子的发现大大激发了人们研究原子内部结构的热情,拉开了人们研究原子结构的序幕. 6.19世纪末物理学的三大发现 对阴极射线的研究,引发了19世纪末物理学的三大发现:(1)1895年伦琴发现了X射线;(2)1896年贝克勒尔发现了天然放射性;(3)1897年汤姆孙发现了电子. 要点二、原子的核式结构模型 1.汤姆孙的原子模型 “枣糕模型”. “葡萄干布丁模型”(如图所示). “葡萄干面包模型”. 汤姆孙的原子模型是在发现电子的基础上建立起来的,汤姆孙认为,原子是一个球体,正电荷均

高中物理选修3-1电容器的电容知识点归纳

高中物理选修3-1电容器的电容知识点归纳 电容器的电容这一内容在高中物理选修3-1课本中出现,有哪些知识点需要记住的呢?下面是小编给大家带来的高中物理选修3-1电容器的电容知识点,希望对你有帮助。 高中物理选修3-1电容器的电容知识点一、电容器 1. 电容器:任何两个彼此绝缘、相互靠近的导体可组成一个电容器,贮藏电量和能量。两个导体称为电容器的两极。 2. 电容器的带电量:电容器一个极板所带电量的绝对值。 3. 电容器的充电、放电. 操作:把电容器的一个极板与电池组的正极相连,另一个极板与负极相连,两个极板上就分别带上了等量的异种电荷。这个过程叫做充电。 现象:从灵敏电流计可以观察到短暂的充电电流。充电后,切断与电源的联系,两个极板间有电场存在,充电过程中由电源获得的电能贮存在电场中,称为电场能。 操作:把充电后的电容器的两个极板接通,两极板上的电荷互相中和,电容器就不带电了,这个过程叫放电。 充电带电量Q增加,板间电压U增加,板间场强E增加, 电能转化为电场能 放电带电量Q减少,板间电压U减少,板间场强E减少,电场能转化为电能

二、电容 1. 定义:电容器所带的电荷量Q与电容器两极板间的电势U的比值,叫做电容器的电容 C=Q/U,式中Q指每一个极板带电量的绝对值 ①电容是反映电容器本身容纳电荷本领大小的物理量,跟电容器是否带电无关。 ②电容的单位:在国际单位制中,电容的单位是法拉,简称法,符号是F。 常用单位有微法(F),皮法(pF) 1F = 10-6F,1 pF =10-12F 2. 平行板电容器的电容C:跟介电常数成正比,跟正对面积S 成正比,跟极板间的距离d成反比。 是电介质的介电常数,k是静电力常量;空气的介电常数最小。 3. 电容器始终接在电源上,电压不变;电容器充电后断开电源,带电量不变。 第9节带电粒子在电场中的运动 研究带电粒子在电场中的运动要注意以下三点: 1. 带电粒子受力特点。 2. 结合带电粒子的受力和初速度分析其运动性质。 3. 注意选取合适的方法解决带电粒子的运动问题。 一、带电粒子在电场中的加速 例1:在真空中有一对带电平行金属板,板间电势差为U,若一个质量为m,带正电电荷量为q的粒子,在静电力的作用下由静止

相关主题