搜档网
当前位置:搜档网 › 新型负热膨胀氧化物材料的研究

新型负热膨胀氧化物材料的研究

新型负热膨胀氧化物材料的研究
新型负热膨胀氧化物材料的研究

A2M3O12型负热膨胀材料的研究

负热膨胀系数材料的研究现状与展望1 华祝元,刘佳琪,严学华 (江苏大学材料科学与工程学院镇江212013) 摘要:本文从负热膨胀材料的发展概况、负热膨胀产生机理、负热膨胀材料分类出发,着重介绍了化学通式为A2M3O12的负热膨胀材料。通过几种A2M3O12型负热膨胀材料的性质、制备方法和晶体结构的归纳和总结,对这一系列的负热膨胀材料未来研究方向进行了展望。 关键字:热膨胀;A2M3O12;制备方法 Negative Thermal Expansion Material A2M3O12 Hua Zhu-yuan,LIU Jia-qi,YAN Xue-hua (School of Materials science and engineering,Jiangsu University,Zhengjiang 212013,China) Abstract:Negative thermal expansion materials A2M3O12was mainly introduced based on the development situation of the negative thermal expansion materials ,the mechanism of the negative thermal expansion ,as well as its divisions .Summarize the properties, preparation processing and the crystal structures of several A2M3O12 materials .Finally ,the future point of this kind of material was propounded.. Key words: Negative thermal expansion; A2M3O12; preparation methods 由晶格热振动的非谐效应产生的“热胀冷缩”性质已成为人们普遍接受的自然属性之一,但在自然界中也存在一些较为少见“热缩冷胀”的反常现象,由此,通过人工合成并存在负热膨胀特性的材料成为目前研究的热点之一。随着科技的发展,人们希望制备出更多具有低的膨胀系数或者零膨胀系数的材料,而通过研究负热膨胀(NTE)材料,并使这种材料与一般的正热膨胀材料复合,从而使复合材料的热膨胀系数可控,甚至为零,成为可能。这种复合材料可以最大限度的减少高温材料的内应力,增加材料的抗热冲击强度,可广泛应用于航空航天、光电子精密仪器制造等领域。 负热膨胀指材料体积随温度升高而缩小,随温度降低而变大,与常规材料的热胀冷缩现象相反。而负热膨胀材料是指在一定的温度范围内其线膨胀系数(αT)或体膨胀系数(βT)为负值。 1发展概况 1935年,Büssem等发现β-方石英的热膨胀系数很小;并于1975年由Wright等研究者进一步通过实验证实。1951年,Hummel研究发现β-锂霞石晶体呈现出负的体积膨胀。由此人们开始意识到,可以制备出在一定温度范围内体积稳定的零膨胀材料。经过科学家们的不断研究,相继生产出一系列低热膨胀玻璃陶瓷等材料。但所发现的负热膨胀材料由于存在响应温度远离室温、响应温度范围太窄或负膨胀系数受温度影响太大等因素,应用受到限制。进入20世纪90年代,负热膨胀材料的研究得到进一步发展。1995年,美国俄勒冈州立大学(Oregon State University)的Sleight研究发现ZrV2-x P x O7系列的负热膨胀材料均表现为各 2010年月日收到初稿;2010年月日收到修改稿。 基金项目:国家自然科学基金(50772044);教育部高等学校博士点基金(200802990001);江苏省自然基金(BK2008224);江苏省高校自然科学重大基础研究(09KJA430001)和江苏省青蓝工程资助项目。 作者简介:华祝元硕士主要从事负热膨胀材料的研究。

负热膨胀材料研究进展

AbstractThedevelopmentandthemajorachievementsofstudiesonnegativethermalexpansionmaterialsarereviewed.Variousmechanismstoexplainnegativethermalexpansionarediscussedwithseveraltypicalnegativethermalexpansionmaterialsasexamples.Therecentlydiscoveredmanganesenitridesnegativethermalexpansionmaterialandtheproblemsrelatedtothisimportantnewclassofmaterialsarediscussedindetails.Keywords negativethermalexpansionmaterials;mechanismsof negativethermalexpansion;manganesenitrides 大多数材料具有热胀冷缩的性能。材料的热胀冷缩是机械电子、光学、医学、通信等领域所面临的普遍问题之一,对各种器件的性能均有影响。因此,研究开发负热膨胀材料或零膨胀材料,实现部件热膨胀系数的可控可调,提高材料的抗热冲击性,延长材料的使用寿命,就成为亟需解决的问题。 负热膨胀指材料体积随温度升高而缩小,随温度降低而变大,与常规材料的热胀冷缩现象相反。负热膨胀材料可单 独使用,也可与常规正热膨胀材料按一定成分配比、按一定方式制备成复合材料,根据实际需求精确控制材料的膨胀系数。 1负热膨胀材料的发展历程 1951年,Hummel发现β-锂霞石的结晶聚集体在温度达到1000℃后,若温度继续升高则会出现体积缩小的现象[1],从而引起了科技界对负热膨胀问题的重视。此后,科研人员相继发现一系列负热膨胀材料,但所发现的负热膨胀材料,由于响应温度远离室温、响应温度范围太窄或负膨胀系数受温度影响太大,应用受到了限制。20世纪90年代,随着对低膨胀材料需求的不断增多,负热膨胀材料受到广泛关注[2-11],其研究力度也进一步加大。1995年, Sleight等[2]发现ZrV2-xPxO7系列各向同性负热膨胀材料,其最大负热膨胀温度可达到950K;A.W.Sleight等[3]发现立方晶体结构的ZrW2O8负热膨胀材料。1996年,T.A.Mary等[4]发现ZrW2O8从0.3K到其分解温度1050K的整个温度范围内都具有优良的各向同性负热膨胀性能,并利用氧化物前驱物和高温淬火方法制备出了稳定的ZrW2O8。1997年,Sleight等[5]发现化学通式为A2M3O12的钨酸盐和钼酸盐系列负热膨胀材料。其中,Sc2W3O12是迄今所发现的响应温度范围最宽的负热膨胀材料,其响应温度范围为10~1200K[6]。1998年,Sleight等[7]发现Lu2W3O12负热膨胀材 料。这些各向同性(以ZrW2O8为代表)和各向异性(以Sc2W3O12为代表)氧化物负热膨胀材料的发现,极大地推动了材料科学和制造业的发展[8]。进入21世纪,负热膨胀材料成为 材料科学中的一大研究热点[4,9-11]。日本理化学研究所发现性 能优良的搀杂锗的锰氮化物Mn3AN( A代表Zn、Ga、Cu)负热膨胀材料[12],这种材料有望成为负热膨胀材料的一个重要研究方向。 负热膨胀材料研究进展 摘要概述负热膨胀材料的发展历程及近年的主要研究成果,介绍负热膨胀的微观机理,分析几种典型负热膨胀材料的特点,展望新型锰氮化物负热膨胀材料的应用前景,探讨负热膨胀材料研究所面临的问题。关键词负热膨胀材料;负热膨胀机理;锰氮化物中图分类号TB34 文献标识码A 文章编号1000-7857(2008)12-0084-05 蔡方硕1,2,黄荣进1,2,李来风1 1.中国科学院理化技术研究所,北京100190 2.中国科学院研究生院, 北京100049AdvancesinNegativeThermal ExpansionMaterials CAIFangshuo1,2,HUANGRongjin1,2,LILaifeng1 1.TechnicalInstituteofPhysicsandChemistry,ChineseAcademyofSciences,Beijing100190,China2.GraduateUniversityofChineseAcademyofSciences,Beijing100049,China 收稿日期:2008-05-12 基金项目:国家自然科学基金项目(50676101) 作者简介:蔡方硕,北京市海淀区中关村北一条2号中国科学院理化技术研究所, E-mail:caifangshuo06@mails.gucas.ac.cn;李来风(通讯作者),北京市海淀区中关村北一条2号中国科学院理化技术研究所,研究员,E-mail:lfli@mail.ipc.ac.cn 综述文章(Reviews)

浅谈负泊松比材料及其在土木工程中的应用

浅谈负泊松比材料及其在土木工程中的应用 发表时间:2018-05-15T14:56:59.703Z 来源:《知识-力量》2018年3月上作者:张涛1 吴江川2 陈博3 [导读] 本文主要介绍了负泊松比材料的发展概况、分类以及负泊松比材料的力学性能和它在土木工程中的应用。 (1.重庆交通大学土木工程学院,重庆 400074;2.重庆交通大学土木工程学院,重庆 400074;3.重庆交通大学土木工程学院,重庆 400074)摘要:负泊松比材料作为现代新型高性能材料,它具有许多与普通材料不同的性质。它与普通材料最大的区别就在于它的几何性质--受拉时其垂直方向膨胀,受压时垂直方向收缩。本文主要介绍了负泊松比材料的发展概况、分类以及负泊松比材料的力学性能和它在土木工程中的应用。 关键词:负泊松比;分类;性能;应用 以著名法国数学家西蒙·泊松命名的泊松比,用公式表示为: 。式中:εj表示横向收缩应变,εi表示纵向伸长应变;i、j分别为两相互垂直的坐标轴。自然界大多数材料是正泊松比材料,受拉时横截面面积将变小,受压时横截面面积变大;自然界中也存在与此性质相反的材料,拉时横截面面积将变大,受压时横截面面积变小。如黄铁矿、砷、镉和一些动物的皮肤就是天然的负泊松比材料。 一、负泊松比材料研究概况 自20世纪80年代Lakes首次通过对普通聚合物泡沫的处理得到具有特殊微观结构的负泊松比材料,测得其泊松比值为-0.7后,负泊松比材料的相关研究从此变得日益活跃,越来越多的科研人员投入到负泊松比材料的研究之中。目前对负泊松比材料的研究主要分为以下四方面:(l)各种负泊松比材料的制备及微观结构特征研究;(2)引起材料负泊松比的机理研究;(3)负泊松比材料的静、动力学行为研究;(4)负泊松比材料的应用研究。 二、负泊松比材料分类 Lakes首次对普通聚合物处理得到负泊松比材料后,近三十年以来,与负泊松比材料的相关的研究越来越多、涉及领域越来越广泛,拓扑学的引入更是为探索新型负泊松比结构垫定了数学基础。目前负泊松比材料类型主要分为以下几类:1、多孔状负泊松比材料 多孔状负泊松比材料包括泡沫材料和蜂巢状结构材料,它是指一相为固体,另一相完全由孔隙或液体组成的复合材料,如自然界的岩石、木材等。多孔状负泊松比材料可以在二维结构结构上具有负泊松比效应,也可以三维结构上具有负泊松比效应。目前已发现,在二维结构上由内凹泡孔结构单元组成的蜂窝状固体材料具有负泊松比值;在三维结构上Lakes和 Witt通过对传统结构单元进行转变得到三维内凹结构单元,三维凹结构单元组成的多空状材料具有负泊松比效应。 2、负泊松比复合材料 负泊松比复合材料包含两类,第一类是由普通材料通过特别的铺层方式形成的负泊松比复合材料;另一类就是引入负泊松比增强纤维或者其他负泊松比材料来使复合材料具有负泊松比效应。第一类负泊松比复合材料制备较第二类负泊松比复合材料制备更难,所以一般制备的负泊松比复合材料都是通过第二类方法进行制备。 3、分子负泊松比材料 分子负泊松比材料是指微观结构上具有负泊松比结构(如有倒插蜂窝网络形状)的一类材料。这种材料通过微观上的负泊松比效应的某种叠加机制,最终形成这种宏观层面上的负泊松比效应的物质。目前从分子层面上,设计一种负泊松比材料是不少科研人员研究负泊松比材料的方向。比如说,Evans等基于凹式蜂窝几何学的立体分子网络进行了负泊松比效应预测;Baughman等提出一种由聚二炔链组成的三维分子网络可表现出负泊松比效应。 三、负泊松比材料的力学性能 负泊松比材料由于它特殊的几何结构和力学反应导致了它具有许多普通材料不具备的优异性能,其主要力学性能主要分为以下几种:(1)抗爆抗冲击性能,在冲击过程中,破口周围材料由于负泊松比效应,会向破口聚,将破口填充,封闭或减小弹孔,提高抗爆抗冲击能力。因此,它可以作为于舰艇、坦克等的防御装甲。 (2)缺口断裂韧性高,根据张耀强等人进行的负泊松比材料与正泊松比材料的对比实验,可知负泊松比材料因为存在独特的裂纹尖端应力场,所以它在断裂破坏时断裂强度比普通材料更大、断裂韧性也比普通材料更大。 (3)剪切模量高,根据负泊松比泡沫材料的抗剪实验数据可以得到其剪切模量最高可以达到普通泡沫的2倍左右,远远超过一般材料。一般大型飞机机身蒙皮要承受较大的扭转载荷,芯层的泡沫或蜂窝极易被剪切破坏,所以一般都选用负泊松比泡沫或蜂窝作为夹芯材料。 (4)减振吸能,张梗林等人通过对负泊松比蜂窝材料与正泊松比材料分别构成的减振器实验分析得到负泊松比材料构成的减振器的性能更优。这是因为蜂窝隔振器内部是由蜂窝胞元周期性组合而成,具有良好的变形特性,可以将动能转化为应变能,从而达到减振效果。 四、负泊松比效应在土木工程中的应用 负泊松比材料的优异性质目前主要应用于航天飞机蒙皮制造以及船舶防撞装置设计。在土木工程方面的应用也有不少,主要目前主要有以下几方面。 (1)桥梁伸缩缝装置,2015年长安大学的尹冠生教授等人成功实现了基于负泊松比结构的桥梁伸缩缝装置。桥梁变形要求伸缩缝在平行、垂直于桥梁轴线的两个方向,均能自由伸缩、牢固可靠;车辆行驶过时应平顺、无突跳与噪声;要能防止雨水和垃圾泥土渗入阻塞;安装、检查、养护、消除污物都要简易方便。而负泊松比蜂窝结构具有拉时其垂直方向膨胀,受压时收缩的性能。所以安装在梁体间隙之间具有足够的变形能力,同时负泊松比效应使得材料的力学性能得到增强使蜂窝结构在横向和竖向具有一定的承载能力,这样既可满足桥上汽车平稳通过,又能满足桥梁横向具有足够的刚度和强度。 (2)以NPR锚杆/索支护原理为基础的围岩支护体系的应用,何满潮等根据负泊松比材料的结构效应,设计了宏观尺度上的NPR锚杆/索,通过的带有椎体的杆件与套管的相对滑移实现拉伸-膨胀效应,以钢构件的摩擦损耗吸收岩体多余的变形能,实现了岩体大变形的控制加固、监测预警技术。该应用在岩石力学领域首次提出NPR支护的概念及其理论应用。

材料的热膨胀系数

https://www.sodocs.net/doc/0817788056.html,/p-50731110.html 陶粒5.83 耐火粘土砖的热膨胀系数是多少呀? (4.5-6)×10的负6次方/℃ 材料的热膨胀系数 Material 10-6 in./in.*/°F 10-5 in./in.*/°C High Low High Low 锌及其合金Zinc & its Alloysc 19.3 10.8 3.5 1.9 铅及其合金Lead & its Alloysc 16.3 14.4 2.9 2.6 镁合金Magnesium Alloysb 16 14 2.8 2.5 铝及其合金Aluminum & its Alloysc 13.7 11.7 2.5 2.1 锡及其合金Tin & its Alloysc 13 - 2.3 - 锡铝黄铜Tin & Aluminum Brassesc 11.8 10.3 2.1 1.8 黄铜或铅黄铜Plain & Leaded Brassesc 11.6 10 2.1 1.8 银Silverc 10.9 - 2 - 铬镍耐热钢Cr-Ni-Fe Superalloysd 10.5 9.2 1.9 1.7 Heat Resistant Alloys (cast)d 10.5 6.4 1.9 1.1 Nodular or Ductile Irons (cast)c 10.4 6.6 1.9 1.2 不锈钢Stainless Steels (cast)d 10.4 6.4 1.9 1.1 锡青铜Tin Bronzes (cast)c 10.3 10 1.8 1.8 奥氏体不锈钢Austenitic Stainless Steelsc 10.2 9 1.8 1.6 磷硅青铜Phosphor Silicon Bronzesc 10.2 9.6 1.8 1.7 铜Coppersc 9.8 - 1.8 - Nickel-Base Superalloysd 9.8 7.7 1.8 1.4 铝青铜Aluminum Bronzes (cast)c 9.5 9 1.7 1.6 Cobalt-Base Superalloysd 9.4 6.8 1.7 1.2 铍(青)铜Beryllium Copperc 9.3 - 1.7 - Cupro-Nickels & Nickel Silversc 9.5 9 1.7 1.6 镍及其合金Nickel & its Alloysd 9.2 6.8 1.7 1.2

负泊松比(拉胀)材料相关资料收集

负泊松比(拉胀)材料相关资料收集 一、概述 泊松比是基本的材料参数之一,衡量了固体在垂直加载方向变形与加载方向变形之间的比值,变化范围在0。5与-1之间。 下表是一些材料的典型泊松比值: Material poisson's ratio rubber~ 0。50 gold0。42 saturated clay 0。40–0。50 magnesium0。35 titanium0。34 copper0。33 aluminium-alloy 0。33 clay0。30–0。45 stainless steel0。30–0。31 steel0。27–0。30 cast iron0。21–0。26 sand0。20–0。45 concrete0。20 glass0。18–0。3 foam0。10–0。40 cork~ 0。00 auxetics negative 泊松比作为基本的弹性常数,可以由体积模量K和剪切模量G的比值来确定,满足如下关系: 这意味着泊松比实际上表征了材料在载荷作用下发生形状畸变或者体积变形之间的竞争。 通常情况下,材料具有正的泊松比(Positive Poisson Ratio),即材料在受到纵向拉伸时,横向尺寸收缩。如果横向尺寸变大,这种材料就是负泊松比(Negative Poisson Ratio,简称为NPR或Auxetic)材料。 二、历史

1982年,Ashby首次指出具有细胞状结构的材料,在变形时,能产生负的泊松比。人们也已经发现合成材料能够产生负泊松比的现象,如:“可再入”泡沫材料、多孔聚合物、聚合物层压材料。 从分子设计出发合成负泊松比材料少有报道。Evans于1991年用分子模拟技术,利用分子内的自由体积,从几何结构出发,设计了一种可能产生NPR效应的二维分子网络结构,提供了一个从分子水平裁剪泊松比的例子。1997年,Griffin 提出了一种基于主链型液晶高分子NPR材料的模型(Fig。 1),随后又从理论上计算了这种分子模型产生负泊松比时横向液晶基元需要满足的尺寸条件。 受Griffin分子模型的启发,通过液晶共聚酯实现负泊松比效应的尝试,合成了一系列有望具有负泊松比效应的液晶共聚酯(Fig。 2)。 三、实例 聚乙烯醇(PVA)水凝胶 具有特殊多孔结构,除有高含水性、高弹性、化学稳定性、对小分子的透过性以及良好的生物相容性,还具有负泊松比效应的可设计性,可作为软骨、椎间盘、肌肉韧带等软组织的替代植入修复材料,应用在生物医用材料领域,缓解动脉硬化、血栓等血管疾病对人体造成的危害。虽然人们已对一些生物组织和生物材料的负泊松比效应进行了研究,但迄今为止还没有出现临床应用的生物功能拉胀材料的相关报道;在关于多孔聚乙烯醇(PVA)水凝胶出现负泊松比效应的微观结构、形态与形变机理等方面,国内外研究较少,对相关的材料体系缺乏充分的实验数据和理论依据。 液晶高分子聚酯阻燃PVC 经分子设计,通过2,5—二对烷氧基苯酰氧基对苯二酚、4,4'—二羟基—αω—二苯氧基癸烷和4,4'—癸二酰氧基二苯甲酰氯之间的缩合反应合成了一系列具有负泊松比潜能的液晶共聚酯。 所有聚合物的熔点都非常低,表明合成的一系列液晶聚合物非常容易进入液晶态,并且液晶场能够很好地保存到室温。另外,所得聚合物的分解温度都高于聚合物的清亮点,这为负泊松比材料的加工提供了条件。

复合氧化物负热膨胀材料研究进展

复合氧化物负热膨胀材料研究进展* 谭强强1,张中太2,方克明3 (1.中国科学院电工研究所,北京100080;2.清华大学材料科学与工程系,新型陶瓷与精细工艺国家重点实验室,北京100084; 3.北京科技大学物理化学系,北京100083) 摘要:在总结和分析负热膨胀材料的发展历史和近10年来 的主要研究成果的基础上,简要介绍了几种具有异常的热膨胀 行为的新材料的负热膨胀性能,并对负热膨胀机理作了探讨,总 结了负热膨胀材料的结构特点,并对其应用前景和发展趋势进 行了预测。 关键词:氧化物;负热膨胀;负热膨胀机理;结构特征 中图分类号:TF174 文献标识码:A 文章编号:1001-9731(2003)04-0353-04 1 引言 随着材料科学的不断发展,陶瓷材料在各个领域的应用日益 广泛。与此同时,对材料性能的要求也越来越苛刻。最普遍的问 题之一就是热膨胀,这是机械、电子、光学和结构材料等许多领域 都必须面临的主要问题。因此,研究开发低热膨胀材料或零膨胀 材料,可以大大的提高材料的抗热冲击性能,延长材料的使用寿 命,扩展材料的应用范围,从而降低生产成本,提高经济效益和社 会效益。为了适应各个领域对材料的热膨胀性能的特殊要求,负 热膨胀材料已经绽露头角,成为材料研究领域的一个新兴的分支 学科。到目前为止,所发现的负热膨胀材料种类十分有限,因而 研究开发更多的负热膨胀材料,将是解决材料热膨胀问题的关 键。针对以上问题,本文总结了负热膨胀材料的研究概况,对负 热膨胀机理进行了探索,并对其发展前景进行了展望。 2 发展概况 众所周知,大多数材料在外界温度变化时都具有热胀冷缩 行为,这是自然界的一种普遍现象。但也有极少数材料具有异 常的热膨胀性质,既负热膨胀行为,如堇青石[1~3]、!-锂霞石[4]、 NaZr 2P 3 12 [5]、!-方石英[6~8]、沸石[9]等材料。在一定温度范围 内,平均热膨胀系数为负值的材料,我们称之为负热膨胀材料。 负热膨胀材料研究是材料科学中的一门近年来新兴的分支学科。屹今为止,负热膨胀材料仅仅经历了近六、七十年的发展历史。我们大致把它分为两个发展阶段:萌芽阶段和兴起阶段。 第一个阶段,从20世纪30年代中期到80年代末期,称为负热膨胀材料的萌芽期。1935年,最早由Btssem等实验发现具有很小热膨胀系数的!-方石英[10],1975年由Wright[6]等研究者实验证实。1951年,~ummel[11]研究发现!-锂霞石的结晶聚集体呈现出负的体积膨胀,为发展具有优良的热震稳定性的低热膨胀材料指明了方向。人们立即意识到,可以制备出在一定温度范围内体积稳定的零膨胀材料。后来,经过不断研究,相继生产出一系列低热膨胀玻璃陶瓷等材料。萌芽阶段为负热膨胀材料的开发和研究奠定了坚实的理论基础和物质基础。 第2个阶段,从20世纪90年代初期到现在,为负热膨胀材料的兴起阶段。实际上,负热膨胀材料的发展兴起仅仅6、7年的时间。1995年,由美国俄勒冈州立大学(0regon State Univer-sity)Sleight研究发现[12]ZrV 2-! P ! 7 系列的负热膨胀材料均表现为各向同性的负热膨胀行为,而且其中有些材料的负热膨胀的温度范围宽度可达到950C。1995年,Sleight研究组发现了 负热膨胀材料ZrW 2 8 [13]。1996年,研究发现ZrW 2 8 在0.3K 到分解温度1050K的整个温度范围内都表现出负热膨胀行为[14],该项研究被1997年美国“发现”(Discover)杂志评为1996年100项重大发现之一。1997年,Sleight研究组研究发现 了以A 2 M 3 12 为化学通式的钨酸盐和钼酸盐系列的负热膨胀材 料[15]和以AV 2 7 为化学通式的钒酸盐系列的负热膨胀材料 等[16],其中Sc 2 W 3 12 呈现出负热膨胀性能的温度范围至少从10~1200K[17],这大概是目前所发现的负热膨胀温度范围最宽的负热膨胀材料。1998年,Sleight研究组发现了负热膨胀材料 Lu 2 W 3 12 [18]。美国亚特兰大佐治亚技术学院(Georgia Institute of Technology)的Lind Cora等研制出负热膨胀材料立方Zr- Mo 2 8 [19]等。1999年,英国圣?安德鲁斯大学的Woodcock Da-vid等人研究了菱沸石的负热膨胀性能[20],在293~873K的温度范围内,其负热膨胀系数为-0.5>10-6~-16.7>10-6K-1等等。在这个阶段,主要是以Sleight研究组为代表,研究开发 出了以ZrW 2 8 为代表的各向同性负热膨胀材料,和以 Sc 2 W 3 12 为代表的各向异性负热膨胀材料。目前,国内也有较少的研究报道。 3 负热膨胀材料 3.1 热膨胀 材料的热膨胀性能用热膨胀系数来表示。热膨胀系数表征材料受热时线变化或体积变化的程度,是材料的重要热学性能之一。材料的热膨胀性能与材料的抗热震性能、受热后的热应力的分布和大小,都有着十分密切的关系。因此,对于材料的热膨胀性能,也就是对热膨胀系数的大小和方向的研究,就显得尤为重要。热膨胀系数分为线膨胀系数和体膨胀系数。 设长度为"的材料,当温度变化为d#时,长度变化为d"。 定义[21]线膨胀系数! T 和体膨胀系数" T 分别为: !T= 1 " > d" d# (1) 353 谭强强等:复合氧化物负热膨胀材料研究进展 *基金项目:国家自然科学基金资助项目(50072009) 收稿日期:2002-05-28 通讯作者:谭强强 作者简介:谭强强(1969-),男,陕西周至人,在读博士,师承张中太教授和方克明教授,从事纳米粉体制备及新型成型工艺方面的研究。

材料的热膨胀系数[1]

材料的热膨胀系数 Material 10-6 in./in.*/°F 10-5 in./in.*/°C High Low High Low 锌及其合金Zinc & its Alloysc 19.3 10.8 3.5 1.9 铅及其合金Lead & its Alloysc 16.3 14.4 2.9 2.6 镁合金Magnesium Alloysb 16 14 2.8 2.5 铝及其合金Aluminum & its Alloysc 13.7 11.7 2.5 2.1 锡及其合金Tin & its Alloysc 13 - 2.3 - 锡铝黄铜Tin & Aluminum Brassesc 11.8 10.3 2.1 1.8 黄铜或铅黄铜Plain & Leaded Brassesc 11.6 10 2.1 1.8 银Silverc 10.9 - 2 - 铬镍耐热钢Cr-Ni-Fe Superalloysd 10.5 9.2 1.9 1.7 Heat Resistant Alloys (cast)d 10.5 6.4 1.9 1.1 Nodular or Ductile Irons (cast)c 10.4 6.6 1.9 1.2 不锈钢Stainless Steels (cast)d 10.4 6.4 1.9 1.1 锡青铜Tin Bronzes (cast)c 10.3 10 1.8 1.8 奥氏体不锈钢Austenitic Stainless Steelsc 10.2 9 1.8 1.6 磷硅青铜Phosphor Silicon Bronzesc 10.2 9.6 1.8 1.7 铜Coppersc 9.8 - 1.8 - Nickel-Base Superalloysd 9.8 7.7 1.8 1.4 铝青铜Aluminum Bronzes (cast)c 9.5 9 1.7 1.6 Cobalt-Base Superalloysd 9.4 6.8 1.7 1.2 铍(青)铜Beryllium Copperc 9.3 - 1.7 - Cupro-Nickels & Nickel Silversc 9.5 9 1.7 1.6 镍及其合金Nickel & its Alloysd 9.2 6.8 1.7 1.2 铬镍钴耐热钢Cr-Ni-Co-Fe Superalloysd 9.1 8 1.6 1.4 合金钢Alloy Steelsd 8.6 6.3 1.5 1.1 Carbon Free-Cutting Steelsd 8.4 8.1 1.5 1.5 铸造合金钢Alloys Steels (cast)d 8.3 8 1.5 1.4 Age Hardenable Stainless Steelsd 8.2 5.5 1.5 1 金Goldc 7.9 - 1.4 - High Temperature Steelsd 7.9 6.3 1.4 1.1 Ultra High Strength Steelsd 7.6 5.7 1.4 1 Malleable Ironsc 7.5 5.9 1.3 1.1 Titanium Carbide Cermetd 7.5 4.3 1.3 0.8 Wrought Ironsc 7.4 - 1.3 - 钛及其合金Titanium & its Alloysd 7.1 4.9 1.3 0.9 钴Cobaltd 6.8 - 1.2 - 马氏体不锈钢Martensitic Stainless Steelsc 6.5 5.5 1.2 1 渗氮钢Nitriding Steelsd 6.5 - 1.2 - 钯Palladiumc 6.5 - 1.2 -

各种材料的热膨胀系数

常用材料的热膨胀系数 ×106 ?????????? 表常用材料的热膨胀系数 ×106 (mm/mm·℃) t/℃ -100~0 20~100 20~200 20~300 20~400 20~500 20`600 20~700 20~800 20~900 15号钢、A 3钢 A3F 、B3钢 10号钢 20号钢 45号钢 1Cr13、2Cr13 Cr17 12Cr1MoV 10CrMo910 Cr6SiMo X20CrMo WV121 1Cr18Ni9Ti 10.6 — — — 10.6 — 10.05 — — — — 16.2 — — — 11.75 11.5 11.60 11.16 11.59 10.50 10.00 9.80~ 10.63 12.50 11.50 10.80 16.60 10.60~ 12.20 12.41 12.60 12.12 12.32 11.00 10.00 11.30~ 12.35 13.60 12.00 11.20 17.00 11.30~ 13.00 17.10~ 13.45 12.78 13.09 11.50 10.50 12.30~ 13.35 13.60 11.60 17.20 12.10~ 13.50 17.60 17.90 20.90 13.60 13.00 13.38 13.71 12.00 10.50 13.00~ 13.60 14.00 12.50 11.90 17.50 12.90~ 13.90 18.00~ 13.85 13.93 14.18 12.00 11.00 12.84~ 14.15 14.40 12.10 17.90 13.14 13.20 13.90 14.60 14.38 14.67 13.80~ 14.60 14.7 13.00 12.30 18.20 13.50~ 14.30 18.60 13.31 13.50 14.81 15.08 14.20~ 14.86 18.60 14.70~ 15.00 13.54 13.80 12.93 12.50 13.50 12.48 13.56

相关主题