搜档网
当前位置:搜档网 › Electrical conductivity and dielectric properties of PMMAexpanded graphite composites

Electrical conductivity and dielectric properties of PMMAexpanded graphite composites

Electrical conductivity and dielectric properties of PMMAexpanded graphite composites
Electrical conductivity and dielectric properties of PMMAexpanded graphite composites

Electrical conductivity and dielectric properties of

PMMA/expanded graphite composites

Wenge Zheng,Shing-Chung Wong *

School of Materials Engineering,Nanyang Technological University,Nanyang Avenue,639798Singapore

Received 23January 2002;received in revised form 27August 2002;accepted 29August 2002

Abstract

PMMA/expanded graphite (EG)composites were prepared by direct solution blending of PMMA with the expanded graphite ?ller.Electrical conductivity and dielectric properties of the composites were measured by a four-point probe resistivity determiner and a dielectric analyzer (DEA).Interestingly,only 1wt.%?ller content was required to reach the percolation threshold ( )of transition in electrical conductivity from an insulator to a semiconductor using PMMA/EG.The thickness of the interlayer of the expanded graphite was shown to be close to the nanometer scale.The reported ?ller content was much lower than that required for conventional PMMA/carbon black (8wt.%carbon)and PMMA/graphite (3.5wt.%graphite)composites.The improvements in both electrical conductivity and structural integrity were attributed to the di?erence in ?ller geometry (aspect ratio and surface area)and the formation of conductive networks in the composites.#2002Elsevier Science Ltd.All rights reserved.

Keywords:Electrical properties;PMMA;Graphite;Nanocomposite

1.Introduction

Recent interest in low-K dielectric packaging materi-als and conductive polymers have created new incen-tives in blending an engineered proportion of functional and light-weight mechanical components to form unique material systems.Conductive composites o?er functional applications in addition to mechanical improvement for load-bearing applications.In the dif-ferent composite systems under consideration,nano-composites give rise to excellent physical properties in addition to conductive and mechanical performance.Nanocomposites are a new class of materials containing at least one ?ller dimension in the nanometer range [1].Based on the ?ller geometries,nanocomposites can be classi?ed into three primary categories.Fumed silica dioxide and nanometallic powder are particles,which are characterized by three dimensions in the nanometer

range [2,3].Carbon nanotube and whiskers possess two dimensions in the nanometer range [4,5],whereas clay,mica and expanded graphite layered structural ?llers [1,6–8]possess only one dimension in the nanometer range.Among the latter,smectite clay in platelet form has been widely studied [1]because the natural materials are easily available and the intercalation chemistry is reasonably well understood in the literature.The nano-composites containing layered silicates exhibit markedly superior mechanical,thermal and barrier performance in comparison with conventional microcomposites [1,6–10].Unfortunately,nanoclay reinforced polymers do not possess electrical conductivity,photonic and dielec-tric properties that are as good as some functional polymers such as graphite-containing polymers.

Di?erent conductive ?llers such as carbon black (CB)and metallic powder have been extensively explored for composite components.These ?llers e?ectively improve the conductivity of polymers [3,11–13].Usually rather high ?ller content is needed to increase the conductivity because the ?ller size is only in the micrometer range.The signi?cant improvement in electrical conductivity arising from the increase of ?ller content was observed for most composites and it was explained

0266-3538/02/$-see front matter #2002Elsevier Science Ltd.All rights reserved.P I I :S 0266-3538(02)00201-

4

Composites Science and Technology 63(2003)225–235

https://www.sodocs.net/doc/0915833984.html,/locate/compscitech

*Corresponding author.Present address:Department of Mechan-ical Engineering and Applied Mechanics,North Dakota State Uni-versity,111Dolve Hall,Fargo,ND 58105,USA.Tel.:+1-701-231-8840;fax:+1-701-231-8913.

E-mail address:josh.wong@https://www.sodocs.net/doc/0915833984.html, (S.-C.Wong).

by the percolation transition of the conductive network formation.The percolation values for a critical transi-tion in ?ller-based composites are 8wt.%for PMMA/CB [11],6.2wt.%for PP/CB [11]and 9wt.%for nylon 6/CB [12].In most cases,relatively large quantities of ?llers were needed to reach the critical percolation value.

Natural graphite ?akes provide good electrical con-ductivity (106S/m at ambient temperature)and layered structure with a c-axis lattice constant,which indicates interplanar spacing,of 0.66nm [14].Since there are no reactive ion groups on the graphite layers,it is di?cult to prepare the polymer/graphite nanocomposites via ion exchange reaction in order to intercalate the monomers into the graphite sub-layers.The expanded graphite,however,contains abundant multi-pores ranging from 2nm to 10m m.Average size of the pores is about 2m m.The graphite maintains a layered structure similar to natural ?ake graphite but with larger layer spacing [14–17].Recently,it was reported that markedly lower volume fraction of expanded graphite was able to reach the percolation threshold of conductivity in nylon 6/graphite and PS/graphite nanocomposites by in situ polymerization of polymer matrix [7,8].In these gra-phite-based nanocomposites,the monomer was ?rst introduced into the pores of the expanded graphite to be followed by polymerization.

The expanded graphite has a higher volume expan-sion ratio than that of regular graphite.Furthermore,the multi-pores,functional acids and the OH groups will facilitate physical and chemical adsorption between the graphite and the polymer solution [14,16–17].In this paper,we prepared the PMMA/graphite nanocompo-sites by the solution blending method.After dissolving the polymer,the expanded graphite was mixed with the polymer solution.The polymers were then locked into the pores of the expanded graphite and remained in it after solvent extraction.The morphologies of the mate-rials were examined using SEM.The electrical and

dielectric properties of the graphite composites were determined and discussed as a function of expanded graphite content.The mechanical properties of the polymer/graphite composites were investigated by dynamic mechanical analysis (DMA).

2.Experimental work

2.1.Preparation of expanded graphite (EG)

The natural ?ake graphite (from BEISHU graphite Co.Shandong Province of China)was dried at 80 C in a vacuum oven for 24h.It was mixed and saturated with acids consisting of concentrated sulfuric acid and concentrated nitric acid in a volume ratio of 4:1for 24h to form the graphite intercalated compound (GIC).Nitric acid serves as an oxidizer and sulfuric acid is an intercalant [14].The mixture was carefully washed and ?ltrated with deionized water until the pH level of the solution reached 6.After being dried at 80 C in a vacuum oven for 24h,the GIC was rapidly expanded at 900 C for 15s in a mu?e furnace to form expanded graphite (EG).The schematic illustrating the prepara-tion of EG from natural ?ake graphite is shown in Fig.1.

2.2.Preparation of PMMA/graphite composites The PMMA/EG composites were prepared by the solution blending method.PMMA pellets were dried at 60 C in a vacuum oven for 24h.The PMMA pellets were ?rst dissolved into solution with chloroform and then mixed with ?llers in di?erent weight fractions of graphite and expanded graphite in a ?ask by stirring aided by a sonicator.The solvent was evaporated at 60 C and the blends were dried at the same temperature in a vacuum oven for 24h.The composites were hot pressed into ?lm specimens with a thickness of 500m m for

testing.

Fig.1.A schematic showing the formation of expanded graphite (EG)from natural ?ake graphite.

226W.Zheng,S.-C.Wong /Composites Science and Technology 63(2003)225–235

2.3.Electrical properties

2.3.1.Conductivity test

The conductivity of PMMA/graphite composites was measured by a dispersible four-point resistivity probe system(SIGNATONE)with a limit of10à8S/cm The hot pressed sample was cut into10?4?0.4mm3spe-cimens for testing.For PMMA matrix and the compo-sites with low?ller content,the conductivity of samples was considerably lower than the detectable range of the four-point resistivity probe system and was determined using a digital model(RP2680)resistivity determiner. Both instruments were sensitive to the prescribed limits and the results obtained were assumed to be comparable.

2.4.Dielectric measurements

Dielectric experiments were conducted using a TA Instrument DEA2970Dielectric Analyzer in Ceramic Parallel Plate mode.The sample dimensions were25?25?0.5mm3.Testing temperature ranged from room temperature to100 C.Nitrogen gas was used to pro-vide an inert environment at a?owing rate of500ml/ min.The ramping rate was3 C/min with multi fre-quencies of1,3,10,30,100,300,1000,3000,and 10,000Hz.

2.4.1.Dynamic mechanical analysis(DMA)

DMA experiments were conducted using TA Instru-ment DMA2980in?lm tension mode at a?xed fre-quency of1Hz.The sample dimensions were20?8?0.5mm3.The sample was tested with a temperature ranging from room temperature to100 C at atmo-spheric pressure and a heating rate of3 C/min.

2.4.2.SEM examination

A scanning electron microscope(SEM,Jeol-3410)was used to examine the pore parameters of expanded gra-phite.Gold coated fracture surface was studied to reveal the?ller morphology and dispersion.

3.Results and discussion

3.1.Structural characteristics of expanded graphite (EG)

In the presence of an oxidizer,which is concentrated nitric acid in this work,the intercalant,which is con-centrated sulfuric acid,is dispersed into the graphite layers to form graphite intercalating compounds(GIC), see Fig.1.After rapid expansion of GIC at a high tem-perature,EG was formed.The expansion volume ratio of EG to natural graphite was50–100.The structure of EG was strongly a?ected by experimental conditions such as temperature,oxidizer’s concentration,intercalating time,etc.Fig.2shows the SEM photomicrographs of untreated graphite(Fig.2a)and expanded graphite (Fig.2b–d).The di?erences in microstructures between the two di?erent?llers can be clearly noted.Fig.2b reveals the loose structures of expanded graphite whereas Fig.2c and d display the photomicrographs of the loose structures in successively larger magni?-cations.Evidently,loose structures containing multi-pores in the EG could be observed in Fig.2c.For the EG prepared by the chemical method,the average pore diameter is about2m m.The surface area per gram is roughly30–40m2/g and the pore volume is about4–8 ml/g[16,17].Fig.2d also suggests the thickness of the EG layer is less than100nm.For the EG,only the spacing of the graphite layers was expanded;the con-ductive characteristics of each EG sheet layer remains the same as graphite?akes themselves by nature[18]. The graphite expansion would certainly in?uence the overall conductivity of the bulk materials.After expan-sion,each graphite?ake can be exfoliated into many EG layers as conductive?llers.In addition,some func-tional groups such as–OH,–COOH groups existed on the surface and pores of the EG after acid and high temperature treatments and they could promote the adsorption of molecular chains and monomers onto the pores[17].To summarize,the high surface area and the prevalent pores in EG facilitate the processing and for-mation of in situ polymer/EG composites.

3.2.Electrical conductivity of PMMA/graphite composites

Fig.3shows the electrical conductivity of PMMA/ graphite vs.?ller content comparing graphite and expanded graphite.At low?ller content,the electrical conductivity of the composite increases with the?ller content.The conductivity of the materials is about 10à16S/cm in the initial stage and this is consistent with the magnitude of an insulator.A sharp increase,which is known as the percolation transition,emerges when the?ller content reaches a critical content.The con-ductivity levels o?after arriving at this critical value. At this stage,the conductivity of the material is about 10à4S/cm for PMMA/EG and10à5S/cm for PMMA/ graphite,which is nearly consistent with that of a semi-conductor.The di?erence in conductive behavior between PMMA/EG and PMMA/graphite at higher?l-ler concentration is attributed to the enhanced number of conductive paths in the EG composites.Similar result was reported in HDPE/graphite composites with di?er-ent?ller size[19].The electrical conductivity of the composites exhibited a pronounced transition with the increase of?ller content,from an insulator to nearly a semiconductor.This transition can be satisfactorily explained and described by the percolation theory and the formation of the conductive network in the composites

W.Zheng,S.-C.Wong/Composites Science and Technology63(2003)225–235227

[8].According to the theory,the percolation threshold ( )corresponds to the onset of the transition from an insulator to a semiconductor.For the PMMA/graphite composites, %3.5wt.%graphite but %1wt.%when the ?ller is replaced by EG.Clearly,EG composites require a much lower percolation threshold and,in so doing,they are more e?ective in electrical conductivity in comparison with normal graphite composites.In contrast,PMMA/CB conductive composites require %8

wt.%.

Fig.3.Electrical conductivity of PMMA/graphite (&)and PMMA/EG (*)plotted as a function of weight

fraction.

Fig.2.SEM photomicrographs of (a)natural ?ake graphite,(b)expanded graphite (EG),(c)EG at higher magni?cation,and (d)abundant multi-pores with an interlayer thickness less than 100nm are revealed in EG .

228W.Zheng,S.-C.Wong /Composites Science and Technology 63(2003)225–235

The reduction in ?ller content for PMMA/EG com-posites can be attributed to the ?ller shape and the sur-face area per gram of ?ller.Carbon black,for example,is particulate in shape with lower aspect ratio than that of the layering structure of graphite and EG.The nat-

ural ?ake graphite possesses a layering structure.The aspect ratio is about 50–100with a thickness of 10–20m m as observed in the SEM.So for polymer/graphite composites,higher aspect ratio and surface area of ?l-lers lead to a lower percolation threshold.

As shown in Fig.4,the graphite layer is expanded and it could also be seen in the presence of polymer.The thickness is estimated to be less than 100nm.These graphite layers exhibit the highest aspect ratio and the largest surface area per gram.

Dispersion of graphite is also important to the varia-tion of percolation threshold for conductivity transition in the composites.In our experiment,we used long time,intensive stirring and ultrasonic bath to promote ?ne dispersion for the composites.The su?cient adsorption of the PMMA molecular chains onto various pores of the expanded graphite was also the likely factor con-tributing to good dispersion.If the solution concen-tration is too high,the higher viscosity may hinder the polymer chains from entering the minor pores of the graphite and thus lead to poor dispersion of graphite ?akes in the

polymer.

Fig.5.e 00from DEA studies of (a)PMMA,(b)PMMA/EG (3wt.%)and (c)PMMA/graphite (5wt.%)at di?erent frequencies:1,3,10,30,100,300,1000,3000and 10,000

Hz.

Fig.4.SEM photomicrograph of PMMA/EG.

W.Zheng,S.-C.Wong /Composites Science and Technology 63(2003)225–235229

3.3.Dielectric properties of PMMA/graphite composites In a dielectric analyzer,the loss factor corresponds to the conductivity of the https://www.sodocs.net/doc/0915833984.html,ing parallel plate electrodes,the loss factor(e00)can be calculated as follows: e00?d=2 RAfe o

eTe1T

where A=electrode plate area,R=electrical resistance, d=plate spacing,f=frequency and e o=absolute per-mittivity of free space(8.85?10à12F/m).So the loss factor is related to the conductance(1/R).

Fig.5shows the loss factor,e00,obtained from the PMMA/graphite and PMMA/EG composites as a function of temperature and frequency using the DEA. PMMA alone shows very low e00values(about0.1)at all frequencies as indicated in Fig.5a.The change in e00 with temperature shows the typical characteristics of an insulator.The pattern of the curves is more or less?at given the relatively small order of magnitude of the Y-axis.The results for PMMA containing3wt.%EG are shown in Fig.5b.The curves show much higher e00 values(about108at1Hz)and they are constant with temperature change.In this case PMMA/EG

composites Fig.6.e00from DEA studies of PMMA/graphite(&)and PMMA/EG(*)vs.?ller content at25 C and a frequency of1

Hz.

Fig.7.Variation of e00of2wt.%graphite?lled PMMA with temperature at di?erent frequencies:1,3,10,30,100,300,1000,3000and10,000Hz. 230W.Zheng,S.-C.Wong/Composites Science and Technology63(2003)225–235

derived from Eq.(1)display comparable conductivity to a semiconductor.Similar trends are shown for PMMA/graphite composites at higher ?ller content (5wt.%)in Fig.5c .However,the e 00values for unexpanded PMMA/graphite are slightly lower than those pertain-ing to PMMA/EG.This indicates that PMMA/EG exhibits great resemblance to a semiconductor at a lower ?ller content.Fig.6shows the variation of e 00with di?erent ?ller content for PMMA/graphite and PMMA/EG at 1Hz.Clearly,the same conclusion can be drawn from e 00trends in Fig.6as that drawn the elec-trical conductivity in Fig.3.PMMA/EG reaches the percolation threshold at a markedly lower ?ller content than that for PMMA/graphite.

The variation of e 00for PMMA/graphite composites with temperature at a given ?ller content is shown in Fig.7.A sharp increase in e 00takes place at around 80 C at di?erent frequencies.The increase in the electrical conductivity of the composite as temperature increases above the T g of the PMMA matrix,as revealed in Fig.10a ,can be caused by the possible ?occulation of conductive ?llers.Such a sharp transition was not observed for the PMMA/EG under our experimental conditions.As noted earlier,the PMMA/EG reached the percolation threshold at 1wt.%at room tempera-ture.As a result,we were not able to observe a similar phenomenon for PMMA/EG even though it could have taken place at a lower EG

content.

https://www.sodocs.net/doc/0915833984.html,parison of G 0from DMA studies between (a)PMMA/graphite and (b)PMMA/EG as a function of temperature.Di?erent ?ller wt.%is given.

W.Zheng,S.-C.Wong /Composites Science and Technology 63(2003)225–235231

3.4.Dynamic mechanical properties

Dynamic mechanical analysis(DMA)measures the cyclic response of a material as a function of the tem-perature.The storage modulus(G0),loss modulus(G00) and tan of PMMA/graphite and PMMA/EG from room temperature to100 C are shown in Figs.8–10, respectively,as a function of?ller content.The results for the PMMA/graphite indicated that G0(Fig.8a)and G00(Fig.9a)are close to that of pure PMMA.But the glass transition temperature,T g,of the composites is shifted to higher temperatures than that of pure PMMA,as indicated by the shift of tan in Fig.10a.This observation is ascribed to the restricted segmental movement upon the addition of?llers[20].The results appear consistent with the behavior of other?lled poly-meric systems[20,21].

For PMMA/EG composites,however,the DMA results in Figs.8b and9b reveal a completely di?erent pattern from PMMA/graphite composites.First,G0of the PMMA/EG exhibits an apparent increase compared to that of pure PMMA.G0increases from2.8GPa for pure PMMA to 3.4GPa for PMMA/EG even at a relatively low?ller weight fraction(2wt.%).Evidently, EG at the nanometer scale can improve the sti?ness of the materials even at relatively low?ller content,

which https://www.sodocs.net/doc/0915833984.html,parison of G00from DMA studies between(a)PMMA/graphite and(b)PMMA/EG as a function of temperature.Di?erent?ller wt.%is given.

232W.Zheng,S.-C.Wong/Composites Science and Technology63(2003)225–235

is consistent with some other nanocomposites[1].Sec-ond,G00,which is indicative of energy dissipation in viscoelastic deformation,of PMMA/EG is also greatly improved upon EG addition.G00increases from 250MPa of PMMA to380MPa of PMMA/EG.The results suggest that the mechanical integrity of PMMA/ EG is superior to those of PMMA alone and PMMA/ graphite composites.The tan of PMMA/EG compo-sites as shown in Fig.10b indicates a shift of T g to higher values by as much as10 C in comparison with pure PMMA.The improvement in T g is signi?cant given the relatively small?ller content being explored. Fig.11plots the G0for PMMA/graphite and PMMA/ EG as a function of?ller content at room temperature. Interestingly,G0increases with EG whereas it decreases as unexpanded graphite content increases at lower?ller content.The decrease could be due to many possible reasons including the weak interface between the bulk graphite?akes and the PMMA matrix and transgra-nular cleavage in the graphite.The dramatic increase

in https://www.sodocs.net/doc/0915833984.html,parison of tan from DMA studies between(a)PMMA/graphite and(b)PMMA/EG as a function of temperature.Di?erent?ller wt.%is given.Note the shift of T g as?ller content increases.

W.Zheng,S.-C.Wong/Composites Science and Technology63(2003)225–235233

G 0as EG increases warrants further investigation of the sti?ening mechanisms especially in molecular terms.Note that the variation in G 0,to some extent,corre-sponds to the percolation threshold for transition in conductivity of PMMA/EG.The results suggest that there exists a correlation between the conductive net-work formation and the sti?ening e?ect arising from the EG dispersion in the polymer solution.In general,it is clear PMMA/EG exhibits superior mechanical integrity in comparison with the unexpanded graphite compo-sites.These experimental observations are interesting as composite theory,which only takes into account of the ?ller volume fraction,cannot explain the opposite trends of the materials of comparable ?ller volume fractions.Nevertheless,it is understood that the good dispersion of EG in PMMA matrix could enhance the ?ller aspect ratio and interfacial factors,which could on the whole contribute to potent sti?ening e?ect for the composites.

4.Conclusions

Conductive PMMA/EG composites were prepared by the direct solution blending method.The electrical con-ductivity and dielectric properties of the materials were measured with resistivity and DEA tests.Similar con-clusions could be inferred from both sets of tests.The PMMA/EG nanocomposites exhibited the lowest per-colation threshold ( =1wt.%)in comparison with the conventional PMMA/CB conductive composites ( =8wt.%)and unexpanded PMMA/graphite composites ( =3.5wt.%).Since the EG possesses abundant pores and the highest aspect ratio,molecular chains of poly-mers were easily intercalated with the pores of the EG by adsorption mechanisms.It was conjectured that

conductive EG ?llers in composites were interconnected and readily formed conductive networks that enhanced the conductivity of the composites.Further evidence supporting this conclusion is provided elsewhere [22].DMA investigation of the materials revealed EG imparted higher G 0,G 00and T g to the polymer matrix,where the graphite was well dispersed leading to excel-lent properties.References

[1]Alexandre M,Dubois P.Polymer-layered silicate nanocompo-sites:preparation,properties and uses of a new class of materials.Mater Sci Eng 2000;28:1–59.

[2]Jana SC,Jain S.Dispersion of nano?llers in high performance

polymers using reactive solvents as processing aids.Polymer 2001;42:6897–905.

[3]Saujanya C,Radhakrishnan S.Structure development and crys-tallization behaviour of PP/nanoparticulate composite.Polymer 2001;42:6723–31.

[4]Calvert P.Potential applications of nanotubes.In:Ebbesen TW,

editor.Carbon nanotubes.Boca Raton,FL:CRC press;1997.[5]Favier V,Canova GR,Shrivastava SC,Cavaille JY.Mechanical

percolation in cellulose whiskers nanocomposites.Polym Eng Sci 1997;37:1732–9.

[6]Theng BKG.The chemistry of clay-organic reactions.New York:

Wiley;1974.

[7]Chen GH,Wu DJ,Weng WG,Yan WL.Preparation of polymer/

graphite conducting nanocomposite by intercalation polymeri-zation.J Appl Polym Sci 2001;82:2506–13.

[8]Pan YX,Yu ZZ,Ou YC,Hu GH.New process of fabricating

electrically conducting nylon 6/graphite nanocomposites via intercalation polymerization.J Polym Sci Part B:Polym Phys 2000;38:1626–33.

[9]Kojima Y,Usuki A,Kawasami M.Mechanical properties of

nylon-6-clay hybrid.J Mater Res 1993;6:1185–9.

[10]Lagaly G.An Introduction:from clay mineral–polymer interac-tions to clay mineral–polymer nanocomposites.Appl Clay Sci

1999;15:1–9.

Fig.11.G 0of PMMA/graphite (&)and PMMA/EG (*)plotted as a function of ?ller weight fraction at 25 C.

234W.Zheng,S.-C.Wong /Composites Science and Technology 63(2003)225–235

[11]Zois H,Apekis L,Omastova M.Electrical properties and per-

colation phenomena in carbon black?lled polymer composites.

Proceedings—International Symposium on Electrets,10th Inter-national Symposium on Electrets(ISE10),1999.pp.529–532. [12]Gabriel P,Cipriano LG,Ana JM.Polymer composites prepared

by compression molding of a mixture of carbon black and nylon 6powder.Polym Comp1999;20:804–8.

[13]Mamunya EP,Davidenko VV,Lebedev EV.E?ect of polymer–

?ller interface interactions on percolation conductivity of thermo-plastics?lled with carbon https://www.sodocs.net/doc/0915833984.html,p Inter1997;4:169–76. [14]Cao NZ,Shen WC,Wen SZ,Liu YJ,Wang ZD,Inagaki M.The

factors in?uencing the porous structure of expanded graphite.

Mater Sci Eng(Chinese)1996;14:22–6.

[15]Tryba B,Kalenczuk RJ,Kang FY,Inagaki M,Morawski AW.

Studies of exfoliated graphite(EG)for heavy oil sorption.Molecular crystals and liquid crystals science and technology,section A:mole-cular crystals and liquid crystals,v340,ISIC10—10th International Symposium on Intercalation Compounds,2000.pp.113–119.[16]Liu JP,Song KM.Study on the preparation of expandable gra-

phite.J Funct Mater(Chinese)1998;29:659–61.

[17]Cao N,Shen W,Wen S,Liu Y.Surface properties of expanded

graphite.Chem Bull1996;4:37–42.

[18]Celzard A,Mareche JF,Furdin G,Puricelli S.Electrical con-

ductivity of anisotropic expanded graphite-based monoliths.

J Phys D:Appl Phys2000;33:3094–101.

[19]Ishigure Y,Iijima S,Ito H,Ota T,Unuma H,Takahashi M,et al.

Electrical and elastic properties of conductor–polymer compo-sites.J Mater Sci1999;34:2979–85.

[20]Noh MW,Lee DC.Synthesis and characterization of PS-clay

nanocomposites by emulsion polymerization.Polym Bull1999;

42:619–26.

[21]Laus M,Francesangeli O,Sandrolini F.New hybrid nano-

composites based on an organophilic clay and poly(stylene-b-butadiene)copolymers.J Mater Res1997;12:3134–9.

[22]Zheng W,Wong S-C,Sue HJ.Transport behavior of PMMA/

expanded graphite nanocomposites.Polymer2002;43:6767–73.

W.Zheng,S.-C.Wong/Composites Science and Technology63(2003)225–235235

《安全教育》之高空作业安全教育、培训内容

高空作业安全教育、培训内容 一、高空作业基本要求 1、施工人员在高空作业时,必须戴好安全帽、佩好安全带,工具及零配件要放在工具袋内,穿防滑鞋工作,袖口、裤口要扎紧。 2、操作人员在高空作业时,必须正确使用安全带。安全带一定要高挂低用。即阍安全带绳端的钩环挂于高处,而人在低处操作。 3、操作平台上的材料,不得堆放过多,要平均摆放。下班前要清扫一遍,将工具和剩余材料运到地上。 4、垂直上料架的各种安全装置必须齐全有效。限位装置和防钢丝绳断裂装置必须定期检查,以防失灵。 5、夜间施工时,操作台、梯道等均要设有充分的照明,灯泡要设有保护罩,高空作业使用的电压,要使用不大于36V的安全电压。 6、施工现场周围要设置围栏,并挂牌警示,严禁非施工人员入内。在危险区的通道上要搭设保护棚,以保护出入人员的安全。 7、在高空用气割或电焊切割时,要采取措施,防止火花落下伤人或引起火灾,乙炔发生器不得放在下风。 8、在高空进行各种用力较大的操作时,要注意安全,防止发生“闪失”,如在高空使用撬杠时,人要立稳,附近有脚手架可已安装好构件,要一手扶住,一手操作。撬杠插进深度要适宜,如果撬动距离较大,要逐步撬动,不得急于求成。 9、地面操作人员避免在高空作业面的正下方停留或通过,也不得在起重机的吊杆或正在吊装的构杆下停留或通过。 10、设置吊装禁区,禁止与吊装作业无关的人员入内。 11、在雨季施工时,必须采取防滑措施。

12、登高用的梯子必须牢固。使用时绳子与固定的构件绑牢,夹角为65~70度为宜。 二、结构吊装要求 1、大型的机械设备进行高空的吊装作业前,必须检查全部机件,并经过空车和重车试运,对于安全抱刹、限位器在施工中必须定期检查以防失灵。 2、起重机行驶道或作业面必须平整、夯实。防止倾覆,横过铁路时,设保护钢轨设备,如铺设枕木、板材等。 3、严禁超载吊装。 4、禁止斜吊。 5、双机抬吊时,对起重能力进行合理分配,并在操作时统一指挥,互相紧密配合。 6、绑扎构件吊索在起重前进行计算,绑扎方法正确牢固。所有起重工具定期检查。 7、不吊重量不明的构件。 8、禁止在六级风的情况下进行吊装作业。 9、指挥人员使用统一指挥信号,信号要鲜明、准确。起重机驾驶人员听从指挥。不得违章指挥、违章操作。 10、构件安装后,必须检查连接质量。只有连接确实安全可靠,才能松钩。 11、起重机行使或作业时,避开电线,防止意外发生,水平、垂直距离不得小于6米。 12、在同一施工现场中多台吊装设备交叉作业时,两机吊臂高度要错开最少数5m,水平距离5m以上。 三、安全网搭设要求 1、在施工中必须支设3m~6m宽的安全网,高空施工时,除在首层固定一道安全网外,还要在中间悬挑固定一道安全网。施工中要保证安全网完整有效,受力均匀,网内不得有积物。两网的搭接要严密,不得有缝隙。支搭的安全网直到无高空作业时,方可拆除。 2、新的安全网必须有产品质量检验合格证,旧网必须有允许使用的证明书或合格的检验记录。 3、安全网使用前,必须作破断试验,合格后方可使用。

《安全教育》之高空作业安全培训考试题

高空作业安全培训考试题 一、单项选择题(每题2分,共30分) 1、我国的安全生产方针是( )。 A.安全第一,预防中心 B.安全第一,预防为主,综合治理 C.安全为主,预防第一 D.安全第一,综合治理 2、对从事特种作业人员的文化程度要求是( )。 A.高中以上 B.初中以上 C.小学以上 D.初中以下 3、对从事特种作业人员的年龄要求是( )。 A.年满16周岁 B.年满20周岁 C.年满19周岁 D.年满18周岁 4、高处作业是指坠落高度在( )以上的高处作业。 A.2m B. 3m C 1.5m D 2.5m 5、按照规定,高处作用人员应每( )年进行一次体检。 A. 四 B. 三 C. 一 D. 二 6、在高空作业时,工具必须放在 ( ) 。 A. 工作服口袋里 B.手提工具箱或工具袋里 C.握住所有工具 D.肩膀上 7、遇到 ( )天气不能从事高处作业?

A.6级以上的风天和雷暴雨、大雪天B.冬天 C.35度以上的热天 D.阴天 8、高处作业不准穿的鞋子是( ) A、硬底鞋 B、布鞋 C、胶鞋 D.皮鞋 9、安全带的正确挂扣应该是( )。 A.同一水平B.低挂高用 C.高挂低用 D.打结挂扣 10、操作平台上应显著地标明( )。操作平台上人员和物料的总重量,严禁超过设计的容许荷载。应配备专人加以监督。 A、风荷载值 B、动荷载值 C、静荷载值 D、容许荷载值 11、在无立足点或无牢靠立足点的条件下进行的高处作业,称为( )。 A.带电高处作业 B. 夜间高处作业 C. 悬空高处作业 D. 异温高处作业 12、为保证人身安全,除专业人员执行有关规定外,其他人员(包括所携带的物件)与牵引供电设备带电部分的距离,不得小于()。 A、2370mm B、2400mm C、2440mm D、2000mm 13、事故调查处理应当实事求是、尊重科学、依据( )的原则,及时、准确地查清事故原因、查明事故性质和责任,总结事故教训,提出整改措施,并对事故责任者提出处理意见。 A、“五同时” B、“三不放过” C、“三同时” D、“四不放过” 14、常见的安全标志有四种,红、黄、蓝、绿分别指()。

高空作业安全培训考试题

高空作业安全培训考试题 单位/部门姓名职务分数 一、单项选择题(每题2分,共30分) 1、我国的安全生产方针是( )。 A.安全第一,预防中心 B.安全第一,预防为主,综合治理 C.安全为主,预防第一 D.安全第一,综合治理 2、对从事特种作业人员的文化程度要求是( )。 A.高中以上 B.初中以上 C.小学以上 D.初中以下 3、对从事特种作业人员的年龄要求是( )。 A.年满16周岁 B.年满20周岁 C.年满19周岁 D.年满18周岁 4、高处作业是指坠落高度在( )以上的高处作业。 A.2m B. 3m C 1.5m D 2.5m 5、按照规定,高处作用人员应每( )年进行一次体检。 A. 四 B. 三 C. 一 D. 二 6、在高空作业时,工具必须放在( ) 。 A. 工作服口袋里 B.手提工具箱或工具袋里C.握住所有工具 D.肩膀上 7、遇到( )天气不能从事高处作业? A.6级以上的风天和雷暴雨、大雪天B.冬天 C.35度以上的热天 D.阴天 8、高处作业不准穿的鞋子是( ) A、硬底鞋 B、布鞋 C、胶鞋 D.皮鞋 9、安全带的正确挂扣应该是( )。 A.同一水平B.低挂高用C.高挂低用 D.打结挂扣 10、操作平台上应显著地标明( )。操作平台上人员和物料的总重量,严禁超过设计的容许荷载。应配备专人加以监督。 A、风荷载值 B、动荷载值 C、静荷载值 D、容许荷载值 11、在无立足点或无牢靠立足点的条件下进行的高处作业,称为( )。 A.带电高处作业 B. 夜间高处作业 C. 悬空高处作业 D. 异温高处作业 12、为保证人身安全,除专业人员执行有关规定外,其他人员(包括所携带的物件)与牵引供电设备带电部分的距离,不得小于()。 A、2370mm B、2400mm C、2440mm D、2000mm 13、事故调查处理应当实事求是、尊重科学、依据()的原则,及时、准确地查清事故原因、查明事故性质和责任,总结事故教训,提出整改措施,并对事故责任者提出处理意见。 A、“五同时” B、“三不放过” C、“三同时” D、“四不放过” 14、常见的安全标志有四种,红、黄、蓝、绿分别指()。 A、禁止、警告、指令、提示 B、警告、禁止、指令、提示 C、警告、指令、禁止、提示 D、警告、禁止、提示、指令 15、在金属构架上高处作业的照明电源电压不大于( )。 A 110V B 220V C 36V D 12V 三、多选题(每题3分,共15分) 1、根据安全生产法,从业人员应当遵守的四项义务是:( )的义务。 A.佩带和使用劳保用品 B.钻研技术 C.遵章作业 D.接受安全教育培训

(完整)高空作业安全教育培训

高空作业安全教育培训 1、高空作业要求 (1)高处作业施工,必须使用安全带,安全帽和梯子等,作业前必须认真检查所用的安全设施是否牢固,可靠。 (2)凡是从事高处作业的人员必须接受高处作业安全知识的教育,做到持证上岗,无证者一律不得上岗。上岗前依据有关规定进行技术交底。 (3)高处作业的人员必须经过体检,合格后方可上岗。在作业前必须给他们合格的安全带,安全帽等必备的个人安全防护用具,作业人员必须正确佩戴和使用。 (4)高处作业所用的工具,材料严禁投掷,上下立体交叉作业确有需要时中间必须设置隔离设施。 (5)高处作业必须设置可靠的扶梯,作业人员必须沿着扶梯上下,不得沿立杆或者栏杆攀登。 (6)在雨雪天必须采取防滑措施,当风速在10.8m/s以上和雷电,暴雨,大雾等恶劣气候条件下不得进行露天高处作业。(7)高处作业上下必须设置联系信号或通讯装置,并且指定专人负责。 (8)高处作业前,项目部必须组织有关部门对安全防护设施进行验收,经验收合格后方可作业,需要临时拆除或者变动安全设施的,应经项目部技术负责人审批同意后,并且组织有关部门验收合格后方可实施。

(9)发现安全措施有隐患时,立即采取措施,消除隐患,必要时停止作业。 (10)遇到各种恶劣天气时,必须对各类安全设施进行检查,校正,修理使之完善。 (11)在高度为2m及以上的高处作业时,必须设置牢固完备的安全防护设施。操作人员使用的安全带(或安全绳)的尾绳长度不宜超过2m。 (12)高处作业用的梯子应坚固完整。梯阶间距以30cm为宜,高处作业人员必须穿平底鞋,严禁穿硬底、带钉和易滑的鞋。(13)高处上下交叉作业时,必须在上下两层中间设密铺棚板或其他隔离设施。 (14)施工时必须搭建稳固的施工平台。搭建材料用钢制脚手架,钢管底部与接触面之间必须接触紧密,牢靠。每上升10m高设置一组缆风绳。要求扣件连接必须牢固,严禁使用滑丝扣件。2、高处焊接作业要求 1、焊接工作人员属于特殊工种人员,必须经主管部门培训考核合格掌握操作技能和有关安全知识,发给操作证书,持证上岗作业。无证者一律不得上岗。 2、电焊作业人员必须戴绝缘手套,穿绝缘鞋,使用护目镜和面罩,高空危险作处作业,必须挂安全带,施焊前检查焊把及线路是否绝缘良好,焊接完毕要拉闸断电。 3、焊接作业时须配备灭火器,有专人监护,作业完毕,要留有

高空作业安全培训资料

中铁十八局集团 成贵铁路项目经理部五分部高空作业安全培训 编制: 任杰 日期:二O一六年二月

高空作业安全培训 (1)高空作业场所边缘及孔洞设栏杆或盖板。 (2)脚手架搭设符合规程要求并经常检查维修,作业前先检查稳定性。 (3)高空作业人员应衣着轻便,穿软底鞋。 (4)患有精神病、癫痫病、高血压、心脏病及酒后、精神不振者严禁从事高空作业。 (5)高空作业地点必须有安全通道,通道不得堆放过多物件,垃圾和废料及时清理运走。 (6)距地面2米及2米以上高处作业必须系好安全带,将安全带挂在上方牢固可靠处,高度不低于腰部。 (7)遇有六级以上大风及恶劣天气时应停止高空作业。 (8)轻型或简易结构面上作业,应铺木板分散应力以免踩蹋。 (9)严禁人随吊物一起上落,吊物未放稳时不得攀爬。 (10)高空行走、攀爬时严禁手持物件。 (11)垂直作业时,必须使用差速保护器和垂直自锁保险绳。 (12)及时清理脚手架上的工件和零散物品。 高空落物 一、高空落物原因分析 1、起重机械超重或误操作造成机械损坏、倾倒、吊件坠落。 2、各种起重机具(钢丝绳、卸卡等)因承载力不够而被拉断或

折断导致落物。 3、用于承重的平台承载力不够而使物件坠落。 4、起吊过程吊物上零星物件没有绑扎或清理而坠落。 5、高空作业时拉电源线或皮管时将零星物件拖带坠落或行走时将物件碰落。 6、在高空持物行走或传递物品时失手将物件跌落。 7、在高处切割物件材料时无防坠落措施。 8、向下抛掷物件。 二、防止高空落物伤人安全措施 1、对于重要、大件吊装必须制定详细吊装施工技术措施与安全措施,并有专人负责,统一指挥,配置专职安监人员。 2、非专业起重工不得从事起吊作业。 3、各个承重临时平台要进行专门设计并核算其承载力,焊接时由专业焊工施焊并经检查合格后才允许使用。 4、起吊前对吊物上杂物及小件物品清理或绑扎 5、从事高空作业时必须佩工具袋,大件工具要绑上保险绳。 6、加强高空作业场所及脚手架上小件物品清理、存放管理,做好物件防坠措施。 7、上下传递物件时要用绳传递,不得上下抛掷,传递小型工件、工具时使用工具袋。 8、尽量避免交叉作业,拆架或起重作业时,作业区域设警戒区,严禁无关人员进入。

《安全教育》之高空作业安全教育培训

高空作业安全教育培训 一、高空作业安全操作规程 1、高处作业人员必须定期进行体检,患有高血压、低血压,严重心脏病、贫血症、癫痫等疾病的人员不宜进行高处作业。 2、高处作业者必须使用安全帽、安全带,穿软底鞋,登高前严禁喝酒,并应清除鞋底沉砂油垢。 3、高处作业设备,必须搭设稳固、材质优良,设备必须按《建筑安装工程安全技术规程》规定办理,并巡回检查使用情况,在不能设置栏杆扶手、安全网的地方,应设置安全拉绳,安全拉绳应使用与钢丝绳等强度的绳索,并且生根牢固。 4、高处作业的设备,不许有翘头板、空头板、断裂板、露头钉、朝天钉、空缺档、折断等缺陷。 5、操作平台除钉有(或焊有)防滑条或涂防滑漆外,应及时清扫上面的泥垢砂石。 6、必须使用梯子、斜道登高,不准用起重机吊运人员。操作者的手用工具,尾部应系绳套在手腕上操作,登高时手工用具应放入工具袋,上下梯子时应腹胸部对着梯子,一手扶竖杆,一手抓横杆,逐级上下,不要背对梯而下,亦不要一手扶梯,一手拿工具或材料上下梯子。 7、传递工具和材料应用绳索,禁止抛掷,禁止从高处向下推掷料具。 8、禁止在高空进行冲击力相当大的操作,进行扳、拉、推等操作时,适当拉开两脚的间距,使身体中心下移,以防失手而坠落。 9、工作面小、期限紧的高处作业时,应尽量避开上下层垂直线同时作业,否则各层之间须设遮挡板,以防物体坠落伤人。 10、超重设备上空及邻近空间如有高压线、电线,应按安全距离控制,操作平台上的所有电线与电器设备应绝缘良好,以防漏电。

11、六级强风和雨雪天以及夜间,一般应停止从事高处作业,如需进行特殊高处作业,则应由项目管理部门制订相应防护技术措施。 二、高空作业其它注意事项 1、高空作业衣着要灵便,禁止穿硬底和带钉易滑的鞋。 2、高空作业所用材料要堆放平稳,工具应随手放入工具袋内。 3、梯子不得缺档,不得垫高使用,梯子横档间距以30cm为宜,使用时上端要扎牢,下端应采取防滑措施,单面梯与地面夹角以60°~70°为宜,禁止二人同时在梯上作业,如需接长使用,应绑扎牢固,人字梯底脚应拉牢。 4、没有安全防护措施,禁止在高架的上弦、支撑、桁条、挑架的挑梁和半固定的构件上行走或作业,高空作业与地面联系,应设通讯装置,并专人负责。 三、基坑支护施工安全措施 1、基坑支护上部应设安全护栏和危险标志,夜间应设警示灯标志。 2、在设置支撑的基坑(槽)挖土不得碰动支撑及锚索,支撑上不得放置物件;严禁将支撑当脚手架使用。 3、在设置支护的基坑中使用机械挖土时,应防止碰坏支护,或直接压过支护结构的支撑杆件;在基坑(槽)上边行驶,应复核支护强度,必要时应进行加固。 4、钻孔围护桩与土层锚索结合的支护,必须逐层及时设置预应力锚索,以保证支护的稳定,不得在基坑全部挖完后再设置。 5、支护(撑)的设置应遵循由上到下的程序,支护(撑)拆除应遵循由下而上的程序,以防止基坑(槽)失稳塌方。 6、安装锚索应戴安全帽,安装、张拉锚索等应在脚手架上进行,高空作业应挂安全带。 7、操作人员上下基坑(槽),严禁攀登支护或支撑上下。 8、基坑开挖期间要加强检查、观察和监测,发现支撑折断、支护变形、坑壁裂缝、掉渣、上部地面裂缝、邻近建筑物下沉裂缝、变形倾斜,应及时进行分析和处理,或进行加固。 9、拆除支撑应自下而上进行,更换支撑应先装后拆。拆除固壁支撑时应考

高空作业安全培训试卷

高空作业安全教育培训讲义 (桥面系附属安装) 一、填空题(每空2分,共40分) 1、凡在坠落高度基准面2m以上(含2m)有可能坠落的高处进行作业,都称为高处作业。 2、遇有六级以上强风、浓雾等恶劣气候,不得进行露天攀登与悬空高处作业。 3、施工现场周围要设置围栏,并挂牌警示,严禁非施工人员入内。 4、在高空用气割或电焊切割时,要采取措施,防止火花落下伤人或引起火灾,乙炔发生器不得放在下风。 5、指挥人员使用统一指挥信号,信号要鲜明、准确。起重机驾驶人员听从指挥。不得违章指挥、违章操作。 6、起重机行使或作业时,避开电线,防止意外发生,水平、垂直距离不得小于6米。 7、冬季在低于零下十度进行露天高处工作,必要时应该在施工地区附近设有取暖的休息所,取暖设备应有专人管理,注意防火。 8、登高作业人员必须佩戴防滑鞋、防护手套等防滑、防冻措施,并按要求正确戴好安全帽、系好安全带。 9、防止施工场地、运输道路积水和结冰,造成安全隐患;施工前应清除干净。 10、遇到大雪、冰冻天气作业面上的积雪、冰冻未清扫,严禁进行高空作业。 二、判断题(每题4分,共40分)

1、焊接的电焊条焊头可以随便乱丢。(×) 2、大型的机械设备进行高空的吊装作业前,必须检查全部机件,并经过空车和重车试运,对于安全抱刹、限位器在施工中必须定期检查以防失灵。(√) 3、氧气瓶应集中存放,不准吸烟和明火作业,禁止使用无减压阀的氧气瓶。( √) 4、可以在六级风的情况下进行吊装作业。(×) 5、操作人员在高空作业时,要思想集中,防止发生通行过程中踏上挑头板,被预埋拌倒等事故。(√) 6、进行高空焊割作业时,应使用安全带,高空作业处的下面,严禁站人或工作,以防物体下落砸伤。(√) 7、高空焊接时,避免焊点灼眼、发生下跌事件,故要做好护眼装置。(√) 8、设置吊装禁区,禁止与吊装作业无关的人员入内。(√) 9、构件安装后,必须检查连接质量。只有连接确实安全可靠,才能松钩。(√) 10、地面操作人员避免在高空作业面的正下方停留或通过,也不得在起重机的吊杆或正在吊装的构杆下停留或通过。(√) 三、简答题(每题10分,共20分) 1、高空作业的注意事项。 答:1、从事高空作业的人员,在上岗前必须进行体格检查,:带有高低血压、心脏病、癫痫病贫血病等的人员不能进行高空作业。 2、严禁穿硬底和带钉易滑的鞋从事高处作业,严禁在高处作业中嬉戏、打闹。

《安全教育》之高空作业安全教育培训

《安全教育》之高空作业安 全教育培训 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

高空作业安全教育培训 一、高空作业安全操作规程 1、高处作业人员必须定期进行体检,患有高血压、低血压,严重心脏病、贫血症、癫痫等疾病的人员不宜进行高处作业。 2、高处作业者必须使用安全帽、安全带,穿软底鞋,登高前严禁喝酒,并应清除鞋底沉砂油垢。 3、高处作业设备,必须搭设稳固、材质优良,设备必须按《建筑安装工程安全技术规程》规定办理,并巡回检查使用情况,在不能设置栏杆扶手、安全网的地方,应设置安全拉绳,安全拉绳应使用与钢丝绳等强度的绳索,并且生根牢固。 4、高处作业的设备,不许有翘头板、空头板、断裂板、露头钉、朝天钉、空缺档、折断等缺陷。 5、操作平台除钉有(或焊有)防滑条或涂防滑漆外,应及时清扫上面的泥垢砂石。 6、必须使用梯子、斜道登高,不准用起重机吊运人员。操作者的手用工具,尾部应系绳套在手腕上操作,登高时手工用具应放入工具袋,上下梯子时应腹胸部对着梯子,一手扶竖杆,一手抓横杆,逐级上下,不要背对梯而下,亦不要一手扶梯,一手拿工具或材料上下梯子。 7、传递工具和材料应用绳索,禁止抛掷,禁止从高处向下推掷料具。 8、禁止在高空进行冲击力相当大的操作,进行扳、拉、推等操作时,适当拉开两脚的间距,使身体中心下移,以防失手而坠落。 9、工作面小、期限紧的高处作业时,应尽量避开上下层垂直线同时作业,否则各层之间须设遮挡板,以防物体坠落伤人。

10、超重设备上空及邻近空间如有高压线、电线,应按安全距离控制,操作平台上的所有电线与电器设备应绝缘良好,以防漏电。 11、六级强风和雨雪天以及夜间,一般应停止从事高处作业,如需进行特殊高处作业,则应由项目管理部门制订相应防护技术措施。 二、高空作业其它注意事项 1、高空作业衣着要灵便,禁止穿硬底和带钉易滑的鞋。 2、高空作业所用材料要堆放平稳,工具应随手放入工具袋内。 3、梯子不得缺档,不得垫高使用,梯子横档间距以30cm为宜,使用时上端要扎牢,下端应采取防滑措施,单面梯与地面夹角以60°~70°为宜,禁止二人同时在梯上作业,如需接长使用,应绑扎牢固,人字梯底脚应拉牢。 4、没有安全防护措施,禁止在高架的上弦、支撑、桁条、挑架的挑梁和半固定的构件上行走或作业,高空作业与地面联系,应设通讯装置,并专人负责。 三、基坑支护施工安全措施 1、基坑支护上部应设安全护栏和危险标志,夜间应设警示灯标志。 2、在设置支撑的基坑(槽)挖土不得碰动支撑及锚索,支撑上不得放置物件;严禁将支撑当脚手架使用。 3、在设置支护的基坑中使用机械挖土时,应防止碰坏支护,或直接压过支护结构的支撑杆件;在基坑(槽)上边行驶,应复核支护强度,必要时应进行加固。 4、钻孔围护桩与土层锚索结合的支护,必须逐层及时设置预应力锚索,以保证支护的稳定,不得在基坑全部挖完后再设置。 5、支护(撑)的设置应遵循由上到下的程序,支护(撑)拆除应遵循由下而上的程序,以防止基坑(槽)失稳塌方。 6、安装锚索应戴安全帽,安装、张拉锚索等应在脚手架上进行,高空作业应挂安全带。 7、操作人员上下基坑(槽),严禁攀登支护或支撑上下。

高空作业安全教育培训记录表

高空作业安全教育培训记录表 安装八公司安全教育记录表 教育类别:高空作业教育课时:1 小时年月日单位名称主讲部门主讲人工程名称受教育单位人数教育内容: 首先登高作业人员要有良好的工作状态和身体素质~必须经过专项安全教育培训和安全技术措施交底~特殊作业人员必须持证上岗。其次作业人员必须按规定戴好并且正确使用安全帽和安全带~安全带每天使用前要严格检查~不得使用不合格安全带~一经发现使用不合格安全带将给予从重经济处罚。高空作业必须有可靠的保护措施,如安全网、生命线等,~否则作业人员有权拒绝施工作业。高空作业地点必须有安全通道~通道上不得堆放物件~行走时必须系挂好安全带~严禁手持物件。作业过程中要做到一步一挂~避免立体交叉作业~在钢格板铺设、钢结构组对等作业时~不准他人在作业面的下方行走、逗留和从事其他工作~下方要设置围栏或其他安全警戒装置~必须有专人进行看护~防止落物伤人。再次要做好孔洞临边的安全防护~对孔洞临边进行围栏和覆盖~不得擅自拆除和移动安全防护设施。每天工作前要仔细检查作业面的安全防护设施和周边环境的变化~发现隐患要及时整改和报告项目队~恶劣天气严禁从事室外登高作业。所有作业人员要严格遵守施工安全技术操作规程~杜绝违章指挥、违章作业和违反劳动纪律的“三违”行为发生~做到不伤害自己、不伤害别人~不被别人伤害。关爱家庭~尊重生命~从我们自身做起。参加对象(签名): 下面是赠送的保安部制度范本,不需要的可以编辑删除!!!!谢谢! 保安部工作制度

一、认真贯彻党的路线、方针政策和国家的法津法觃,按照####年度目标的要求,做好####的安全保卫工作,保护全体人员和公私财物的安全,保持####正常的经营秩序和工作秩序。 二、做好消防安全工作,认真贯彻“预防为主”的方针,教育提高全体人员的消防意识和防火知识,配备、配齐####各个楼层的消防器材,管好用好各种电器设备,确保####各通道畅通,严防各种灾害事故的发生。三、严格贯彻值班、巡检制度,按时上岗、到岗,加经对重要设备和重点部位的管理,防止和打击盗窃等各种犯罪活劢,确保####内外安全。 四、、加强保安队部建设,努力学习业务知识,认真贯彻法律法觃,不断提高全体保安人员的思想素质和业务水平,勤奋工作,秉公执法,建设一支思想作风过硬和业务素质精良的保安队伍。 11、保持监控室和值班室的清洁干净,天天打扫,窗明地净。 12、服从领导安排,完成领导交办任务。 5、积极扑救。火警初起阶段,要全力自救。防止蔓延,尽快扑灭,要正确使用灭火器,电器,应先切断电源。 6、一旦发生火灾,应积极维护火场秩序,保证进出道路畅通。看管抢救重要物资,疏散危险区域人员。 九、协同本部门或其他部门所进行的各项工作进行记录。 保安员值班操作及要求 一、交接岗 1、每日上午9时和下午 19时为交接岗。 2、交接岗时将当班所接纳物品清点清楚,以及夜班所发生的情况未得到解决的需> 面汇报。检查值班室内外的卫生状况,地面无纸屑,桌面无杂物,整齐清洁。

相关主题