搜档网
当前位置:搜档网 › 磷霞岩霞石矿选矿除铁提纯工业试验研究

磷霞岩霞石矿选矿除铁提纯工业试验研究

萤石的选矿方法

萤石的选矿方法 1、萤石的选矿方法 我国萤石矿山的选矿方法有手选、重力(跳汰机)选矿和浮游选矿等。 (1)手选、重选 手选主要用于萤石与脉石界限十分清楚、废石容易剔除、各种不同品级的矿石易于肉眼鉴别的萤石矿,是一种最简便、最经济的选矿方法。 重力(跳汰机)选矿主要选别矿石品位较高、粒径在6~20mm的粒子矿。重力选矿具有结构简单、操作方便、效率显著等优点。 (2)萤石浮选 萤石浮选主要的问题是与石英,方解石和重晶石等脉石矿物的分离。 1) 含硫化矿的萤石矿 一般先用黄药类捕收剂将硫化矿浮出,必要时用硫化钠活化,然后再加脂肪酸得萤石,有时在萤石浮选作业中,加少量的氰化物抑制残余的硫化矿,以保证萤石精矿的质量。 2) 含重晶石方解石的萤石矿 一般先用油酸作捕收剂,浮出萤石,加少量的铝盐可以活化萤石。加糊精可以抑制重晶石和方解石,而活化萤石。在用量少的时候,水玻璃也有类似作用。 用烤胶来抑制方解石和重晶石的研究证明,对于含有较多的方解石、石灰岩、白云岩等比较复杂的萤石,抑制脉石矿物用烤胶,木质素磺酸盐,效果也很好。 3) 萤石与石英的分选 用脂肪酸做捕收剂,用水玻璃做脉石抑制剂、浮选萤石、用碳酸钠调整矿浆pH为8~9。 水玻璃的用量要控制好,少量时对萤石有活化作用,过量萤石也会被抑制。为了少用水玻璃,又能增强对石英类脉石的抑制,常常添加多价重金属阳离子(Al3+,Fe2+)及明矾、硫酸铝等; 加入Cr3+,Zn2+离子也有效果,这些离子不仅对石英,而且对方解石也有抑制作用。 此外,为了获得优质低硅的萤石精矿,还必须控制磨矿细度及浮选矿浆浓度(精选作业的矿浆浓度应低)、温度、药剂组合与用量。 4) 萤石和重晶石的分选 一般常用将萤石和重晶石混浮,然后进行分离,混浮用油酸做捕收剂,水玻璃做抑制剂。混合精矿的分离,可以采用下列两种方法: 1) 用糊精或丹宁同铁盐抑制重晶石,而用油酸浮萤石。 2) 用烃基硫酸脂浮选重晶石,而将萤石精矿留在槽中。 研究结果表明,萤石和重晶石的分离,先浮萤石或先浮重晶石都可以得到较好的效果。 2.选矿工艺 1)粒级控制的工艺研究: 磨矿粒度选择 干法和湿法磨矿 阶段磨浮工艺流程 2)矿浆pH值: “全碱工艺”:全碱性(pH=9.0)浮选 “碱—酸工艺”:碱性(pH=9.0)粗选,弱酸性(pH=6.0)精选 “全酸工艺”:全弱酸性(pH=6.0)浮选 3)中矿处理 中矿循序返回和集中返回

萤石矿选矿厂实例(五)

立志当早,存高远 萤石矿选矿厂实例(五) 3 江西德安萤石矿选矿厂该厂于1978 年由南昌有色冶金设计研究院设计的,设计规模为250t/d. (1)矿石特性:该厂处理的原矿属热液交代和热液充填碳酸盐-硅酸盐类型萤石矿床。热液交代型萤石中萤石晶粒较细,呈紫色、浅紫色、无色的八面体和菱形十二面体的聚形晶,与脉石矿物或围岩组成以条带 状为主,浸染状为辅的构造,这种矿石的CaF2 含量一般在65%以下;热液充 填型萤石主要产于破碎带及破碎的硅化围岩中,呈纯萤石脉、石英萤石脉和方 解石等碳酸盐岩石萤石脉等几种形式产出。其萤石颗粒粗大,颜色以浅绿色、 浅黄绿色、桃红色、无色和上述颜色的混杂,色泽极为鲜丽,八面形聚晶,半自形晶。晶体最大可达十数厘米,以紫色八面体聚晶多见。矿石由萤石、石英、方解石组成,局部有少量的金属硫化物。其构造为条带状、浸染状、块状、皮壳状、角砾状、网脉状等。萤石单矿物含CaF2 达98.44~99.98%,矿石平均品位CaF2 的含量为38.3%。在重液(密度为2.9)的条件下分离,5~1mm 粒级单晶达92.65~97.89%,精矿品位CaF2 含量为97.02~97.12%。原矿多元素分析和粒度分析见表14 和表15。 (2)选矿工艺:原矿(或废石堆原矿)用圆筒洗矿分级筛进行洗矿分级, 分为50~25mm、25~10mm、10~3mm、3~0mm 等四个级别。50~25mm 粒级经人工手选得粗粒精矿,25~10mm、10~3mm 两级分别经跳汰机分选,得粗精矿与手选粗粒精矿合并,直接出售;3~0mm 粒级经沉淀脱泥后与手选、跳汰机分选,得粗精矿与手选粗粒精矿合并,直接出售;3~0mm 粒级经沉淀脱泥后与手选、跳汰尾矿合并,进入磨矿分级,分级溢流经过一次粗选,一次扫选,六次 精选后得到最后终精矿,扫选尾矿送尾矿坝堆存。其选矿特点是原矿经一次磨

高硅高钙萤石浮选药剂选矿实验报告

试验研究报告 项目名称:某萤石矿选矿试验 委托单位:某矿业有限公司 完成单位:长沙鸿顺矿业科技有限公司 2010年11月

1 前言 受某矿业公司委托,我公司承担了该公司所属萤石矿的可选性试验研究任务。试验目的有二:一是为开发该矿的可行性提供依据;二是为现有的选矿厂调试提供萤石浮选药剂。 本次采集的萤石矿原矿试样一件(重量:50公斤左右),由委托方负责制定采样方案,于2010年11月下旬运抵我处。 原矿分析出萤石的品位:CaF 240.15%,SiO 2 59.32%,CaCO 3 10.03%,原矿以白色 萤石矿和紫色萤石矿为主,含钙高,我们对原矿进行了浮选小试验,在磨矿细度-200目占80%的条件下,经过一次粗选、两次扫选、七次精选的浮选工艺,得到 了较好的选矿指标:萤石精粉品位:CaF 297.89%,SiO 2 0.41%,CaCO 3 0.14%,,尾矿 品位含氟化钙3.05%,开路回收率95.38%。萤石精矿达到了国家二级品质。 2样品制备 萤石矿选矿试样先进行破碎筛分,最终粒度达到-2mm后,缩分出原矿多元素分析样,余下的全部作为选矿试验用样。试样的破碎缩分流程示于图1。 原矿 颚式破碎机 - 筛分 + 21mm 缩分 对辊机备用样 + 筛分 - 2mm 缩分 元 素试 分验 样图1 样

3磨矿细度试验 称重200克原矿,加水150毫升,磨矿浓度为60%的条件下,在实验室240*90的锥形球磨机中进行磨矿细度试验。测得磨矿细度4分钟-200目占70%。6分钟-200目占75%,8分钟-200目占80%。从磨矿细度试验结果可知,该矿石属于易磨矿石,-200目占80%左右即可单体解离,因此确定磨矿细度为-200目占80%。4浮选试验 开路试验:确定磨矿时间8分钟:磨矿细度-200目占80%,采用碳酸钠为PH调整剂、矿泥分散剂,抑制剂水玻璃,浮选捕收剂中南萤石剂ZN136,1号试样浮选工艺方案如下: 设备:240*90锥形球磨机,200目筛子,XFD 1.5升浮选机,XFD 0.5升浮选机 药剂制度:克/吨 原矿 200克水150ml ZN136 5% 碳酸钠5% 磨矿细度-200目占80% 水玻璃10% 碳酸钠1250克/吨 PH 9.5 水玻璃 2000克/吨 ZN136 500克/吨 粗选 水玻璃 500克/吨 水玻璃 500克/吨 精选1 ZN136 50克/吨 水玻璃200克/吨扫选1 精选2 水玻璃200 精选3 中矿2 扫选2 中矿3 中矿1 精矿1 中矿4 中矿9 尾矿

萤石矿选矿废水处理的工艺研究

萤石矿选矿废水处理的工艺研究

一、氯化钙,聚合氯化铝和聚丙烯酰胺除氟工艺 随着现代工业的发展,氟及其化合物的生产、合成、应用越来越广泛。含氟矿石的开采加工、氟化物的合成、金属冶炼、铝电解、玻璃、电镀、化肥、农药、化工等行业产生的废水中常含有高浓度的氟化物,造成了环境污染。特别是近十多年来,电子产业(如彩色显象管、集成电路等)的迅猛发展,含氟废水排放量逐年增长,氟污染日益受到人们 的关注。因此,含氟废水处理方法与技术研究一直是国内外环保领域的重要课题。目前,国内外针对含氟废水处理方法以及含氟废水除氟流程的研究已经很多。尽管研究的这些废水成份比较单一,氟离子浓度也不是很高,(一般在100~300mg/L)但这些除氟工艺都存在处理流程长、投加药剂种类多、单位氟去除成本大的缺陷。本研究采用氯化钙,聚合氯化铝(PAC)和聚丙烯酰胺处理萤石选矿废水取得了很好的效果。通过实验发现:一段除氟处理中氯化钙投加量、反应时间以及沉降时间均影响一段上清液中残留F~-浓度;二段除氟处理中铝盐及聚丙烯酰胺的投加量、pH值以及搅拌时间均影响最后出水中的残留F~-浓度。其中,氯化钙投加量是一段除氟中的重要的影响因素。二段除氟中,铝盐及聚丙烯酰胺的投加量,pH值同等重要。本研究利用萤石选矿厂生产废水做除氟研究,先在探索的基础上,分段做除氟流程实验,然后利用条件实验对影响除氟效果的因子逐个分析,得出氯化钙,聚合氯化铝和聚丙烯酰铵除氟流程及最佳反应条件。最佳反应条件为:一段除氟,氯化钙投加量0.8g/L,反应30min,沉淀60min;二段除氟,聚合氯化铝与聚丙烯酰胺投加量为0.7g/L,pH值在7~8为宜,搅拌

选锡矿的常见方法介绍

选锡矿的常见方法介绍 锡矿石的选矿方法是由其本身的特性所决定的。由于锡石的密度比共生矿物大,因此锡矿石传统的选矿工艺为重力选矿。随着时间推移,入选矿石中锡石粒度不断变细,从而出现了锡石浮选工艺。此外,由于锡矿物中往往有各种氧化铁矿物存在,如磁铁矿、赤铁矿和褐铁矿等,这些矿物用浮选和重选均不能与锡石很好地分离,因此近年来在锡矿选矿流程中出现了磁选作业。 目前云锡公司大都沿用大屯选厂硫化矿车间30多年的浮-重选矿工艺,其流程是:原矿碎至20mm,一段闭路磨矿至0.074mm(200目)占60%~65%,混合浮选一粗二扫一精;铜硫分离磨至0.074mm占95%一粗二扫三精,产铜精矿、硫精矿;混合浮选尾矿再选硫化物后上重选。经一、二段床选;一次复洗;泥选;锡粗精矿除硫浮选,产锡精矿、富中矿。 长坡选矿厂为大厂矿务局所属选厂之一,其选矿流程为首先将原矿碎至-20mm后经筛分分成20~4和4~0mm两个粒级,20~4mm进入重介质旋流器预选。重介质旋流器重产品经一段棒磨后采用跳汰预选,跳汰尾矿用2mm振筛筛除+2mm作为废弃尾矿,-2mm进入摇床选别。跳汰和摇床精矿及中矿按品级分成富贫两系统,分别进行再磨并进行混合浮选。混合浮选尾矿进行摇床选别产出合格锡精矿;混合浮选精矿再经细磨进行铅锌分离浮选,并分别产出铅锑精矿和锌精矿。重选矿泥进入Φ300mm旋流器,溢流再经Φ125和Φ75mm水力旋流器组脱除细泥,沉砂经浓缩、浮选脱硫后进行锡石浮选。 近年来,在大厂查明了100号特富矿体,这是世界罕见的锡石多金属硫化矿大型特富矿体。矿石中锡、铅、锑和锌品位高,且含硫、砷、镉、铟、银和金可综合回收的伴生元素及稀贵金属元素。该矿石矿物种类多,组分复杂,选矿难度大。经过“八五”重点科技攻关,采用磁—浮—重和磁—重—浮—重两大类原则流程进行扩大试验,取得了较好的分选指标。磁—浮—重流程首先在高峰矿巴里选矿厂应用,硫化矿浮选采用两段混浮分离工艺,获得锡、铅、锑和锌回收率为83.72%、82.16%、73.89%和80.50%。后长坡选矿厂经改造处理100号矿石,设计流程为磁—浮—重流程,硫化矿浮选采用优先混浮分离工艺,获得锡、铅、锑和锌回收率分别为78.11%、85.59%、82.63%和81.65%。 新路锡矿是广西平桂矿务局所属的主要锡矿,其砂锡矿分残坡积砂锡矿和冲积砂锡矿两种类型。前者品位高、储量大,呈块状、囊状和串珠状分布;后者品位较低,分布面广,矿体比较复杂。 白面山选厂是处理该矿砂锡矿的选厂之一。由于锡石在大于5mm和小于5mm粒级中的嵌布特性有一定的差异,因此以5mm为界粗细分选。+5mm的粗砂经棒磨机后进行两次跳汰选别,第一次跳汰的尾矿用摇床扫选,得到锡品位8%~9%的粗精矿进入二段磨。-5mm的细砂,用Φ600mm旋流器分级,其沉砂经两次跳汰选别,其溢流再用Φ400mm旋流器分级并用摇床选别。

钾钠长石矿的除铁提纯流程研发

钾钠长石矿的除铁提纯流程研发 河北理工大学化学工程学院夏青 长石是一族含有钾、钠、钙和少量钡等碱金属的架状构造的铝硅酸盐矿物。长石在高温下熔融后成为胶体物质,冷却时不再结晶而成为透明的玻璃质,这种玻璃质具有高度的绝缘性,高度的化学稳定性,因此在一些工业部门具有广泛而重要的用途[1]。 长石的熔点在1100—1300℃之间,比石英和硅酸盐的熔点低,在与石英及硅酸盐矿物共融时有助融作用等特点,常用于玻璃及陶瓷工业的助熔剂,并可降低烧成温度。在搪瓷原料工业上可用长石和其他原料相配。此外,长石还可以用于磨料工业的磨具和磨料;生产玻璃纤维;用作焊条等的融合结合剂、去污剂。钾长石是制造钾肥的原料,也是化工工业的原料。长石因其优良的工艺特性被广泛用作玻璃、陶瓷、化工、磨料磨具、玻璃纤维、电焊条工业的原料[2]。 一、钾钠长石的除铁提纯流程 钾钠长石矿中含有一定量有害杂质,特别是铁、钛元素的存在严重影响着长石的开发利用以及长石产品的质量。随着高品质钾钠长石的开发殆尽,对低品位长石的除铁提纯是目前正在研发的一项重要课题。 钾钠长石矿的除铁提纯目前存在着多种方法和流程,结合目前低品位长石矿的开发利用情况,李学伟、管俊芳等[3]指出单一的选矿提纯工艺已不能满足当前的市场需求,采用多种选矿方法,组成联合选矿工艺是解决低品位矿选矿的有效途径。 本文以钾钠长石矿的“磨矿一脱泥一磁选一浮选”工艺流程为线索,对与该流程相关的流程环节进行详细的说明,并指出该流程在对钾钠长石矿的除铁提纯中实际取得的效果。该流程的流程图见图1。 1. 磨矿 对矿石进行磨矿,一方面是为了使有用矿物与有害矿物单体解离,一方面是为了满足最终产品的粒度要求,因此,磨矿是选别前的一个重要作业。 长石的磨矿主要分为干法磨矿和湿法磨矿两种。相对而言,湿法磨矿效率较干法磨矿高并且不易出现“过磨“现象[1]。 磨矿介质是磨矿效率的重要影响因素,磨矿介质大致可以分为钢质介质、瓷质介质和石质介质。在玻璃行业与陶瓷行业中,对作为原料的长石的要求一般较高,长石中的铁含量的高低决定了长石质量品级的高低。在我国玻璃行业与陶瓷行业中,为了避免在磨矿过程中带入铁杂质,长石矿的磨碎过程一般不采用铁介质磨矿,大多采用石质轮辗、间歇式砾磨或瓷球磨[2]。实践证明,较瓷球磨,采用钢球介质磨矿能够较大幅度的提高磨矿效率,但是磨矿过程中产生的机械夹带的铁杂质较多而降低长石的质量品级。可以通过试验对比不同的磨矿介质对磨矿细度及Fe2O3含量的影响,确定最佳的磨矿方式。潘力[1]针对山东某地伟晶岩长石矿床,通过实验证明采用“磨矿一脱泥一磁选一浮选”流程,磨矿过程中产生的机械夹带的铁杂质可以通过后续的脱泥作业和磁选作业有效去除;柳溪、高惠民等[4]通过对陕南某长石矿进行磨矿试验,采取上述流程,所得结论和潘力一致。 磨矿时间直接影响磨矿细度从而影响除铁提纯的效果,实验证明,随着磨矿时间的增加,磨矿细度也随之增加。对不同产地的长石矿,最佳的磨矿细度也不同,可以通过试验确定所选长石矿的最佳磨矿细度。

关于萤石矿的资料

萤石(Fluorite),又称氟石,是一种矿物,其主要成分是氟化钙(CaF2),含杂质较多,Ca常被Y和Ce等稀土元素替代,此外还含有少量的Fe2O3 ,SiO2和微量的Cl,O3,He等。自然界中的萤石常显鲜艳的颜色,硬度比小刀低。它可以用于制备氟化氢:CaF2 + H2SO4 = CaSO4+ 2HF↑;在人造萤石技术尚未成熟前,是制造镜头所用光学玻璃的材料之一。 萤石又称氟石,是一种常见的卤化物矿物[1],它是一种化合物,它的成分为氟化钙,是提取氟的重要矿物。萤石有很多种颜色,也可以是透明无色的。透明无色的萤石可以用来制作特殊的光学透镜。萤石还有很多用途,如作为炼钢、铝生产用的熔剂,用来制造乳白玻璃、搪瓷制品、高辛烷值燃油生产中的催化剂等等。萤石一般呈粒状或块状,具有玻璃光泽,绿色或紫色为多。萤石在紫外线或阴极射线照射下常发出蓝绿色荧光,它的名字也就是根据这个特点而来。在人造萤石技术尚未成熟前,是制造镜头所用光学玻璃的材料之一。 化学成分: CaF2 ,Ca:51.1%,F:48.9%。 晶体结构:晶胞为面心立方结构,每个晶胞含有4个钙离子和8个氟离子。 结晶状态:晶质体 晶系:等轴晶系 晶体习性:常呈立方体、八面体、菱形十二面体及聚形,也可呈条带状致密块状集合体。常见颜色:绿、蓝、棕、黄、粉、紫、无色等。 光泽:玻璃光泽至亚玻璃光泽。 解理:四组完全解理。 摩氏硬度: 4 。 密度: 3.18( + 0.07 ,- 0.18)g/cm 3 。 光性特征:均质体。 多色性:无。 折射率:1.434( ± 0.001) 。 双折射率:无。 紫外荧光:随不同品种而异,一般具很强荧光,可具磷光。 吸收光谱:不特征,变化大,一般强吸收。 放大检查:色带,两相或三相包体,可见解理呈三角形发育。 特殊光学效应:变色效应。 【成因及产状】萤石是一种多成因的矿物。(1)内生作用中主要是由热液作用形成,·与中低温的金属硫化物和碳酸盐共生。热液的萤石矿床有两类:一是鉴于石灰岩中的萤石脉,共生矿物主要是方解石,石英很少。有时与重晶石、铅锌硫化物半生。另一种是鉴于流纹岩、花岗岩、片岩中产出的萤石脉,共生矿物中方解石很少,主要是石英。(2)沉积型,在沉积岩中成层状与石膏、硬石膏、方解石和白云石共生,或作为胶结物以及砂岩中的碎屑矿物产出。 优化处理: 热处理:常将黑色、深蓝色热处理蓝色,稳定,避免300℃以上的受热,不易检测。

萤石矿资源分布情况

萤石矿资源分布情况 一、萤石矿资源状况 萤石资源在世界各大洲分布十分普遍。从成矿地质环境来看,环太平洋成矿带的萤石储量最多,约占全球萤石储量一半以上。萤石资源主要分布在亚洲的中国、蒙古、泰国,北美洲的墨西哥、美国、加拿大等地。非洲的南非、肯尼亚和欧洲的法国、意大利和英国等地也有一定的储量。据1996年《Mineral Cammodity Summaries》报道,1995年世界萤石储量为1.9亿t、储量基础为2.8亿t。 中国是世界上萤石矿最丰富的国家之一。总保有储量CaF2 l.08亿吨,居南非、墨西哥之后,处世界第3位。已探明储量的矿区有230处,分布于全国25个省(区)。以湖南萤石最多,占全国总储量38.9%;内蒙古、浙江次之,分别占16.7%和16.6%。我国主要萤石矿区有浙江武义,湖南柿竹园、河北江安、江西德安、内蒙古苏莫查干敖包、贵州大厂等。矿床类型比较齐全,以热液充填型、沉积改造型为主,伟晶岩型等类型不具重要意义。萤石矿主要形成于古生代和中生代,以中生代燕山期为最重要。下图为中国萤石矿资源情况及分布示意图。

二、萤石矿地理分布 我国除上海、天津、西藏、宁夏等省、市、自冶区尚未发现有价值的萤石矿外,其余各省、市、自冶区均有萤石矿分布,现已发现各类萤石矿床、矿点874处(下表)。主要萤石矿床及其储量均分布在我国东部的省、市、自冶区。而大中型萤石矿床又都集中在我国东部沿海地区、华中地区和内蒙古白云鄂博—二连浩特一带。

中国萤石矿分布图 1、东部沿海地区,萤石矿主要产于北东向火山-构造活动带中,北起辽东半岛,经胶东半岛、安徽、浙江、福建,延伸至广东、广西。全长2,000km,宽200km。该范围内已知大型矿床22处,中型矿床28处和众多的小型矿床(点)。如浙江省就有萤石矿床(点)359处,占全国矿床(点)数的41.08%(下表)。 全国各大区萤石矿床、矿点统计表

萤石矿选矿工艺

萤石矿选矿工艺 学院:矿业工程学院 姓名:郭鹏 学号:21114440202 班级:11选2

萤石矿选矿工艺基本简介 基本原料

采而被综合回收利用。它只能生产化工级(酸级)萤石精矿和陶瓷级(建材)萤石粉矿。 基本特性 萤石也叫氟化钙,是一种常见的卤化物矿物,它是一种化合物,它的成分为氟化钙,是提取氟的重要矿物。萤石有很多种颜色,也可以是透明无色的。透明无色的萤 石可以用来制作特殊的光学透镜。萤石还有很多用途,如作为炼钢、铝生产用的熔剂,用来制造乳白玻璃、搪瓷制品、高辛烷值燃油生产中的催化剂等等。萤石一般呈粒状 或块状,具有玻璃光泽,绿色或紫色为多。萤石在紫外线或阴极射线照射下常发出蓝 绿色荧光,它的名字也就是根据这个特点而来。化学成分:CaF2 晶体结构:晶胞为面心立方结构,每个晶胞含有4个钙离子和8个氟离子。结晶状态:晶质体晶系:等 轴晶系晶体习性:常呈立方体、八面体、菱形十二面体及聚形,也可呈条带状致密 块状集合体。常见颜色:绿、蓝、棕、黄、粉、紫、无色等。光泽:玻璃光泽至亚玻璃光泽。解理:四组完全解理。摩氏硬度:4。密度:3.18(+0.07,-0.18)g/cm3。光性特征:均质体。多色性:无。折射率:1.434(±0.001)。双折射率:无。紫外荧光:随不同品种而异,一般具很强荧光,可具磷光。吸收光谱:不特征,变化大,一般强 吸收。放大检查:色带,两相或三相包体,可见解理呈三角形发育。特殊光学效应: 变色效应。优化处理:热处理:常将黑色、深蓝色热处理蓝色,稳定,避免300℃以上的受热,不易检测。充填处理:用塑料或树脂充填表面裂隙,以保证加工时不裂开。 辐照处理:无色的萤石辐照成紫色,但见光很快褪色,很不稳定。

钾钠长石矿的除铁技术研发

钾钠长石矿的除铁技术研发 河北理工大学化学工程学院夏青 一.钾钠长石的应用、性质及国内外的研发现状 1. 钾钠长石的应用及要求 制造玻璃是长石的主要用途之一,美国约60%的长石用于玻璃制造业,在欧洲和亚洲约有20%~40%。长石中的Al2O3在玻璃中起防止析晶,提高玻璃机械强度和抗化学腐蚀能力的作用,是普通玻璃不可缺少的化学组分[1];长石中的钾、钠可以部分代替其他昂贵的碳酸钾和纯碱的用量,从而带来整个配合料成本的下降。在陶瓷工业中的用量占30%,主要用在陶瓷坯体配料、陶瓷釉料及搪瓷中,其次用于化工、磨料磨具、玻璃纤维、电焊条等其他行业[2]。 我国长石矿产品目前还没有制定统一的产品质量标准,但对长石含铁量等杂质的要求越来越高,玻璃工业及陶瓷工业对钾长石的一般工业要求如表1和表2,还有一些应用领域对长石原料的烧成白度也有一定的要求。故脱除其中的铁、钛、云母等深色矿物就十分必要,例如某些日用陶瓷中作配料和釉料的长石填料的Fe2O3+TiO2要小于1%[3]。 表1 玻璃工业对长石的要求(%) 成分SiO2Al2O3Fe2O3Na2O K2O 钾长石≤70≥18≤0.2 钠长石63~70 16~20 <0.3 ≥8≤1 表2 陶瓷工业对钾长石的要求(%) 成分K2O+Na2O Na2O Fe2O3Al2O3MgO+CaO 特级品≥12<4 <0.15 ≥17<2 Ⅰ极品≥11<4 ≤0.2≥17<2 Ⅱ极品≥11≤0.5≥17<2 2. 钾钠长石的性质 长石是钾、钠、钙、钡等碱金属或碱土金属的铝硅酸盐矿物,晶体结构属架状结构。其主要化学成分为SiO2、Al2O3、K2O、Na2O、CaO等[4]。长石族矿物是地壳中分布最广的矿物,约占地壳总重量的50%,是一种普遍存在的造岩矿物。60%的长石赋存在岩浆岩中,30%分布在变质岩中,10%存在于沉积岩碎屑岩中,但只有在相当富集时长石才能成为工业矿物。长石矿物富含钾、钠等碱金属,熔融温度较低(1100~1200℃),熔融间隔较长,具有较强的助熔性和较高的化学稳定性[5]。 我国长石资源很丰富,以钾长石为主,但是能够满足工业要求的优质长石矿较少,绝大部分都含有石英、白云母、黑云母、金红石、磁铁矿、赤铁矿、褐铁矿,有些长石原矿中还含有磷灰石、黄铁矿、榍石、角闪石、电气石等,含铁量比较高,长石白度或烧成白度达不到要求。为了提高长石的工业价值,满足工业对优质长石矿的需求,必须从劣质长石矿中去除杂质矿物,尤其是对铁、钛氧化物的去除[3]。 钾钠长石中铁的存在形式比较复杂,主要有以下三种情况:其一,以赤铁矿、褐铁矿为主,呈微细粒星点状零星分布在脉石中或云母矿物中,粒度一般较粗,

萤石矿选矿

非金属矿物加工工程 结课论文 《萤石矿物及其加工利用》 学校:中国矿业大学 姓名:丘成荣 班级:矿加13-4班 学号:06132389

摘要:本篇论文主要论述了萤石的基本性质、用途及我国萤石资源现状,萤石矿选矿工艺流程以及流程中使用的药剂,最后论述了萤石矿物分选的发展趋势。 关键词:萤石,性质,工艺流程,发展趋势 1. 萤石的结构特性和表面性质 萤石又称氟石,是一种含氟量最高的重要非金属矿物原料,具有广泛的工业用途。其主要成分是氟化钙(化学式CaF2),密度为3.18g/cm3,氟和钙的质量百分数分别为48.67%和51.33%。含杂质较多,Ca常被Y和Ce等稀土元素替代,此外还含有少量的Fe2O3,SiO2和微量的Cl,Al,Me,He等。 萤石的颜色几多,一般呈绿、紫、玫瑰、白、黄、蓝,有时呈蓝黑、紫黑及棕褐等色,无色透明者少见。当加热到300℃时,其色可以消失,但在X射线照射后,又可恢复原色。萤石在紫外线或阴极射线照射下能发强烈的荧光,当含有一些稀土元素时会发出磷光。引起萤石颜色多变的原因是多方面的,A.N.苏杰尔金认为,是与含微量稀有元素和少量的铁、锰氧化物杂质或碳氢化合物的分散包裹体有关,如铕(Eu)的存在使萤石呈蓝色,钐(Sm)呈淡绿色,混入钇(Y)呈黄色,含沥青杂质的萤石呈乌灰色等。也有人认为,萤石的颜色与温度有关,紫色者形成温度高,淡蓝色者形成温度次之,两者与钨(W)、锡(Sn)、钼(Mo)矿床有关,绿色者形成温度较低,与硫化物矿床有关等等。 在自然界中能与氟组成化合物的元素约有15种,形成含氟矿物约25种,除萤石外,常见的有冰晶石(Na3AlF6)、氟磷灰石[Ca5(PO4)3(F,OH9)]、黄玉[Al2(SiO4)(F,OH)]、氟硅钾石(K2SiF6)等等。 萤石的晶体结构一般为等轴晶系,多为立方体或八面体,十二面体较为罕见,宏观形式主要为粒状或块状的集合体,有时呈土状。萤石具玻璃光泽,性脆,断口呈贝壳状,沿八面体解理完全,硬度4,条痕为白色,熔点较高,为1360℃,在水中的溶解度很小,可以溶解于硫酸、磷酸,不溶于冷的盐酸、硼酸和次氯酸,可以与氢氧化钠、氢氧化钾等强碱发生微弱的化学反应。萤石的折射率低,n=1..433—1.435,弱色散性,有透过紫外线和红外线的特殊能力。 关于萤石的表面特性,戚冬伟对萤石的表面电性、表面润湿性及吸附特性作了研究。研究表明,较低的PH值时,萤石的表面带正电,随着溶液PH值的增大纯萤石的Zeta电位不断降低,PH值为5~10时,Zeta点位的数值有所增大,当PH值大于10时,随着PH值的增大,Zeta点位的数值减小。萤石等电点电位的PH=3.1。PH<3.1时,萤石的表面带正电荷,PH>3.1时,萤石的表面带负电荷。萤石的接触角为40°左右,油酸钠作用后的接触角为80°左右,说明油酸钠作用后萤石的疏水性大大增加,表明萤石表面吸附了油酸根阴离子。油酸捕收剂可以使萤石和石英的表面润湿性形成巨大的差别,从而使二者实现很好的分选。萤石加入油酸钠溶液中搅拌后,其Zeta电位较纯矿物有所降低,并呈现出较为稳定的值。 2.萤石的用途 萤石具有广泛的用途:(1)乳白色的优质萤石,常常用于雕刻宝石弧形界面的辅助材料,光泽好的块状萤石可以用来制作高档工艺饰品;(2)冶金工业中可以用来作为助熔剂,如在炼钢或其它金属时,加入萤石之后,形成的炉渣易于流动,同时能够排出有害杂质硫等,从而提高纯度;(3)萤石是一种重要的化工原料,氟化氢是经过硫酸处理过的萤石产物,它是合成冰晶石的重要原料,同时还可用于生产多种有机、无机氟化物。防腐剂和杀虫剂的有效成分就是有机氟化物,单质氟通常是利用氟化氢而制备的;(4)萤石同样用于建筑材料工业,水泥工业中的矿化剂主要为萤石,萤石还可以作为釉料配料、助熔剂而用于陶瓷工业中。萤石还可以作为良好的熔剂用于玻璃工业,从而降低玻璃的熔化温度,加速熔化某些添加剂,还可以作为乳浊剂用于乳光玻璃的生产;(5)萤石在光学工业中也有广泛的应用,萤石作为光性均质体,且具有很小的折射率,对红外线、紫外线的透过性能很好,常常用于无球面像差的光学物镜的制备,还可用作光谱仪棱镜、辐射紫外线和红外线窗口的材料。3. 我国萤石资源的特点

某蓝宝石矿业萤石矿可选性试验报告

某蓝宝石矿业萤石矿可选性试验报告 蒙古国蓝宝石矿业公司萤石矿 可选性试验报告 中国·烟台市*矿山机械有限公司 试验中心二○一三年五月 - 0 - 项目负责人:王瑞涛 实验:王岩、隋向伟 报告编写:隋向伟 审核:王岩 目录 一、前言..................................................................3 二、试验样品的采取与制备...................................................5 (一)试验样品的采取.........................................................5 (二)试验样品的制备 (5) - 1 - (三)原矿主要元素分析……………………………………………6 三、岩矿鉴定………………………………………………………7 四、可磨度试验………………………………………………………14 五、浮选试验…………………………………………………………15 5.1探索性试验………………………………………………………….15 5.2 磨矿细度试验……………………………………………………16 5.3 矿浆浓度试

验.............................................................19 5.4 活化剂的选择及用量试验.............................................21 5.5粗精矿再磨试验............................................................25 5.6抑制剂试验..................................................................27 5.7 水玻璃的用量试验........................................................33 5.8 综合条件试验..............................................................35 5.9 闭路试验....................................................................37 六、试验总结 (39) 一、前言 蒙古国蓝宝石矿业公司为了开发当地萤石资源,委托中国烟台市联丰矿山机械有限公司对该矿业公司提供的萤石矿石进行选矿工艺试验研究,其目的是确定选别该矿石的合理工艺和药剂制度,选得达到品级的萤石精矿,为该公司建萤石选厂和今后生产提供科学依据。 - 2 - 本次试验样品由蓝宝石矿业公司提供,先后分两批寄至烟台市联丰矿山机械有限公司,矿样按试验室样品加工程序加工成试验样品后,对其主要元素进行了化验。主要元素分析见表1,表2。 表1 第一批原矿主要元素 元素含量(%) CaF2 54.16 CaCO3 0.99 SiO2 41.32 表 2 第二批原矿主要元素 元素含量(%) CaF2 34.77 CaCO3 2.98 SiO2 52.68 为探索符合该矿石的选矿工艺,烟台市联丰矿山机械有限公司试验中心对这两批矿石均进行了深入的选矿试验,第一批矿石在开路情况下选矿,已达到精矿品位97.54%,回收率81.35%的较好指标。由于客户提出现场原矿品位达不到第一批原矿的情况,差距较大,故把工作重点转移到第二批原矿上。

不同种类萤石的浮选方法

不同种类萤石的浮选方法 萤石浮选剂在不同情况下的使用方法 萤石又名氟石、五花石, 化学成分CaF2 , 是工业上氟的主要来源。浮选是回收萤石的重要手段之一。 萤石浮选剂的制备方法,以油酸生产的中间产品粗脂肪酸或混合脂肪酸为原料,向其加入重量为脂肪酸重量的3%~15%的浓硫酸,使之发生硫酸化反应,再向反应生成物中加入重量为脂肪酸重量0.4%~3% 的选矿用起泡剂即成产品。这种产品的捕收能力强、水溶性、分散性好,适于在常温下及低温下浮选萤石。 萤石的浮选原理,萤石的主要问题是与共生脉石(石英、方解石、重晶石等)的分离,还有与某些硫化物分离的问题。振北工贸建议根据不同情况,可以采取以下几种方法: 1、含硫化矿的萤石矿,一般用黄药类捕收剂将硫化矿浮出,然后再加脂肪酸类捕收剂浮选萤石,有时在莹石的浮选作业中,加入少量硫化矿物抑制剂(如氰化物)来抑制残留的硫化矿物,以保证萤石精矿质量。 2、萤石与重晶石、方解石的分离,一般用油酸作捕收剂浮出萤石,在用油酸作捕收剂浮选萤石时,加入少量铝盐活化萤石,加糊精抑制重晶石、方解石。 对含有较多方解石、石灰石、白云石等比较复杂萤石矿抑制这些脉石矿物用栲胶、木质素磺酸盐效果较好。 3、萤石与石英的分离,用脂肪酸捕收萤石,水玻璃作石英

抑制剂,碳酸钠调整矿浆pH为8~9。水玻璃用量要控制好,少量时对萤石有活化作用,但对石英的抑制作用不够,过量时萤石也会被抑制,为了添加水玻璃用量最少,又能达到对石英脉石的抑制强度,常常在添加水玻璃的同时,再添加多价金属离子(如Fe3+、Al3+)及明矾、硫酸铝等。此外,加入Cr3+、Zn2+离子也有效果,这些不仅对石英而且对方解石也有抑制作用。 4、萤石与重晶石的分离,一般是将萤石与重晶石混合浮选,然后进行分离,混合浮选时用油酸作捕收剂水玻璃作抑制剂,混合精矿分离可采用下列方法: (1)用糊精或单宁同铁盐作抑制剂,抑制重晶石,以油酸浮选萤石; (2)用烃基硫酸脂浮选重晶石,浮选槽内留下的为萤石精矿。

萤石矿选矿浮选机相关介绍

萤石浮选机结构装置主要由承浆槽、搅拌装置、充气装置、排出矿化泡装置、电动机等组成。 1、承浆槽:它有进浆口,以及调节矿浆面的闸门装置,它主要由用钢板焊成的槽体和钢板与圆钢焊成的闸门组成。 2、搅拌装置:它用于搅拌矿浆,防止矿砂在槽体沉淀,它主要由皮带轮、叶轮、垂直轴等组成,叶轮是由耐磨橡胶制成的。 3、充气装置:它由导管进气管组成,当叶轮旋转时,叶轮腔中产生负压,将空气通过中空的泵管吸入,并弥散在矿浆中形成气泡群,这种带有大量气泡的矿浆由叶轮的旋转力而被很快的抛向定子,进一步使矿浆中的气泡细化,及消除浮选槽中矿浆流的旋转运动,造成大量垂直上升的微泡,为浮选过程提供必要的条件。 4、排除矿化气泡装置:它是将浮在槽面上的泡沫刮出,主要由电机带动减速器,减速器带动刮板组成。 萤石矿浮选机工艺流程如下:

原矿先经过球磨机--分级机组成闭路进行一段磨矿,磨矿标准以达到--200目含55%为准。达到200目的萤石粉送入浮选,经过一次粗选和一次扫选后得到精矿和尾矿。尾矿直接排入尾矿坝,精矿送入球磨机内再次研磨,以完全打破细粒萤石和石英的连接体。再次研磨后的萤石粉送入浮选机内进行六次精选。 该工艺适合用于萤石和石英嵌布粒度较细的矿石。工艺流程采用原矿破碎,进行粗磨、浮选,粗精矿再磨并经六次精选,中矿顺序返回的成熟工艺。浮选用油酸作捕收剂,碳酸钠作调整剂。水玻璃作抑制剂。经过我厂大量试验,以及国内多数选厂的实际生产结果可知,受到更多的用户肯定与认可。 浮选机浮选萤石时,可用油酸作捕收剂。除油酸外,烃基硫酸酯、磺酸盐等也可作为捕收剂。调整剂用于水玻璃、偏磷酸钠、木质素磺酸盐、糊精等,萤石浮选的主要问题是与石英、方解石和重晶石及硫化矿的分离,分离方法如下: 1、萤石与石英的分选,用碳酸钠调整矿浆的PH值为8-9.用水玻璃抑制石英,用脂肪酸捕收萤石。水玻璃的用量要控制好,如果用量过大,萤石也会受到抑制。为了提高水玻璃的选择性,加强水玻璃的抑制力,常常添加多价金属离子。 2、萤石与重晶石和方解石的分离。一般是油酸浮出萤石。浮萤石时可加少量铝盐活化萤石,加糊精抑制重晶石和方解石。对于含方解石、石灰石、白云石较多的比较复杂的萤石矿,可用烤胶、木质素磺酸盐抵制脉石矿物,效果较好。 3、萤石和重晶石的分选。一般先将萤石和重晶石混占浮选,然后进行分离。混合精矿分离时可采用两种方法:一是用糊精或单宁同铁盐抑制重晶石,用油浮萤石;二是用烃硫酸酯浮选重晶石,将萤石留在槽内。 4、含有硫化矿的萤石矿。一般先用黄药类捕收剂将硫化矿浮出,再加脂肪酸浮出萤石。如果浮硫化矿时未浮尽,浮萤石时,可加少量硫化矿的抑制剂以抑制残留的硫化矿,以防止被选入萤石精矿中。

酸浸除铁提纯钾长石粉的工艺试验

酸浸除铁提纯钾长石粉的工艺试验 [导读]采用硫酸作为浸出剂,通过单因素条件试验与正交试验,对河南洛阳篙县金都 矿业公司的钾长石粉进行了硫酸酸浸除铁试验。试验结果表明,在硫酸体积分数40%, 温度94℃,酸浸时间为210min的优化条件下,钾长石粉铁的浸出率为93.2%,除铁 效果显著。 钾长石是一种重要的工业原料,而天然钾长石矿石中又普遍含较多的铁质,降低了钾长石的经济价值,也妨碍了它在许多工业领域的应用。研究表明,酸浸除铁是矿物除铁的一种较好方法,而硫酸除铁提纯钾长石又是比较新的课题,目前这一方面研究并不多。本文在常压恒温下分别采用单因素和正交试验研究了硫酸除铁提纯钾长石的工艺条件。 一、试验材料与研究方法 (一)试验材料 试验所用原矿钾长石采自河南洛阳嵩县金都矿业公司,原矿样经球磨机初碎、中碎、细碎处理,过200目(-0.074mm)套筛,备用。酸浸除铁试验所用样品未经重选和磁选处理。钾长石矿样主要成分见表1。 表1 钾长石原矿粉的化学成分(质量分数)/% SiO2Al2O3Fe2O3K2O Na2O CaO MgO 64.96 18.07 2.50 15.30 0.20 0.40 微量 (二)研究方法 单因素条件实验:将恒温水浴升温至预定温度后,放入盛有硫酸的烧杯,待烧杯预热至设定温度,加入准确称取的钾长石粉1g,搅拌均匀。达到设定的反应时间取出烧杯并置于冷水中冷却,此时反应结束。经水循环式真空泵真空过滤、水洗,直至滤液接近中性,测定滤液中Fe2+含量,从而得出此次酸浸出铁的浸出率。依次确定最佳浸出时间、浸出温度和浸出剂硫酸体积分数。 正交试验:为了进一步确定各因素各水平对酸浸除铁效果的影响,采用4因素3水平正交试验对试验条件进行了优化,确定最佳酸浸除铁工艺参数。 二、试验结果及分析

萤石矿基础知识

一,萤石矿基础知识 非金属矿产资源简介----萤石 萤石又名莹石、氟石、五花石。化学成分为氟化钙(CaF2)。常因含有各种杂质及机械混入物而呈紫色、绿色、蓝色、黄色、玫瑰色等。萤石常呈立方体或八面体结晶,有时为块状或粘状集合体,比重为3~3.2,莫氏硬度为4,熔点为1270°C~1350°C。萤石是一种很重要的非金属矿物原料,具有广泛的工业用途:冶金工业中,萤石主要用于炼钢、化铁和铸造、冶炼;氟化学工业中,萤石用于生产氢氟酸(HF);建材工业中,萤石大量应用于水泥、玻璃、铸石和陶瓷等生产工艺过程中。当然质地纯正的萤石还可以被工艺大师用来雕刻成造型各异的装饰工艺品。 中国是世界上萤石矿最丰富的国家之一。总保有储量CaF2 l.08亿吨,居南非、墨西哥之后,处世界第3位。已探明储量的矿区有230处,分布于全国25个省(区)。以湖南萤石最多,占全国总储量38.9%;内蒙古、浙江次之,分别占16.7%和16.6%。我国主要萤石矿区有浙江武义,湖南柿竹园、河北江安、江西德安、内蒙古苏莫查干敖包、贵州大厂等。矿床类型比较齐全,以热液充填型、沉积改造型为主,伟晶岩型等类型不具重要意义。萤石矿主要形成于古生代和中生代,以中生代燕山期为最重要。 我国非金属矿开发利用概况 建国50年来,我国非金属矿工业有了很大的进步与发展。全国现已发现了一大批储量大,质量好的非金属矿产93种,其中已探明储量的有88种,有14种非金属矿产居世界前5位。菱镁矿、石膏、重晶石、芒硝、膨润土居世界首位;滑石居世界第二位;磷矿、硫矿、萤石和石棉居世界第三位;珍珠岩、天然碱居世界第四位;高岭土居世界第五位。非金属矿产现已成为国家的支柱产业。据不完全统计,我国现有非金属矿山12194个,加工制品企业6.5万个,合计7.7199万个,从业人员853万人,拥有固定资产原值1898.96 亿元,创得税216.18亿元。我国也是世界上重要的非金属矿产出口国,在国际市场上起到举足轻重的作用。石墨、萤石、硅灰石占世界贸易额的50%以上。 中文名称: 萤石 英文名称: Calcium fluoride 中文别名: 氟石;氟化钙 CAS RN.: 7789-75-5 分子式:CaF2

萤石选矿加工方法

一、地质勘查 (一)勘探类型及网度 在矿点检查的基础上,根据已掌握的矿体空间延展规律、矿体形态复杂程度、矿体稳定程度及矿石有用组分分布特点等,确定萤石矿床的勘探类型。 划分萤石矿床勘探类型的依据: (1)矿体规模大型矿体:长度一般800m,延深300~500m。中型矿体:长度300~800m,延深100~400m。小型矿体:长度小于300m,延深10~300m。 (2)矿体形态复杂程度较简单:连续单脉状矿体、层状、似层状矿体。较复杂:间断单脉状矿体、复脉状矿体、有分支的鞍状矿体。复杂:复脉状矿体、串珠状矿体、透镜状、囊状矿体和受岩溶破坏的矿体。 (3)矿体稳定程度稳定:工业矿体在较长距离内连续,厚度膨缩变化有规律,并在可采厚度以上波动。厚度变化系数小于50%。较稳定:工业矿体在较长距离内基本连续,局部出现狭缩段或无矿段。厚度变化系数50%~80%。不稳定:矿体厚度变化急剧,可采段和非可采段交替出现。厚度变化系数大于80%。 (4)矿石有用组分分布均匀程度均匀:矿物成分简单。氟化钙品位变化系数小于30%。较均匀:矿物成分复杂。氟化钙品位变化系数30%~60%。矿体中有夹石。不均匀:矿物成分复杂,有害成分含量较高。氟化钙品位变化系数大于60%。矿体中夹石较多。 根据以上这些影响勘探难易的地质因素,将我国萤石矿床勘探类型划分如下: 第Ⅰ勘探类型。矿体规模大、形态简单、厚度稳定、品位均匀、无构造影响的层状矿体,现尚无实例。 第Ⅱ勘探类型。矿体规模中到大型。矿体形态属于比较简单的连续或微间断单脉状矿体,比较规则复脉状矿体。厚度稳定或较稳定,品位均匀或较均匀。无构造破坏或影响不大。如浙江杨家、后树、湖南衡南、河南陈楼等萤石矿床。 第Ⅲ勘探类型。矿体规模中到大型。矿体形态较复杂,如复脉状矿体、透镜状矿体、鞍状矿体、镰状矿体等。厚度较稳定。品位较均匀或不均匀。无构造破坏或有一定影响。如浙江溪里、银子山及辽宁三宝屯等萤石矿床。 第Ⅳ勘探类型。矿体规模小到中型。矿体形态复杂,主要为串珠单脉状矿体,透镜状、囊状矿体。厚度不稳定到较稳定。品位较均匀到不均匀,无构造破坏或破坏影响较大。如浙江毫石5、6号矿体,四川二河水1号矿体。 根据我国萤石矿地质勘查和矿山生产实践,结合已知勘探类型的特点,萤石矿床勘探规范规定网度为(表表 ? (二)工业指标 从我国当前萤石矿资源状况和国内外萤石矿山生产、选矿经济技术条件和市场情况,必须贯彻“开源和节流”并举,“开发和保护”并重的原则,珍惜资源,充分利用资源。萤石矿床勘探时,一定要按照上述精神来圈定矿体。凡提供矿山建设设计依据的地质勘探报告所用的工业指标,由地质勘探部门提出初步意见,经工业部

萤石选矿方法

萤石浮选工艺 萤石采用浮选工艺,与有色金属选矿没有区别,只是采用的药剂不同,十年前我采用的是油酸作为萤石的捕收剂及起泡剂,水玻璃作为抑制剂,碳酸钠作为调整剂,可以得到氟化钙含量大于99%,二氧化硅小于0.6%的合格产品,回收率大于80%。我们这里采用上述选矿工艺建了许多厂 萤石需要磨得细,大多数情况下要采用二段磨矿,在北方冬天需要加热浮选,油酸容易冻住结块,浮选时的PH值大致在8.5左右。 选矿厂主要是尾矿库的问题,油酸在尾矿库内是如何分解,并最终确保COD达标是需要注意的,我没有这方面的资料,你可以要求业主将选矿工艺试验产生的尾矿浆分别放置一天、二天、三天、四天...然后监测相关污染因子的浓度,了解需要几天才能降解到位。这样得出的尾矿澄清废水的浓度比较可靠,你说得前两种药剂我不懂! 此外该矿浆有腐蚀性,我的眼镜片因为遇上氟化钙泡沫变花了。 萤石矿pH、悬浮物、氟化物
萤石矿是一种化学成分为氟化钙(CaF2)、熔点较低的矿物,根据其透明度、结晶完好度和用途,可分为普通萤石矿及光学萤石矿两大类。 普通萤石矿的用途相当广泛,主要在冶金工业中用作熔剂(称氟石),其次在化学工业中用以提取氟元素或制造氢氟酸、氟化碳、氟化氢及其他含氟产品,它还是玻璃、陶瓷、辉绿岩铸造件工业的重要原料。 光学萤石矿是无色透明的萤石晶体,可用作显微镜上的接物镜及透镜、棱镜,大的晶体可作摄谱仪。 此外,色泽鲜艳、质地均匀美观的萤石矿可作宝石,或用以加工美术工艺品。 石矿在世界广泛分布,储量4.48亿吨,储量基础6.23亿吨,主要产于前苏联、蒙古、中国(1.4亿吨)及南非等地。 全省已知普通萤石矿产地20处,其中上表矿产地3处,归并为中、小型矿床各1处,矿点8处,矿化点10处。探明CaF2储量C+D级32.6万吨(其中C级5万吨),潜在价值0.28亿元,占全国储量的0.3%,居全国第19位。此外,据国家建材工业地质勘查中心青海总队统计,全省作过一定地质工作的矿区还有地质储量约28.8万吨。 省内萤石矿产地少而分散,主要分布于中祁连中间隆起带东段南北边缘,即大通、化隆、尖扎等地(如花石掌、其美、上丹麻、茨卡等矿床(点));其次为东昆仑北坡断隆南北(如格尔木的大硌勒矿点)等古老地块或地台稳定区,一般与加里东期、华力西期及印支-燕山期中酸性侵入岩有关,严格受断裂控制。矿床成因为中低温热液型,矿床工业类型为石英-萤石型,矿石普遍较贫。 省内萤石地质工作程度很低,多数属普查或矿点检查。已上表两个矿床分别为详查及初查。

相关主题