搜档网
当前位置:搜档网 › MODIS大气校正精度评价及其对表层雪密度提取影响

MODIS大气校正精度评价及其对表层雪密度提取影响

MODIS大气校正精度评价及其对表层雪密度提取影响
MODIS大气校正精度评价及其对表层雪密度提取影响

大气校正方法说明

利用MODTRAN 进行大气校正的方法说明 一. 大气校正公式、原理以及所需参数 大气是介于传感器和地球表层之间由多种气体和气溶胶组成的介质层,电磁波在地物和传感器之间传输时,必然受到大气的影响。遥感对地观测时,要想得到目标的真实信息,大气校正是不可回避的。由卫星传感器获取的表观反射率ρ* 可由下式表出: '()(,,)(,,)(())1v s s v s v a s v s v t t v d t T S e t τμθρθθφφρθθφφρρθρ-*-=-++- (1) 式中: s θ:太阳天顶角 , s φ:太阳方位角 ,v θ :传感器天顶角,v φ :传感器方位角, t ρ:目标反射率,(,,)a s v s v ρθθφφ-:大气的路径辐射项等效反射率, τ:大气的光学厚度, S :大气的半球反照率,' ()v d t θ:散射透过率,cos()v v μθ=。 通过MODTRAN4对大气辐射传输进行模拟,求得大气校正所需参数,将所求的大气校正参数和传感器获得的表观反射率一并代入大气辐射传输公式 (1),便可计算出目标的真实反射率t ρ,从而完成大气校正的任务。 在实际的工作中,我们可以用下面的公式: 0()()()1t v v d v t L L F T S ρμμμρ=+ - (2) 是传感器接收到的辐射亮度,0()v L μ是路径辐射项,d F = 式中:s μ0F ()s T μ是太阳下行总辐射(0F 是大气层顶的太阳辐照度), ()v T μ=v e τμ-+'()v d t θ是传感器和目标之间的透过率(v e τμ-是直射透过率,' ()v d t θ是散射透过率)。在已知的观测条件(太阳和传感器的几何参数,大气廓线,地表反射率等)下,设定一组t ρ值以及相应的传感器高度,通过MODTRAN4模拟得到一组辐射亮度()v L μ,代入方程(2),再经过简单的代数运算就可以求出大气校正所需的参数(路径辐射项、透过率、大气半球反照率和太阳下行总辐射)。地表反射率和相应传感器高度设置见表1:(地面高程时候传感器不受大气影响,L0项去掉;()v T μ=1表示完全透过) 表1 地表反射率和相应的传感器高度参数设置 由(2)式,可以解出t ρ, ()v L μ

大气压力与海拔的关系

一个地方气压值经常有变化→其上空大气柱中空气质量的多少→大气柱厚度和密度改变的反映:大气柱厚度和密度与空气质量应该是成正比关系 任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100m,气压平均降低12.7hPa,在高层则小于此数值。 确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。 1、静力学方程 具体太长,我简单说明下: 假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273)/P(m/hPa) 其中h是气压高度差,t是摄氏温标,P是气压 从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。 ②在同一温度下,气压值越大的地方,空气密度越大,气压随高度递减越快,单位高度差越小。 通常,大气处于静力平衡状态,当气层不太厚和要求精度不太高时,这公式可粗略估算气压与高度的定量关系。如果研究的气层高度变化范围很大,气柱中上下层

温度、密度变化显著时,该公式就不适合用了,这时候可以用压高方程。 2、压高方程 为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程,然后再将之替换简化为: Z2-Z1=18400(1+t/273)log( P1/P2) 式中P1、P2分别是高度Z2、Z1的气压值,t是摄氏温标 从公式可以看出 ①气压随高度增加按指数规律递减 ②高度越高,气压减小得越慢 这公式是将大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。这就不详细再说了,太复杂了,你应该也不需要用到这么复杂的公式吧! 呵呵,我没看清楚你的真正题意,给你一个相关的链接,可能比较准确。

大气校正问题心得

九月份学习报告 报告人:fairy郑 学习内容介绍: 九月份主要对论文中存在的问题进行了修正以及对论文中不足的部分进行了改善。 一.首先:对环境小卫星HJ_1A的HIS数据进行了深入的了解。 二.其次:对envi软件在处理环境小卫星的HJ_1A的HIS数据的FALSSH大气校正从原理到实际操作有更加清晰的认识。 三.最后:对环境小卫星的HJ_1A的HIS数据的FALSSH大气校正的处理结果进行分析,并且根据此次实验对论文中的错误进行修正。 一.对环境小卫星HJ_1A的HIS数据的了解。 HSI 数据为资源卫星中心提供的辐亮度产品, 影像已经过系统级几何校正与表观辐亮度标定, 但前20 几个波段具有较为明显的噪声和条带效应。由此可知:环境小卫星HJ_1A的HIS数据是经过辐射定标的数据。 由辐亮度数据可以直接用公式求算出地物的表观反射率曲线 下图即为表观反射率曲线,即为原始数据的光谱曲线: 由上图可以得出在760 nm 与820 nm 附近存在两个明显的波谷, 这是由于760 nm 处为氧气吸收带,820 nm 处为水汽吸收带。说明直接由H SI 的辐亮度产品获得的表观反射率含有较多的大气影响。若直接基于表观反射率开展遥感应用, 难以体现地物的真实物理特性, 从而影响其后遥感应用的准确性。

二.在envi软件中进行大气校正的步骤 第一步:由于envi软件不能打开HJ_1A的HIS的h5格式的图像,所以下载了HDF5 这个扩展模块,这个扩展模块不用自己安装,直接将copy到“save_add”目录下,默认为C:\Program Files\ITT\IDL##\products\envi##\save_add\。 要使用这个这个功能时:按照File→Open Extenral File→HJ-1→HIS就可以打开h5格式的图像,同时还可以读取下载图像的原始信息。如下图 第二步:将图像格式转换为bip格式,

FLAASH大气校正参数设置

1.3.2FLAASH其它参数的设置 (1)图像中心点坐标 可以从相应的HDF文件中找到,也可以从屏幕上直接读取影像的中心坐标,对反演结果影响不大。当影像位于西半球时,经度为负值; (2)传感器类型 当选择传感器类型时,模块会选择相应的类型的传感器波段响应函数,同时系统一般会自动设置传感器的高度和图像的空间分辨率; (3)海拔高度 海拔高度为研究区的平均海拔; (4)数据获取日期和卫星过境时间 卫星过境时间为格林尼治时间,可以从相应的HDF文件中找到; (5)大气模型 模块提供热带、中纬度夏季、中纬度冬季、极地夏季、极地冬季和美国标准大气模型,研究者根据数据获取时间选择相应的大气模型; (6)水气反演 大多数多光谱数据不推荐反演水汽含量; (7)气溶胶模型 可供选择的气溶胶模型有无气溶胶、城市气溶胶、乡村气溶胶、海洋气溶和对流层气溶胶模型。当能见度大于40Km时,气溶胶类型选择对反演没有太多影响,一般情况下利用ASTER 数据不做气胶反演; 在高级设置中,①Modtran 分辨率(Modtran resolution):一般设置成5cm-1;②反射率输出的时尺度系数,默认尺度系数是10000,可以使用默认的尺度系数。若使用默认的尺度系数,大气校正后得到反射率图像的数值域为:0-10000。其余参数使用默认值。 大气校正的目的是消除大气和光照等因素对地物反射的影响,获得地物反射率和辐射率、地表温度等真实物理模型参数,用来消除大气中水蒸气、氧气、二氧化碳、甲烷和臭氧对地物反射的影响,消除大气分子和气溶胶散射的影响。FLAASH 可以处理任何高光谱数据、卫星数据和航空数据(860nm/1135nm),这些数据是由HyMAP、AVIRIS、CASI、HYDICE、HYPERION(EO-1)AISA、HARP、DAIS、Probe-1、TRWIS-3、SINDRI、MIVIS、OrbView-4、NEMO等传感器获得的。FLAASH还可以校正垂直成像数据和侧视成像数据。

大气压和海拔的换算

大气压力与海拔高度怎么转换 标准大气压强Po= Pa= cmHg= mmHg Po=1.01325×10^5 Pa=76cmHg=760mmHg 一个地方气压值经常有变化→其上空大气柱中空气质量的多少→大气柱厚度和密度改变的 反映:大气柱厚度和密度与空气质量应该是成正比关系 任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100m,气压平均降低12.7hPa,在高层则小于此数值。 确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。 1、静力学方程 假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273)/P(m/hPa) 其中h是气压高度差,t是摄氏温标,P是气压 从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。 ②在同一温度下,气压值越大的地方,空气密度越大,气压随高度递减越快,单位高度差越小。 通常,大气处于静力平衡状态,当气层不太厚和要求精度不太高时,这公式可粗略估算气压与高度的定量关系。如果研究的气层高度变化范围很大,气柱中上下层温度、密度变化显著时,该公式就不适合用了,这时候可以用压高方程。 2、压高方程 为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程,然后再将之替换简化为: Z2-Z1=18400(1+t/273)log( P1/P2) 式中P1、P2分别是高度Z2、Z1的气压值,t是摄氏温标 从公式可以看出 ①气压随高度增加按指数规律递减 ②高度越高,气压减小得越慢 这公式是将大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。 大气密度与海拔高度和温度间的换算 1、根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气密度、湿度与海拔高度的关系。 海拔高度(m)0 1 000 2 000 2 500 3 000 4 000 5 000相对大气压力10.8810.7740.7240.6770.5910.514相对空气密度10.9030.8130.7700.7300.6530.583

大气校正(ENVI)

大气校正(ENVI) 大气校正是定量遥感中重要的组成部分。本专题包括以下容: 大气校正概述 ENVI中的大气校正功能 1大气校正概述 大气校正的目的是消除大气和光照等因素对地物反射的影响,广义上讲获得地物反射率、辐射率或者地表温度等真实物理模型参数;狭义上是获取地物真实反射率数据。用来消除大气中水蒸气、氧气、二氧化碳、甲烷和臭氧等物质对地物反射的影响,消除大气分子和气溶胶散射的影响。大多数情况下,大气校正同时也是反演地物真实反射率的过程。

图1 大气层对成像的影响示意图 很多人会有疑问,什么情况下需要做大气校正,我们购买或者其他 途径获取的影像是否做过大气校正。 通俗来讲,如果我们需要定量反演或者获取地球信息、精确识别地物等,需要使用影像上真实反映对太的辐射情况,那么就需要做大气校正。我们购买的影像,说明文档中会注明是经过辐射校正的,其实这个辐射校

正指的是粗的辐射校正,只是做了系统大气校正,就跟系统几何校正的 意义是一样的。 目前,遥感图像的大气校正方法很多。这些校正方法按照校正后的 结果可以分为2种: 绝对大气校正方法:将遥感图像的DN(Digital Number)值转换为地表反射率、地表辐射率、地表温度等的方法。 相对大气校正方法:校正后得到的图像,相同的DN值表示相同的地物反射率,其结果不考虑地物的实际反射率。 常见的绝对大气校正方法有: 基于辐射传输模型 MORTRAN模型 LOWTRAN模型 ATCOR模型 6S模型等 基于简化辐射传输模型的黑暗像元法 基于统计学模型的反射率反演; 相对大气校正常见的是: 基于统计的不变目标法 直方图匹配法等。 既然有怎么多的方法,那么又存在方法选择问题。这里有一个总结供 参考: 1、如果是精细定量研究,那么选择基于基于辐射传输模型的大

大气密度随高度的变化

大气密度随高度的变化 现有关于大气密度随高度变化的模型主要由以下三种: 1、玻尔兹曼公式(BF ): 00 11()()exp[()]GMm n r n r kT r r =- 其中0r 为地球半径,0r r h =+。0()n r 为地表处大气密度, 在0℃(273K )、101Kpa 下,地表大气密度为31.29/kg m 。()n r 为所要求的高度0h r r =-处的大气密度。G 为 万有引力常量,11226.67210/G Nm kg -=?;k 为玻尔兹曼常数,2311.38110k JK --=?;m 为气体分子质量,271.66110m kg -=??分子量。M 为地球质量,245.97710M kg =?。T 为大气的热力学温度。 根据玻尔兹曼公式,计算得到的大气密度在无穷远处具有不等于零的有限值: 00 1()exp()GMm n n kT r ∞=-? 但是,有限数量的大气不可能以到处都不等于零的密度分布在无限大的宇宙空间,这也说明了玻尔兹曼公式不能再全空间范围适用。 2、Jeans 理论 0000011()()exp[ ()],()0,eff eff GMm n r n r r r r H kT r r n r r r H ≈-≤≤+=>+ 其中0,/eff H H r H kT mg ≤≤=。对地球来说,若T=300K ,则H 为380km 。可见 Jeans 理论是对玻尔兹曼公式的一种硬截断,所以称之为玻尔兹曼公式的硬截断理论(HCBF )。 3、修正的玻尔兹曼公式(RBF ) 4000 11()()()exp[()]r GMm n r n r r kT r r =- 修正后的玻尔兹曼公式主要是在BF 的基础上添加了归一化因子40(/)r r 。加 入修正因子后,RBF 可满足()0n ∞=,因此可以在全空间适用。

大气压力随海拔高度变化的规律

大气压力随海拔高度变化的规律 资料2008-09-10 22:14:50 阅读476 评论0 字号:大中小订阅 一个地方气压值经常有变化→其上空大气柱中空气质量的多少→大气柱厚度和密度改变的反映:大气柱厚度和密度与空气质量应该是成正比关系 任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100 m,气压平均降低12.7 hPa,在高层则小于此数值。 确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。 1、静力学方程 具体太长,我简单说明下: 假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273)/P(m/hPa) 其中h是气压高度差,t是摄氏温标,P是气压 从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。 ②在同一温度下,气压值越大的地方,空气密度越大,气压随高度递减越快,单位高度差越小。 通常,大气处于静力平衡状态,当气层不太厚和要求精度不太高时,这公式可粗略估算气压与高度的定量关系。如果研究的气层高度变化范围很大,气柱中上下层温度、密度变化显著时,该公式就不适合用了,这时候可以用压高方程。 2、压高方程 为了精确地获得气压与高度的对应关系,通常将静力学方程从气层底部到顶部进行积分,即得出压高方程,然后再将之替换简化为: Z2-Z1=18400(1+t/273)log( P1/P2) 式中P1、P2分别是高度Z2、Z1的气压值,t是摄氏温标 从公式可以看出 ①气压随高度增加按指数规律递减

②高度越高,气压减小得越慢 这公式是将大气当成干空气处理的,但当空气中水汽含量较多时,就必须用虚温代替式中的气温。这就不详细再说了,太复杂了,你应该也不需要用到这么复杂的公式吧! 大气压与海拔高度的关系式计算的:P=760(e^-(a/7924))。 其中假定海平面的大气压是760mmHg,会受天气影响略微变动。P(单位mmHg)是海拔a米处的大气压;e是自然对数的底。 当然,结果的不确定度比较大! 一个地方气压值经常有变化→其上空大气柱中空气质量的多少→大气柱厚度和密度改变的反映:大气柱厚度和密度与空气质量应该是成正比关系 任何地方的气压值总是随着海拔高度的增加而递减。据实测,在地面层中,高度每升100m,气压平均降低12.7hPa,在高层则小于此数值。 确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。 1、静力学方程 具体太长,我简单说明下: 假使大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受空气柱的重量。 公式是:h≈8000(1+t/273)/P(m/hPa) 其中h是气压高度差,t是摄氏温标,P是气压 从公式可以看出 ①在同一气压下,气柱的温度越高,密度越小,气压随高度递减越慢,单位气压高度差越大。

大气校正问题

ENVI FLAASH 大气校正常见错误及解决方法(2013年7月15号更新) (2011-03-07 16:55:57) 转载▼ 标签: flaash 大气校正 分类: ENVI 本文汇总了ENVI FLAASH 大气校正模块中常见的错误,并给出解决方法,分为两部分:运行错误和结果错误。前面是错误提示及说明,后面是错误解释及解决方法。 FLAASH 对输入数据类型有以下几个要求: 1、波段范围:卫星图像:400-2500nm ,航空图像:860nm-1135nm 。如果要执行水汽反演,光谱分辨率<=15nm ,且至少包含以下波段范围中的一个: ??●1050-1210 nm ??●770-870 nm ??●870-1020 nm 2、像元值类型:经过定标后的辐射亮度(辐射率)数据,单位是:(μW ) /(cm2*nm*sr )。 3、数据类型:浮点型(Floating Point )、32位无符号整型(Long Integer )、16位无符号和有符号整型(Integer 、Unsigned Int),但是最终会在导入数据时通过Scale Factor 转成浮点型的辐射亮度(μW )/(cm2*nm*sr )。 4、文件类型:ENVI 标准栅格格式文件,BIP 或者BIL 储存结构。 5、中心波长:数据头文件中(或者单独的一个文本文件)包含中心波长(wavelenth )值,如果是高光谱还必须有波段宽度(FWHM ),这两个参数都可以通过编辑头文件信息输入(Edit Header )。 运行错误 1.Unable to write to this file.File or directory is invalid or unavailable 。

Flassh大气校正

[转载]大气校正(转) 大气校正是定量遥感中重要的组成部分。本专题包括以下内容: ? ●大气校正概述 ??●ENVI中的大气校正功能 1大气校正概述 大气校正的目的是消除大气和光照等因素对地物反射的影响,广义上讲获得地物反 射率、辐射率或者地表温度等真实物理模型参数;狭义上是获取地物真实反射率数据。用来消除大气中水蒸气、氧气、二氧化碳、甲烷和臭氧等物质对地物反射的影响,消除大气分子和气溶胶散射的影响。大多数情况下,大气校正同时也是反演地物真实反射率的过程。 很多人会有疑问,什么情况下需要做大气校正,我们购买或者其他途径获取的影像是否做过大气校正。 通俗来讲,如果我们需要定量反演或者获取地球信息、精确识别地物等,需要使用影像上真实反映对太阳光的辐射情况,那么就需要做大气校正。我们购买的影像,说明文档中会注明是经过辐射校正的,其实这个辐射校正指的是粗的辐射校正,只是做了系统大气校正,就跟系统几何校正的意义是一样的。 常见的绝对大气校正方法有: ●基于辐射传输模型 ? ??MORTRAN模型 ? ??LOWTRAN模型

? ??ATCOR模型 ? ??6S模型等 ●基于简化辐射传输模型的黑暗像元法 ●基于统计学模型的反射率反演; 相对大气校正常见的是: ●基于统计的不变目标法 ●直方图匹配法等。 既然有怎么多的方法,那么又存在方法选择问题。这里有一个总结供参考: 1、如果是精细定量研究,那么选择基于基于辐射传输模型的大气校正方法。 2、如果是做动态监测,那么可选择相对大气校正或者较简单的方法。 3、如果参数缺少,没办法了只能选择较简单的方法了。 2 ENVI大气校正功能 在ENVI中包含了很多大气校正模型,包括基于辐射传输模型的MORTRAN模型、黑暗像元法、基于统计学模型的反射率反演。基于统计的不变目标法可以利用ENVI一些功能实现。其中MORTRAN 模型集成在ENVI大气校正扩展模块中。还有直方图匹配等。 2.1 简化黑暗像元法大气校正

FLAASH大气校正常见错误及解决方法

FLAASH大气校正常见错误及解决方法 本文汇总了ENVI FLAASH大气校正模块中常见的错误,并给出解决方法,分为两部分:运行错误和结果错误。前面是错误提示及说明,后面是错误解释及解决方法。 FLAASH对输入数据类型有以下几个要求: 1、波段范围:卫星图像:400-2500nm,航空图像:860nm-1135nm。如果要执行水汽反演,光谱分辨率<=15nm,且至少包含以下波段范围中的一个: ??●1050-1210 nm ??●770-870 nm ??●870-1020 nm 2、像元值类型:经过定标后的辐射亮度(辐射率)数据,单位是:(μW)/(cm2*nm*sr)。 3、数据类型:浮点型(Floating Point)、32位无符号整型(Long Integer)、16位无符号和有符号整型(Integer、Unsigned Int),但是最终会在导入数据时通过Scale Factor转成浮点型的辐射亮度(μW)/(cm2*nm*sr)。 4、文件类型:ENVI标准栅格格式文件,BIP或者BIL储存结构。 5、中心波长:数据头文件中(或者单独的一个文本文件)包含中心波长(wavelenth)值,如果是高光谱还必须有波段宽度(FWHM),这两个参数都可以通过编辑头文件信息输入(Edit Header)。 运行错误 1.Unable to write to this file.File or directory is invalid or unavailable。

没有设置输出反射率文件名。 解决方法是单击Output Reflectance File按钮,选择反射率数据输出目录及文件名,或者直接手动输入。 2.ACC Error:convert7 IDL Error:End of input record encountered on file unit:0. 平均海拔高程太大。 注意:填写影像所在区域的平均海拔高程的单位是km:Ground Elevation(Km)。 3.ACC error:avrd: IDL error:Unable to allocate memory:to make array Not enough space ACC_AVRD

对地球大气密度随高度分布规律的讨论

书山有路勤为径,学海无涯苦作舟 对地球大气密度随高度分布规律的讨论 以NASA 大气模式MS 1、由玻耳兹受能分布律导出的大气密度随高度分布1687 年牛顿发表了万有引力定律, 1859 年麦克斯韦导出了平衡态下气体分子的速率分布定律,尔后,玻耳兹曼发展了麦克斯韦的分子运动学说,证明了在有势的力场中处于热平衡态的分子速度分布定律,即玻耳兹曼能量分布律。麦克斯韦-玻耳兹曼分布律是对相互作用可忽略的大量同类气体分子的集合,采用概率统计的方法导出的川。玻耳兹曼能量分布律的表达式为: 2、由大气模式得到的大气密度随高度分布2.1、大气层的温度分布大气 层可以被粗略地表征为环绕地球从海平面到大约1000Km 高度的区域,其间电中性气体可以被检测。50Km 以下该大气可以被假定为均匀混合的而且可以被当做一种理想气体。80Km 以上该流体静力学平衡因扩散而逐渐崩溃且垂直输运变得重要。在上层大气中主要的气体种类是N2,O,O2,H,He。按温度的垂直分布可将大气层分为对流层,从海平面直到大约10Km,其间温度逐渐降低,同温层,从10Km 直到大约45Km,其间温度逐渐上升,中间层,从45Km 直到大约95Km,其间温度再次逐渐降低,热层,从95Km 直到大约400Km,其间温度再次逐渐上升;而外逸层,大约在400Km 以上,其间温度是常数。 限于篇幅,文章第二章节的部分内容省略,详细文章请到论坛下载:对 地球大气密度随高度分布规律的讨论。 5、结论(1)MS (2)关心大气成分的数密度时,玻耳兹曼能量分布律仅适用于几公里至几十公里高度以内的分子态气体包括无所谓原子态还是分子态的惰性气体,但不包括

大气校正模型简述

大气辐射校正模型简介 1、acorn模型 它是一种基于图像自身的大气校正软件,可以实现图像辐射值到表观地表反射率的转换,其工作的波长范围是350-2500nm。 在目前的大气校正程序一般都把地表假定为水平朗伯体,这主要是因为我们一般很难获取地表的充足信息以完成地形校正,因此大气校正的结果称为拉伸的地表反射率,又称表观反射率,在地形信息已知的情况下,可以将表观反射率转为地表反射率。 Acorn所提供的最高级的大气校正形式是基于辐射传输理论的,大气校正的方法是基于chandrasekhar(1960,dover)公式,描述了太阳辐射源、大气、和地表对辐射的贡献关系。Caorn提供了一系列大气校正策略,包括经验法和基于辐射传输理论的方法,既可以对高光谱数据进行大气校正,也可以对多光谱图像数据进行大气校正,校正模式如下: 1)模式1:对定标后的高光谱数据进行辐射传输大气校正,输出项为地表 表观反射率。 2)模式1.5:对定标后的高光谱数据利用水气和液体水光谱你和技术进行 辐射传输大 气校正。 3)模式2:对高光谱大气校正结果进行独立的光谱增强。 4)模式3:利用经验线性法对高光谱数据进行大气校正 5)模式4:对高光谱数据进行卷积处理得到多光谱数据 6)模式5:对定标的多光谱数据进行辐射传输大气校正 7)模式6:对多光谱的大气校正结果进行独立的光谱增强 2、lowtran模型 LOWTRAN是一种低分辨率(分辨率≥20cm-1)大气辐射传输模式。它提供了6种参考大气模式的温度、气压、密度的垂直廓线,水汽、臭氧、甲烷、一氧化碳、一氧化二氮的混合比垂直廓线,其他13种微量气体的垂直廓线,城乡大气气溶胶、雾、沙尘、火山喷发物、云、雨的廓线,辐射参量(如消光系数、吸收系数、非对称因子的光谱分布),以及地外太阳光谱。 lowtran7可以根据用户的需要,设置水平、倾斜、及垂直路径,地对空、空对地等各种探测几何形式,适用对象广泛。lowtran7的基本算法包括透过率计算方法,多次散射处理和几何路径计算。 1)多次散射处理 lowtran 采用改进的累加法,自海平面开始向上直至大气的上界,全面考虑整层大气和地表、云层的反射贡献,逐层确定大气分层每一界面上的综合透过率、吸收率、反射率和辐射通量。再用得到的通量计算散射源函数,用二流近似解求辐射传输方程。 2)透过率计算 该模型在单纯计算透过率或仅考虑单次散射时,采用参数化经验方法计算带平均透过率,在计算多次散射时,采用k-分布法 3)光线几何路径计算 考虑了地球曲率和大气折射效应,将大气看作球面分层,逐层考虑大气折射效应 3、modtran模型 MODTARN(ModerateResolutionTransmission)这是由美国空军地球物理实验(AFGL)开发的计算大气透过率及辐射的软件包。MODTRAN从LOWTRAN发展而来,它提高LOWTRAN的光

大气校正

二类水体大气校正算法说明书 子模块介绍:该模块的主要任务是针对太湖流域二类水体水质,通过对遥感器水色波段的大气校正,计算出可见光波段的归一化离水辐射率,为水体水色信息的提前做准备。 1.输入数据: MODIS TERRA 几何校正后产品 MODIS产品中太阳和卫星天顶角、方法角数据集 大气辅助数据产品(臭氧含量、压强) CE318太阳光度计辅助数据(用于大气气溶胶光学厚度计算) 2.输出数据 海洋水色产品(离水辐射率) 3.算法说明 3.1大气校正模块说明 来自大气外层的太阳光通过大气的瑞利散射和气溶胶散射,其中一部分返回到卫星水色扫描仪,一部分直射和漫散射到达海面.到达海面的直射光,一部分由于镜面反射可能会穿过大气到达卫星水色扫描仪,另一部分经水面折射穿过水面,受到水色因子如叶绿素、悬浮泥沙和黄色物质等颗粒的散射后,再经水面折射穿过大气到达卫星水色扫描仪.水次表面的另一部分继续向下到达真光层深度或到达海底又部分反射。经折射回到卫星水色扫描仪.因此,可能到达卫星水色扫描仪的总辐射量为(为简洁,省略波长 ): L t=L r+L a+t L f+T L g+t L w(1) 式中: L r-大气分子单次和多次散射;

L a-气溶胶单次和多次散射以及气溶胶与大气分子间的多次散射; L f -白帽散射; L g-太阳耀斑; T-大气直射透过率; L w-离水辐亮度; t-大气漫射透过率。 对于太阳耀斑Lg,若像元处在耀斑区,则其值非常大,无法准确的去除其影响,实际上这一块图象数据是无效的;而在非耀斑区,其值又比较小,可以忽略不计。故本算法未考虑其影响,则上式可表示为: L t=L r+L a+t L f+t L w(2)水色大气校正的目的是从传感器接收到的辐亮度值中去除大气的散射贡献,从而计算得到载有水体信息的离水辐亮度。由于大气分子成分及含量比较稳定,L r已能比较精确的计算得到。关键是气溶胶散射,由于气溶胶含量在空间域及时间域上变化较大,要准确计算其散射比较困难,各种大气校正方法的不同也主要体现在对气溶胶散射的处理上。 针对太湖水体特殊情况(较混浊,区域小),基于以上基本原理,提出了针对太湖水体的大气校正方法。该方法首先在清洁像元利用一类水体大气校正方法,获得近红外波段的气溶胶散射辐亮度以及表征气溶胶类型的参数。在假定在太湖区域气溶胶类型一样的情况下,就可以由清洁像元的参数得到非清洁像元的气溶胶参数。主要从以下两个方面来具体阐述该原理:清洁像元大气校正、非清洁像元大气校正。 表1:modis影像部分波段介绍 波段波段宽度/nm 中心波长/nm F0 (uw/cm^2/nm) 臭氧单位吸收系数空间分辨率 1 620-670 645 163.00 0.07 250m 2 841 858 100.58 0 250m 8 405~420 412 180.50 0 1000m 9 438~448 443 194.50 0.003 1000m 10 483~498 488 187.50 0.019 1000m 11 526~536 531 196.00 0.064 1000m 12 546~556 551 186.50 0.085 1000m 13 662~672 667 154.00 0.049 1000m 14 673~683 678 150.50 0.04 1000m 15 743~753 748 128.05 0.0092 1000m 16 862~877 865 99.05 0 1000m 3.3光学厚度计算说明 光学厚度的计算根据太阳光度辐射计CE318实测数据反演得到。 表2 CE318的波段配置

Flaash大气校正

上机实习内容:Flaash大气校正 学生姓名王玲 学号201420771 院系城市与环境学院 专业地图学与地理信息系统年级2014级 教务处制

Flaash大气校正实验报告 一、实验目的 通过本次实验能够更深一步理解大气校正的原理、方法。并且熟练掌握Landsat8 OLI 数据的大气校正的流程。 二、实验内容 1、辐射定标 目的:将传感器记录的电压或数字量化值(DN值)转换为绝对辐射亮度值(辐射率)。 原理:L=Gain*DN + Bias 步骤: (1)首先,在Envi5.1中打开辐射定标工具,Toolbox/Radiometric Correction/ Radiometric Calibration,并在File Selection对话框中选择数据,如下所示: (2)辐射定标参数设置 当选择好辐射定标的数据时,接下来需选择定标参数。其中, ①Calibration Type:辐射定标类型,因Flaash校正要求输入的数据为辐亮度值,因此辐射定 标类型选择辐亮度。当数据的每个波段包含Gain和Offest参数时,Envi会自动从元数据文件中获取这些参数,并按照辐射定标公式进行定标,本实验所使用的Landsat8 OLI 数据的元数据中包含这两个参数。另外,Envi默认Gain和Offest参数定标单位为W/(m2*sr*μm),因此,计算得到的辐亮度值为W/(m2*sr*μm)。 ②Output Interleave:输出数据存储顺序,因Flaash校正要求输入的数据存储类型为BIL或 BIP,但因BIL的处理速度快,故在此选择BIL。 ③Output Data Type:输出数据类型,辐射定标中可以选择的输出数据类型为三种,分别是: 浮点型(Float)、双精度浮点型(Double)和无符号位16整型(Uint)。本实验中使用的OLI6 原始数据为无符号16位整型,在进行Flaash校正时计算缩放因子是无单位型与浮点型数据之间的缩放关系,因此,该处选择浮点型(Float)。 ④Scale Factor:因辐射定标计算的辐亮度值单位是W/(m2*sr*μm),而FLAASH校正所要 求输入数据的辐亮度单位为μW/(cm2*sr*nm),该缩放系数是这两单位间的转换系数,

大气校正常见错误处理方法及校正后检查

本文汇总了ENVI FLAASH大气校正模块中常见的错误,并给出解决方法,分为两部分:运行错误和结果错误。前面是错误提示及说明,后面是错误解释及解决方法。 FLAASH对输入数据类型有以下几个要求: 1、波段范围:卫星图像:400-2500nm,航空图像:860nm-1135nm。如果要执行水汽反演,光谱分辨率<=15nm,且至少包含以下波段范围中的一个: ??●1050-1210 nm ??●770-870 nm ??●870-1020 nm 2、像元值类型:经过定标后的辐射亮度(辐射率)数据,单位是:(μW)/(cm2*nm*sr)。 3、数据类型:浮点型(Floating Point)、32位无符号整型(Long Integer)、16位无符号和有符号整型(Integer、Unsigned Int),但是最终会在导入数据时通过Scale Factor转成浮点型的辐射亮度(μW)/(cm2*nm*sr)。 4、文件类型:ENVI标准栅格格式文件,BIP或者BIL储存结构。 5、中心波长:数据头文件中(或者单独的一个文本文件)包含中心波长(wavelenth)值,如果是高光谱还必须有波段宽度(FWHM),这两个参数都可以通过编辑头文件信息输入(Edit Header)。 运行错误 1.Unable to write to this file.File or directory is invalid or unavailable。 没有设置输出反射率文件名。 解决方法是单击Output Reflectance File按钮,选择反射率数据输出目录及文件名,或者直接手动输入。 2.ACC Error:convert7

海拔与大气密度和温度间的换算关系

海拔高度与大气密度和温度间的换算关系 1根据大气压力和空气密度计算公式,以及空气湿度经验公式,可得出大气压、空气密度、湿度与海拔高度的关系。 注:标准状态下大气压力为1,相对空气密度为1,绝对湿度为11g/m0 从表中可以看出,海拔高度每升高1000m,相对大气压力大约降低12%,空气密度降低约10%, 绝对湿度随海拔高度的升高而降低。 绝对湿度是指每单位容积的气体所含水分的重量,用mg/L或g/m3表示;相对湿度是指 绝对湿度与该温度饱和状态水蒸气含量之比用百分数表达。 2、空气温度与海拔高度的关系 在无热源、无遮护的情况下,空气温度随海拔高度的增高而降低。一般研究所采集的温度与海 从表中可以看出:空气温度在一般情况下,海拔高度每升高1000m,最高温度会降低5C,平 均温度也会降低5C。 大气密度(atmosphericdensity ) 单位容积的大气质量。 空气密度在标准状况( 0°C( 273k),101KPa)下为1.293g L-1 o 空气的密度大小与气温等因素有关,我们一般采用的空气密度是指在0摄氏度、绝对标准指标下,密度为1.297千克每立方米(1.297kg/m3). 大气压力随海拔高度而变化,由经验公式P=P0( 1-0.02257h ) 5.256 (kPa)式中h — 海拔高度(kn).用上面公式,算出压力,然后根据密度二P*29/(8314*T),其中P的单位是帕,T的单位是K,通常也就是273.15+t 不同温度下干空气算公式:

空气密度=1.293(实际压力/标准物理大气压)*(273/实际绝对温度),绝对温度=+273 通常情况下, 即30摄氏度时,取1.165KG/M3 -60摄氏度时,取1.65KG/M3

Flaash大气校正

Flaash大气校正(IRSP6-08.3.24) 大气校正的目的是消除大气和光照等因素对地物反射的影响,获得地物反射率和辐射率、地表温度等真实物理模型参数,用来消除大气中水蒸气、氧气、二氧化碳、甲烷和臭氧对地物反射的影响,消除大气分子和气溶胶散射的影响。FLAASH 可以处理任何高光谱数据、卫星数据和航空数据(860nm/1135nm),这些数据是由HyMAP、AVIRIS、C ASI、HYDICE、HYPERION(EO-1)AISA、HARP、DAIS、Probe-1、TRWIS-3、SINDRI、MIVIS、OrbView-4、N EMO等传感器获得的。FLAASH还可以校正垂直成像数据和侧视成像数据。 Flaash大气校正使用了MODTRAN 4+ 辐射传输模型的代码,基于像素级的校正,校正由于漫反射引起的连带效应,包含卷云和不透明云层的分类图,可调整由于人为抑止而导致的波谱平滑。 FLAASH可对Landsat, SPOT, AVHRR, ASTER, MODIS, MERIS, AATSR, IRS等多光谱、高光谱数据、航空影像及自定义格式的高光谱影像进行快速大气校正分析。能有效消除大气和光照等因素对地物反射的影响,获得地物较为准确的反射率和辐射率、地表温度等真实物理模型参数。 校正过程 点击envi——Basic Tools -Preprocessing -Calibration Utilities -FLAASH Spectral -FLAASH.或者点击envi-spectral- FLAASH 1、输入数据必须是辐射校正后的数据,对辐射校正数据转成BIL或BIP格式(Basic Tools ——Convert Data);

大气矫正详细步骤

安徽理工大学实验报告 实验名称:遥感图像大气矫正 实验目的:1、了解大气校正的原因及什么是大气矫正; 2、大气校正消除的大气影响因素及大气校正的方法; 3、大气校正各种方法的优缺点及确定应选择何种方法; 4、与大气校正相关的实验步骤需熟练掌握。 实验原理:大气校正的目的是消除大气和光照等因素对地物反射的影响,获得地物反射率和辐射率、地表温度等真实物理模型参数,用来消除大气中水蒸气、氧气、二 氧化碳、甲烷和臭氧对地物反射的影响,消除大气分子和气溶胶散射的影响。 FLAASH大气校正可对Landsat,SPOT,AVHRR,ASTER,MODIS,MERIS, AATSR,IRS等多光谱、高光谱数据、航空影像及自定义格式的高光谱影像进行 快速大气校正分析,能有效消除大气和光照等因素对地物反射的影响,获得地物 较为准确的反射率、地表温度等真实物理模型参数。 数据来源:LE71230322002142EDC00 实验过程: 第一步:波段合成 ?点击“Basic Tools”—“Layer Stacking”,这时就打开了波段合成窗口,如图:

?然后点击“Import file”,打开波段输入窗口,从中选择输入波段。如图

?点击“reorder files”来调整波段顺序,如图: ?完成波段顺序调整后,点击‘’OK”,生成一个新合成的波段,如图:

?得到图像如图:

第二步:储存数据调整 ?在主菜单中,选择“Basic Tool”—“Convert Data(BSQ、BIL、BIP)”,在”Convert File Input File”对话框中选择图像。单击OK按钮,打开”Convert File Parameters”对话框,选择Output Interleave:BIL,保存路径和文件名。如图: 第三步:输入参数FLAASH参数 ?点击“Edit Header…”—“Edit Attributes”—“Wavelengths…”,依据提供的 wavelength&fwhm.txt文件进行对wavelength进行编辑。如图:

一、气压随高度的变化

一、气压随高度的变化 一个地方的气压值经常有变化,变化的根本原因是其上空大气柱中空气质量的增多或减少。大气柱质量的增减又往往是大气柱厚度和密度改变的反映。当气柱增厚、密度增大时,则空气质量增多,气压就升高。反之,气压则减小。因而,任何地方的气压值总是随着海拔高度的增高而递减。如图4·1所示,甲气柱从地面到1000m和从1000m到 2000m,虽然都是减少同样高度的气柱,但是低层空气密度大于高层,因而低层气压降低的数值大于高层。据实测,在地面层中,高度每升100m,气压平均降低12.7hPa,在高层则小于此数值。确定空气密度大小与气压随高度变化的定量关系,一般是应用静力学方程和压高方程。

(一)静力学方程 假设大气相对于地面处于静止状态,则某一点的气压值等于该点单位面积上所承受铅直气柱的重量。见图4·2,在大气柱中截取面积为1cm2,厚度为△Z的薄气柱。设高度Z1处的气压为P1,高度Z2 处的气压为P2,空气密度为ρ,重力加速度为g。在静力平衡条件下,Z1面上的气压P1和Z2面上的气压P2间的气压差应等于这两个高度面间的薄气柱重量,即 P2-P1=-△P=-ρg(Z2-Z1)=-ρg△Z 式中负号表示随高度增高,气压降低。若△Z趋于无限小,则上式可写成 -dP=ρgdZ (4.1) 上式是气象上应用的大气静力学方程。方程说明,气压随高度递减的快慢取决于空气密度(ρ)和重力加速度(g)的变化。重力加速度(g)随高度的变化量一般很小,因而气压随高度递减的快慢主要决定于空气的密度。在密度大的气层里,气压随高递减得快,反之则递减得慢。实践证明,静力学方程虽是静止大气的理论方程,但除在有强烈对流运动的局部地区外,其误差仅有1%,因而得到广泛应用。将(4·1)式变换

相关主题