搜档网
当前位置:搜档网 › 金属基复合材料

金属基复合材料

金属基复合材料
金属基复合材料

1、复合材料的定义和分类是什么?

定义:是由两种或多种不同类型、不同性质、不同相材料,运用适当的方法,将其组合成具有整体结构、性能优异的一类新型材料体系。

分类:按用途可分为:功能复合材料和结构复合材料。结构复合材料占了绝大多数。

按基体材料类型分类可分为:聚合物基复合材料、金属基复合材料、无机非金属基复合材料(包括陶瓷基复合材料、水泥基复合材料、玻璃基复合材料)

按增强材料形态可分为:纤维增强复合材料(包括连续纤维和不连续纤维)、颗粒增强复合材料、片材增强复合材料、层叠式复合材料。

3、金属基复合材料增强体的特性及分类有哪些?

增强物是金属基复合材料的重要组成部分,具有以下特性:1)能明显提高金属基体某种所需特性:高的比强度、比模量、高导热性、耐热性、耐磨性、低热膨胀性等,以便赋予金属基体某种所需的特性和综合性能;2)具有良好的化学稳定性:在金属基复合材料制备和使用过程中其组织结构和性能不发生明显的变化和退化;3)有良好的浸润性:与金属有良好的浸润性,或通过表面处理能与金属良好浸润,基体良好复合和分布均匀。此外,增强物的成本也是应考虑的一个重要因素。分类:纤维类增强体(如:连续长纤维、短纤维)、颗粒类增强体、晶须类增强体、其它增强体(如:金属丝)。

4、金属基复合材料基体的选择原则有哪些? 1)、金属基复合材料的使用要求;2)、金属基复合材料组成的特点;3)、基体金属与增强物的相容性。

5、金属基复合材料如何设计?

复合材料设计问题要求确定增强体的几何特征(连续纤维、颗粒等)、基体材料、增强材料和增强体的微观结构以及增强体的体积分数。一般来说,复合材料及结构设计大体上可分为如下步骤:1)对环境与负载的要求:机械负载、热应力、潮湿环境 2)选择材料:基体材料、增强材料、几何形状 3)成型方法、工艺、过程优化设计 4)复合材料响应:应力场、温度场等、设计变量优化 5)损伤及破坏分析:强度准则、损伤机理、破坏过程

6、金属基复合材料制造中的关键技术问题有哪些?

1)加工温度高,在高温下易发生不利的化学反应。在加工过程中,为了确保基体的浸润性和流动性,需要采用很高的加工温度(往往接近或高于基体的熔点)。在高温下,基体与增强材料易发生界面反应,有时会发生氧化生成有害的反应产物。这些反应往往会对增强材料造成损害,形成过强结合界面。过强结合界面会使材料产生早期低应力破坏。高温下反应产物通常呈脆性,会成为复合材料整体破坏的裂纹源。因此控制复合材料的加工温度是一项关键技术。 2)增强材料与基体浸润性差是金属基复合材料制造的又一关键技术,绝大多数的金属基复合材料如:碳/铝、碳/镁、碳化硅/铝、氧化铝/铜等,基体对增强材料浸润性差,有时根本不发生润湿现象。 3)按结构设计需求,使增强材料按所需方向均匀地分布于基体中也是金属基复合材料制造中的关键技术之一。增强材料的种类较多,如短纤维、晶须、颗粒等,也有直径较粗的单丝,直径较细的纤维束等。在尺寸形态、理化性能上也有很大差异,使其均匀地、或按设计强度的需要分布比较困难。

7、金属基复合材料的成形加工技术有哪些? 1)铸造成型,按增强材料和金属液体的混合方式不同可分为搅拌铸造成型、正压铸造成型、铸造成型。2)塑性成形,包括铝基复合材料的拉伸塑性、金属基复合材料的高温压缩变形、铝基复合材料的轧制塑性、铝基复合材料的挤压塑性、金属基复合材料的蠕变性能、非连续增强金属基复合材料的超塑性(包括组织超塑性、相变超塑性、其他超塑性)。3)连接,具体又可分为:应用于MMCs 的常规连接技术(包括熔融焊接、固相连接、钎焊、胶粘),新型MMCs 连接技术(包括等离子喷涂法、快速红外连接法(RIJ )),机械切削加工(包括5.4.1 SiCw/Al复合材料的切削加工、(Al3Zr+Al2O3)P/ZL101A原位复合材料的切削加工)。

8、金属基复合材料的各种界面结合机制?

1)机械结合:基体与增强物之间纯粹靠机械连接的一种结合形式,由粗糙的增强物表面及基体的收缩产生的摩擦力完成;2)溶解和润湿结合:基体与增强物之间发生润湿,并伴随一定程度的相互溶解而产生的一种结合形式;3)反应结合:基体与增强物之间发生化学反应,在界面上形成化合物而产生的一种结合形式;4)交换反应结合:基体与增强物之间,除发生化学反应在界面上形成化合物外,还有通过扩散发生元素交换的一种结合形式;5)氧化物结合:这种结合实际上是反应结合的一种特殊情况;6)混合结合:这种结合是最重要、最普遍的结合形式之一,因为在实际的复合材料中经常同时存在几种结合形式。

9、影响金属基复合材料性能的关键因素?损伤及失效机制?

性能影响因素:基体影响、增强体影响、基体和增强体相容性的影响、工艺的影响、界面的影响。金属基复合材料的损伤与失效通常包括三种形式:增强相的断裂导致的基体塑性失效,增强相和基体之间界面的脱开导致的基体塑性失效,基体内孔洞的成核、长大与汇合导致的基体塑性失效。

10、金属基复合材料的应用及发展趋势?制约其应用的关键问题?

金属基复合材料自进入工业应用发展阶段以来,逐步拓宽了应用范围,大体有以下应用:1)在航天领域的应用:连续纤维增强金属基复合材料在航天器上的应用,铝基复合材料在导弹中的应用,铝基复合材料在航天领域的其他应用;2)在汽车工业上的应用:在内燃机方面的应用,在制动系统上的应用;3)在电子封装领域的应用。其发展趋势集中在以下方面:完善非连续增强金属基复合材料体系,重点发展高性能低成本非连续增强金属基复合材料,开展非连续增强金属基复合材料制备科学基础和制备工艺方法研究,开展非连续增强金属基复合材料热处理技术的研究,开展非连续增强金属基复合材料高温塑性变形和高速超塑性研究,开展非连续增强金属基复合材料的机械加工研究,开展非连续增强金属基复合材料在不同环境下的行为研究,开展非连续增强金属基复合材料的连接技术研究。

有许多因素与金属基复合材料(MMCs )的大规模应用相关联,原材料制备方法、二次加工、回收能力、质量控制技术等都制约着MMCs 的应用。从MMCs 在汽车和航空、航天领域中的应用来看,应用成本是主要的制约因素,而增强体的成本高是造成复合材料应用成本居高不下的主要原因。具体关键问题有:增强体的选择问题、生产数量、局部增强手段、二次加工性能、回收能力、质量控制体系。

11、什么是SHS法原位生成技术,举例说明其过程。其基本原理是:将增强相的组分原料与金属粉末混合,压坯成型,在真空或惰性气氛中预热引燃,使组分之间发生放热化学反应,放出的热量、引起未反应的邻近部分继续反应,直至全部完成。反应生成物即为增强相呈弥散分布于基体中,颗粒尺寸可达亚微米级。其典型工艺为:利用合金熔体的高温引燃铸型中的固体SHS系,通过控制反应物和生成物的位置,在铸件表面形成复合涂层,它可使SHS材料合成与致密化、铸件的成形与表面涂层的制备同时完成。潘复生等人将SHS技术和铸渗工艺相结合,制备了颗粒增强的铁基复合材料涂层。在这种工艺中,SHS过程使基体产生一定数量的增强颗粒,而随后的熔铸过程则利用高温金属液的流动,对SHS过程中易产生的孔隙进行充填,因此两个过程的综合作用下获得较为致密的复合材料。

12、什么是LSM法原位生成技术,举例说明其过程。

其基本原理是将含有Ti和B的盐类(如KBF4和K2TiF6)混合后,加入到高温的金属熔体中,在高温作用下,所加盐中的Ti和B就会被金属还原出来而在金属熔体中反应形成TiB2增强粒子,扒去不必要的的副产物,浇注冷却后即获得了原位TiB2增强的金属基复合材料。13、金属基复合材料的界面优化和控制途径有哪些?

1)对增强材料进项表面涂层处理:在增强材料组元上预先涂层以改善增强材料与基体的浸润性,同时涂层还应起到防止发生反应阻挡层的作用;2)选择金属元素:改善基体的合金

成分,造成某一元素在界面上富集形成阻挡层来控制界面反应,尽量选择避免易参与界面反应生成脆硬界面相、造成强界面结合的合金元素;3)优化制备工艺和参数,金属基复合材料的界面反应程度主要取决于制备方法和工艺参数,因此优化制备工艺和严格控制工艺参数是优化界面结构和控制界面反应发应的有效途径。

14、汽车、摩托车的刹车盘原来采用铸铁材料,查找相关资料并结合你的思考,分析其工作条件和提出其性能要求,然后指出你选用或设计何种复合材料并说明,最后提出你的制备思路。汽车、摩托车的刹车盘工作在高温、高压下,摩擦的条件下,磨损非常严重。因此刹车盘应该具有耐磨、耐高温(良好的导热性)、抗疲劳性等性能。综合其工作条件及满足其性能要求,我们可以选用颗粒增强型铝基复合材料。选用的增强体颗粒是SiCP,制备方法为真空压力浸渍法。因为颗粒增强铝,得到的材料具有耐一定的高温,耐磨,导热性好,抗疲劳性好的优点。制备思路:同下图

15、集成电路现在应用广泛,现在集成电路现在越来越来越高,功率越来越大,为保证其可靠性,查找相关资料并结合你的思考,分析其工作条件和提出其性能要求,然后指出你选用和设计何种复合材料并说明理由,最后提出你的制备思路。集成电路长时间高负荷运转,因此本身处于较高温度条件下,因此需要寻找高导热系数的材料作为分装基材,但这种材料还需要同时满足与电路硅片及基绝缘陶瓷基板的热膨胀系数(CTE)相匹配的要求,否则会因热失配形成残余应力损害电路。因此可以选用真空压力浸渍法进行了碳化硅颗粒增强铝封装器件。基体是铝,增强颗粒是碳化硅。这种铝基复合材料导热系数高,并且能与电路硅片和基绝缘陶瓷基板热膨胀系数相匹配,满足集成电路所需要的性能要求。

1.内生增强的金属基复合材料具有如下特点(第5页):

1)增强体是从金属基体中原位形核、长大的热力学稳定相,因此,增强体表面无污染,避免了与基体相容性不良的问题,且界面结合强度高。 2)通过合理选择反应元素(或化合物)的类型、成分及其反应性,可有效地控制原位生成增强体的种类、大小、分布和数量。 3)省去了增强体单独合成、处理和加入等工序,因此,其工艺简单,成本较低。 4)从液态金属基体汇总原位形成增强体的工艺,可用铸造方法制备形状复杂、尺寸较大的近净成形构件。 5)在保证材料具有较好的韧性和高温性能的同时,可较大幅度地提高材料的强度和弹性模量。

2.金属基复合材料特性(第5页):高比强度,高比模量良好的导电导热性能

热膨胀系数小,尺寸稳定性好良好的高温性能耐磨性能好

良好的疲劳性能和断裂韧度不吸潮,不老化,气密性好

1.增强体的作用(第8页)增强体是金属基复合材料的重要组成部分,它起着提高金属基体的强度、模量、耐热性、耐磨性等性能的作用。

2.选择增强体的主要考虑因素(5个)(原则)(1)力学性能:杨氏模量和塑性强度;(2)物理性能:密度和热扩散系数;(3)几何特性:形貌和尺寸;(4)物理化学相容性;(5)成本因素。

3.制造碳纤维需要经历的5个阶段:(第12页)

(1)拉丝:可用湿法、干法或者熔融状态三种任意一种; (2)牵伸:在室温以上,通常是100~300℃范围内进行; (3)稳定:通过400℃加热氧化的方法; (4)碳化:在1000~2000℃范围内进行; (5)石墨化:在2000~3000℃范围内进行。

4.溶胶-凝胶法的特点(第18页)优点:

制品的均匀度高,尤其是多组分的制品,其均匀程度可达分子或原子水平;制品纯度高,而且溶剂在处理过程中容易被除去;烧结温度比传统方法低400~500℃;制备的氧化铝纤维直径小,因而抗拉强度有较大提高;溶胶-凝胶法工艺简单,可设计性强,产品多样化,是一种很有发展前途的制备无机材料的方法。

5.晶须的分散技术有哪些?(第21页)

球磨分散、超声分散、溶胶凝胶(sol –gel)法分散以及分散介质选择、pH值的调整等。

1.分析论述金属基复合材料的可设计性(为什么复合材料具有可设计性)(1)复合材料是由增强体、基体、界面三部分组成。(2)基体和增强体材料是可以选择的,比如增强体的大小、形貌、分布等都会造成所制备复合材料性能的不同。(3)此外,选择不同的制备工艺和成型工艺也会影响复合材料性能。综上,设计者可以根据外部环境的变化与要求来设计具有不同特性与性能的复合材料。

2.复合材料的设计主要包含哪几部分?(第28页)功能设计、结构设计和工艺设计

3.选择基体的原则(第29页):金属基复合材料的使用要求金属基复合材料组成的特点基体金属与增强物的相容性

4.功能复合材料调整优值的途径(第38页):

(1)调整复合度(2)调整联接方式(3)调整对称性(4)调整尺度(5)调整周期性

5.复合效应包括(第39页):什么是乘积效应乘积效应、系统效应、诱导效应和共扼效应乘积效应:在复合材料两组分之间产生可用乘积关系表达的协同作用。

6.热膨胀系数以及表达公式(第54页)定义:表征材料受热时线度或体积变化程度。表达公式:线膨胀系数:体膨胀系数:式中,L为材料的

线度,T为材料的热力学温度,V为材料的体积。

7.提高或改善金属基复合材料的阻尼性能可以采用的方法(第59页)

(1)用高阻尼基体金属(2)用高阻尼增强物(3)设计高阻尼界面

1.金属基复合材料制备方法分类(第60页)

固态法:固态法是在基体金属处于固态情况下,与增强材料混合组成新的复合材料的方法。其中包括粉末冶金法、热压法、热等静压法、轧制法、挤压和拉拔法、爆炸焊接法等。液态法:液态法是在基体金属处于熔融状态下,与增强材料混合组成新的复合材料的方法。其中包括:真空压力浸渍法、挤压铸造法、搅拌铸造法、液态金属浸渍法、共喷沉积法、热喷涂法等。表面复合法:新型制造方法包括:原位自生成法、物理气相沉积法、化学气相沉积法、化学镀和电镀法及复合镀法等。

2.制备技术应具备的条件(60页)

(1) 使增强材料均匀地分布金属基体中,满足复合材料结构和强度要求; (2) 能使复合材料界面效应、混杂效应或复合效应充分发挥; (3) 能够充分发挥增强材料对基体金属的增强、增韧效果; (4) 设备投资少,工艺简单易行,可操作性强;便于实现批量或规模生产; (5) 能制造出接近最终产品的形状,尺寸和结构,减少或避免后加工工序.

3.金属基复合材料制造的关键性技术及解决方法(第61页)(与成形对照)

1)加工温度高,在高温下易发生不利的化学反应; 解决方法:①尽量缩短高温加工时间,使增强材料与基体界面反应降低至最低程度;②通过提高工作压力使增强材料与基体浸润速度加快;③采用扩散粘接法可有效地控制温度并缩短时间。

2)增强材料与基体浸润性差; 解决方法:①加入合金元素,优化基体组分,改善基体对增强材料的浸润性;②对增强材料进行表面处理,涂敷一层可抑制界面反应的涂层。

3)增强材料在基体中的分布。解决方法:①对增强体进行适当的表面处理,使其浸渍基体速度加快; ②加入适当的合金元素改善基体的分散性;③施加适当的压力,使其分散性增大。④施加外场(磁场,超声场等)

4.热压和热等静压技术基本原理(第62页)

热压法和热等静压法亦称扩散粘接法,是加压焊接的一种,因此有时也称扩散焊接法。它是在较长时间的高温及不大的塑性变形作用下依靠接触部位原子间的相互扩散进行的。扩散粘接过程可分为三个阶段:①粘接表面之间的最初接触,由于加热和加压使表面发生变形、移动、表面膜(通常是氧化膜)破坏;②随着时间的进行发生界面扩散和体扩散,使接触面粘接;③由于热扩散结合界面最终消失,粘接过程完成。影响扩散粘接过程的主要参数:温度、压力和一定温度及压力下维持的时间,其中温度和气氛最为重要.

5.液态制造技术的种类(举几例说明)(第65页)(给两三个空让填种类):

真空压力浸渍技术、挤压铸造技术、液态金属搅拌铸造技术、液态金属浸渍技术、共喷沉积技术、热喷涂技术。

6.液态金属搅拌铸造技术的特点、技术问题(第67页)特点:工艺简单,制造成本低廉。存在问题:一是为了提高增强效果要求加入尺寸细小的颗粒,10~30μm之间的颗粒与金属熔体的润湿性差,不易进入和均匀分散在金属熔体中,易产生团聚;二是强烈的搅拌容易造成金属熔体的氧化和大量吸入空气。因此必须采取有效的措施来改善金属熔体对颗粒的润湿性,防止金属的氧化和吸气等。注意事项及措施:(1)在金属熔体中添加合金元素. 合金元素可以降低金属熔体的表面张力。(2)颗粒表面处理. 比较简单有效的方法是将颗粒进行高温热处理,使有害物质在高温下挥发脱除。(3)复合过程的气氛控制由于液态金属氧化生成的氧化膜阻止金属与颗粒的混合和润湿,吸入的气体又会造成大量的气孔,严重影响复合材料的质量,因此要采用真空、惰性气体保护来防止金属熔体的氧化和吸气。(4)有效的机械搅拌。强烈的搅动可使液态金属以高的剪切速度流过颗粒表面,能有效改善金属与颗粒之间的润湿性,促进颗粒在液态金属中的均匀分布。

7.共喷沉积技术(第71页)

工艺过程:基体金属熔化、液态金属雾化、颗粒加入及与金属雾化流的混合、沉积和凝固等工序。

主要工艺参数有:熔融金属温度,惰性气体压力、流量、速度,颗粒加入速度、沉积底板温度等。

特点:适用面广;生产工艺简单、效率高;冷却速度快;颗粒分布均匀;复合材料中的气孔率较大

8.原位自生成技术(72页),尤其是熔体直接反应法(第80页)(方程式问题、熔体直接反应法的特点、工艺过程、问题)熔体直接反应法:

实例:熔体原位反应合成(Al3Zr+Al2O3)铝基复合材料反应式:3Zr(CO3)2+13Al(l)→6CO2↑+3Al3Zr+2Al2O3

特点:(1)该工艺以现有的铝合金熔炼工艺为基础,在熔体中直接形成增强颗粒,并且可以直接铸造成各种形状的复合材料铸件; (2)增强体颗粒大小和分布易于控制,并且其数量可在较大范围内调整; (3)该工艺可同时获得高强度、高韧性的复合材料。

制备工艺过程(基本原理):将含有增强相颗粒形成元素的固体颗粒或粉末在某一温度下加到熔融的铝合金表面,然后搅拌使反应充分进行,从而制备内生颗粒增强的复合材料。

2.铸造成形的技术问题以及如何解决(第86页)(1)增强颗粒与金属熔体的润湿性解决方法:①增强颗粒表面涂层②金属基体中加入某些合金元素③用某些盐对增强颗粒进行

预处理④对增强颗粒进行超声清洗或预热处理(2)增强颗粒分布均匀性解决方法:调整提高金属熔体粘度,减小增强颗粒的粒径。通常金属熔体的黏度是通过添加合金元素来提高的,但粘度增大会导致复合材料存在气体及夹杂物不易排出的问题。(3)增强颗粒与基体金属的界面结构解决方法:选择合适的增强颗粒与金属基体组合,是保证界面结合良好的重要途径。(4)PRMMC 的凝固过程研究复合材料凝固过程中颗粒被生长界面推移的距离,对分析颗粒分布的均匀性更为合理。

3.铝基复合材料的挤压塑性(92页)

影响挤压成型的的主要因素:润滑剂、挤压温度、挤压比、挤压速度、SiC颗粒的体积分数、热挤压对颗粒增强铝基复合材料组织和性能的影响。

4.超塑性的定义以及超塑性变形过程中组织变化的特点(95页)超塑性又分为组织超塑性、相变超塑性和其他超塑性。(1)组织超塑性:又称细晶超塑性或恒温超塑性。指材料晶粒通过细化、超细化和等轴化,在变形期间保持稳定,在一定变形温度区间(T>0.5Tm)和一定变形速度条件下(应变速率在10-4~10-1之间)所呈现出的超塑性。

(2)相变超塑性:又称为转变超塑性或变态超塑性。是材料在变动频繁的温度环境下受应力作用时经多次循环相变或同素异形转变而得到的很大的变形量。

(3)其他超塑性:其他超塑性主要包括短暂超塑性、相变诱发超塑性以及消除应力退火过程中,应力作用下积蓄在材料内能量释放获得的超塑性。超塑性变形过程中组织变化特点:(1)晶粒形状与尺寸的变化(2)晶粒的滑动、转动和换位(3)晶粒折皱带(4)位错(5)空洞

5.道具的磨损机理(第110页)、刀具模型(112页、114页)

道具磨损机理:①磨粒磨损;②粘结磨损;③扩散磨损;④氧化磨损。道具模型:

1.关于界面的不稳定性因素的物理不稳定性和化学不稳定分别指什么?(135页)金属基复合材料的界面不稳定因素有两类:物理不稳定因素和化学不稳定因素。物理不稳定因素:这种不稳定因素主要表现为基体与增强物之间在使用的高温条件下发生溶解以及溶解与再析出现象。化学不稳定因素:化学不稳定因素主要是复合材料在制造、加工和使用过程中发生的界面化学作用,它包括界面反应、交换反应和暂稳态界面的变化几种现象。

1.金属基复合材料性能的影响因素有哪些?(以TiB2/Al复合材料为例) 1)TiB2的体积分数、颗粒大小、分布、颗粒形貌等;Al基体的成分配比 2)制备工艺:内生还是外加 3)成形工艺:塑性成形等 4)后序处理:挤压锻等 5)服役条件等

1.长纤维增强金属基复合材料的失效机制是什么?(第205页)

累积失效机制、非累积失效机制(接力失效机制、脆性粘性失效机制、最弱环节机制)、混合失效机制

2.原位拉伸的特点、作用;裂纹的产生、长大和扩展(会用文字描述或者作图)补充:强化机制怎么没有考~~

1.金属基复合材料在哪些领域应用(2~3个例子)(207页) 1)金属基复合材料在航天领域的应用(连续纤维增强金属基复合材料在航天器上的应用;铝基复合材料在导弹中的应用)2)金属基复合材料在航空领域的应用 3)在汽车工业上的应用(在内燃机方面的应用;在制动系统上的应用;有传动系统上的应用) 4)在电子封装领域的应用

2.金属基复合材料的再生与回收的方法与目的(第218页)

颗粒增强Al基复合材料再生的工艺方法,主要采用重熔后重新复合的方法,控制重熔时的温度、保温时间等工艺参数,以及采取有效的措施控制颗粒与基体的界面反应和凝固过程。同时采用二次加工和热处理的方法,使其性能不降低,从而达到PRMMCs的再生利用。3.Al4C3相的特点、强度以及其他物理化学性能;SiO2呢?(第219页)

Al4C3析出于增强体与基体的界面上,使界面结合强度降低,降低了熔体的流动性,增大了

复合材料的环境敏感性,同时, Al4C3的含量对复合材料的刚度、强度及其失效行为具有重要影响;随着该反应的进行颗粒本身被熔融铝腐蚀而破坏,不仅强低增强体的强度,而且使复合材料的性能降低。

4.再生对金属基复合材料性能的影响(220页)对于颗粒增强金属基复合材料,其重熔前后的性能与基体合金的成分有关,某些合金成分重熔以后不发生变化,其性能亦然,而有的合金重熔几次后性能有所下降。金属基复合材料各品种中只有非连续增强类(即颗粒、短纤维和晶须增强)才具备再生的可能。金属基体若是低熔点金属(如铅)更有利于再生。

5.铝基复合材料重熔再生过程中影响力学性能的因素(221页)

合金元素的选择、增强体的选择、温度和时间的选择

6.金属基复合材料的回收方法有哪些?(221页)

主要回收方法有熔融盐处理法、旋转炉法、电磁分离法、化学溶解分离法等。

7.金属基复合材料应用的限制因素(222页)增强体的成本、制备方法、生产数量、局部增强手段、二次加工性能、回收能力、质量控制体系等。

8.金属基复合材料的发展趋势(与一二三章结合)(225页) 1)完善非连续增强金属基复合材料体系 2)重点发展高性能低成本非连续增强金属基复合材料 3)开展非连续增强金属基复合材料制备科学基础和制备工艺方法研究 4)开展非连续增强金属基复合材料热处理技术的研究 5)开展非连续增强金属基复合材料高温塑性变形和高速超塑性研究 6)开展非连续增强金属基复合材料的机械加工研究 7)开展非连续增强金属基复合材料在不同环境下的行为研究 8)开展非连续增强金属基复合材料的连接技术研究

四、叙述金属基复合材料基体选择的原则。

⑴金属基复合材料构件的使用性能要求是选择金属基体材料最重要的依据。

⑵由于增强体的性质和增强机理不同,在基体材料的选择上有很大差别。

⑶选择金属基体时要充分考虑基体与增强体的相容性和物理性能匹配。尽量避免增强体与基体合金之间有界面反应,界面润湿性良好。

3.分析论述金属基复合材料的可设计性(为什么复合材料具有可设计性)(1)复合材料是由增强体、基体、界面三部分组成。(2)基体和增强体材料是可以选择的,比如增强体的大小、形貌、分布等都会造成所制备复合材料性能的不同。同时,金属基体的组分比例也将影响复合材料表现出的宏观性能。(3)界面的设计(4)此外,选择不同的制备工艺和成型工艺也会影响复合材料性能。(5)设计者可以根据外部环境的变化与要求来设计具有不同特性与性能的复合材料,以满足工程实际对高性能复合材料及结构的要求。(6)复合材料在弹性模量、线膨胀系数和材料强度等方面具有明显的各向异性性质,可以根据不同方向上对刚度和强度等性能的特殊要求来设计复合材料及结构。(7)复合材料的不均匀也是其显著特点。复合材料的几何非线性及物理非线性也是要特殊考虑的。(8)复合材料具有不同层次上的宏观、细观和微观结构,因此可以采用力学理论和数值分析手段对其进行设计。(9)复合材料设计涉及多个变量的优化及多层次设计的选择。复合材料设计问题要求确定增强体的几何特征、基体材料和增强体的微观结构,以及增强体的体积分数。复合材料的设计主要包含功能设计、结构设计和工艺设计

复合材料设计的基本步骤

选择基体的原则(第29页):金属基复合材料的使用要求金属基复合材料组成的特点基体金属与增强物的相容性

4.功能复合材料调整优值的途径(第38页):

(1)调整复合度(2)调整联接方式(3)调整对称性(4)调整尺度(5)调整周期性 .复合效应包括(第39页):什么是乘积效应乘积效应、系统效应、诱导效应和共扼效应

9. 热轧机的工作原理

热轧系统基本流程为:铝锭→熔炼炉→静置炉→过滤→铸嘴→轧机→中间机组→卷取机

热轧区:液态金属到达铸造区时,由于轧辊带走部分热量。使得金属液体冷却,形成液固两相共存区域,到达变形区时,全部形成固体金属。

10.液态金属搅拌铸造技术的特点、技术问题(第67页)特点:工艺简单,制造成本低廉。存在问题:一是为了提高增强效果要求加入尺寸细小的颗粒,10~30μm之间的颗粒与金属熔体的润湿性差,不易进入和均匀分散在金属熔体中,易产生团聚;二是强烈的搅拌容易造成金属熔体的氧化和大量吸入空气。因此必须采取有效的措施来改善金属熔体对颗粒的润湿性,防止金属的氧化和吸气等。注意事项及措施:

(1)在金属熔体中添加合金元素. 合金元素可以降低金属熔体的表面张力。

(2)颗粒表面处理. 比较简单有效的方法是将颗粒进行高温热处理,使有害物质在高温

下挥发脱除。

(3)复合过程的气氛控制由于液态金属氧化生成的氧化膜阻止金属与颗粒的混合和润湿,吸入的气体又会造成大量的气孔,严重影响复合材料的质量,因此要采用真空、惰性气体保护来防止金属熔体的氧化和吸气。

(4)有效的机械搅拌。强烈的搅动可使液态金属以高的剪切速度流过颗粒表面,能有效改善金属与颗粒之间的润湿性,促进颗粒在液态金属中的均匀分布。

11.共喷沉积技术(第71页)

工艺过程:基体金属熔化、液态金属雾化、颗粒加入及与金属雾化流的混合、沉积和凝固等工序。

主要工艺参数有:熔融金属温度,惰性气体压力、流量、速度,颗粒加入速度、沉积底板温度等。

特点:适用面广;生产工艺简单、效率高;冷却速度快;颗粒分布均匀;复合材料中的气孔率较大

颗粒加入方式: a) 通过插管直接将增强颗粒吹到雾化锥中。 b) 粒子由顶部倒流管注入的方式 c) 颗粒强制喷入金属熔滴雾化锥内

冷喷涂工艺的原理是:每种金属均有其特定的、与温度相关的临界颗粒速度,当颗粒运动超过这一速度时即会焊接于镀件之上。热喷涂工艺原理 :热喷涂技术是把某种固体材料加热到熔融或半熔融状态并高速喷射到基体表面上形成具有希望性能的膜层,从而达到对基体表面改质目的的表面处理技术。

12.原位自生成技术(72页),尤其是熔体直接反应法(第80页)(方程式问题、熔体直接反应法的特点、工艺过程、问题)熔体直接反应法:

实例:熔体原位反应合成(Al3Zr+Al2O3)铝基复合材料

操作步骤:实验前将Zr(CO3)2粉末,放入电烘箱中升温至250℃,保温3小时,充分去除水分,然后冷却、研磨,经过70目标准筛筛分,得到粒度<0.25mm的粉末添加料。

在电阻炉中将A356合金熔化,加热至起始反应温度850℃,精炼,静置10min后分别、分批用钟罩将上述粉末添加料压入A356熔液,并用石墨棒搅拌,使之与Al液发生反应,同时用便携式温度测试仪连续测定反应过程熔体温度的变化,反应过程中分阶段用石英玻璃管提取熔体进行水淬试验。待反应结束后用熔剂精炼、除气、除渣,并静置10~20min后,待温度降至720℃左右扒渣后浇入铜模中,制得铸态内生颗粒增强A356基复合材料。反应方程式:Zr(CO3)2→ZrO2+2CO2↑

3ZrO2+4Al(l)→3[Zr]+2Al2O3 [Zr]+3Al(l)→Al3Zr

3Zr(CO3)2+13Al(l)→6CO2↑+3Al3Zr+2Al2O3

特点:(1)该工艺以现有的铝合金熔炼工艺为基础,在熔体中直接形成增强颗粒,并且可以直接铸造成各种形状的复合材料铸件; (2)增强体颗粒大小和分布易于控制,并且其数量可在较大范围内调整; (3)该工艺可同时获得高强度、高韧性的复合材料。但目前要用该方法制备的复合材料主要集中在Al-Ti-B系,但该体系存在反应温度高,生成相形态不易控制和基体变质“毒化”等问题,而对其它体系涉及甚少。只能生产颗粒体积分数较小的材料,若体积分数过大,则粘度过大,扩散不开,反应不完全。

制备工艺过程(基本原理):将含有增强相颗粒形成元素的固体颗粒或粉末在某一温度下加到熔融的铝合金表面,然后搅拌使反应充分进行,从而制备内生颗粒增强的复合材料。第五章

15.关于界面的不稳定性因素的物理不稳定性和化学不稳定分别指什么?(135页)金属基复合材料的界面不稳定因素有两类:物理不稳定因素和化学不稳定因素。物理不稳定因素:这种不稳定因素主要表现为基体与增强物之间在使用的高温条件下发生溶解以及溶解与再析出现象。化学不稳定因素:化学不稳定因素主要是复合材料在制造、加工和使用过程中发生的界面化学作用,它包括界面反应、交换反应和暂稳态界面的变化几种现象。

16.颗粒增强金属基复合材料的强化机制(1)Orowan强化

Orowan强化是位错通过距离很近的细微硬粒子时受到粒子的阻碍而引起的强化作用。(2)细晶强化机制主要为:增强体表面的非均质行核机制。当颗粒尺寸较小时,颗粒会钉扎大角晶界,当颗粒尺寸较大,颗粒会促进再结晶行核。颗粒增强铝基复合材料的晶粒尺寸随增强相尺寸增加而增加,随增强相体积分数增加而减少,从而在基体中产生强化。(3)固溶强化

当外来原子固溶于基体中,它一方面能阻碍位错运动,另一方面由于外来原子与基体金属原子具有不同的尺寸,将产生晶格畸变,产生应变场,并且与位错发生交互作用。(4)位错强化在颗粒增强金属基复合材料中,由于增强体与基体间的热膨胀系数的巨大差异,将导致复合材料内产生很大的热应力。这种热应力引发的塑性变形,使复合材料中的位错密度显著增加。

3.Al4C3相的特点、强度以及其他物理化学性能;SiO2呢?(第219页)反应式:4[Al]+3SiC=Al4C3+3Si

Al4C3析出于增强体与基体的界面上,使界面结合强度降低,降低了熔体的流动性,增大了复合材料的环境敏感性,同时, Al4C3的含量对复合材料的刚度、强度及其失效行为具有重要影响;随着该反应的进行颗粒本身被熔融铝腐蚀而破坏,不仅强低增强体的强度,而且使复合材料的性能降低。

17粉末冶金

粉末冶金是制取金属或用金属粉末(或金属粉末与非金属粉末的混合物)作为原料,经过成形和烧结,制造金属材料、复合材料以及各种类型制品的工艺技术。工艺流程:原料粉末的制备、压制成坯块、坯块的烧结、产品的后序处理

金属基复合材料的特性有哪些?请详细说明。

答:金属基复合材料的性能取决于所选的金属和或合金基体和增强体的特性、含量、分布等。通过优化组合可以获得既具有金属特性,又具有高比强度、高比模量、耐热、耐磨等综合性能。综合归纳金属基复合材料具有以下性能特点:

1. 高比强度、高比模量由于金属基体中加入了适量的高强度、高模量、低密度的纤维、晶须、颗粒等增强体,明显提高复合材料的比强度和比模量,特别是高性能连续纤维—硼纤维、碳(石墨)纤维、碳化硅纤维等增强物,具有很高的强度和模量。

2. 导热、导电性能金属基复合材料中金属基体占有很高的体积分数,一般在60%以上,因此仍然保持金属所特有的良好的导热和导电性。在金属基复合材料中采用高导热性的增强体可以进一步提高金属基复合材料的热导率比纯金属基体还高。

3. 热膨胀系数小,尺寸稳定性好金属基复合材料中所用的增强物碳纤维、碳化硅纤维、晶须、颗粒、硼纤维等既具有很小的热膨胀系数,又有很高的模量,特别是超高模量的石墨纤维具有负的热膨胀系数。加入相当含量的增强体不仅大幅度提高材料的强度和模量,也使其热膨胀系数明显下降并可通过调整增强体的含量获得不同的热膨胀系数,以满足各种工况要求。

4. 良好的高温性能由于金属基体的高温性能比聚合物高很多,增强纤维、晶须、颗粒在高温下又都具有高的高温强度和模量,因此金属基复合材料具有比基体金属更高的高温性能,特别是连续纤维增强金属基复合材料。

5. 耐磨性好金属基复合材料,尤其是陶瓷纤维、晶须、颗粒增强的金属基复合材料具有很好的耐磨性。

6. 良好的疲劳性能和断裂韧度金属基复合材料的疲劳性能和断裂韧度取决于纤维等增强体与金属基体的界面结合状态,增强体在金属体重的分布以及金属、增强体本身的特性,特别是界面状态。最佳的界面状态既可以有效地传递载荷,又能阻止裂纹的扩展,提高材料的断裂韧度。

7. 不吸潮,不老化,气密性好与聚合物相比,金属性质稳定、组织致密,不存在老化、分解、吸潮等问题,也不会发生性能的自然退化,具有明显的优越性。

总之,金属基复合材料具有高比强度、高比模量等以上所述的优异的综合性能,使金属基复合材料在航天、航空、电子、汽车等领域均具有广泛的应用前景。

金属基复合材料基体的选择原则有哪些?请详细说明。

答:金属与合金的品种繁多,目前用作金属基复合材料的基体金属有铝及铝合金、镁合金、钛合金、镍合金、铜与铜合金、锌合金、铅、钛铝、镍铝金属间化合物等。基体材料的正确选择,对于能否充分组合和发挥基体金属和增强物性能,获得预期的优异综合性能以满足使用要求十分重要。

1. 金属基复合材料的使用要求金属基复合材料构件的使用性能要求是选择金属基体材料最重要的依据。在宇航、航空、先进武器、电子、汽车等技术领域和不同的工作条件下,对复合材料的性能要求很大,需选择不同基体的复合材料。在航天、航空技术中高比强度、高比模量、尺寸稳定性是最重要的性能要求。此外,高性能发动机还要有优良的耐高温性能。电子工业集成电路则需要高导热、低热膨胀的金属基复合材料作为散热元件和基板。

2. 金属基复合材料组成的特点金属基复合材料有连续增强和非连续增强金属基复合材料,由于增强体的性质和增强机制不同,在基体材料的选择原则上有很大差别。

对于连续纤维增强金属基复合材料,纤维是主要承载物体。纤维本身具有很高的强度和模量,金属基体的强度和模量远低于纤维的性能,因此在连续纤维增强金属基复合材料中基体主要作用是以发挥增强纤维的性能为主,基体本身应与纤维有良好的相容性和塑性,基体不需要很高的强度。对于非连续增强金属基复合材料,基体的强度对非连续增强金属基复合材料有绝对的影响。因此要获得高性能的金属基复合材料必须选用高强度的铝合金为基体。

总之针对不同的增强体系,要充分分析和考虑增强体的特点来正确选择基体合金。

3. 基体金属与增强体的相容性金属基复合材料制备过程中金属基体与增强体在高温复合过程中会发生不同程度的界面反应,基体金属中往往含有不同烈性的合金元素,这些合金元素与增强体的反应程度不同,反应后生成的反应产物也不同,在选用基体合金成分时尽可能选择既有利于金属与增强体浸润复合,又有利于形成合适稳定的界面的合金元素。如碳纤维增强铝基复合材料中,在纯铝中加入少量的Ti、Zr等元素可以明显的改善复合材料的界面结构和性能,提高复合材料的性能。铁镍元素是促进碳石墨化的元素,用铁镍作为基体,碳纤维作为增强体是不可取的。

金属基复合材料需要在高温下成型,制备过程中,处于高温热力学非平衡状态下的纤维与金属之间很容易发生化学反应,在界面形成反应层。界面反应层大多是脆性的,当反应层达到一定厚度后,材料受力时将会因界面层的断裂伸长小而产生裂纹,并向周围纤维扩展,容易引起纤维断裂,导致复合材料整体破坏。在选择基体时要充分考虑与增强体的相容性,特别是化学相容性,并尽可能在复合材料成型过程中抑制界面反应。

请陈述金属基复合材料增强体的特性及分类。

答:金属基复合材料的增强体的基本特性如下:

1.增强体应具有能明显提高金属基体某种所需特性的性能,如高的比强度、比模量、高导热性、耐热性、耐磨性、低热膨胀等,以便赋予金属基体所需的某种特性和综合性能。2.增强体应具有良好的化学稳定性。在金属基复合材料制备和使用过程中其组织结构和性能不发生明显的变化和退化,与金属基体有良好的化学相容性,不发生严重的界面反应。3.与金属好的浸润性,或通过表面处理能与金属基体良好浸润、复合和分布均匀。此外,增强体的成本也是应考虑的一个重要因素。

金属基复合材料的增强体分类如下:

1.纤维类增强体。包括连续长纤维和短纤维两种。连续长纤维的长度均超过数百米,纤维性能有方向性,一般沿轴向有很高的强度和弹性模量。短纤维一般由几毫米到几十毫米,排列无方向性,通常采用生产成本低、生产效率高的喷射法制造。

2.颗粒增强体,包括外加和内生两种,一般是陶瓷和石墨等非金属颗粒。

3.晶须类增强体。根据化学成分不同,晶须可分为陶瓷晶须和金属晶须两类。陶瓷晶须包括氧化物和非氧化物晶须,金属晶须包括Cu、Cr、Fe、Ni晶须。

4.其他增强体。用于金属基复合材料的高强度、高模量金属丝增强体,主要有铁丝、高强度钢丝、不锈钢丝和钨丝等。

金属基复合材料制造中的关键技术问题有哪些?请详细说明。

答:由于金属所固有的物理和化学特性,其加工性能不如树脂好,在制造金属基复合材料中需要解决一些关键技术问题,主要包括:

1.在高温下易发生不利的化学反应在加工过程中,为了确保基体的浸润性和流动性,需要采用很高的加工温度(往往接近或高于基体的熔点)。在高温下,基体与增强材料易发生界面反应,有时会发生氧化而生成有害的反应产物。这些反应往往会对增强材料造成损害,形成过强结合界面,而过强结合界面会使材料产生早期低应力破坏。同时,高温下反应的产物通常呈脆性,会成为复合材料整体破坏的裂纹源。因此,控制复合材料的加工温度是一项关键技术。

解决的方法是:尽量缩短高温加工时间,使增强材料与基体界面反应降至最低温度;通过提高工作压力使增强材料与基体浸润速度加快;采用扩散粘接法可有效地控制温度并缩短时间。

2.增强材料与基体润湿性差绝大多数的金属基复合材料如:碳/铝、碳/镁、碳化硅/铝、氧化铝/铜等,基体对增强材料润湿性差,有时根本不会发生润湿现象。

解决的方法是:加入合金元素,优化基体组分,改善基体对增强材料的润湿性,常用的合金元素有钛、锆、铌、铈等;对增强材料进行表面处理,涂覆一层可抑制界面反应的涂层,可有效改善其润湿性。表面涂层涂覆方法很多,如化学气相沉积、物理气相沉积、溶胶-凝胶和电镀或化学镀等。

3.如何使增强材料按所需方向均匀的分布于基体中增强材料的种类较多,如短纤维、晶须、颗粒等,还有直径较粗的单丝、直径较细的纤维束等,同时在尺寸、形态、理化性能上也有很大差异,使其均匀地、或按设计强度的需要分布比较困难。

解决的方法是:对增强材料进行适当的表面处理,使其浸渍基体速度加快;加入适当的合金元素改善基体的分散性;施加适当的压力,使基体分散性增大。

金属基复合材料的二次成形加工技术有哪些?请分别陈述。

答:为了制成实用的金属基复合材料构件,需对金属基复合材料进行二次成型加工和切削加工。由于增强物的加入给金属基复合材料的二次加工带来很大的困难,如陶瓷纤维、晶须、颗粒增强金属基复合材料,增强物硬度高、耐磨,使这种复合材料的切削加工十分困难。不向类型的金同基复合材料构件的加工要求和难度有很大差别,对连续纤维增强金届基复合材料构件一般在复合过程中完成成型过程,辅以少量的切削加工和连接即成构件而短纤维、晶须、颗粒增强金属基复合材料则可采用铸造、挤压、超塑成型、焊接、切削加工等二次加工制成实用的金属基复合材料构件。

常用的生产有色金属铸件的铸造方法可用来制造颗粒增强铝基、镁基复合材料铸件,但由于增强颗粒的加入改变了金属熔体的粘度、流动性等性质,高温时还可能发生增强颗粒与基体金属之间的化学反应、颗粒的沉降等问题,因此在选择工艺方法和参数时必须考虑金属基复合成料的特点,对现有铸造工艺做必要的改进。铸造法是—种经济、可批量生产复杂零件的有效方法,并可借鉴现有成熟的铸造工艺,是生产颗耽增强金属基复合材料零件的主要方法。

对于非连续增强金属基复合材料利用挤压、模锻、超塑成型等工艺方法制造型材和零件也是一种工业规模生产金属基复合材料零件的有效方法,这种方法生产出来的零件组织致密,性能好。现有的挤压、锻造等工艺和设备均可借鉴用于制造短纤维、晶须、颗粒增强金属基复合材料,其中颗粒增强铝基、镁基复合材料用得更多。出于金属基体中含有一定体积分数的增强物(晶须、颗粒),大大降低了金属的塑性,变形阻力大,成型困难,坚硬的增强颗粒将磨损模具,因此对常规的工艺需进行相应的改进,如挤压、锻造温度、挤压速度、挤压力等。

金属基复合材料由于连续纤维、短纤维、品须、颗粒等增强物的存在,给切削加工带来很大困难。连续纤维增强金属基复合材料具有明显的各向异性,沿纤维方向材料的强度高,而垂直纤维方向性能低,纤维与基体的结合强度低,因此在加工过程中容易造成分层脱粘现象,破坏了材料的连续性,用常规的刀具和方法难以加工。而晶须、颗粒增强金属基复合材料由于增强物均很坚硬,本身就是磨料,在加工过程中对刀具的磨损十分严重。金属基复合材料加工困难,加工成本高也是金属基复合材料发展的障碍之一。

为了制造金属基复合材料构件,焊接工艺常需采用,如自行车架、汽车传动铀、航天飞行器中的构件等。增强物的加入影响焊接熔池的粘度和流动性,增强物与基体金属的化学反应又限制了焊接速度,给金属基复合材料焊接造成较大的困难。金属基复合材料的焊接工艺

过程研究工作尚届初期阶段,许多技术困难正在研究解决中,这也是金属基复合材料研究应用中的一个重要问题。

请介绍金属基复合材料的各种界面结合机制。

答:界面的结合力有三种:机械结合力、物理结合力和化学结合力。

机械结合力就是摩擦力,它决定于增强体的比表面和表面粗糙度以及基体的收缩,比便面和表面粗糙度越大,基体收缩越大、摩擦力也越大。机械结合力存在于所有复合材料中。物理结合力包括范德华力和氢键,它存在于所有复合材料中,但在聚合物基体材料中占有很重要的地位。化学结合力就是化学键,它在金属基符合材料中有重要作用。

由上面三种结合力,金属基符合材料中界面结合形式可以分为下面六种:

1.机械结合

这是基体与增强物之间纯粹靠机械连接的一种结合形式,它由粗糙的增强物表面及基体的收缩产生摩擦力完成。具有这类界面结合的复合材料的力学性能,不宜作结构材料使用。例如,以机械结合的纤维增强复合材料除承受不大的纵向载荷外,不能承受其他类型的载荷。事实上由于材料总有范德华力存在,纯粹的机械结合很难实现。

2.溶解和润湿结合

溶解和润湿结合是基体与增强物之间发生润湿(润湿角<90℃),并伴随一定程度的相互溶解(也可能基体和增强物之一溶解于另一种中)而产生的一种结合形式。这种结合是靠原子范围内电子的相互作用产生的,因此要求复合材料各组元的原子彼此接近到几个原子直径的范围内才能实现。增强体表面吸附的气体和污染物都会妨碍这种结合的形成,所以必须进行处理,除去吸附气体和污染物。

3.反应结合

这是基体与增强物之间发生化学反应,在界面上形成化合物而产生的一种结合形式。其中典型的代表为Al-C和Ti-B系。但在Al-C和Ti-B两个体系中,如果工艺参数控制不当,没有采取相应的措施,以致在界面上生成过量的脆性反应产物,材料强度降低。像这类不能提供有使用价值的复合材料的结合,不能称之为复合材料。

4.交换反应结合

交换反应结合是基体(含两种以上元素)与增强物之间,除发生化学反应在界面上形成化合物外,还有通过扩散发生元素交换的一种结合形式。钛合金(例如Ti-8Al-1V-1Mo)-硼系是这种结合的典型代表。钛与硼的作用分为两个阶段:

Ti(Al)+2B→(Ti,Al)B2

(Ti,Al)B2+Ti→TiB2+Ti(Al)

即首先形成(Ti,Al)B2,然后因为Ti与B的亲和力大于Al与B的亲和力,(Ti,Al)B2中的Al被Ti置换出来,再扩散到钛合金中。因此,界面附近的基体中有铝的富集,这构成了额外的扩散阻挡层,使反应速度常数降低。

5.氧化物结合

这种结合实际上是结合的一种特殊情况。例如Ni-Al2O3复合材料的结合本来是机械结合,但在氧化性气氛中Ni氧化后,与Al2O3作用形成NiO?Al2O3,变成了反应结合。又如铝-硼、铝-碳化硅复合材料,由于铝表面上的氧化物膜与硼纤维上的硼的氧化物,或碳化硅纤维上的硅氧化物间发生相互作用,形成氧化物结合。正是这种氧化物膜提供了复合材料的表观稳定性。

6.混合结合

这种结合是最重要、最普遍的结合形式之一,因为在实际的复合材料中经常同时存在几种结合形式。例如在Al-B系中如果制造温度较低,氧化膜不破坏,则形成机械结合;如果温度较高(高于基体的熔点),氧化膜部分破坏,形成反应结合,就变成混合结合了。

金属材料教学设计

金属材料教学设计 本文从网络收集而来,上传到平台为了帮到更多的人,如果您需要使用本文档,请点击下载按钮下载本文档(有偿下载),另外祝您生活愉快,工作顺利,万事如意! 【教学设计思路】 根据课程标准要求,关于金属材料的学习,在认知领域的教学属于知道和了解水平,且学生已有关于金属和合金的不少生活常识,学习难度不大。为维护课标的严肃性,教学忌拔高知识难度,但在教学中,对于过程与方法,情感态度与价值观可考虑加强一些。使学生在学习过程中去深刻感知金属的物理性质及合金的巨大使用价值。从方法和情感层面获得加强和熏陶,不失为一种教学创新。这样做对知识学习而言,可以变枯燥为生动;对过程与方法而言,可以获得实验探究、调查研究、归纳分析等训练;还可透过关于中国冶金发展史的学习对爱国情感的熏陶等等。同时,本课题教材联系学生生活常识较多。为扩大学习成果,在课前、课中及课后力求安排一些学生活动,以激发化学学习的持久兴趣及升华科学情结。因此,本课题的教学,以指导学生探究学习、发展学生认知能力为出发点及归宿而设计。 【教学目标】

知识与技能: 1、通过日常生活中广泛使用金属材料等具体事例,认识金属材料与人类生活和社会发展的密切关系。 2、了解常见金属的物理性质,知道物质的性质在很大程度上决定了物质的用途,但同时还需考虑如价格、资源以及废料是否易于回收等其他因素。 3、认识在金属中加热熔合某些金属或非金属可以制得合金,知道生铁和钢等重要合金,以及合金比纯金属具有更广泛的用途。 过程与方法: 1、引导学生自主实验探究金属的物理性质(重点探究导电、导热性等)。 2、通过讨论探究物质的性质与用途的关系,培养学生综合分析问题的能力。 3、通过查阅合金的资料,培养学生独立获取知识的能力。 情感态度与价值观: 1、通过实验探究活动让学生体验成功的喜悦,逐步养成在学习过程中敢于质疑敢于探究的良好品质。 2、通过调查考察认识化学科学的发展在开发新材料提高人类生存质量方面的重大意义和贡献。 【教学重点】

金属的化学性质教学设计

金属的化学性质教案(第一课时) 教学目标 1.知道镁、铁、铜等常见金属与氧气的反应。 2.初步认识常见金属与盐酸,硫酸的置换反应。 3.通过金属与氧气、酸反应的实验探究,初步了解金属的活动性。 学时重点 金属与氧气、酸的反应。 学时难点 用实验探究金属的活动性。 教学活动 【导入】创设情境导入新课 [提问]前边咱们讲了金属的一些物理性质,谁能告诉我合金与纯金属相比较有什么优良性能? 【讲述】随着生活水平的提高,黄金及黄金饰品越来越多的成为寻常百姓的装饰品。随之而来的假黄金诈骗案也越来越多, 提示:黄铜为铜锌合金,外观和黄金相似 【讨论】人们为何会上当?你能想出一个鉴别真假黄金的办法吗?【回答】通过测密度;硬度不同,相互刻画等 【设问】那么, 能不能使用化学方法鉴别呢?要想解决这个问题,我们要先来学习金属的化学性质。 【过渡】金属有哪些化学性质呢? 活动2【活动】温故知新归纳总结评论 【提问】请同学们回忆有哪些金属能和氧气的反应? 【回答】金属铁和镁

【投影】镁在空气中点燃;铁在纯氧气中燃烧的图片。 【提问】镁在空气中加热即可发生反应,而铁必须在纯氧中才能燃烧,从反应条件上比较,可以得出什么样的结论? 【回答】镁比铁活泼。 教师出示表面氧化的镁片,再用砂纸打磨一半后,引导学生对比观察 镁铝在常温下就能和氧气反应,铁铜在常温下几乎不和氧气反应,但在高温条件下却能和氧气反应,我们得出金属的第一个化学性质 【板书】一多数金属能和氧气反应(但反应的剧烈程度不一样) 【投影】燃烧金戒指的图片:俗话说“真金不怕火炼”,其中蕴含着怎样的化学原理? 教师启发引导 【回答】金在高温时也不与氧气反应 【解释】金的化学性质不活泼,金难与氧气发生反应 【提问】学到这同学们有没有鉴别真假黄金的方法了? 【回答】用火烧 【提问】你能描述具体的操作方法吗? 【讲述】很好,取少量金属块在火焰上加热,若金属表面发黑则原试样为黄铜,若无变化,则为真金。 【分析与讨论】1.比较镁铝铁铜金分别与氧气反应时的难易程度有 何不同呢? 2.你能得出什么结论? 【学生讨论交流】 【教师总结】不同的金属活泼程度(即金属活动性)不一样。越活泼的金属越容易与别的物质起反应,且反应现象越剧烈。 【总结】我们知道了镁、铝等在常温下就能与氧气反应,铁、铜等在常温下几乎不与氧气反应,但在高温时能与氧气反应。金即使在高温时也不与氧气反应,从而我们可以得出这样的结论: 镁铝、铁铜、金的活动性依次减弱 【投影】联系生活,铁制品易生锈,铝制品却不易生锈

无机非金属材料工厂工艺设计课程设计任务书

《无机非金属材料工厂工艺设计》 课程设计任务书 无机非金属材料教研室 张俊才 2010年9月26日

无机非金属07《无机非金属材料工厂工艺设计》课程设计题目序号姓名题目类别设计题目 1 王东岩 水 泥 厂 设 计年产普通硅酸盐水泥120万t水泥厂设计 2 王国鑫年产普通硅酸盐水泥100万t水泥厂设计 3 王铁俊年产普通硅酸盐水泥80万t水泥厂设计 4 冯晓雪年产普通硅酸盐水泥60万t水泥厂设计 5 刘文龙年产矿渣硅酸盐水泥150万t水泥厂设计 6 刘伟超年产矿渣硅酸盐水泥120万t水泥厂设计 7 孙海龙年产矿渣硅酸盐水泥100万t水泥厂设计 8 孙铁人年产矿渣硅酸盐水泥80万t水泥厂设计 9 张春宇年产矿渣硅酸盐水泥60万t水泥厂设计 10 徐刚年产普通和矿渣硅酸盐水泥120万t水泥厂设计 11 韩倩年产普通和矿渣硅酸盐水泥100万t水泥厂设计 1 刘立俊年产普通和矿渣硅酸盐水泥80万t水泥厂设计 2 王来全年产普通和矿渣硅酸盐水泥60万t水泥厂设计 3 王金辉年产Ⅰ型硅酸盐水泥120万t水泥厂设计 4 张宏达年产Ⅱ型硅酸盐水泥120万t水泥厂设计 5 张雷年产Ⅰ型硅酸盐水泥100万t水泥厂设计 6 张慧年产Ⅱ型硅酸盐水泥100万t水泥厂设计 7 杨子年产Ⅰ型硅酸盐水泥80万t水泥厂设计 8 苏鑫年产Ⅱ型硅酸盐水泥80万t水泥厂设计 9 崔东丹年产Ⅰ型硅酸盐水泥60万t水泥厂设计 10 韩宝才年产Ⅱ型硅酸盐水泥60万t水泥厂设计 11 韩彬年产Ⅰ型硅酸盐水泥50万t水泥厂设计 12 韩晶年产Ⅱ型硅酸盐水泥50万t水泥厂设计 13 鞠宗华年产Ⅰ型硅酸盐水泥40万t水泥厂设计 1 张宝存 陶 瓷 厂 设 计年产120万㎡玻化砖辊道窑陶瓷厂设计 2 王洋年产110万㎡玻化砖辊道窑陶瓷厂设计 3 孙越年产100万㎡玻化砖辊道窑陶瓷厂设计 4 李智明年产90万㎡玻化砖辊道窑陶瓷厂设计 5 沈小杰年产80万㎡玻化砖辊道窑陶瓷厂设计 6 欧阳雁南年产70万㎡玻化砖辊道窑陶瓷厂设计 7 姜昊年产60万㎡玻化砖辊道窑陶瓷厂设计

金属基复合材料综述

金属基复合材料综述 专业: 学号: 姓名: 时间:

金属基复合材料综述 摘要:新材料的研究、发展与应用一直是当代高新技术的重要内容之一。其中复合材料,特别是金属基复合材料在新材料技术领域中占有重要的地位。金属基复合材料对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用,因此倍受人们重视。本文概述了金属基复合材料的发展历史及研究现状,对金属基复合材料的分类、性能、应用、制备方法、等进行了综述,提出了金属基复合材料研究中存在的问题,探讨了金属基复合材料的发展趋势。 关键词:金属基复合材料;分类;性能;应用;制备;发展趋势 Abstract: The research development and application of new composites are one of the important matters in modern high science and technology. This paper summarizes the met al matrix composites and the development history of the present situation and the classific ation of the metal matrix composites, performance, application and preparation methods, w as reviewed, and put forward the metal matrix composites the problems existing in the res earch, discusses the metal matrix composites trend of development. Keywords: Metal matrix composites; Classification; Performance; Application; Preparation; Development trend. 1.引言 复合材料是继天然材料,加工材料和合成材料之后发展起来的新一代材料。按通常的说法,复合材料是指两种或两种以上不同性质的单一材料,通过不同的复合方法所得到的宏观多相材料。随着现代科学技术的迅猛发展,对材料性能的要求日益提高。常希望复合材料即具有良好的综合性能,又具有某些特殊性能。金属基复合材料是近年来迅速发展起来的高性能材料之一,对促进世界各国军用和民用领域的高科技现代化,起到了至关重要的作用。相信随着科学技术的不断发展,新的制造方法的出现,高性能增强物价格的不断降低,金属基复合材料在各方面将有越来越广阔的应用前景。

人教版化学九下《金属的化学性质》word教学设计

人教版化学九下《金属的化学性质》word教学设 计 教学目标 1、知识与技能 (1)明白铁、铝、铜等常见金属与氧气的反应。 (2)初步认识常见金属与盐酸、硫酸的置换反应,以及与盐溶液的置换反应,能用置换反应说明一些与日常生活有关的化学问题。 (3)能用金属活动性顺序对有关的置换反应进行简单地判定,并能利用金属活动性顺序说明一些与日常生活有关的化学问题。 2、过程与方法 (1)认识科学探究的差不多过程,能进行初步的探究活动。 (2)课堂中,教师组织、引导和点拔,学生通过实验探究和讨论交流,认识金属的化学性质及其活动性顺序。 (3)初步学会运用观看、实验等方法猎取信息,并能用图表和化学语言表达有关的信息。 (4)初步学会运用比较、归纳、概括等方法对猎取的信息进行加工,使学生逐步形成良好学习适应和方法。 3、情感态度与价值观 (1)通过对五彩纷呈的化学现象的观看,激发学生的好奇心和求知欲,进展学习化学的爱好。 (2)培养学生的合作意识以及勤于摸索、勇于创新实践、严谨求实的科学精神。 (3)了解化学与日常生活和生产的紧密关系,提高学生解决实际问题的能力。 (4)在有味的实验与老师的点拨中轻松把握化学知识,体验到学习的欢乐。 教学重点 金属活动性顺序。 教学难点 对金属活动性顺序的初步探究及利用金属活动性顺序对置换反应的判定。 教学方法 问题情形→实验探究→得出结论→练习巩固→联系实际。 教学预备 教师:制作多媒体课件 学生用具:镁条、铝片、铜片、酒精灯、坩埚钳、火柴、砂纸、稀HCl、稀H2SO4、硝酸银溶液、硫酸铜溶液、硫酸铝溶液、铝丝、铜丝、镁条、锌粒、铜片、铁钉、砂纸、火柴、试管(若干)。 课时安排2课时 教学过程 [引言]要想更好地使用金属,就需了解金属的各种性质。上节课我们学习了金属的物理性质,本节课我们来学习金属的化学性质。 [问]大伙儿观看桌面上的镁条、铝片、铜片分别是什么颜色的? [学生观看]

材料制备工艺课程设计

课程设计说明书PZT压电陶瓷蜂鸣器片 学院名称:材料科学与工程学院 专业班级:无机非金属材料1001班 学号: 3100703002 学生姓名:程小伟 指导教师:杨娟、周明 2014年1月

目录 前言 (3) 1压电蜂鸣片简介 (4) 1.1蜂鸣器的作用 (4) 1.2蜂鸣器的结构原理 (4) 2 陶瓷工艺设计的目的和意义 (5) 3设计任务及说明 (5) 4计算 (6) 4.1以1mol为基准对Pb0.95Sr0.05(Zr0.52Ti0.48)O3 进行计算 (6) 4.2以100g为基准对Pb0.95Sr0.05(Zr0.52Ti0.48)O3+0.5wt%Cr2O3+0.3wt%Fe2O3进行计算 (7) 5 PZT陶瓷制备的工艺流程 (7) 5.1称量与混合 (8) 5.2预烧 (8) 5.3粉体制备 (9) 5.4造粒 (10) 5.5成型 (10) 5.6排塑 (11) 5.7烧成 (12) 5.8极化 (15) 5.9焊接 (16) 5.10测试 (17) 6 工艺参数 (18) 6.1预烧工艺参数 (18) 6.2烧结工艺参数 (18) 6.3极化工艺参数 (18) 7主要设备选型 (19) 7.1球磨机 (19) 7.2 喷雾造粒干燥机 (19) 7.3滚压成型机 (20) 7.4 冲片机 (20) 7.5微波烧结装置 (20) 8总结 (21) 参考文献 (22)

前言 1880年,居里兄弟首先在单晶上发现压电效应。在1940年前,人们知道有两类铁电体:罗息盐和磷酸二氢钾盐。在1940年后,发现了BaTiO3是一种铁电体,具有强的压电效应,这是压电材料发展的一个飞跃。在1950年后,发现了压电PZT体系,具有非常强和稳定的压电效应,这是具有重大实际意义的进展。在1970年后,添加不同添加剂的二元系PZT陶瓷具有优良的性能,已经用来制造滤波器、换能器、变压器等。随着电子工业的发展,对压电材料与器件的要求就越来越高了,二元系PZT已经满足不了使用要求,于是研究和开发性能更加优越的三元、四元甚至五元压电材料。 由于PZT压电陶瓷具有优异的压电、介电和光电等电学性能,广泛地应用于电子、航天等高技术领域,用于制备传感器、换能器、存储器等电子元器件,是一种很有发展前途的功能材料。由此,国内外研究学者对PZT压电陶瓷进行了大量的研究,包括PZT压电陶瓷元器件,以PZT为基料的三元、四元压电陶瓷,PZT铁电陶瓷薄膜,PZT纤维等铁电陶瓷材料。由于PZT基压电陶瓷的制备工艺简单,原材料容易获得,价格低廉,并可方便地制成各种复杂的形状,在工程技术方面的应用非常广泛,甚至超过了压电晶体。 PZT系列压电陶瓷的研究已有即几十年的历史,取得了重大进展。其未来的热点趋势主要有:①高转换效率的PZT压电陶瓷。高能量转换效率的PZT压电陶瓷正在兴起,日本富士通研究实验室研制出了由铌酸镍铅、钛酸铅和锆酸铅组成的铅基钙钛矿型压电陶瓷,其烧结温度在1000℃以下,能量转换效率指数 K 33为80.8 %。②低温烧结PZT陶瓷材料的新技术和新工艺。开发低温烧结PZT

金属基复合材料

14.3.2金属-非金属复合材料 14.3.2.1金属基复合材料的性能特征 金属基复合材料与一般金属相比,具有耐高温、高比强度、高的比弹性模量、小的热膨胀系数和良好的抗磨损性能。与聚合物基复合材料相比,不仅剪切强度高、对缺口不敏感,而且物理和化学性能更稳定,如不吸湿、不放气、不老化、抗原子氧侵蚀、抗核、抗电磁脉冲、抗阻尼,膨胀系数低、导电和导热性好。由于上述特点,使金属基复合材料更适合空间环境使用,是理想的航天器材料,在航空器上也有潜在的应用前景。 14.3.2.2金属基复合材料的研究与应用 表14.101 和表14.102简要概述了各类金属基复合材料在航空航天领域的应用概况。金属基复合材料(MMC)的研究始于20世纪60年代,美国和俄罗斯在航空航天用金属基复合材料的研究应用方面处于领先的地位。20世纪70年代,美国把B/Al复合材料应用到航天飞机轨道上,该轨道器的主骨架是采用89种243根重150g的B/Al管材制成,比原设计的铝合金主骨架减重145g。美国还用B/Al复合材料制造了J-79和F-100发动机的风扇和压气机叶片,制造了F-106、F-111飞机和卫星构件,并通过了实验,其减重效果达20%~66%。苏联的B/AL复合材料与80年代达到实用阶段,研制了多种带有接头的管材和其他型材,并成功地制造出能安装三颗卫星的支架。由于B纤维的成本高,因此自70年代中期美国和苏联又先后开展C/AL复合材料的研究,在解决了碳纤维与铝之间不湿润的问题以后,C/AL复合材料得到应用。美国用C/AL制造的卫星用波导管具有良好的刚性和极低的热膨胀系数,比C/环氧复合材料轻30%.。随着SiC纤维和Al2O3纤维的出现,连续纤维增强的金属基复合材料得到进一步发展,其中研究和应用较多的是SiC/AL 复合材料。连续纤维增强金属基复合材料的制造工艺复杂、成本高,因此美国又率先研究发展晶须增强的金属基复合材料,主要用于对刚度和精度要求较高的航天构件上。美国海军武器中心研制的SiC p/Al复合材料导弹翼面已经进行了发射试验,卫星的抛物面天线、太空望远镜的光学系统支架也采用了SiC p/Al复合材料,其刚度比铝大70%,显著提高了构件的精度。 MMC对航天器的轻质化、小型化和高性能化正在发挥越来越重要的作用。 MMC在航空器上的应用也有很大潜力,英国研制了SCS-6/Ti的发动机叶片,大幅度提高了其承载能力和刚度,优化了气动载荷下的翼型。用SCS-6/Ti代替耐热钢制造的RB211发动机的压气机静子,可使该构件减重40%;采用SCS-6/Ti代替镍基高温合金制作压气机叶环结构转子,可是该部件减重80%;SiC f/Ti 也可望代替不锈钢在F-22试验型飞机制作活塞杆。 表14.101 B/Al复合材料的应用 表14.102 其他MMC的应用背景

金属基复合材料界面

华东理工大学2012-2013学年第二学期 《金属基复合材料》课程论文2013.6班级复材101 学号10103638 温乐斐开课学院材料学院任课教师麒成绩

浅谈金属基复合材料界面特点、形成原理及控制方法 摘要 金属基复合材料都要在基体合金熔点附近的高温下制备,在制备过程中纤维、晶须、颗粒等增强体与基体将发生程度不同的相互作用和界面反应,形成各种结构的界面。界面结构和性能对金属基复合材料的性能起着决定性作用。深入研究和掌握界面反应和界面影响性能的规律,有效地控制界面的结构和性能,是获得高性能金属基复合材料的关键。本文简单讨论一下金属基复合材料的界面反应、界面对性能的影响以及控制界面反应和优化界面结构的有效途径等问题。 前言 由高性能纤维、晶须、颗粒与金属组成的金属基复合材料具有高比强度、高比模量、低热膨胀、耐热耐磨、导电导热等优异的综合性能有广阔的应用前景,是一类正在发展的重要高技术新材料。 随着金属基复合材料要求的使用性能和制备技术的发展,界面问题仍然是金属基复合材料研究发展中的重要研究方向。特别是界面精细结构及性质、界面优化设计、界面反应的控制以及界面对性能的影响规律等,尚需结合材料类型、使用性能要求深入研究。金属基复合材料的基体一般是金属、合金和金属间化合物,其既含有不同化学性质的组成元素和不同的相,同时又具有较高的熔化温度。因此,此种复合材料的制备需在接近或超过金属基体熔点的高温下进行。金属基体与增强体在高温复合时易发生不同程度的界面反应;金属基体在冷凝、凝固、热处理过程中还会发生元素偏聚、扩散、固溶、相变等。这些均使金属基复合材料界面区的结构十分复杂,界面区的结构及组成明显不同于基体和增强体,其受到金属基体成分、增强体类型、复合上艺参数等多种因素的影

金属的化学性质(教学设计与反思)

第八章金属材料 课题2 金属的化学性质 教学目标: 知道铁、铝、铜等常见金属与氧气的反应,初步认识常见金属与盐酸、硫酸的置换反应以及与化合物的溶液的反应。 通过对金属活动性顺序的学习,能对有关的置换反应进行简单的判断,并能用金属活动性顺序解释一些与日常生活有关的化学问题。 通过活动与探究,培养学生细致观察实验现象的良好行为习惯、从细微实验现象差别分析得出实验结论的能力,形成科学、严谨的治学精神。 重点和难点: 金属与氧气反应;金属活动性顺序;置换反应的判断 实验准备: 教师:镁条、锌片、铁片、铜片、稀盐酸、稀硫酸、铝丝、铁丝、硫酸铜溶液、硝酸银溶液和多媒体课件。 学生:镊子、试管夹、试管架、试管、砂纸、火柴、酒精灯、小木条。 课时安排: 2课时

复习巩固: 你知道了金属的哪些化学性质,并写出有关的化学方程式。 ①能与O2反应:4Al+3O2=2Al2O3。 ②能与稀盐酸(或稀硫酸)反应: Mg+2HCl=MgCl2+H2↑Fe+H2SO4=FeSO4+H2↑ 质疑激趣(小故事) 奇怪的天平:趣味化学小组的张同学,从实验室借来一台天平,在天平两端秤盘里各放两只大小和重量都相等的烧杯,再在两只烧杯中分别倒入等质量的硫酸铜溶液和硫酸镁溶液,使天平保持平衡。接着他又拿两个质量相等的铝球,并同时将这两个铝球分别放入两个烧杯之中,这时天平两端继续保持平衡。过一会儿,将铝球取出,天平慢慢地倾斜了。是天平出了毛病,还是其他什么原因? 问题:为什么把铝球放入两烧杯中天平不能平衡?导致天平不平衡的原因你能否猜一猜? 学生猜想:可能是铝与其中的一种溶液发生了反应,而另一种没有。 学生验证猜想: ①教师展示:铝丝、硫酸铜溶液、硫酸镁溶液。 问题:同学们刚才吃“自助餐”的时候有什么发现?

16Mn钢(热处理课程设计)

目录 第一章金属热处理课程设计简介 (1) 一、课程设计的任务与性质 (1) 二、课程设计的目的 (1) 三、设计内容与基本要求 (1) 四、设计步骤 (2) 第二章材料16Mn基本参数 (2) 一、16Mn材料简介 (2) 二、16Mn材料的性能及用途 (3) 三、16Mn材料化学成分 (3) 四、16Mn物理力学性能 (3) 第三章热处理工艺设计 (4) 一、16Mn热处理概述 (4) 二、16Mn热处理 (4) 三、基本参数确定 (9) 第四章 16Mn钢热处理分析 (10) 一、16Mn钢热处理后组织分析 (10) 二、16Mn钢热处理后材料性能检测 (13) 第五章设计与心得体会 (17) 参考文献 (19)

第一章金属热处理课程设计简介 一、课程设计的任务与性质 《金属热处理原理与工艺》课程是一门重要的专业课程,金属材料热处理工艺设计及实验操作是一种重要的教学环节,通过金属材料热处理工艺金相组织分析、性能检测等实验,可以培养学生掌握热处理实验方法、原理及相关设备,运用热处理的基本原理和一般规律对实验结果进行分析讨论,有助于强化学生解决问题、分析问题的能力。 二、课程设计的目的 1、课程设计属于《金属热处理原理与工艺》课程的延续,通过设计实践,进一步学习掌握金属热处理工艺设计的一般规律和方法。 2、培养综合运用金属学、材料性能学、金属工艺学、金属材料热处理及结构工艺等相关知识,进行工程设计的能力。 3.培养使用手册、图册、有关资料及设计标准规范的能力。 4.提高技术总结及编制技术文件的能力。 5.是金属材料工程专业毕业设计教学环节实施的技术准备。 三、设计内容与基本要求 设计内容:完成合金结构钢(16Mn)的热处理工艺设计,包括工艺方法、路线、参数的确定,热处理设备及操作,金相组织分析,材料性能检测等。 基本要求: 1.课程设计必须独立的进行,每人必须完成不同的某一种钢材热处理工艺设计,能够较清楚地表达所采用热处理工艺的基本原理和一般规律。 2.合理地确定工艺方法、路线、参数,合理选择热处理设备并正确操作。 3.正确利用TTT、CCT图等设计工具,认真进行方案分析。 4.正确运用现代材料性能检测手段,进行金相组织分析和材料性能检测等。 5.课程设计说明书力求用工程术语,文字通顺简练,字迹工整,图表清晰。 四、设计步骤 方案确定: 1.根据零件服役条件合理选择材料及提出技术要求。

九年级化学《金属的化学性质》教学设计·优选.

《金属的化学性质》教学设计 课题:金属的化学性质 课型:新课 教学目标: 1.知识与技能 ①知道金属单质能与氧气反应生成金属氧化物,能写出有关化学方程式;。知道金属与氧气反应的难易和剧烈程度能够反映金属的活泼程度。 ②知道某些金属能够与盐酸(或硫酸)反应产生氢气,能写出有关化学方程式;知道可通过比较不同金属与盐酸(或硫酸)反应的剧烈程度来粗略比较金属的活动性 ③知道某些金属能够与一些金属化合物的溶液反应生成新的金属单质,能写出有关化学方程式;知道活动性强的金属可以通过这类反应生成活动性弱的金属。 ④熟记常见金属的活动性顺序,了解常见金属的活动性顺序的应用,并能举例。2.过程与方法 ①学会运用控制实验条件探究金属活动性顺序。 ②学习通过对大量实验事实的观察、分析,通过归纳、概括等方法获取科学 结论的科学方法。 3.情感、态度与价值观 ①通过学习学生让学生感受科学探究对知识建构的重要意义。 ②通过学生亲自做探究实验,激发学生学习化学的浓厚兴趣。 ③通过对实验的探究让学生学会与别人交流、合作,增强协作精神,培养学 生严谨、认真、实事求是的科学态度。 教学流程图:

教学设计: 【引入】不同的金属物理性质会有差异,那么化学性质呢?回忆以前学习过的有金属参加的化学反应有哪些呢?它们反应的现象是什么?化学方程式怎样写? (引导学生回忆以下的反应) 1、铁、铜、镁与氧气的反应 2、锌与稀硫酸的反应 3、铁与硫酸铜溶液的反应 (写出以上反应的化学方程式) 【讲解】观察上述化学反应可知:通常金属能与氧气反应,能和酸反应,还能与金属的化合物如硫酸铜溶液反应。现在我们先来探究金属与氧气反应的规律。【展示】1、展示铁、铜、铝、金等制品的图片。2、演示实验:分别把铜条、金戒指加热,观察现象、思考两者有没有发生化学反应? 【提问】为什么擦亮了的铝饭盒蒸几次饭后又会变暗?是谁给它穿上了“外衣”呢? 【交流与讨论】得出:镁、铝常温下容易跟空气中的氧气反应。 【小结】金属与氧气的反应 1、常温反应:镁、铝 2、高温反应:铁、铜 3、高温也不能反应:金(真金不怕火炼) 【讲述】比较金属的化学性质活泼程度,我们用金属活动性。 【讨论】铝的化学性质很活泼,但为什么铝制品不易生锈? 【思考】如何判断金属的活动性强弱呢?比如Fe和Cu的活动性如何比较呢?【探究活动】镁、锌、铁、铜与稀盐酸、稀硫酸反应。 【提示】按操作规范进行实验,认真观察现象。控制相似的实验条件,是对比实验获得可靠结论的重要保证。 【巡视、指导实验】A组:镁、锌、铁、铜分别与稀盐酸反应。 B组:镁、锌、铁、铜分别与稀硫酸反应 【探究活动】 A组:金属与稀盐酸的反应

金属学课程设计——45号钢车床主轴热处理工艺设计

金属学课程设计——45号钢车床主轴热处理工艺设计《金属学与热处理》课程设计 45号钢车床主轴热处理工艺设计 学生姓名:X X X 学生学号:xxxxxxxxxxxxx 院(系):xxxxxxxx学院年级专业:xxxxxxxxxxxxxxx 指导教师:xxxxxxxxxxx 二〇一一年十二月 课程设计任务书 题目 45号钢车床主轴热处理工艺设计 1、课程设计的目的 使学生了解、设计45号钢车床主轴热处理生产工艺,主要目的:(1)培养学生 综合运用所学的热处理课程的知识去解决工程问题的能力,并使其所学知识得到巩固和发展。(2)学习热处理工艺设计的一般方法、热处理设备选用和装夹具设计等。(3)进行热处理设计的基本技能训练,如计算、工艺图绘制和学习使用设计资料、手册、标准和规范。 2、课程设计的内容和要求(包括原始数据、技术要求、工作要求等) (1)零件使用工况及对零件性能的要求分析; (2)45号钢材料成分特点及性能特点分析; (3)车床主轴热处理工艺参数; (4)表面淬火方式确定; (5)设计说明书撰写,不低于3000字。 3、主要参考文献

[1] 崔明择主编.工程材料及其热处理[M]. 北京:机械工业出版社,2009.7. [2]崔忠析主编.金属学与热处理(第二版)[M]. 北京:机械工业出版社,2007.5 [3]王建安. 金属学与热处理[M]. 北京:机械工业出版社,1980 [4] 中国机械工程学会.热处理手册[M]. 北京:机械工业出版社,2006.7 [5] 范逸明.简明金属热处理工手册[M].北京:国防工业出版社,2006.3 4、课程设计工作进度计划 第18周:对给定题目进行认真分析,查阅相关文献资料,做好原始记录。 第19周:撰写课程设计说明书,并进行修改、完善,提交设计说明书。指导教师 日期年月日 (签字) 教研室意见: 年月日学生(签字): 接受任务时间: 年月日 课程设计(论文)指导教师成绩评定表题目名称 45号钢车床主轴热处理工艺设计 分得评分项目评价内涵值分 遵守各项纪律,工作刻苦努力,具有良好的科学01 学习态度 6 工作态度。 工作 表现通过实验、试验、查阅文献、深入生产实践等渠02 科学实践、调研 7 道获取与课程设计有关的材料。 20% 03 课题工作量 7 按期圆满完成规定的任务,工作量饱满。 能运用所学知识和技能去发现与解决实际问题, 04 综合运用知识的能力 10 能正确处理实验数据,能对课题进行理论分析, 得出有价值的结论。

高中化学4.2.2《第2节 铝 金属材料 》教案(鲁科版必修1)

第2节铝金属材料 第二课时 【板书】(3)铝的重要化合物——氧化铝和氢氧化铝的两性 【提出问题】为什么在进行铝和氢氧化钠溶液反应的过程中,要事先用砂纸擦去其表面的物质?这种物质是什么? ①Al2O3:既能溶于强酸又能溶于强碱溶液。 Al2O3+6H+ ===2Al3+ +3H2O (迁移到相关的化学方程式1~2例) Al2O3+2OH—+3H2O ===2[Al(OH)4]—(迁移到相关的化学方程式1~2例) 【提出问题】为什么不用铝制品盛放酸梅汤和碱水等物质? ②Al(OH)3: 制备:铝盐和氨水反应(实验探索)。w.w.w.k.s.5.u.c.o.m 如Al2(SO4)3 +6NH3·H2O ===2Al(OH)3 ↓+3(NH4)2SO4 AlCl3 +3 NH3·H2O ===2Al(OH)3 ↓+3 NH4 lCl 【提出问题】为什么不用铝盐和强碱溶液反应制备氢氧化铝? 性质(实验探索——在两份氢氧化铝中分别加入盐酸和氢氧化钠溶液) Al(OH)3+3H+ ===2Al3+ +3H2O Al(OH)3+OH—===[Al(OH)4]— (迁移到相关的化学方程式1~2例) 2.铝合金及其制品 (1)合金:两种或两种以上的金属(或金属和非金属)熔合而成的具有金属特性的物质。(2)铝及其合金的用途: 【点评】构建知识网络图是学生进行概括和总结的一种方法。教师要善于引导学生学会自我构建知识网络,自我总结,在总结中不断反思,不断提高。 作业:P1221~5题。 【板书】二.金属与金属材料 黑色金属材料:铁、铬、锰以及它们的合金构成的材料。 有色金属材料:除黑色金属(铁、铬、锰)以外的其他金属材料。 重要的黑色金属材料——钢铁 (1)钢铁的制备 铁矿石→生铁→普通钢→特种钢。 如:3CO +Fe2O3 ===2 Fe +3CO2↑ (2)钢铁的用途:

初三化学金属的化学性质教案设计

初三化学金属的化学性质教案设计【学习目标】 1 掌握Mg、Al、Fe、Cu等常见金属与氧气的反应 2 掌握常见金属与酸的反应 3 理解金属的活动性顺序的意义并会运用 4 概括置换反应的定义 一、探秘金属与氧气的反应 1、战争提问题 2、实验探性质 化学反应方程式 金属与氧气反应的难易和剧烈程度的影响因素?

3、微观寻本质 4、生活谈应用 二、探秘金属与酸的反应 1、战争提问题 2、实验探性质 【探究任务】探究未知金属X、铁、铜与酸反应的难易及剧烈程度 【实验用品】X粉、铁粉、铜粉、X丝、铁丝、铜丝、5%稀盐酸、 10%稀盐酸、10%稀硫酸、试管、砂纸。 【小组合作】(1)区分三种金属丝 (2)设计实验方案 问题思考:①考虑哪些影响因素?控制哪些因素?②取用哪些药品?③如何观察现象? (3)分组实验 (4)交流共享 实验结论(1)能与稀盐酸、稀硫酸反应的金属是__________,不能与稀盐酸、稀硫酸反应的金属是__________ (2)能反应的金属反应剧烈程度依次是___>____> (3)三种金属与酸反应难易、剧烈程度顺序是___>____>___ 3、微观析本质

小组活动:用模型演示铁和稀盐酸反应的微观过程 4、生活谈应用 5、探究金属与酸反应的基本反应类型 小组活动: (1)下列反应是哪些基本反应类型?分类的依据是什么? 2Al 2O 3= 4Al+3O 2↑ 4Al+3O 2=2Al 2O 3 Na 2CO 3+Ca(OH)2=CaCO 3↓+2NaOH (2)金属与酸反应中,反应物、生成物有什么特点? (3)置换反应的定义 三、金属活动性顺序 小组活动:X>Fe>Cu Al 、H 元素排在哪个位置? 小资料:(1)铝和酸反应,产生气泡的速率比X 快。 (2)氢可以被位于它前面的金属从稀酸里置换出来,而它后面的金属不能置换出氢。 (3)推测未知金属可能是什么金属? (4)金属活动性顺序的意义 四、课堂总结 五、当堂反馈 1、废旧计算机的某些部件中含有Zn 、Fe 、Cu 、Ag 、Pt (铂)、Au (金)等金属,经物理方法初步处理后,与足量的稀盐酸充分反应,然后过滤。剩余固体中不应有的金属是( ) A 、Cu 、Ag B 、Pt 、Cu C 、Fe 、Zn D 、Ag 、Au 通电 点燃

金属材料工程课程设计

目录 1板带钢的基本简介 (2) 2制定生产工艺流程与工艺制度 (3) 2.1制定生产工艺 (3) 2.2制定工艺制度 (3) 2.3坯料的选择 (3) 2.4轧辊辊身长度的确定 (3) 2.5轧辊辊径的确定 (3) 3基本参数的计算 (4) 3.1轧制道次的计算 (4) 3.2产品尺寸确定 (4) 3.3最大压下量的计算 (4) 3.4压下量的分配 (5) 4轧制速度和轧制时间的确定 (5) 5轧制温度的计算 (16) 6轧制压力的计算 (17)

1板带钢的基本简介 随着中国经济建设的快速发展,各行业对板带钢的需求量逐年递增,板带钢已成为最主要的钢材产品,约占钢材总量的45%,在汽车、造船、桥梁、建筑军工、食品和家用电器等工业上得到了广泛应用。另外,板带钢还是生产焊接钢管、焊接型钢及冷弯型钢的原料。 当前,在工业比较发达的几个主要产钢国,板带钢在轧制钢材中所占比重达60%~70%,甚至更高,板带钢的生产技术水平在轧材中所占的比例,可以作为衡量一个国家轧钢生产发展水平的标志,也可以作为衡量一个国家国民经济水平高低的指标之一。随着国民经济的迅速发展,对板带钢的品种规格、尺寸精度及性能都提出了更为严格的要求。 板带钢按厚度一般可分为厚板(包括中板、厚板及特厚板)、薄板和极薄带材三大类。我国一般称厚度在4.0mm以上的为中厚板(其中4~20mm的为中板,20~60mm的为厚板,60mm以上的为特厚板),4.0~0.2的为薄板,0.2mm以下的为极薄带材或箔材。目前,箔材最薄可达0.001mm,而特厚板可厚至500mm以上,最宽可达5000mm。热轧板带钢的厚度和宽度范围见下表。 分类厚度范围/mm 宽度范围/mm 特厚板>60 1200~5000 厚板20~60 600~3000 中板 4.0~20 600~3000 薄板0.2~4.0 500~2500 带材<6 20~2500 本设计的产品为L 30的中板设计 ?2200 mm mm?

关于金属基复合材料的一些概述

关于金属基复合材料(MMC)的一些概述 一、MMC的种类及其微观组织的一般特征 金属基复合材料(MMC),这一术语包括了很广的成分与结构范围。他们的共同点是有连续的金属基体。按照增强体的形状是连续性纤维,短纤维或者是颗粒状,复合材料的显微组织可分为下图所示的几类。更进一步的分类可基于纤维的直径和取向分布。在仔细考察特定的体系之前,认识与最终产品的微观组织结构有关的问题是有益的。下表简要的总结了复合材料的主要显微组织特征及其对性能的潜在影响。虽然有些组织参数可事先设定,但另外一些参数却难以控制。尽管如此,在设计与制造某特定的工作之前,一个重要的步骤是,事先认定一些简单的纤维组织结构目标及获得这些目标的方法。 按增强材料形态分类,可分为纤维增强金属基复合材料、颗粒和晶须增强金属基复合材料。若按金属基体分类,可分为铝基复合材料,钛基复合材料、镁基复合材料、高温合金复合材料和金属间化合物复合材料。倘若按增强体类型进行分类,则可分为单片、晶须(或者纤维)和颗粒,如下图。

二、金属基体的概述及其制备工艺 金属基体应用最多的为铝及铝合金,钛以及镁。铝的基本特点:熔点660℃,密度2.7g/cm3,其具有面心立方结构.所以其塑性优异,适合各种形式的冷、热加工。导电、导热性能好,约为铜的60%左右,同时化学活性高,在大气中铝表面与氧形成一层薄而又致密的氧化膜以防止铝继续氧化,但是强度低。钛的特点:熔点1678℃,密度4.51g/cm3。其重量轻、比强度高。纯钛的强度可通过冷作硬化和合金化而得到显著的提高.如50%的冷变形可使强度提高60%,适当合金化和热处理,则抗拉强度可达1200—1400MPa,含有氢、碳、氧、铁和镁等杂质元素的工业纯钛抗拉强度可提高到700MPa,并仍能保持良好的塑性和韧性。高温性能优良。合金化后的耐热性显著提高,可以作为高温结构材料使用,如航空发动机的压气机转子叶片等,长期使用最高温度已达540℃。在大气和海水中有优异的耐蚀性.在硫酸、盐酸、硝酸相氢氧化纳等介质中都很稳定。但是导电与导热性差.导热系数只有铜的1/l 7和铝的l/10,比电阻为铜的25倍。镁的特点:密度1.74g/cm3。由于其密度低,比强度、比刚度较高,镁具有密排六方结构,室温和低温塑性较低,但高温塑性好可进行各类形式的热变形加工。减震性能好,能承受较大的冲击振动负荷。 根据各种制备方法的基本特点,金属基复合材料的制备工艺分为四大类,即固态法;液态法;喷涂与喷射沉积法;原位复合法。 1、固态法。在一定温度的压力下,把新鲜清洁表面的相同或不相同的金届,通过表面原子的互相扩散而连接在一起。关键步骤为纤维的排布,复合材料的叠台和真空封装以及热压。其采用有机粘接剂。将增强纤维的单丝或多丝的条带分别浸溃加热后易挥发的有机粘接剂,按复合材料的设计要求的间距排列在全属基体的薄板或箔上,形成预制件。采用带槽的薄板或箔片,将纤维排布在其中。采用等离子喷涂。即先在金属基体箔片上用排布好一层纤维,然后再喷涂一层与基体金属相同的金属。纤维表面经化学或物理处理,在基体金属熔池中充分地浸渍形成金属基复合丝。为了防止复合材料在热压中的氧化,叠合好的复合材料坯科应真空封装于金属模套中。为了便于复合材料在热压后与金属模套的分离,在金属模套的内壁徐上云母粉类的涂料以利分离,注意不能涂与金属基体发生反应的涂料。在真空或保护气氛下直接放入热压模或平板进行热压合热压工艺参数主要为:热压温度、压力和时间。扩散结合的优缺点:工艺相对复杂,纤维排布、叠合以及封装手工操作多,成本高。能按照复合材料的铺层要求排布。在热压时可通过控制工艺参数的办法来控制界面反应。粉末冶金。适用于连续、长纤维增强.也可用于短纤维、颗粒或晶须增强的金属基复合材料。长纤维增强:将纤维和金属粉末按比例混合,密封在容器中,然后进行热等静压。粉末冶金的优点:工艺过程温度低,可以控制界面反应。增强材料(纤维、颗粒或晶须)与基体金属粉末可以任何比例混合,纤维含量最高可达75%,颗粒含量可达50%以上。对浸润性和密度差的要求较小采用热等静压工艺时,其组织细化、细密、均匀,一般不会产生偏析、偏聚等缺陷,可使空隙和其它内部缺陷得到明显改善,从而提高复合材料的性能。可以用传统的加工方法进行二次加工。粉末冶金的缺点:工艺过程比较复杂,金属基体必须制成金属粉末,增加了工艺的复杂性和成本。在制备铝基复合材料时,还要防止铝金属粉末引起的爆炸。

金属铝的教学设计

金属铝的教学设计 20122401160 沈末苑 思维导图: 铝 一.从学科角度分析:(为什么学) ⑴学科价值: ①铝元素在地壳中的含量达7.73%,仅次于氧元素和硅元素,是地壳中含量最多的金属元素,对物质世界有重大的贡献,因而铝元素对化学学科具有重要意义; ②铝元素也是一种典型而特殊的金属元素,铝元素的典型的两性金属元素,为学生学习金属元素及其化合物提供了新的角度和视野; ③铝及其化合物的学习可以进一步丰富学生对金属元素及其化合物知识的认识。 ⑵应用价值: ①铝及其化合物在生产生活中具有重要的应用价值,近五十年来,铝已成为世界上最为广泛应用的金属之一; ②铝合金质量较轻且强度较大,广泛应用于飞机,汽车,火车,船舶等制造工业,此外航天飞船,火箭,人造卫星等也使用大量的铝及其合金; ③利用铝一表面有致密的氧化膜,不易受腐蚀,可以制造化学反应器,医疗器械,燃料单质铝 铝的重要化合物 物理性质:熔点低,导热性,延展性等 化学性质 与酸反应:2Al+6HCl=2AlCl 3+3H 2↑ 与碱反应:2Al+2NaOH+2H 2O=2NaAlO 2+3H 2Al 2O 3:物性/化性/用途 Al(OH)3:物性/化性/用途 KAI(SO 4)2:净水作用——资料阅读了解 铝合金材料:性质/用途 铝表面的氧化膜 应用:炊具,铝箔,铝合金,电两性 还原性:铝与氧气反应/铝热反应——实验/生活中的应用 探究实验:铝与NaOH 和与HCl 的反应 两性的探究实验

管道等; ④利用铝的作为金属的物理性质,如导热导电延展性等可以制作电器,炊具,铝箔等; ⑤利用铝热反应放出高热来焊接钢轨或是铝粉与氧气的反应发出的强光制造信号弹,节日烟花等。 ⑶学生发展价值: ①学生可以从对金属的单一的性质层面的认识,发展出对金属的应用层面,材料层面的认识,使学生对物质的认识层面增加; ②通过铝及其化合物相关知识的学习,进一步发展了学生对元素的感性认识,为后面的元素周期律的学习打下基础; ③同时,因为铝在生活中普遍应用,学生对其结构和性质的学习可以增强化学知识和生产生活的联系,提高学生的化学素养。 二.从教材分析:(是什么) 1.从“物质变化观”出发: 化学是一门研究物质性质的学科。以往在教学中通常采用的教学思路是,结构决定性质,性质决定用途,存在决定提取方法。但是在必修一学生未学习元素和物质结构的内容。新课程必修1模块也给我们提供了关于元素化合物知识教学的理论支持,其中“物质分类观”和“物质变化观”就是我们教学元素化合物部分的重要指导理论(第一专题的第一单元:物质的分类与转化)。我们要注意加强这两种观点对元素化合物部分教学的指导作用。如铝的单元教学,我们从“物质分类”的观点出发(单质、氧化物、酸、碱、盐)来看,自然的就会介绍出现Al、Al2O3、HAlO2·H2O 、Al(OH)3、Al2(SO4)3这5种物质,它们的性质变化和关系网络完全符合“物质变化”中的复分解反应原理,运用“复分解反应原理”会很容易学习好这里的重点和难点知识——两性氧化物、两性氢氧化物、铝元素物质间的转化等。具体地讲,在教学Al(OH)3两性性质时,可以将Al2O3虚拟为可以溶于水的氧化物,当其遇到酸时,它呈碱性而变为碱Al(OH)3应该与酸发生中和反应,当其遇到碱时呈酸性,它变为2mol的HAlO2·H2O酸与碱发生中和反应。在这样的复分解反应原理指导下的方程式书写将是非常容易的,对其性质理解掌握也是非常牢固的,同样的原理解释来类比Al(OH)3的性质学习也会是水到渠成的,含铝元素各种物质之间的转化都是容易理解的。 2.内容处理 《人教版》中关于铝的知识点分成4大块:金属与非金属的反应——铝与NaOH溶液

相关主题