搜档网
当前位置:搜档网 › 原子物理

原子物理

原子物理
原子物理

原子物理学第一章习题参考答案

第一章习题参考答案 速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角-4 约为10rad. 要点分析:碰撞应考虑入射粒子和电子方向改变,并不是像教材中的入射粒子与靶核的碰撞(靶核不动),注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射.电子质量用m e表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲.α粒子-电子系统在此过程中能量与动量均应守恒,有: (1) (3) (2) 作运算:(2)×sinθ±(3)×cosθ,得 (4) (5) 再将(4)、(5)二式与(1)式联立,消去V’与V, 化简上式,得 (6) 若记,可将(6)式改写为 (7)

视θ为φ的函数θ(φ),对(7)式求θ的极值,有 令,则sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sinθ=0 (1)若sinθ=0则θ=0(极小)(8) (2)若cos(θ+2φ)=0则θ=90o-2φ(9) 将(9)式代入(7)式,有 由此可得 θ≈10弧度(极大)此题得证. (1)动能为的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大(2)如果金箔厚μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几 解:(1)依和金的原子序数Z 2=79 -4 答:散射角为90o所对所对应的瞄准距离为. (2)要点分析:第二问解的要点是注意将大于90°的散射全部积分出来.90°~180°范围的积分,关键要知道n,问题不知道nA,但可从密度与原子量关系找出注意推导出n值.,其他值从书中参考列表中找. 从书后物质密度表和原子量表中查出Z Au=79,A Au=197,ρ Au=×10kg/m

2015届高中物理原子物理讲义

2015届高中物理原子物理讲义 基础知识讲解 一.波粒二象性 1.能量量子化 2.光电效应 3.康普顿效应 4.粒子波动性 二.原子结构 1.电子的发现 2.原子核式结构 3.波尔氢原子模型 4.光谱

三.原子核 1.原子核组成 2.放射性元素的衰变 3.人工核反应 4.核力与结合能 5.核裂变与核聚变 习题精选 波粒二象性 1.红光和紫光相比() A. 红光光子的能量较大;在同一种介质中传播时红光的速度较大 B. 红光光子的能量较小;在同一种介质中传播时红光的速度较大 C. 红光光子的能量较大;在同一种介质中传播时红光的速度较小 D. 红光光子的能量较小;在同一种介质中传播时红光的速度较小 2.关于光电效应,有如下几种陈述,其中正确的是() A.金属电子的逸出功与入射光的频率成正比 B.光电流的强度与入射光的强度无关 C.用不可见光照射金属一定比用可见光照射同种金属产生的光电子的初动能要大 D.对于任何一种金属都存在一个“最大波长”,入射光的波长必须小于这个波长,才能产生光电效应 3.用某种频率的紫外线分别照射铯、锌、铂三种金属,从铯中发射出的光电子的最大初动能是2.9eV,从锌中发射出的光电子的最大初动能是1.4eV,铂没有光电子射出,则对这三种金属逸出功大小的判断,下列结论正确的是() A.铯的逸出功最大,铂的逸出功最小 B.锌的逸出功最大,铂的逸出功最小C.铂的逸出功最大,铯的逸出功最小 D.铂的逸出功最大,锌的逸出功最小

4.当具有5.0eV 能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初动能是1.5eV 。 为了使这种金属产生光电效应,入射光的最低能量为( ) A .1.5eV B .3.5eV C .5.0eV D . 6.5eV 5. 在下列各组所说的两个现象中,都表现出光具有粒子性的是( ) A .光的折射现象、偏振现象 B .光的反射现象、干涉现象 C .光的衍射现象、色散现象 D .光电效应现象、康普顿效应 6.关于光的波粒二象性的理解正确的是( ) A .大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性 B .光在传播时是波,而与物质相互作用时就转变成粒子 C .高频光是粒子,低频光是波 D .波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著 7.人类对光的本性的认识经历了曲折的过程,下列关于光的本性的陈述符合科学规律或历史事实的是( ) A .牛顿的“微粒说”与爱因斯坦的“光子说”本质上是一样的 B .光的双缝干涉实验显示了光具有波动性 C .麦克斯韦预言光是一种电磁波 D .光具有波粒二象性 8.一金属表面,爱绿光照射时发射出电子,受黄光照射时无电子发射.下列有色光照射到这金属表面上时会引起光电子发射的是( ) A .紫光 B .橙光 C .蓝光 D .红光 9.用绿光照射一光电管能产生光电效应,欲使光电子从阴极逸出时的最大初动能增大就应 A .改用红光照射 B .增大绿光的强度 C .增大光电管上的加速电压 D .改用紫光照射 10、频率为v 的光子,德布罗意波长为λ=h/p ,能量为E ,则光的速度为 ( ) A .E λ/h B .pE C .E/p D .h 2/Ep 11、2002 年诺贝尔物理学奖中的一项是奖励美国科学家贾科尼和日本科学家小柴晶俊发现了宇宙 X 射线源. X 射线是一种高频电磁波,若 X 射线在真空中的波长为λ,以 h 表示普朗克常量,c 表示真空中的光速,以 E 和 p 分别表示 X 射线每个光子的能量和动量,则( ) A.E=h λc ,p=0 B.E= h λc ,p= h λc 2 C. E= hc λ ,p=0, D.E= hc λ ,p= h λ 12.如下图所示,一验电器与锌板相连,在A 处用一紫外线灯照射锌板,关灯后,指针保持一定偏角。 (1)现用一带负电的金属小球与锌板接触,则验电器指针偏角 将 (填“增大”“减小”或“不变”)。 (2)使验电器指针回到零,再用相同强度的钠灯发出的黄光照射锌板,验电器指 针无偏转。 那么,若改用强度更大的红外线灯照射锌板,可观察到验电器指 针 (填“有”或“无”)偏转。 (3)实验室用功率P =1 500 W 的紫外灯演示光电效应。 紫外线波长λ=253 nm , 阴极离光源距离d =0.5m ,原子半径取r =0.5×10-10 m ,则阴极表面每个原子每秒 钟接收到的光子数为 。 13.康普顿效应证实了光子不仅具有能量,也有动量,下图给出了光子与静止电子碰撞后,电子的运动方向,则碰后光子可能沿方向 运动,并且波长 (填“不变”“变小”或“变长”)。 14.某金属受到频率为v 1=7.0×1014 Hz 的紫光照射时,释放出来的光电子最大初动能是0.69 eV ,当受到频率为v 2=11.8×1014 Hz 的紫外线照射时,释放出来的光电子最大初动能是2.69

原子物理学 杨福家 第四版(完整版)课后答案

原子物理学杨福家第四版(完整版)课后答案 原子物理习题库及解答 第一章 111,222,,mvmvmv,,,,,,,ee222,1-1 由能量、动量守恒 ,,,mvmvmv,,,,,,ee, (这样得出的是电子所能得到的最大动量,严格求解应用矢量式子) Δp θ mv2,,,得碰撞后电子的速度 p v,em,m,e ,故 v,2ve, 2m,p1,mv2mv4,e,eee由 tg,~,~~,~,2.5,10(rad)mvmv,,,,pm400, a79,2,1.44,1-2 (1) b,ctg,,22.8(fm)222,5 236.02,102,132,5dN(2) ,,bnt,3.14,[22.8,10],19.3,,9.63,10N197 24Ze4,79,1.441-3 Au核: r,,,50.6(fm)m22,4.5mv,, 24Ze4,3,1.44Li核: r,,,1.92(fm)m22,4.5mv,, 2ZZe1,79,1.4412E,,,16.3(Mev)1-4 (1) pr7m 2ZZe1,13,1.4412E,,,4.68(Mev)(2) pr4m 22NZZeZZeds,,242401212dN1-5 ()ntd/sin()t/sin,,,,,2N4E24EAr2pp 1323,79,1.44,106.02,101.5123,,(),,1.5,10,, 24419710(0.5) ,822,610 ,6.02,1.5,79,1.44,1.5,,8.90,10197 3aa,,1-6 时, b,ctg,,,,6012222 aa,,时, b,ctg,,1,,902222 32()2,dNb112 ?,,,32dN1,b222()2 ,32,324,101-7 由,得 b,bnt,4,10,,nt

专题一专题二热学原子物理

专题一热学

液体表面张力的日常实例:吹泡泡,小昆虫在水面,荷叶上的水珠、不粘锅等

M N 4图铅柱钩码3 图固体分为晶体和非晶体,基本区别是是否有一定的熔点。 晶体分为单晶体和多晶体。单晶体具有各向异性和规则的外形特征。 晶体有:石英、食盐、萘,冰,各种金属、石墨,金刚石 非晶体:玻璃、沥青、石蜡、橡胶、松香 【高考真题】1、(10年广东)如图是密闭的气缸,外力推动活塞P 压缩气体,对缸内气体做功800J ,同时气体向外界放热200J ,缸内气体的 A .温度升高,内能增加600J B .温度升高,内能减少200J C .温度降低,内能增加600J D .温度降低,内能减少200J 2、(11年广东)如图3所示,两个接触面平滑的铅柱压紧后悬挂起来,下面的铅柱不脱落,主要原因是 A.铅分子做无规则热运动 B.铅柱受到大气压力作用 C.铅柱间存在万有引力作用 D.铅柱间存在分子引力作用 3、(11年广东)图4为某种椅子与其升降部分的结构示意图,M 、N 两筒间密闭了一定质量的气体,M 可沿N 的内壁上下滑动,设筒内气体不与外界发生热交换,在M 向下滑动的过程中 A.外界对气体做功,气体内能增大 B.外界对气体做功,气体内能减小 C.气体对外界做功,气体内能增大 D.气体对外界做功,气体内能减小 4、(12年广东)清晨 ,草叶上的露珠是由空气中的水汽凝结成德水珠 ,这一物理过程中,水分子间的 A 引力消失 ,斥力增大 B 斥力消失,引力增大 C 引力、斥力都减小 D 引力、斥力都增大 5、(12年广东).景颇族的祖先发明的点火器如图1所示,用牛角做套筒,木质推杆前端粘着艾绒。猛推推杆,艾绒即可点燃,对同内封闭的气体,再次压缩过程中 A.气体温度升高,压强不变 B.气体温度升高,压强变大 C.气体对外界做正功,其体内能增加 D.外界对气体做正功,气体内能减少 6、(13年广东 双选)图6为某同学设计的喷水装置,内部装有2L 水,上部密封1atm 的空气0.5L ,保持阀门关闭,再充入1atm 的空气0.1L ,设在所有过程中空气可看作理想气体,且温度不变,下列说法正确的有 A.充气后,密封气体压强增加 B.充气后,密封气体的分子平均动能增加 C.打开阀门后,密封气体对外界做正功 D.打开阀门后,不再充气也能把水喷光 7、(10年广东)如图所示,某种自动洗衣机进水时,与洗衣缸相连的细管中会封闭一定质量的空气,通过压力传感器感知管中的空气压力,从而控制进水量。设温度不变,洗衣缸内水位升高,则细管中被封闭的空气

原子物理学有关公式

原子物理学有关公式 氢原子能级公式:2/n Rhc E n -= 1. 库仑散射角公式: 而 2. α 粒子离原子核的最近距离 3. 卢瑟福散射公式 4..氢原子光谱的波数 5.里德伯常数 6. 原子可能的轨道半径 原子可能的定态能量 其中 精细结构常数 8.碱金属原子的光谱项 9.单电子原子: 轨道磁矩 自旋磁矩 总磁矩 10.碱金属电子自旋与轨道运动相互作用能量 碱金属能级双层结构的间隔 12.拉莫尔旋进角速度 ,而旋磁比 13.原子在外磁场中的附加能量 附加光谱项 2 4122 210θπεcty Mv e Z Z b =fm MeV e ?=44.14120πε) 2 sin 11(241 2 2 0θ πε+=Mv Ze r m 2 sin ) ()41(2 2220 θ πεσΩ =d Mv Ze d 1 71009737315.1-∞∞?=+=m R M m M R R e H 而22)()()(~n R Z n T n T m T H =-=而 υB l l l l P m l μμ)1(2+==2 2)().(2 l n R n R Z l n T ?-= =* 1371402==c e πεα)()(2122 2n hcT n Z c m E n -=-=α10.0532h a nm m c πα==其中玻尔半径Z n a r n 21 =eV hcR c m 6.13)(212==αm hc s s P m e s s πμ2)1(+==玻尔磁子其中 m he B πμ4= ) 1(2) 1()1(232+--++ ==j j l l s s g P m e g j j 而μ2)1)(2 1(2 22432 ****--? ++= ?s l j l l l n Z Rch E ls α132) 1(~4-*+=?米l l n Z R αυm ge P j J 2==μγB L γω=J J J M B Mg E B --==?,,1,, μ洛伦兹单位 -==?-?mc eB L MgL T T π4,,L g M g M ][1 1~1122-=-'=?λ λν

原子物理学 第一章习题参考答案

第一章习题参考答案 1.1速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏 离角约为10-4 rad. 要点分析:碰撞应考虑入射粒子和电子方向改变,并不是像教材中的入射粒子与靶核的碰撞(靶核不动),注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射.电子质量用m e 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲.α粒子-电子系统在此过程中能量与动量均应守恒,有: 222212121v m V M V M e +'=αα (1) ?θααcos cos v m V M V M e +'= (2) ?θαsin sin 0v m V M e -'= (3) 作运算:(2)×sinθ±(3)×cosθ,得 )sin(sin ?θθ α+=V M v m e (4) )sin(sin ?θ?αα+='V M V M (5) 再将(4)、(5)二式与(1)式联立,消去V’与V , )(sin sin )(sin sin 222 2 222 2 ?θθ?θ?ααα+++=V m M V M V M e 化简上式,得 θ??θα 222sin sin )(sin e m M + =+ (6) 若记 αμM m e = ,可将(6)式改写为 θ?μ?θμ222sin sin )(sin +=+ (7) 视θ为φ的函数θ(φ),对(7)式求θ的极值,有 )](2sin 2sin [)]sin(2[sin ?θ?μ?θμθ? θ ++-=+-d d 令0=?θd d ,则sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sinθ=0 (1)若sinθ=0则θ=0(极小)(8) (2)若cos(θ+2φ)=0则θ=90o-2φ(9) 将(9)式代入(7)式,有 θ?μ?μ2202)(90si n si n si n +=-

高考物理通用版二轮复习讲义:第二部分 第一板块 第6讲 “活学巧记”应对点散面广的原子物理学

第6讲|“活学巧记”应对点散面广的原子物理学 ┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄┄ 考法学法原子物理学部分知识点较多,需要学生强化对知识的理解和记忆。在高考试卷中,对原子物理学的考查一般是一个选择题,难度不大。考查热点主要有:①光电效应、波粒二象性;②原子结构、氢原子能级跃迁;③原子核的衰变规律、α、β、γ三种射线的特点及应用;④核反应方程的书写、质量亏损和核能的计算。由于本讲内容琐碎,考查点多,因此复习时应抓住主干知识,梳理出关键点,进行理解性记忆。 提能点(一)光电效应波粒二象性 ? ? ? ? ? ? ? ? 基础保分类考点 练练就能过关 [知能全通]———————————————————————————————— 1.爱因斯坦光电效应方程 E k=hν-W0 2.光电效应的两个图像 (1)光电子的最大初动能随入射光频率变化而变化的图像如图所示。 依据E k=hν-W0=hν-hν0可知:当E k=0时,ν=ν0,即图线在横轴上的截距在数值上等于金属的极限频率。 斜率k=h——普朗克常量。 图线在纵轴上的截距的绝对值等于金属的逸出功:W0=hν0。 (2)光电流随外电压变化的规律如图所示。 图中纵轴表示光电流,横轴表示阴、阳两极处所加外电压。 当U=-U′时,光电流恰好为零,此时能求出光电子的最大初动能,即E k =eU′,此电压称为遏止电压。 当U=U0时,光电流恰好达到饱和光电流,此时所有光电子都参与了导电,电流最大为I max。 3.处理光电效应问题的两条线索 (1)光强大→光子数目多→发射光电子数多→光电流大。 (2)光子频率高→光子能量大→产生光电子的最大初动能大。 4.光的波粒二象性 (1)大量光子易显示出波动性,而少量光子易显示出粒子性。 (2)波长长(频率低)的光波动性强,而波长短(频率高)的光粒子性强。

最新原子物理学杨福家1-6章 课后习题答案

原子物理学杨福家1-6章课后习题答案

原子物理学课后前六章答案(第四版) 杨福家著(高等教育出版社) 第一章:原子的位形:卢瑟福模型 第二章:原子的量子态:波尔模型 第三章:量子力学导论 第四章:原子的精细结构:电子的自旋 第五章:多电子原子:泡利原理 第六章:X 射线 第一章 习题1、2解 1.1 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad. 要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动. 证明:设α粒子的质量为Mα,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射。电子质量用me 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲。α粒子-电子系统在此过程中能量与动量均应守恒,有: (1) ? θααcos cos v m V M V M e +'= (2)

? θ α sin sin 0v m V M e - ' = (3)作运算:(2)×sinθ±(3)×cosθ,得 ) sin( sin ? θ θ α+ =V M v m e (4) ) sin( sin ? θ ? α α+ ='V M V M (5)再将(4)、(5)二式与(1)式联立,消去V’与v, ) ( sin sin ) ( sin sin 2 2 2 2 2 2 2 2 ? θ θ ? θ ? α α α+ + + =V m M V M V M e 化简上式,得 θ ? ? θα2 2 2sin sin ) ( sin e m M + = + (6)若记 α μ M m e = ,可将(6)式改写为 θ ? μ ? θ μ2 2 2sin sin ) ( sin+ = + (7)视θ为φ的函数θ(φ),对(7)式求θ的极值,有 )] (2 sin 2 sin [ )] sin( 2 [sin? θ ? μ ? θ μ θ ? θ + + - = + - d d 令 = ? θ d d ,则 sin2(θ+φ)-sin2φ=0 即 2cos(θ+2φ)sinθ=0 若 sinθ=0, 则θ=0(极小)(8) (2)若cos(θ+2φ)=0 ,则θ=90o-2φ(9)

原子物理学第一章习题参考答案

第一章习题参考答案 速度为v 的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4 rad. 要点分析:碰撞应考虑入射粒子和电子方向改变,并不是像教材中的入射粒子与靶核的碰撞(靶核不动),注意这里电子要动. 证明:设α粒子的质量为M α,碰撞前速度为V ,沿X 方向入射;碰撞后,速度为V',沿θ方向散射.电子质量用m e 表示,碰撞前静止在坐标原点O 处,碰撞后以速度v 沿φ方向反冲.α粒子-电子系统在此过程中能量与动量均应守恒,有: 222212121v m V M V M e +'=αα (1) ?θααcos cos v m V M V M e +'= (2) ?θαsin sin 0v m V M e -'= (3) 作运算:(2)×sinθ±(3)×cosθ,得 )sin(sin ?θθ α+=V M v m e (4) )sin(sin ?θ?αα+='V M V M (5) 再将(4)、(5)二式与(1)式联立,消去V’与V , )(sin sin )(sin sin 222 2 2 22 2 ?θθ?θ?ααα+++=V m M V M V M e 化简上式,得 θ??θα 222sin sin )(sin e m M + =+ (6) 若记 αμM m e = ,可将(6)式改写为 θ?μ?θμ222sin sin )(sin +=+ (7)

视θ为φ的函数θ(φ),对(7)式求θ的极值,有 )](2sin 2sin [)]sin(2[sin ?θ?μ?θμθ?θ ++-=+-d d 令0=?θd d ,则sin2(θ+φ)-sin2φ=0 即2cos(θ+2φ)sinθ=0 (1)若sinθ=0则θ=0(极小)(8) (2)若cos(θ+2φ)=0则θ=90o-2φ(9) 将(9)式代入(7)式,有 θ?μ?μ2202)(90si n si n si n +=- 由此可得 183641 ?= = =αμθM m e sin θ≈10-4 弧度(极大)此题得证. (1)动能为的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大(2)如果金箔厚μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几 解:(1)依 2cot 2θa b =和E e Z Z a 02 214πε≡金的原子序数Z 2=79 ) (10752.2245cot 00.544 .1792cot 42211502m E e Z b o -?=?=?=θπε 答:散射角为90o所对所对应的瞄准距离为. (2) 要点分析:第二问解的要点是注意将大于90°的散射全部积分出来.90°~180°范围的积分,关键要知道n ,问题不知道nA ,但可从密度与原子量关系找出注意推导出n 值. A N A N A V V V N V N n ρ ρ==?== )(1mol A A 总分子数,其他值从书中参考列表中找. 从书后物质密度表和原子量表中查出Z Au =79,A Au =197,ρAu =×104 kg/m 3

原子物理学复习资料

原子物理学总复习指导 名词解释:光谱,氢原子线系,类氢离子,电离电势,激发电势,原子空间取向量子化,原子实极化,轨道贯穿,有效电荷数,电子自旋,磁矩,旋磁比,拉莫尔进动,拉莫尔频率,朗德g因子,电子态,原子态,塞曼效应,电子组态,LS耦合,jj耦合,泡利原理,同科电子,元素周期表,壳层,原子基态,洪特定则,朗德间隔定则 数据记忆:电子电量,质量,普朗克常量,玻尔半径,氢原子基态能量,里德

堡常量,hc,?c,玻尔磁子,精细结构常数,拉莫尔进动频率 著名实验的内容、现象及解释:α粒子散射实验,光电效应实验,夫兰克—赫兹实验,施特恩—盖拉赫实验,碱金属光谱的精细结构,塞曼效应,反常塞曼效应, 理论解释:(汤姆逊原子模型的不合理性),卢瑟福核式模型的建立、意义及不足,玻尔氢原子光谱理论的建立、意义及不足,元素周期表 计算公式:氢原子光谱线系,玻尔理论能级公式、波数公式,角动量表达式及

量子数取值(l,s,j),LS耦合原子态,jj耦合原子态,朗德间隔定则,g因子,塞曼效应,原子基态 谱线跃迁图:精细结构,塞曼效应;电子态及组态、原子态表示,选择定则,1.同位素:一些元素在元素周期表中处于同一地位,有相同原子序数,这些元素别称为同位素。 2.类氢离子:原子核外只有一个电子的离子,这类离子与氢原子类似,叫类氢离子。 3.电离电势:把电子在电场中加速,如使它与原子碰撞刚足以使原子电离,

则加速时跨过的电势差称为电离电势。 4.激发电势:将初速很小的自由电子通过电场加速后与处于基态的某种原子进行碰撞,当电场电压升到一定值时,发生非弹性碰撞,加速电子的动能转变成原子内部的运动能量,使原子从基态激发到第一激发态,电场这一定值的电压称为该种原子的第一激发电势 5.原子空间取向量子化:在磁场或电场中原子的电子轨道只能取一定的几个方向,不能任意取向,一般的说,在磁场或电场中,原子的角动量的取向也是量子化的。

原子物理学 杨福家第二章习题答案

第二章习题 2-1 铯的逸出功为1.9eV ,试求: (1)铯的光电效应阈频率及阈值波长; (2)如果要得到能量为1.5eV 的光电子,必须使用多少波长的光照射? 解:(1) ∵ E =hν-W 当hν=W 时,ν为光电效应的最低频率(阈频率),即 ν =W /h =1.9×1.6×10-19/6.626×10-34 =4.59×1014 ∵ hc /λ=w λ=hc /w =6.54×10-7(m) (2) ∵ mv 2/2=h ν-W ∴ 1.5= h ν-1.9 ν=3.4/h λ=c /ν=hc /3.4(m)=3.65×10-7m 2-2 对于氢原子、一次电离的氦离子He +和两次电离的锂离子Li ++,分别计算它们的: (1)第一、第二玻尔轨道半径及电子在这些轨道上的速度; (2)电子在基态的结合能; (3)由基态到第一激发态所需的激发能量及由第一激发态退激到基态所放光子的波长. n e e πε Z n a ∴H: r 1H =0.053×12/1nm=0.053nm r 2 H =0.053×22/1=0.212nm V 1H =2.19 ×106×1/1=2.19 ×106(m/s) V 2H =2.19 ×106×1/2=1.095 ×106(m/s) ∴He+: r 1He+=0.053×12/2nm=0.0265nm r 2He+=0.053×22/2=0.106nm

V 1 He+=2.19 ×106×2/1=4.38 ×106(m/s) V 2 He+=2.19 ×106×2/2=2.19 ×106(m/s) Li ++: r 1 Li++=0.053×12/3nm=0.0181nm r 2 Li++=0.053×22/3=0.071nm V 1 Li++=2.19 ×106×3/1=6.57 ×106(m/s) V 2 Li++=2.19 ×106×3/2=3.28 ×106(m/s) (2) 结合能:自由电子和原子核结合成基态时所放出来的能量,它 ∵ 基态时n =1 H: E 1H =-13.6eV He+: E 1He+=-13.6×Z 2=-13.6×22=-54.4eV Li ++: E 1Li+=-13.6×Z 2 2(3) 由里德伯公式 =Z 2×13.6× 3/4=10.2Z 2 注意H 、He+、Li++的里德伯常数的近似相等就可以算出如下数值。 2-3 欲使电子与处于基态的锂离子Li ++发生非弹性散射,试问电子至少具有多大的动能? 要点分析:电子与锂质量差别较小, 可不考虑碰撞的能量损失.可以近似认为电子的能量全部传给锂,使锂激发. 解:要产生非弹性碰撞,即电子能量最小必须达到使锂离子从基态达第一激发态,分析电子至少要使Li ++从基态n =1激发到第一激发态n =2. 因为Z n ++ ⊿E =E 2-E 1=Z 2R Li ++hc (1/12-1/22)≈32×13.6×3/4eV=91.8eV 讨论:锂离子激发需要极大的能量

专题06+原子与原子物理之多项选择题

新题型2 原子与原子物理之多项选择题 (2016·天津卷)物理学家通过对实验的深入观察和研究,获得正确的科学认知,推动物理学的发展。下列说法符合事实的是 A.赫兹通过一系列实验,证实了麦克斯韦关于光的电磁理论 B.查德威克用α粒子轰击14 7N获得反冲核17 8 O,发现了中子 C.贝克勒尔发现的天然放射性现象,说明原子核有复杂结构D.卢瑟福通过对阴极射线的研究,提出了原子核式结构模型

A .爱因斯坦在光的粒子性的基础上,建立了光电效应方程 B .康普顿效应表明光子只具有能量,不具有动量 C .玻尔的原子理论成功地解释了氢原子光谱的实验规律 D .德布罗意指出微观粒子的动量越大,其对应的波长就越长 2.现用某一光电管进行光电效应实验,当用某一频率的光入射时,有光电流产生。下列说法正确的是 A .保持入射光的频率不变,入射光的光强变大,饱和光电流变大 B .入射光的频率变高,饱和光电流变大 C .入射光的频率变高,光电子的最大初动能变大学,科。网、 D .保持入射光的光强不变,不断减小入射光的频率,始终有光电流产生 3.一静止的铝原子核2713Al 俘获一速度为71.010?m/s 的质子p 后,变为处于激发态的硅原子核28* 14Si ,下 列说法正确的是 A .核反应方程为2728*1314p Al Si +→ B .核反应方程过程中系统动量守恒 C .核反应过程中系统能量不守恒 D .核反应前后核子数相等,所以生成物的质量等于反应物的质量之和 4.下列说法中正确的是 A .随着温度的升高,各种波长的辐射强度都在增加,同时辐射强度的极大值向波长较短的方向移动 B .在康普顿效应中,当入射光子与晶体中的电子碰撞时,把一部分动量转移给电子,因此光子散射后 波长变短 C .放射性元素原子核的半衰期长短与原子所处的化学状态和外部条件有关 D .β衰变所释放的电子是原子核内的中子转变为质子时所产生的 5.以下是有关近代物理内容的若干叙述,其中正确的是 A .一束光照射到某种金属上不能发生光电效应,改用波长较长的光照射该金属可能 B .氡222的半衰期为3.8天,则质量为4 g 的氡222经过7.6天还剩下1 g 的氡222 C .玻尔理论解释了氢原子发射出来的光子其谱线为什么是不连续的 D .重核裂变为几个中等质量的核,其平均核子质量会增加 6.氢原子的能级如图所示,现有处于4n =能级的大量氢原子向低能级跃迁,下列说法正确的是 A .这些氢原子可能发出6种不同频率的光 B .已知钾的逸出功为2.22eV ,则从3n =能级跃迁到2n =能级释放的光子可 以从金属钾的表面打出光电子 C .氢原子从2n =能级跃迁到1n =能级释放的光子能量最小 D .氢原子由4n =能级跃迁到3n =能级时,氢原子能量减小,电子动能增加

原子物理知识点总结全

原子物理知识点总结全 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

原 子 物 理 一、卢瑟福的原子模型——核式结构 1.1897年,_________发现了电子.他还提出了原子的______________模型. 2.物理学家________用___粒子轰击金箔的实验叫__________________。 3.实验结果: 绝大部分α粒子穿过金箔后________;少数α粒子发生了较大的偏转; 极少数的α粒子甚至被____. 4.实验的启示:绝大多数α粒子直线穿过,说明原子内部存在很大的空隙; 少数α粒子较大偏转,说明原子内部集中存在着对α粒子有斥力的正电荷; 极个别α粒子反弹,说明个别粒子正对着质量比α粒子大很多的物体运动时,受到该物体很大的斥力作用. 5.原子的核式结构: 卢瑟福依据α粒子散射实验的结果,提出了原子的核式结构:在原子中心有一个很小的核,叫________, 原子的全部正电荷和几乎全部质量都集中在原子核里,带负电的电子在核外空间绕核旋转. 例1:在α粒子散射实验中,卢瑟福用α粒子轰击金箔,下列四个选项中哪一项属于实验得到的正确结果: A.α粒子穿过金箔时都不改变运动方向 B.极少数α粒子穿过金箔时有较大的偏转,有的甚至被反弹 C.绝大多数α粒子穿过金箔时有较大的偏转 D.α粒子穿过金箔时都有较大的偏转. 例2:根据α粒子散射实验,卢瑟福提出了原子的核式结构模型。如图1-1所示表示了原子核式结构模型的α粒子散射图景。图中实线表示α粒子的运动轨迹。其中一个α粒子在从a 运动到b 、再运动到c 的过程中(α 粒子在b 点时距原子核最近),下列判断正确的是( ) A .α粒子的动能先增大后减小 B .α粒子的电势能先增大后减小 C .α粒子的加速度先变小后变大 D .电场力对α粒子先做正功后做负功 二 玻尔的原子模型 能级 1.玻尔提出假说的背景——原子的核式结构学说与经典物理学的矛盾: ⑴按经典物理学理论,核外电子绕核运动时,要不断地辐射电磁波,电子能量减小,其轨道半径将不断减小,最终落于原子核上,即核式结构将是不稳定的,而事实上是稳定的. ⑵电子绕核运动时辐射出的电磁波的频率应等于电子绕核运动的频率,由于电子轨道半径不断减小,发射出的电磁波的频率应是连续变化的,而事实上,原子辐射的电磁波的频率只是某些特定值。 为解决原子的核式结构模型与经典电磁理论之间的矛盾,玻尔提出了三点假设,后人称之为玻尔模型. 2.玻尔模型的主要内容: ⑴定态假说:原子只能处于一系列__________的能量状态中,在这些状态中原子是_______的,电子虽然绕核运动,但不向外辐射能量.这些状态叫做________. ⑵ 跃迁假说:原子从一种定态跃迁到另一种定态时,它辐射(或吸收)一定频率的光子,光子的能量由这两定态的能量差决定,即________________. ⑶轨道假说:原子的不同能量状态对应于______子的不同轨道.原子的定态是不连续的,因此电子的可能轨道也是不连续的. 3.氢原子的能级公式和轨道公式 原子各定态的能量值叫做原子的能级,对于氢原子,其能级公式为:______________; 对应的轨道公式为:12r n r n 。其中n 称为量子数,只能取正整数.E 1=-13.6eV ,r 1=0.53×10-10m . 原子的最低能量状态称为_______,对应电子在离核最近的轨道上运动; 图1-1 a b c 原子核 α粒子

原子物理学课程教学大纲

原子物理学课程教学大纲 一、课程说明 (一)课程名称、所属专业、课程性质、学分; 课程名称:原子物理学 所属专业:物理学专业 课程性质:基础课 学分:4 (二)课程简介、目标与任务; 原子物理学是物理类专业本科生的专业必修课,以物质结构的第一个微观层次(原子)为研究对象,是联接经典物理和近代物理的一门承上启下的课程。在理论方法上,该课程揭露经典理论在原子这一微观层次遭遇到的困难,并且为了解决这些困难而引入量子力学,学生将在本课程中较为系统地学习到量子力学的基本概念、基本原理、基本思想和方法。在应用实践上,通过本课程的学习,学生将系统性地了解和掌握原子物理学的发展历史,获得有关原子的电子结构、性质及其与外场相互作用的系统性知识,为以后从事相关的科学研究、生产应用和教学工作打下良好的基础。 (三)先修课程要求,与先修课之间的逻辑关系和内容衔接; 先修课程:《高等数学》、《数学物理方法》、《力学》、《理论力学》、《热学》、《电磁学》、《光学》 关系:《高等数学》和《数学物理方法》是学习原子物理学的数学基础。《力学》、《理论力学》、《热学》、《电磁学》和《光学》包含了学生在学习原子物理学之前需要掌握的必要的经典物理知识。有了这些准备知识才能理解为何不能用经典理论来研究原子体系,从而必须引入量子力学。 (四)教材与主要参考书; 选用教材:杨福家, 《原子物理学》第四版, 高等教育出版社, 2010 主要参考书:

1, C. J. Foot,《Atomic Physics》, Oxford University Press, 2005 2, H. Friedrich,《Theoretical Atomic Physics》, Springer, 2006 3, 褚圣麟,《原子物理学》,高等教育出版社, 1987 4, 曾谨言,《量子力学》,科学出版社, 2000 5, 卢希庭,《原子核物理》,原子能出版社, 1981 二、课程内容与安排 绪论原子物理学的发展历史(2学时)【了解】 第一章原子的组成和结构(5学时) 第一节原子的质量和大小【掌握】 第二节电子的发现【了解】 第三节原子结构模型【了解】 第四节原子的核式结构,卢瑟福散理论【重点掌握】【难点】 第五节卢瑟福理论的成功和不足【掌握】 第二章原子的量子态,玻尔理论(8学时) 第一节背景知识:黑体辐射、光电效应和氢原子光谱【掌握】 第二节玻尔的氢原子理论【重点掌握】【难点】 第三节玻尔理论的实验验证【掌握】 第四节玻尔理论的推广:椭圆轨道理论和碱金属原子光谱【重点掌握】 第五节玻尔理论的成功与缺陷【掌握】 第三章量子力学导论(18学时)【重点掌握】【难点】 第一节波粒二象性 第二节不确定关系 第三节波函数及其统计解释 第四节态叠加原理 第五节薛定谔方程 第六节薛定谔方程应用举例 第七节平均值和算符 第八节量子力学总结 第九节氢原子/类氢离子的量子力学解法 第十节爱因斯坦关于辐射和吸收的唯象理论 第十一节量子跃迁理论,含时微扰论

原子物理知识点讲解

一、光电效应现象 1、光电效应: 光电效应:物体在光(包括不可见光)的照射下发射电子的现象称为光电效应。 2、光电效应的研究结论: ①任何一种金属,都有一个极限频率,入射光的频率必须大于这个极限频...............率.,才能产生光电效应;低于这个频率的光不能产生光电效应。②光电子的最.....大初动能与入射光的强度无关.............,只随着入射光频率的增大..而增大..。注意:从金属出来的电子速度会有差异,这里说的是从金属表面直接飞出来的光电子。③ 入射光照到金属上时,光电子的发射几乎是瞬时的............,一般不超过10-9 s ;④当入射光的频率大于极限频率时,光电流的强度与入射光的强度成正比。 3、 光电效应的应用: 光电管:光电管的阴极表面敷有碱金属,对电子的束缚能力比较弱,在光的照射下容易发射电子,阴极发出的电子被阳极收集,在回路中形成电流,称为光电流。 注意:①光电管两极加上正向电压,可以增强光电流。②光电流的大小跟入射光的强度和正向电压有关,与入射光的频率无关。入射光的强度越大,光电流越大。③遏止电压U 0。回路中的光电流随着反向电压的增加而减小,当反 向电压U 0满足:02 max 2 1eU mv =,光电流将会减小到零,所以遏止电压与入射光的频率有关。 4、波动理论无法解释的现象: ①不论入射光的频率多少,只要光强足够大,总可以使电子获得足够多的能量,从而产生光电效应,实际上如果光的频率小于金属的极限频率,无论光强多大,都不能产生光电效应。 ②光强越大,电子可获得更多的能量,光电子的最大初始动能应该由入射光的强度来决定,实际上光电子的最大初始动能与光强无关,与频率有关。 ③光强大时,电子能量积累的时间就短,光强小时,能量积累的时间就长,实际上无论光入射的强度怎样微弱,几乎在开始照射的一瞬间就产生了光电子. 二、光子说 1、普朗克常量 普郎克在研究电磁波辐射时,提出能量量子假说:物体热辐射所发出的电磁波的能量是不连续的,只能是hv 的整数倍,hv 称为一个能量量子。即能量是一份一份的。其中v 辐射频率,h 是一个常量,称为普朗克常量。 2、光子说 在空间中传播的光的能量不是连续的,而是一份一份的,每一份叫做一个光子,光子的能量ε跟光的频率ν成正比。hv =ε,其中:h 是普朗克常量,v 是光的频率。

原子物理学杨福家第一章答案

第一章习题1、2解 1.1 速度为v的非相对论的α粒子与一静止的自由电子相碰撞,试证明:α粒子的最大偏离角约为10-4rad. 要点分析: 碰撞应考虑入射粒子和电子方向改变.并不是像教材中的入射粒子与靶核的碰撞(靶核不动).注意这里电子要动. 证明:设α粒子的质量为Mα,碰撞前速度为V,沿X方向入射;碰撞后,速度为V',沿θ方向散射。电子质量用m e表示,碰撞前静止在坐标原点O处,碰撞后以速度v沿φ方向反冲。α粒子-电子系统在此过程中能量与动量均应守恒,有: 2 2 2 2 1 2 1 2 1 v m V M V M e + ' = α α(1) ? θ α α cos cos v m V M V M e + ' =(2) ? θ α sin sin 0v m V M e - ' =(3) 作运算:(2)×sinθ±(3)×cosθ,得 ) sin( sin ? θ θ α+ =V M v m e(4) ) sin( sin ? θ ? α α+ ='V M V M(5)

再将(4)、(5)二式与(1)式联立,消去V’与v , 化简上式,得 (6) θ?μ?θμ222sin sin )(sin +=+ (7) 视θ为φ的函数θ(φ),对(7)式求θ的极值,有 令 θ+φ)-sin2φ=0 即 2cos(θ+2φ)sin θ=0 (1) 若 sin θ=0, 则 θ=0(极小) (8) (2)若cos(θ+2φ)=0 则 θ=90o-2φ (9) 将(9)式代入(7)式,有 θ ?μ?μ2202)(90si n si n si n +=-

由此可得 θ≈10-4弧度(极大) 此题得证。 1.2(1)动能为5.00MeV的α粒子被金核以90°散射时,它的瞄准距离(碰撞参数)为多大? (2)如果金箔厚1.0 μm,则入射α粒子束以大于90°散射(称为背散射)的粒子数是全部入射粒子的百分之几? 要点分析:第二问是90°~180°范围的积分.关键要知道n, 注意推导出n值. 其他值 解:(1)依 金的原子序数 Z2=79 答:散射角为90o所对所对应的瞄准距离为22.8fm. (2)解: 第二问解的要点是注意将大于90°的散射全部积分出来. (问题不知道nA,但可从密度与原子量关系找出) 从书后物质密度表和原子量表中查出 Z Au=79,A Au=197, ρAu=1.888×104kg/m3

原子物理讲义 第五章 多电子原子

第五章 多电子原子:泡利原理(YCS ) §5-1 氦光谱和能级 氦原子是1868年分析日全蚀光谱时发现的,30年后在地球矿物中找到.实验表明,氦及元素周期表第二族元素铍、镁、钙、锶、钡、镭、锌、镉、汞的光谱结构相仿.氦原子光谱的特点(详见P.213氦原子能级图)(氦能谱的以上4个特点分别包含着4个物理概念): 1)明显地分成两套谱线系,左边一套为单层,右边一套多为三层;两套能级间无跃迁,各自内部的跃迁产生了两套独立的光谱.每一套都象碱金属原子光谱一样含有主线系,辅线系和伯格曼系等.但两套线系的构成截然不同. 2)存在几个亚稳态,表明某种选择规则限制了这些态以自发辐射的形式发生衰变; 3)基态01 S 1与第一激发态13 S 2 间能量相差很大,为eV .7719;电离能也是所有元素中最大的,为eV .5824; 4)在三层结构那套能级中没有来自2 (1S)的能级. §5-2 电子组态和原子态 1.电子组态:原子中各电子状态的组合 描述一个电子的状态可用s l m m l n 、、、四个量子数. 考虑电子的自旋-轨道相互作用,s l m m 、不再有确定值,则电子的状态用j j m l n 、、、描述. 氢原子只有一个电子,在不考虑原子核运动时,电子状态就表示原子状态. 对于碱金属原子,理论上可证明原子实的总角动量为0且不易被激发,被激发的只是价电子,可认为价电子的状态就表示碱金属原子状态. 多电子原子则必须考虑电子间的相互作用,原子的状态是价电子运动状态的耦合. 由于轨道运动的能量只取决于量子数l n 、,所以常用nl 来标记电子状态. 例如:氢原子处于基态时,电子处于01=、= l n 的状态,记为s 1;氦原子处于基态时,两个电子都处于s 1态,则用两个电子状态的组合s 1s 1或21s 来表示;若一个原子有 3个电子,其中两个处在0,2==l n 的状态,另一个处在1,2==l n 的状态,则电子 组态为p s 222 . 在给定的电子组态中,各电子的轨道角动量大小是确定的,但其轨道角动量和自旋角动量的方向不确定.因此每一个电子组态 可耦合成若干原子态,由同一电子组态耦合成的不同原子态将且具有不同的能量,因为不同的角动量耦合产生的附加能量不同. 2.价电子间的相互作用 价电子间的相互作用除电子自身的轨道与自旋耦合外,电子间的轨道与轨道、自旋与自旋、轨道与自旋等角动量都要发生耦合作用.如两个价电子间可有6种耦合方式(如图示):),(),(),(),(),(),(126215224113212211s l G s l G s l G s l G s s G l l G 、、、、、. 这6种耦合的强弱不等,一般情况下,65G G 、较弱可不考虑.下面考虑两种极端情况. 1)S L -耦合:21G G 、较43G G 、强得多,将两个轨道角动量和两个自旋角动量分别合 成总轨道角动量L 和总自旋角动量S ,再将L 和S 合成总角动量J .(S L -耦合对于较轻元素 的低激发态成立,适用性较广) 2)j j -耦合:43G G 、较21G G 、强得多,将各个电子的轨道与自旋耦合成各个电子的总 角动量1j 和2j ,再将其耦合成原子的总角动量J .(j j -耦合则较少见,只在较重元素的激发态中出现) 对于多电子耦合的情况可记为:? ??==-==-J j j j l s l s l s j j J L S l l l s s s S L )())()((:),(),,)(,,(:323322113213211 3.S L -耦合的原子态 21l l L +=.L 的大小为: 212121,,1,,)1(l l l l l l L L L L --++=+= 21s s S +=.S 的大小为:???=±=+=0 1,)1(21s s S S S S 原子的总角动量S L J +=,量子数S L S L S L J --++=,,1, 对于具有两个价电子的原子,当L 给定时,对应于0,1==S S 的两种情况,J 的取值分别 为: 1)0=S 时,L J =,表示原子只有一个可能的角动量状态,所以是单态. 2)1=S 时,1,,1-+=L L L J ,所以原子是三重态. 由以上分析知,具有两个价电子的原子都有单态和三重态的能级结构. 例:原子有两个价电子,其角动量状态分别为 2 1 ,2;21,12211= ===s l s l ,用

相关主题