搜档网
当前位置:搜档网 › 栈和队列的基本操作的实现

栈和队列的基本操作的实现

栈和队列的基本操作的实现
栈和队列的基本操作的实现

封面:

安徽大学

网络工程

栈和队列的基本操作的实现

______2010\4\12

【实验目的】

1.理解并掌握栈和队列的逻辑结构和存储结构;

2.理解栈和队列的相关基本运算;

3.编程对相关算法进行验证。

【实验内容】

(一)分别在顺序和链式存储结构上实现栈的以下操作(含初始化,入栈,出栈,取栈顶元素等):

1.构造一个栈S,将构造好的栈输出;

2.在第1步所构造的栈S中将元素e 入栈,并将更新后的栈S输出;

3.在第2步更新后所得到的栈S中将栈顶元素出栈,用变量e返回该元素,并将更新后的栈S输出。(二)分别在链队列和循环队列上实现以下操作(初始化,入队,出队,取队头元素等):

1.构造一个队列Q,将构造好的队列输出;

2.在第1步所构造的队列Q中将元素e入队,并将更新后的队列Q输出;

3.在第2步更新后所得到的队列Q中将队头元素出队,用变量e返回该元素,并将更新后的队列Q输出。

【要求】

1.栈和队列中的元素要从终端输入;

2.具体的输入和输出格式不限;

3.算法要具有较好的健壮性,对运行过程中的错误

操作要做适当处理。

三、实验步骤

1.本实验用到的数据结构

(1)逻辑结构:线性结构

(2)存储结构:程序一、四(顺序存储结构);

程序二、三(链式存储结构);

2.各程序的功能和算法设计思想

程序一:顺序栈

# include

# include

# include

#define STACKINITISIZE 100

# define STACKINCREMENT 10

# define OK 1

# define ERROR 0

# define OVERFLOW -2

typedef int SElemtype;

typedef int status;

typedef struct {

SElemtype *base;

SElemtype *top;

int stacksize;

}sqstack;

void Initstack (sqstack *s) {

(*s).base = (SElemtype *)malloc(STACKINITISIZE * sizeof (SElemtype));

if(!(*s).base) exit(OVERFLOW);

(*s).top = (*s).base;

(*s).stacksize = STACKINITISIZE;

}

void push ( sqstack *s , SElemtype e ){

if ((*s).top - (*s).base >=(*s).stacksize){

(*s).base = (SElemtype *) realloc ((*s).base,((*s).stacksize + STACKINCREMENT) * sizeof (SElemtype ));

if ( ! (*s).base )

exit (OVERFLOW);

(*s).top = (*s).base +(*s).stacksize ;

(*s).stacksize += STACKINCREMENT;

}

*(*s).top ++ = e;

}

status Gettop (sqstack s ) {

int e;

if (s.top ==s.base )

return ERROR;

e=*(s.top-1);

printf ("栈顶元素是%d\n",e);

return OK;

}

status pop ( sqstack *s ) {

int f;

if ( (*s).top==(*s).base) return ERROR;

f = *(--(*s).top);

printf("出栈元素是%d\n",f);

return OK;

}

void stackTraverse(sqstack s ){

SElemtype * p =s.base;

while (s.top>p)

printf ("%d ",*p++);

printf("\n");

}

void main(){

int h,k,e,i;

sqstack la;

printf ("构建一个空栈\n");

Initstack (&la);

printf("请输入栈内元素的个数\n");

scanf ("%d",&k);

printf("请输入%d个元素\n",k);

for (i=0;i

scanf ("%d",&e);

push (&la,e);

}

printf ("\n");

printf("输出栈内所有元素\n");

stackTraverse (la);

fflush (stdin);

printf("查找栈顶元素\n");

Gettop (la);

printf("删除栈顶元素\n");

pop (&la);

printf("输出栈内所有元素\n");

stackTraverse (la);

fflush (stdin);

printf ("\n");

printf ("插入一个元素\n");

printf("请输入插入的元素值\n");

scanf ("%d",&h);

push (&la,h);

printf("输出栈内所有元素\n");

stackTraverse (la);

printf("\n");

}

功能:实现顺序栈的各种功能,如能建立空栈,实现栈的初始化,插入,删除栈顶元素等操作。

算法设计思想:首先建立一个空栈,再实现栈的初始化,用一个主函数包涵栈的各种操作。

程序调式如下:

程序二:链栈

// shuju3.cpp : 定义控制台应用程序的入口点。#include"stdafx.h"

#include

#include

#include

# define OK 1

# define ERROR 0

typedef int status;

typedef struct SNode{

int data;

struct SNode *next;

}SNode,*Sqstack;

void Createsqstack(Sqstack *l,int n){ int i;

Sqstack s;

*l=(Sqstack) malloc(sizeof(SNode));

(*l)->next=NULL;

printf("请输入%d个元素\n",n);

for(i=n;i>0;--i){

s=(Sqstack) malloc(sizeof(SNode));

scanf("%d",&(s->data));

s->next=(*l)->next;

(*l)->next=s;

}

}

status Getelem(Sqstack *l,int *e){

Sqstack s;

s=(*l)->next;

*e=s->data;

printf("头元素是%d\n",*e);

return OK;

}

status insertsqtack(Sqstack l,int e,int n){ Sqstack p,s;

int i;

p=l;

for(i=0;i

p=p->next;

}

s=(Sqstack) malloc (sizeof(SNode));

s->data = e;

p->next=s;

s->next=NULL;

return OK;

}

status Deletesqstack(Sqstack l){

int h;

Sqstack p,q;

p=l;

q=p->next;

p->next=q->next;

h=q->data;

printf("删除的元素是%d",h);

free(q);

return OK;

}

void sqstackTraverse(Sqstack l){

Sqstack p;

p=l->next;

while(p){

printf("%d ",p->data);

p=p->next;

}

}

void main (){

int i,j,n,k,e;

Sqstack la;

printf("请输入链栈的长度\n");

scanf("%d",&n);

printf("建立一个链栈\n");

Createsqstack(&la,n);

printf("输出各元素\n");

printf("la=");

sqstackTraverse(la);

fflush(stdin);

printf("\n");

printf("查找栈顶元素\n");

Getelem(&la,&e);

fflush(stdin);

printf("\n");

printf("插入新的栈顶元素\n");

scanf("%d",&e);

insertsqtack(la,e,n);

printf("输出各元素\n");

printf("la=");

sqstackTraverse(la);

fflush(stdin);

printf("\n");

printf("删除栈顶元素\n");

Deletesqstack(la);

printf("输出各元素\n");

printf("la=");

sqstackTraverse(la);

printf("\n");

}

功能:实现链栈的基本功能,如初始化,删除,插入,查找栈顶元素等。

算法设计思想:利用单链表的形式建立一个链栈,定义一个结构体,利用指针指向,建立链栈的具有不同功能的函数(删除、插入、查找等),利用主函数合理安排顺序实现链栈操作。

调试情况如下:

程序三:链队列

// SHUJU.cpp : 定义控制台应用程序的入口点。\\链队列的建立

#include"stdafx.h"

# include

# include

# include

# define OK 1

# define ERROR 0

# define OVERFLOW -2

typedef int QElemtype;

typedef int status;

typedef struct QNode {

QElemtype data;

struct QNode *next;

}QNode,*Queueptr;

typedef struct {

Queueptr front;

Queueptr rear;

}LinkQueue;

status InitQueue (LinkQueue &Q){

Q.front = (Queueptr)malloc(sizeof (QNode)); Q.rear= Q.front;

if (!Q.front )

exit (OVERFLOW);

Q.front ->next=NULL;

return OK;

}

status DestoryQueue (LinkQueue &Q){

while (Q.front){

Q.rear = Q.front->next;

free(Q.front);

Q.front = Q.rear;

}

return OK;

}

status EnQueue (LinkQueue &Q,QElemtype e){

Queueptr p;

p=(Queueptr)malloc(sizeof (QNode));

if (!p)

exit (OVERFLOW);

p->data=e;

p->next=NULL;

Q.rear->next=p;

Q.rear=p;

return OK;

}

status DeQueue (LinkQueue &Q,QElemtype &e){ Queueptr p;

if (Q.front == Q.rear)

return ERROR;

p=Q.front->next;

e= p->data;

Q.front->next=p->next;

if (Q.rear==p)

Q.rear=Q.front;

free(p);

return OK;

}

status Gethead (LinkQueue &Q){

Queueptr p ;

QElemtype e;

if (Q.front == Q.rear)

return ERROR;

p=Q.front->next;

e= p->data;

printf("头元素是%d",e);

printf("\n");

return OK;

}

status QueueqTraverse (LinkQueue Q){ Queueptr p;

p=Q.front->next;

while(p){

printf("%d ",p->data);

p=p->next;

}

printf("\n");

return OK;

}

void main(){

LinkQueue la;

QElemtype e,k;

int h,i;

printf("构建一个空队列\n");

InitQueue (la);

printf("请输入元素个数\n");

scanf ("%d",&h);

printf("请输入%d个元素\n",h);

for (i=0;i

scanf("%d",&e);

EnQueue (la,e);

}

printf("输出队列内的元素\n");

QueueqTraverse (la);

fflush(stdin);

printf("\n");

printf("获得对列的头元素\n");

Gethead (la);

printf("输出队列内的元素\n");

QueueqTraverse (la);

fflush(stdin);

printf("\n");

printf("开始插入一元素\n");

printf("请输入插入元素\n");

scanf("%d",&k);

EnQueue (la,k);

printf("输出队列内的元素\n");

QueueqTraverse (la);

fflush(stdin);

printf("\n");

printf("删除对头的元素\n");

DeQueue (la,e);

printf("删除的元素是%d\n",e);

printf("输出队列内的元素\n");

QueueqTraverse (la);

fflush(stdin);

printf("\n");

printf("摧毁队列\n");

DestoryQueue(la);

printf("输出队列内的元素\n");

QueueqTraverse (la);

}

功能:实现链队列的各种不同的操作,如队列的初始化,队列的插入,删除,查询以及摧毁队列等。

算法设计思想:构建两个不同的结构体,如下:

typedef struct QNode {

QElemtype data;

struct QNode *next;

}QNode,*Queueptr;

typedef struct {

Queueptr front;

Queueptr rear;

}LinkQueue;

其中有指向头和尾的front和rear指针,利用它们构建链队列。

调试情况如下:

程序四:循环队列

// shujiu4.cpp : 定义控制台应用程序的入口点。

#include"stdafx.h"

# include

# include

# include

# define MAXSIZE 10

# define OK 1

# define ERROR 0

# define OVERFLOW -2

typedef int QElemtype;

typedef int status;

typedef struct {

QElemtype *base;

int front;

int rear;

}sqQueue;

status InitQueue (sqQueue &Q){

Q.base = (QElemtype *)malloc (MAXSIZE * sizeof (QElemtype));

if (!Q.base )

exit (OVERFLOW);

Q.front = Q.rear = 0;

return OK;

}

status QueueLength (sqQueue Q){

QElemtype x;

x=(Q.rear - Q.front+MAXSIZE)% MAXSIZE;

printf("队列的元素个数是%d",x);

return OK;

}

status EnQueue (sqQueue &Q,QElemtype e){

if ((Q.rear +1)% MAXSIZE==Q.front )

return ERROR;

Q.base[Q.rear]=e;

Q.rear = (Q.rear+1)% MAXSIZE;

return OK;

}

status DeQueue ( sqQueue &Q){

QElemtype e;

if (Q.front ==Q.rear )

return ERROR;

e=Q.base[Q.front];

printf("删除的元素是%d",e);

Q.front=(Q.front + 1) %MAXSIZE;

return OK;

}

status GetQueue(sqQueue &Q){

QElemtype e;

e=Q.base[Q.front];

printf("头元素是%d",e);

printf("\n");

return OK;

}

status QueueTraverse (sqQueue &Q,int k){ QElemtype h,i;

i=Q.front;

for(;k>0;k--){

h=Q.base[Q.front];

printf("%d ",h);

Q.front= (Q.front+1)% MAXSIZE;

}

Q.front=i;

return OK;

}

void main(){

sqQueue la;

QElemtype s,g,x,e;

int k,i;

printf("构建一个空队列\n");

InitQueue (la);

printf("请输入元素个数\n");

scanf("%d",&k);

printf("请输入各元素的值\n");

for (i=0;i

scanf("%d",&s);

EnQueue(la,s);

}

printf("输出队列内元素\n");

QueueTraverse (la,k);

printf("\n");

QueueLength (la);

printf("\n");

printf("获得队列头元素\n");

GetQueue (la);

printf("插入一个元素\n");

printf ("请输入插入元素的值\n");

scanf ("%d",&g);

EnQueue(la,g);

printf("输出队列内元素\n");

k=k+1;

QueueTraverse (la,k);

printf("\n");

k=k-1;

printf("删除头元素\n");

DeQueue(la);

printf("\n");

printf("输出队列内元素\n");

QueueTraverse (la,k);

printf("\n");

}

功能:能够充分利用结点,实现队列的各种基本功能。

算法设计思想:为了充分利用空间,利用循环结构实现队列功能。

调试情况如下:

实验总结:通过这次实验更加的清楚了栈和队列的各种操作,也更加深刻的认识到了指针,函数,结构体之间的联系与运用。实验中也遇到了一些操作问题,但经过编程,调试,清楚的认识到了个人不足,仍需努力。

数据结构(C语言)队列的基本操作

实验名称:实验四队列的基本操作 实验目的 掌握队列这种抽象数据类型的特点及实现方法。 实验内容 从键盘读入若干个整数,建一个顺序队列或链式队列,并完成下列操作: (1)初始化队列; (2)队列是否为空; (3)出队; (4)入队。 算法设计分析 (一)数据结构的定义 单链表存储结构定义为: struct Node; //链表单链表 typedef struct Node *PNode; int dui; dui =1; struct Node { int info; PNode link; }; struct LinkQueue { PNode f; PNode r; }; typedef struct LinkQueue *PLinkQueue; (二)总体设计 程序由主函数、创建队列函数、判断是否为空队列函数、入队函数、出队函数、取数函数、显示队列函数、菜单函数组成。其功能描述如下: (1)主函数:调用各个函数以实现相应功能 main() { PLinkQueue a; //定义链表a int b,c,e; //b 菜单选择c选择继续输入e输入元素 do { //菜单选择 mune(); scanf("%d",&b);

switch(b) { case 1://初始化 a=create(); //初始化队列 case 2: //入队 do { printf("\n请输入需要入队的数:"); if(e!=NULL) { scanf("%d",&e); enQueue(a,e); } printf("是否继续入队?(是:1 否:0)\n"); scanf("%d",&c); } while(c==1); break; case 3: //出队 c=frontQueue(a); deQueue(a); if(dui!=0) { printf("\n出队为:%d\n",c); } dui=1; break; case 4: //显示队中元素 showQueue(a); break; case 5: return; default: printf("输入错误,程序结束!\n"); return; } } while(a!=5); { return 0; } } (三)各函数的详细设计: Function1: PLinkQueue create(void)//创队

栈和队列习题答案

第三章栈和队列习题答案 一、基础知识题 设将整数1,2,3,4依次进栈,但只要出栈时栈非空,则可将出栈操作按任何次序夹入其中,请回答下述问题: (1)若入、出栈次序为Push(1), Pop(),Push(2),Push(3), Pop(), Pop( ),Push(4), Pop( ),则出栈的数字序列为何(这里Push(i)表示i进栈,Pop( )表示出栈) (2)能否得到出栈序列1423和1432并说明为什么不能得到或者如何得到。 (3)请分析1,2 ,3 ,4 的24种排列中,哪些序列是可以通过相应的入出栈操作得到的。 答:(1)出栈序列为:1324 (2)不能得到1423序列。因为要得到14的出栈序列,则应做Push(1),Pop(),Push(2),Push (3),Push(4),Pop()。这样,3在栈顶,2在栈底,所以不能得到23的出栈序列。能得到1432的出栈序列。具体操作为:Push(1), Pop(),Push(2),Push(3),Push(4),Pop(),Pop(),Pop()。 (3)在1,2 ,3 ,4 的24种排列中,可通过相应入出栈操作得到的序列是: 1234,1243,1324,1342,1432,2134,2143,2314,2341,2431,3214,3241,3421,4321 不能得到的序列是: 1423,2413,3124,3142,3412,4123,4132,4213,4231,4312 链栈中为何不设置头结点 答:链栈不需要在头部附加头结点,因为栈都是在头部进行操作的,如果加了头结点,等于要对头结点之后的结点进行操作,反而使算法更复杂,所以只要有链表的头指针就可以了。 循环队列的优点是什么如何判别它的空和满 答:循环队列的优点是:它可以克服顺序队列的"假上溢"现象,能够使存储队列的向量空间得到充分的利用。判别循环队列的"空"或"满"不能以头尾指针是否相等来确定,一般是通过以下几种方法:一是另设一布尔变量来区别队列的空和满。二是少用一个元素的空间,每次入队前测试入队后头尾指针是否会重合,如果会重合就认为队列已满。三是设置一计数器记录队列中元素总数,不仅可判别空或满,还可以得到队列中元素的个数。 设长度为n的链队用单循环链表表示,若设头指针,则入队出队操作的时间为何若只设尾指针呢答:当只设头指针时,出队的时间为1,而入队的时间需要n,因为每次入队均需从头指针开始查找,找到最后一个元素时方可进行入队操作。若只设尾指针,则出入队时间均为1。因为是循环链表,尾指针所指的下一个元素就是头指针所指元素,所以出队时不需要遍历整个队列。 指出下述程序段的功能是什么 (1) void Demo1(SeqStack *S){ int i; arr[64] ; n=0 ; while ( StackEmpty(S)) arr[n++]=Pop(S); for (i=0, i< n; i++) Push(S, arr[i]); } .. // 设Q1已有内容,Q2已初始化过 while ( ! QueueEmpty( &Q1) ) { x=DeQueue( &Q1 ) ; EnQueue(&Q2, x); n++;} for (i=0; i< n; i++) { x=DeQueue(&Q2) ; EnQueue( &Q1, x) ; EnQueue( &Q2, x);} 答: (1)程序段的功能是将一栈中的元素按反序重新排列,也就是原来在栈顶的元素放到栈底,栈底的

栈的基本操作与应用

实验报告 课程名称数据结构实验名称栈的基本操作与应用 姓名王灵慧专业班级软工18104 学号 201817040409 试验日期 2019-11-06试验地点E3-502指导老师邹汉斌成绩 一、实验目的 1.熟悉并能实现栈的定义和基本操作。 2.了解和掌握栈在递归和非递归算法的应用。 二、实验要求 1.进行栈的基本操作时要注意栈“后进先出”的特性。 2.编写完整程序完成下面的实验内容并上机运行。 3.整理并上交实验报告。 三、实验内容 1.编写程序任意输入栈长度和栈中的元素值,构造一个顺序栈,对其进行清空、销毁、入栈、出栈以及取栈顶元素操作。 2.已知函数t(n)=2*t(n/2)+n 其中t(0)=0,n为整数。编写程序实现: (1)计算t(n)的递归算法。 (2)分别用链式栈和顺序栈实现计算t(n)的非递归算法。 四、思考与提高 1.如果一个程序中要用到两个栈,为了不发生上溢错误,就必须给每个栈预先分配一个足够大的存储空间。若每个栈都预分配过大的存储空间,势必会造成系统空间紧张。如何解决这个问题? 五、实验步骤(每个实验内容包含代码、输入、输出、错误分析): 1、实验内容(1): #include #include #include #define true 1 #define null 0 #define ok 1 #define error 0 #define overflow -1 #define stack_init_size 100 #define stackincrement 10 using namespace std; typedef int selemtype; typedef int status; typedef struct { selemtype *base; selemtype *top; int stacksize; } sqstack; status initstack(sqstack &s) { s.base=(selemtype *)malloc(stack_init_size * sizeof(selemtype)); if(!s.base)exit(overflow);

3 栈和队列答案

第3章栈和队列 一、基础知识题 3.1 设将整数1,2,3,4依次进栈,但只要出栈时栈非空,则可将出栈操作按任何次序夹入其中,请回答下述问题: (1)若入、出栈次序为Push(1), Pop(),Push(2),Push(3), Pop(), Pop( ),Push(4), Pop( ),则出栈的数字序列为何(这里Push(i)表示i进栈,Pop( )表示出栈)? (2)能否得到出栈序列1423和1432?并说明为什么不能得到或者如何得到。 (3)请分析 1,2 ,3 ,4 的24种排列中,哪些序列是可以通过相应的入出栈操作得到的。 3.2 链栈中为何不设置头结点? 3.3 循环队列的优点是什么? 如何判别它的空和满? 3.4 设长度为n的链队用单循环链表表示,若设头指针,则入队出队操作的时间为何? 若只设尾指针呢? 3.5 指出下述程序段的功能是什么? (1) void Demo1(SeqStack *S){ int i; arr[64] ; n=0 ; while ( StackEmpty(S)) arr[n++]=Pop(S); for (i=0, i< n; i++) Push(S, arr[i]); } //Demo1 (2) SeqStack S1, S2, tmp; DataType x; ...//假设栈tmp和S2已做过初始化 while ( ! StackEmpty (&S1)) { x=Pop(&S1) ; Push(&tmp,x); } while ( ! StackEmpty (&tmp) ) { x=Pop( &tmp); Push( &S1,x); Push( &S2, x); } (3) void Demo2( SeqStack *S, int m) { // 设DataType 为int 型 SeqStack T; int i; InitStack (&T); while (! StackEmpty( S)) if(( i=Pop(S)) !=m) Push( &T,i); while (! StackEmpty( &T)) { i=Pop(&T); Push(S,i);

栈和队列的基本操作

《数据结构与算法》实验报告 专业班级学号 实验项目 实验二栈和队列的基本操作。 实验目的 1、掌握栈的基本操作:初始化栈、判栈为空、出栈、入栈等运算。 2、掌握队列的基本操作:初始化队列、判队列为空、出队列、入队列等运算。 实验容 题目1: 进制转换。利用栈的基本操作实现将任意一个十进制整数转化为R进制整数 算法提示: 1、定义栈的顺序存取结构 2、分别定义栈的基本操作(初始化栈、判栈为空、出栈、入栈等) 3、定义一个函数用来实现上面问题: 十进制整数X和R作为形参 初始化栈 只要X不为0重复做下列动作 将X%R入栈 X=X/R 只要栈不为空重复做下列动作 栈顶出栈输出栈顶元素 题目2: 利用队列的方式实现辉三角的输出。 算法设计分析 (一)数据结构的定义 1、栈的应用 实现十进制到其他进制的转换,该计算过程是从低位到高位顺序产生R进制数的各个位数,而打印输出一般从高位到低位进行,恰好与计算过程相反。因此,运用栈先进后出的性质,即可完成进制转换。 栈抽象数据结构描述 typedef struct SqStack /*定义顺序栈*/ { int *base; /*栈底指针*/ int *top; /*栈顶指针*/ int stacksize; /*当前已分配存储空间*/ } SqStack;

2、队列的应用 由于是要打印一个数列,并且由于队列先进先出的性质,肯定要利用已经进队的元素在其出队之前完成辉三角的递归性。即,利用要出队的元素来不断地构造新的进队的元素,即在第N行出队的同时,来构造辉三角的第N+1行,从而实现打印辉三角的目的。 队列抽象数据结构描述 typedef struct SeqQueue { int data[MAXSIZE]; int front; /*队头指针*/ int rear; /*队尾指针*/ }SeqQueue; (二)总体设计 1、栈 (1)主函数:统筹调用各个函数以实现相应功能 int main() (2)空栈建立函数:对栈进行初始化。 int StackInit(SqStack *s) (3)判断栈空函数:对栈进行判断,若栈中有元素则返回1,若栈为空,则返回0。 int stackempty(SqStack *s) (4)入栈函数:将元素逐个输入栈中。 int Push(SqStack *s,int x) (5)出栈函数:若栈不空,则删除栈顶元素,并用x返回其值。 int Pop(SqStack *s,int x) (6)进制转换函数:将十进制数转换为R进制数 int conversion(SqStack *s) 2、队列 (1)主函数:统筹调用各个函数以实现相应功能 void main() (2)空队列建立函数:对队列进行初始化。 SeqQueue *InitQueue() (3)返回队头函数:判断队是否为空,若不为空则返回队头元素。 int QueueEmpty(SeqQueue *q) (4)入队函数:将元素逐个输入队列中。 void EnQueue(SeqQueue *q,int x) (5)出队函数:若队列不空,则删除队列元素,并用x返回其值。 int DeQueue(SeqQueue *q) (6)计算队长函数:计算队列的长度。 int QueueEmpty(SeqQueue *q) (7)输出辉三角函数:按一定格式输出辉三角。 void YangHui(int n)

PTA第三章栈与队列练习题

1-1 通过对堆栈S操作:Push(S,1), Push(S,2), Pop(S), Push(S,3), Pop(S), Pop(S)。输出得序列为:123。(2分) T F 作者: DS课程组 单位: 浙江大学 1-2 在用数组表示得循环队列中,front值一定小于等于rear值。(1分) T F 作者: DS课程组 单位: 浙江大学 1-3 若一个栈得输入序列为{1, 2, 3, 4, 5},则不可能得到{3, 4, 1, 2, 5}这样得出栈序列。(2分) T F 作者: 徐镜春 单位: 浙江大学 1-4 If keys are pushed onto a stack in the order {1, 2, 3, 4, 5}, then it is impossible to obtain the output sequence {3, 4, 1, 2, 5}、(2分) T F 作者: 徐镜春 单位: 浙江大学 1-5 所谓“循环队列”就是指用单向循环链表或者循环数组表示得队列。(1分) T F 作者: DS课程组 单位: 浙江大学 1-6 An algorithm to check for balancing symbols in an expression uses a stack to store the symbols、(1分) T F 2-1 设栈S与队列Q得初始状态均为空,元素a、b、c、d、e、f、g依次进入栈S。若每个元素出栈后立即进入队列Q,且7个元素出队得顺序就是b、d、c、f、e、 a、g,则栈S得容量至少就是: (2分) 1. 1 2. 2 3. 3 4. 4 作者: DS课程组

顺序栈的基本操作讲解

遼穿紳範大學上机实验报告 学院:计算机与信息技术学院 专 业 : 计算机科学与技术(师 范) 课程名称:数据结构 实验题目:顺序栈的基本操作 班级序号:师范1班 学号:201421012731 学生姓名:邓雪 指导教师:杨红颖 完成时间:2015年12月25号 一、实验目的: 1 ?熟悉掌握栈的定义、结构及性质; 2. 能够实现创建一个顺序栈,熟练实现入栈、出栈等栈的基本操作; 3?了解和掌握栈的应用。 二、实验环境: Microsoft Visual C++ 6.0

三、实验内容及要求: 栈是一种特殊的线性表,逻辑结构和线性表相同,只是其运算规则有更多的限制,故又称为受限的线性表。 建立顺序栈,实现如下功能: 1. 建立一个顺序栈 2. 输出栈 3. 进栈 4. 退栈 5. 取栈顶元素 6. 清空栈 7. 判断栈是否为空 进行栈的基本操作时要注意栈”后进先出”的特性。 四、概要设计: 1、通过循环,由键盘输入一串数据。创建并初始化一个顺序栈。 2、编写实现相关功能函数,完成子函数模块如下。 3、调用子函数,实现菜单调用功能,完成顺序表的相关操作

五、代码: #include #include #define maxsize 64 typedef int datatype; //定义结构体typedef struct { datatype data[maxsize]; int top; }seqstack; //建立顺序栈seqstack *SET(seqstack *s) { int i; s=(seqstack*)malloc(sizeof(seqstack)); s->top=-1; printf(" 请输入顺序栈元素(整型,以scanf("%d",&i); do{ s->top++; s->data[s->top]=i; scanf("%d",&i); 0 结束):"); }while(i!=0); printf(" 顺序栈建立成功\n"); return s; } //清空栈void SETNULL(seqstack *s) { s->top=-1;} //判断栈空 int EMPTY(seqstack *s) { if(s->top>=0) return 0; else return 1;} //进栈 seqstack *PUSH(seqstack *s) { int x; printf(" 你想要插入的数字:"); scanf("%d",&x); if(s->top==maxsize-1) { printf("overflow"); return NULL; } else {

栈和队列的基本操作的实现

封面: 安徽大学 网络工程 栈和队列的基本操作的实现 ______2010\4\12

【实验目的】 1.理解并掌握栈和队列的逻辑结构和存储结构; 2.理解栈和队列的相关基本运算; 3.编程对相关算法进行验证。 【实验内容】 (一)分别在顺序和链式存储结构上实现栈的以下操作(含初始化,入栈,出栈,取栈顶元素等): 1.构造一个栈S,将构造好的栈输出; 2.在第1步所构造的栈S中将元素e 入栈,并将更新后的栈S输出; 3.在第2步更新后所得到的栈S中将栈顶元素出栈,用变量e返回该元素,并将更新后的栈S输出。(二)分别在链队列和循环队列上实现以下操作(初始化,入队,出队,取队头元素等): 1.构造一个队列Q,将构造好的队列输出; 2.在第1步所构造的队列Q中将元素e入队,并将更新后的队列Q输出; 3.在第2步更新后所得到的队列Q中将队头元素出队,用变量e返回该元素,并将更新后的队列Q输出。

【要求】 1.栈和队列中的元素要从终端输入; 2.具体的输入和输出格式不限; 3.算法要具有较好的健壮性,对运行过程中的错误 操作要做适当处理。 三、实验步骤 1.本实验用到的数据结构 (1)逻辑结构:线性结构 (2)存储结构:程序一、四(顺序存储结构); 程序二、三(链式存储结构); 2.各程序的功能和算法设计思想 程序一:顺序栈 # include # include # include #define STACKINITISIZE 100 # define STACKINCREMENT 10 # define OK 1 # define ERROR 0 # define OVERFLOW -2 typedef int SElemtype; typedef int status; typedef struct { SElemtype *base; SElemtype *top; int stacksize; }sqstack; void Initstack (sqstack *s) { (*s).base = (SElemtype *)malloc(STACKINITISIZE * sizeof (SElemtype)); if(!(*s).base) exit(OVERFLOW);

栈和队列(必备)

栈和队列是操作受限的线性表,好像每本讲数据结构的数都是这么说的。有些书按照这个思路给出了定义和实现;但是很遗憾,这本书没有这样做,所以,原书中的做法是重复建设,这或许可以用不是一个人写的这样的理由来开脱。 顺序表示的栈和队列,必须预先分配空间,并且空间大小受限,使用起来限制比较多。而且,由于限定存取位置,顺序表示的随机存取的优点就没有了,所以,链式结构应该是首选。 栈的定义和实现 #ifndef Stack_H #define Stack_H #include "List.h" template class Stack : List//栈类定义 { public: void Push(Type value) { Insert(value); } Type Pop() { Type p = *GetNext(); RemoveAfter(); return p; }

Type GetTop() { return *GetNext(); } List ::MakeEmpty; List ::IsEmpty; }; #endif 队列的定义和实现 #ifndef Queue_H #define Queue_H #include "List.h" template class Queue : List//队列定义{ public: void EnQueue(const Type &value) { LastInsert(value); } Type DeQueue() {

Type p = *GetNext(); RemoveAfter(); IsEmpty(); return p; } Type GetFront() { return *GetNext(); } List ::MakeEmpty; List ::IsEmpty; }; #endif 测试程序 #ifndef StackTest_H #define StackTest_H #include "Stack.h" void StackTest_int() { cout << endl << "整型栈测试" << endl;

数据结构栈的定义及基本操作介绍

北京理工大学珠海学院实验报告 ZHUHAI CAMPAUS OF BEIJING INSTITUTE OF TECHNOLOGY 班级软件工程3班学号 150202102309姓名郭荣栋 指导教师余俊杰成绩 实验题目栈的实现与应用实验时间 一、实验目的、意义 (1)理解栈的特点,掌握栈的定义和基本操作。 (2)掌握进栈、出栈、清空栈运算的实现方法。 (3)熟练掌握顺序栈的操作及应用。 二、实验内容及要求 1.定义顺序栈,完成栈的基本操作:建空栈、入栈、出栈、取栈顶元素(参见教材45页)。 2. 调用栈的基本操作,将输入的十进制数转换成十六进制数。 3. 调用栈的基本操作,实现表达式求值,如输入3*(7-2)#,得到结果15。 三、实验结果及分析 (所输入的数据及相应的运行结果,运行结果要有提示信息,运行结果采用截图方式给出。)

四、程序清单(包含注释) 1、2. #include #include #include using namespace std; #define OK 1 #define ERROR 0 #define OVERFLOW -2 #define MAXSIZE 100 #define INCREASEMENT 10 #define STACK_INIT_SIZE 100 #define STACKINCREMENT 10

typedef int SElemType; typedef int Status; typedef struct{ SElemType *base; SElemType *top; int stacksize; }Sqstack; void StackTraverse(Sqstack S) { while (S.top != S.base) { cout << *(S.top-1) << endl; S.top--; } } Status InitStack(Sqstack &S){ S.base=(SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType)); if(!S.base){ exit(OVERFLOW); }

数据结构栈的基本操作,进栈,出栈

第五次实验报告—— 顺序栈、链栈的插入和删除一需求分析 1、在演示程序中,出现的元素以数字出现定义为int型, 2、演示程序在计算机终端上,用户在键盘上输入演示程序中规定的运算命令,相应的输入数据和运算结果显示在终端上 3、顺序栈的程序执行的命令包括如下: (1)定义结构体 (2)顺序栈的初始化及创建 (3)元素的插入 (4)元素的删除 (5)顺序栈的打印结果 3、链栈的程序执行的命令包括如下: (1)定义结构体 (2)链栈的初始化及创建 (3)元素的插入 (4)元素的删除 (5)链栈的打印结果 二概要设计 1、顺序栈可能需要用到有序表的抽象数据类型定义: ADT List{ 数据对象:D={ai|ai∈ElemL, i=1,2,...,n, n≥0} 数据关系:R1={|ai-1,ai ∈D, i=2,...,n } 基本操作: InitStack(SqStack &S) 操作结果:构造一个空栈 Push(L,e) 操作结果:插入元素e为新的栈顶元素

Status Pop(SqStack &S) 操作结果:删除栈顶元素 }ADT List; 2、链栈可能需要用到有序表的抽象数据类型定义: ADT List{ 数据对象:D={ai|ai∈ElemL, i=1,2,...,n, n≥0} 数据关系:R1={|ai-1,ai ∈D, i=2,...,n } 基本操作: LinkStack(SqStack &S) 操作结果:构造一个空栈 Status Push(L,e) 操作结果:插入元素e为新的栈顶元素 Status Pop(SqStack &S) 操作结果:删除栈顶元素 }ADT List; 3、顺序栈程序包含的主要模块: (1) 已给定的函数库: (2)顺序栈结构体: (3)顺序栈初始化及创建: (4)元素插入 (5)元素删除

队列的基本操作代码

队列的基本操作代码: #include #include #define MAXQSIZE 100 #define OVERFLOW 0 #define ERROR 0 #define OK 1 typedef int QElemType; typedef int Status; typedef struct { QElemType *base; int front; int rear; int tag; }SqQueue; Status InitQueue(SqQueue &Q) { Q.base=(QElemType*)malloc(MAXQSIZE*sizeof(QElemType)); if(!Q.base) exit(OVERFLOW);//存储分配失败 Q.front=Q.rear=0; tag=0; return OK; } int QueueLength(SqQueue Q) { return (Q.rear-Q.front+MAXQSIZE)%MAXQSIZE;//返回Q的元素个数,即队列的长度} Status EnQueue(SqQueue &Q,QElemType e) { if((Q.rear+1)%MAXQSIZE==Q.front) return ERROR;//队列满 Q.base[Q.rear]=e; Q.rear=(Q.rear+1)%MAXQSIZE; return OK; } Status DeQueue(SqQueue &Q,QElemType &e) { if(Q.front==Q.rear) return ERROR; e=Q.base[Q.front];

数据结构练习 第三章 栈和队列

数据结构练习第三章栈和队列 一、选择题 1.栈和队列的共同特点是( )。 A.只允许在端点处插入和删除元素 B.都是先进后出 C.都是先进先出 D.没有共同点 2.向顺序栈中压入新元素时,应当()。 A.先移动栈顶指针,再存入元素 B.先存入元素,再移动栈顶指针C.先后次序无关紧要 D.同时进行 3.允许对队列进行的操作有( )。 A. 对队列中的元素排序 B. 取出最近进队的元素 C. 在队头元素之前插入元素 D. 删除队头元素 4.用链接方式存储的队列,在进行插入运算时( ). A. 仅修改头指针 B. 头、尾指针都要修改 C. 仅修改尾指针 D.头、尾指针可能都要修改 5.设用链表作为栈的存储结构则退栈操作()。 A. 必须判别栈是否为满 B. 必须判别栈是否为空 C. 判别栈元素的类型 D.对栈不作任何判别 6.设指针变量front表示链式队列的队头指针,指针变量rear表示链式队列的队尾指针,指针变量s指向将要入队列的结点X,则入队列的操作序列为()。 A.front->next=s;front=s; B. s->next=rear;rear=s; C. rear->next=s;rear=s; D. s->next=front;front=s; 7.设指针变量top指向当前链式栈的栈顶,则删除栈顶元素的操作序列为()。 A.top=top+1; B. top=top-1; C. top->next=top; D. top=top->next; 8.队列是一种()的线性表。 A. 先进先出 B. 先进后出 C. 只能插入 D. 只能删除 9.设输入序列1、2、3、…、n经过栈作用后,输出序列中的第一个元素是n,则输出序列中的第i个输出元素是()。 A. n-i B. n-1-i C. n+l -i D.不能确定 10.设输入序列为1、2、3、4、5、6,则通过栈的作用后可以得到的输出序列为()。 A. 5,3,4,6,1,2 B. 3,2,5,6,4,1 C. 3,1,2,5,4,6 D. 1,5,4,6,2,3 11.队列的删除操作是在()进行。 A.队首 B.队尾 C.队前 D.队后 12.当利用大小为N 的数组顺序存储一个栈时,假定用top = = N表示栈空,则退栈时,用()语句修改top指针。 A.top++; B.top=0; C.top--; D.top=N; 13.队列的插入操作是在()进行。

栈的基本操作c语言

#include #include #include //函数结果状态代码 #define TRUE 1 #define FALSE 0 #define OK 1 #define ERROR 0 #define INFEASIBLE -1 #define OVERFLOW -2 //Status 是函数的类型,其值是函数结果状态代码 typedef int Status; typedef int SetElemType; typedef SetElemType ElemType; #include "tou.h" #include #include typedef char SElemType; // 栈的元素类型 #define STACK_INIT_SIZE 100 // 存储空间初始分配量 #define STACKINCREMENT 10 // 存储空间分配增量 // 栈的顺序存储表示P46 typedef struct SqStack { SElemType *base; // 在栈构造之前和销毁之后,base的值为NULL SElemType *top; // 栈顶指针 int stacksize; // 当前已分配的存储空间,以元素为单位 }SqStack; // 顺序栈 // 构造一个空栈S。 int InitStack(SqStack *S) { // 为栈底分配一个指定大小的存储空间 (*S).base = (SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType)); if( !(*S).base ) exit(OVERFLOW); // 存储分配失败 (*S).top = (*S).base; // 栈底与栈顶相同表示一个空栈

数据结构实验二-栈和队列的基本操作与应用

实验报告 课程名称_______数据结构实验__________________ 实验项目___ 栈和队列的基本操作与应用____ 实验仪器_____________________________________ 系别 ___ 计算机学院_______________ 专业 __________________ 班级/学号______ _________ 学生姓名_____________________ __ 实验日期__________________ 成绩_______________________ 指导教师____ __________________

一、实验内容: 本次实验主要内容是表达式求值,主要通过栈和队列来编写程序,需要实现整数运算其中需要实现的功能有加减乘除以及括号的 运用,其中包含优先级的判断。 二、设计思想 1.优先级中加减、乘除、小括号、以及其他可以分组讨论优先 级 2.优先级关系用“>”“<”“=”来表示三种关系 3.为实现运算符优先使用两个栈:OPTR 运算符栈与OPND操作 符栈 4.运用入栈出栈优先级比较等方式完成运算 三、主要算法框架 1.建立两个栈InitStack(&OPTR); InitStack(&OPND); 2.Push“#”到 OPTR 3.判断优先级做入栈出栈操作 If“<” Push(&OPTR, c); If“=” Pop(&OPTR, &x) If“>” Pop(&OPTR, &theta); Pop(&OPND, &b);

Pop(&OPND, &a); Push(&OPND, Operate(a, theta, b)); 四、调试报告 遇到的问题与解决 1.C语言不支持取地址符,用*S代替&S来编写代码 2.一开始没有计算多位数的功能只能计算一位数,在几个中间 不含运算符的数字中间做p = p*10+c运算。代码如下:p = p * 10 + c - '0'; c = getchar(); if (In(c)) { Push(&OPND, p); p = 0; } 主要算法改进设想: 1.可以用数组储存优先级 2.可以用C++编写,C++支持取地址符&。 五、实验总结

(完整word版)顺序栈基本操作实验报告

数据结构实验三 课程数据结构实验名称顺序栈基本操作第页 专业班级学号 姓名 实验日期:年月日评分 一、实验目的 1.熟悉并能实现栈的定义和基本操作。 2.了解和掌握栈的应用。 二、实验要求 1.进行栈的基本操作时要注意栈"后进先出"的特性。 2.编写完整程序完成下面的实验内容并上机运行。 3.整理并上交实验报告。 三、实验内容 1.编写程序任意输入栈长度和栈中的元素值,构造一个顺序栈,对其进行清空、销毁、入栈、出栈以及取栈顶元素操作。 2.编写程序实现表达式求值,即验证某算术表达式的正确性,若正确,则计算该算术表达式的值。 主要功能描述如下: (1)从键盘上输入表达式。 (2)分析该表达式是否合法: ?a) 是数字,则判断该数字的合法性。若合法,则压入数据到堆栈中。 ?b) 是规定的运算符,则根据规则进行处理。在处理过程中,将计算该表达式的值。 ?c) 若是其它字符,则返回错误信息。 (3)若上述处理过程中没有发现错误,则认为该表达式合法,并打印处理结果。 程序中应主要包含下面几个功能函数: ?l void initstack():初始化堆栈 ?l int Make_str():语法检查并计算

?l int push_operate(int operate):将操作码压入堆栈 ?l int push_num(double num):将操作数压入堆栈 ?l int procede(int operate):处理操作码 ?l int change_opnd(int operate):将字符型操作码转换成优先级 ?l int push_opnd(int operate):将操作码压入堆栈 ?l int pop_opnd():将操作码弹出堆栈 ?l int caculate(int cur_opnd):简单计算+,-,*,/ ?l double pop_num():弹出操作数 四、实验步骤 (描述实验步骤及中间的结果或现象。在实验中做了什么事情,怎么做的,发生的现象和中间结果) 第一题: #include using namespace std; #define STACK_INIT_SIZE 100 //存储空间初始分配量 #define STACKINCREMENT 10 //存储空间分配增量 #define OVERFLOW -1 #define OK 1 #define NO -1 #define NULL 0 typedef int Status; typedef char SElemType; typedef struct { SElemType *base; //在栈构造之前和销毁之后,base的值为NULL SElemType *top; //栈顶指针 int stacksize; //当前已分配的存储空间,以元素为单位 } SqStack; Status Initstack(SqStack &S)//构造一个空栈S { S.base=(SElemType *)malloc(STACK_INIT_SIZE*sizeof(SElemType)); if(!S.base) exit(OVERFLOW); S.top=S.base; S.stacksize= STACK_INIT_SIZE; return OK; }//InitStack Status StackEmpty(SqStack &S) { if(S.base==S.top)

数据结构实验二(栈和队列)

实验二栈和队列的基本操作及其应用 一、实验目的 1、掌握栈和队列的顺序存储结构和链式存储结构,以便在实际中灵活应用。 2、掌握栈和队列的特点,即后进先出和先进先出的原则。 3、掌握栈和队列的基本运算,如:入栈与出栈,入队与出队等运算在顺序 存储结构和链式存储结构上的实现。 二、实验内容 本次实验提供4个题目,每个题目都标有难度系数,*越多难度越大,学生 可以根据自己的情况任选一个! 题目一:回文判断(*) [问题描述] 对于一个从键盘输入的字符串,判断其是否为回文。回文即正反序相同。如 “abba”是回文,而“abab”不是回文。 [基本要求] (1)数据从键盘读入; (2)输出要判断的字符串; (3)利用栈的基本操作对给定的字符串判断其是否是回文,若是则输出 “Yes”,否则输出“No”。 [测试数据] 由学生任意指定。 题目二:顺序栈和循环队列基本操作(*) [基本要求] 1、实现栈的基本操作 六项基本操作的机制是:初始化栈:init_stack(S);判断栈空:stack_empty(S);取栈顶元素:stack_top(S,x);入栈:push_stack(S,x);出栈:pop_stack(S);判断栈满:stack_full(S) 2、实现队列的基本操作 六项基本操作的机制是:初始化队列:init_queue(Q);判断队列是否为空:queue_empty(Q);取队头元素:queue_front(Q,x);入队:enqueue(Q,x);出队:outqueue(Q,x);判断队列是否为满:queue_full(Q) [测试数据]

由学生任意指定。 题目三:商品货架管理(**) [问题描述] 商店货架以栈的方式摆放商品。生产日期越近的越靠近栈底,出货时从栈顶取货。一天营业结束,如果货架不满,则需上货。入货直接将商品摆放到货架上,则会使生产日期越近的商品越靠近栈顶。这样就需要倒货架,使生产日期越近的越靠近栈底。 [基本要求] 设计一个算法,保证每一次上货后始终保持生产日期越近的商品越靠近栈底。 [实现提示] 可以用一个队列和一个临时栈作为周转。 [测试数据] 由学生任意指定。 三、实验前的准备工作 1、掌握栈的逻辑结构和存储结构。 2、熟练掌握栈的出栈、入栈等操作。 3、掌握队列的逻辑结构和存储结构。 4、熟练掌握队列的出队、入队等操作 四、实验报告要求 1、实验报告要按照实验报告格式规范书写。 *2、写出算法设计思路。 3、实验上要写出多批测试数据的运行结果。 4、结合运行结果,对程序进行分析。 题目四:Rails(ACM训练题) Description There is a famous railway station in PopPush City. Country there is incredibly hilly. The station was built in last century. Unfortunately, funds were extremely limited that time. It was possible to establish only a surface track. Moreover, it turned out that the

试验 --循环队列的基本操作及应用

数据结构实验报告 ----试验三循环队列的基本操作及应用 一、问题描述: 熟悉并掌握循环队列的相关操作,自己设计程序,实现循环队列的构造、清空、销毁及队列元素的插入和删除等相关操作。 二、数据结构设计: #define MAXQSIZE 10 //最大队列长度 struct SqQueue { QElemType *base; //初始化动态分配存储空间 Int front; // 头指针,若队列不空,只想对列头元素 int rear; //尾指针,若队列不空,指向队列尾元素的 //下一个位置 }; 三、功能设计: 程序中所涉及到的函数如下: Status InitQueue(SqQueue &Q) //构造一个空队列Q Status DestroyQueue(SqQueue &Q) //销毁队列Q,Q不再存在 Status ClearQueue(SqQueue &Q) //将Q清为空队列 Status QueueEmpty(SqQueue Q) //若队列Q为空队列,则 //返回TRUE,否则返回FALSE int QueueLength(SqQueue Q) //返回Q的元素个数,即队列长度Status GetHead(SqQueue Q,QElemType &e)//若队列不空,则用e返回Q的对 //头元素,并返回OK,否则返回ERROR Status EnQueue(SqQueue &Q,QElemType e)//插入元素e为Q的新的队尾元素Status DeQueue(SqQueue &Q,QElemType &e)//若队列不空,则删除Q的队头 //元素,用e返回其值,并返回 //OK,否则返回ERROR Status QueueTraverse(SqQueue Q,void(*vi)(QElemType))//从队头到队尾依次 //对队列Q中每个元素调用函数 //vi()。一旦vi失败,则操作失败四、源程序: // c1.h (程序名) #include #include #include // malloc()等 #include // INT_MAX等 #include // EOF(=^Z或F6),NULL

相关主题