搜档网
当前位置:搜档网 › 层状土中桩体复合地基荷载沉降关系

层状土中桩体复合地基荷载沉降关系

层状土中桩体复合地基荷载沉降关系
层状土中桩体复合地基荷载沉降关系

CFG桩复合地基承载力特征值

CFG 桩复合地基承载力特征值 桩径d=400,Ap=3.14*0.2*0.2=0.1256㎡ 本工程矩形布桩,桩间距取1.45mx1.40m , 面积置换率m=22/e d d =2 2)40.145.113.1/(4.0??=0.062 设计桩长14米,桩身采用C25混凝土 本工程标高±0.000相当于地质报告上相对标高153.6米 基础底面标高-3.500相当于地质报告上相对标高149.1米 桩入第2层土长度1l =2-1.0=1.0 m ,1s q =20KPa , 桩入第3层土长度1l =3.4-2.0=1.4m ,1s q =18KPa , 桩入第4层土长度1l =5-3.4=1.6m ,1s q =20KPa 桩入第5层土长度1l =8.3-5.0=3.3m ,1s q =18KPa 桩入第6层土长度1l =11.1-8.3=2.8m ,1s q =24KPa 桩入第7层土长度1l =12.1-11.1=1m ,1s q =20KPa 桩入第8层土长度1l =14-11.1=2.9m ,1s q =30KPa ,p q =450KPa Ra=1n p si i i u q l =∑+p p q A =3.14*0.4*(20*1+18*1.4+20*1.6+18*3.3+24*2.8+20*1+30*2.9)+ 450*3.14*0.2*0.2=390.4+56.5=446KN 桩体试块抗压强度平均值应满足下式: cu f ≥3a p R A =3*446/0.1256=10.7MPa 天然地基桩间土承载力特征值sk f =100Kpa , 代入公式 spk f =a p R m A +(1)m β-sk f =0.062*446/0.1256+0.75*(1-0.062)*100 =220+70=290KPa 取spk f =290KPa KPa f m kN A G N P a n 290/8.2565.25267749417695.05.252625112470=<=?++???+=+=

桩网复合地基施工方案

舟山500kV联网输变电工程镇海变电站场地平整工程 桩网复合地基施工方案 中国能源建设集团浙江火电建设有限公司 2016年10月23日

(签字页) 特殊(专项)施工技术方案(措施)审批表 表号: 6166

目录

舟山500kV联网输变电工程镇海变电站工程桩网复合地 基施工方案 1 工程概述 1.1 工程概述 本工程站址位于浙江省宁波市东北面15km的宁波石化经济技术开发区泥螺山围垦一期工程内,南距镇海区政府10km(直线距离),站址四周空旷,视野开阔,东临灰鳖洋,东距泥螺山围垦一期工程新建一线海堤约200m,南侧为新泓口围垦工程区,土地性质为海域, 表面为浮泥,基本被水覆盖,镇海变电站总占地地面积3.73公顷,围墙内占地面积2.93公顷,进站道路上地面积0.12公顷,挡墙护坡占地面积0.68公顷(进站道路长约118 m)。场地采用桩复合地基,桩基施工采用级配宕渣回填外,桩网托板上部回填采用宕渣和级配碎石加土工格栅筋网回填,本工程桩网复合地基的桩体采用桩身强度较高的PHC桩。PHC AB500桩用于35kV配电装置区、道路等区域,桩长以全截面进入(5)层1.0m控制,桩长约36m。PHC AB400桩用于边坡区域,以(4)层和(5)层为桩端联合持力层,桩长以全截面进入(4)层和(5)层 2.0m 控制,桩长约28m~33m,本工程PHC-AB500-125共2250根,PHC-AB400-95共879根。 变电站围墙外8米为护坡,站区场地±0.00相当于1985国家高程基准3.85 m,现有水平面标高1.45 m,水深约1.2~1.5m,表层①层淤泥层厚2.1~6.7m,平均厚度为6 m,淤泥面标高为0.3~-0.3m,护坡场地管桩桩顶标高为-0.1米,站区管桩桩顶标高为0.2米。 (1) 工程地质情况 站址根据地质勘察报告显示,各层特征现自上而下简述如下: 1) 层淤泥,饱和,流塑,该层在场地内均有分布,层厚 3.7m~6.7m,承载力特征值fak =40kPa; 2) 层粘质粉土,稍密,很湿,该层在场地内均有分布,层厚 5.8m~8.0m,承载力特征值fak=120kPa; 3) 层淤泥质粉质粘土,饱和,流塑,该层在场地内稳定分布。层厚11.0m~20.0m,承载力特征值fak=80kPa; 4) 层粉质粘土,湿,可塑为主,该层在场地内局部缺失。层厚 1.0m~6.8m,承载力特征值fak=150kPa; 5) 层粉细砂,很湿,中密,该层在场地内稳定分布,层厚差异较大,层厚3.2-10.2m不等。承载力特征值fak=200kPa; 6) 层砂质粉土,湿,中密,该层分布较稳定,层厚一般大于5m。承载力特征值fak=150kPa; 7) 层粉质粘土,湿,软可塑,层位较稳定,层顶埋深42.5~43.0m,本次勘察未揭穿,部分钻孔有揭露,最大控制厚度12.0m。承载力特征值fak=150kPa; 各地基土主要物理力学指标推荐值见表1。

多桩型复合地基处理

多桩型复合地基处理 山区沟谷软基的技术探讨 许洪亮1,2,熊震宙1 (1、江西省交通设计院,江西南昌 330002) (2、华东交通大学土木土木建筑学院,江西南昌 330013) 摘要:由于山岭沟谷软基的特殊性,传统单一桩型的复合地基方案难以满足技术、经济、环保等方面要求,而多桩型的复合地基则消除了以上弊端,发挥了各桩型的优势,是桩型复合地基一种新的技术手段。该文基于水泥土夯实桩和CFG桩各自的工程特性,结合具体工程提出了多桩型复合地基的设计方法,并经过试验检测验证了多桩型复合地基设计方案的合理性和工作机理的正确性。 关键词:道路工程;沟谷软基;复合地基;单一桩型;多桩型;设计;检测 0 前言 对于超软地基的处理,传统手段经常采用CFG或水泥土复合桩等技术手段处理,山岭沟谷地区的特殊性,在选择软弱地基处理方案时,需从技术、经济、环境保护等几个方面综合考虑。而采取传统上单一桩型的水泥土夯实桩或CFG桩复合地基方案,如果桩的布置较疏,则在承载力和变形上难以满足要求;如果布置过密,由于挤土效应很容易使刚性较大的桩型断裂,同时也不经济。因此,采取两种甚至两种以上的桩型组成的多桩型复合地基来联合处理山区沟谷软基,消除一种桩型造成的各种弊端,同时发挥各者的优势,就成为一种比较理想和科学的选择,也为桩型复合地基增加了一个新的技术手段。 复合地基作为一种比较成熟的地基处理形式,在工程实践上已经积累了相当的经验。但是,复合地基技术的一个鲜明特色就是理论研究远远落后于工程实践,在工程实践和理论研究的基础上,一些工程师已经意识到了采取一种桩型的复合地基处理软土地基的弊端,开始尝试采取两种或两种以上的桩型联合加固的方法。在工业和民用建筑中,已经有了采用多桩型复合地基的先例,陈强等首先采用数值分析手段初步分析了某一民用工程中CFG桩和GC桩联合加固软弱地基的机理,认为多桩型复合地基具有单一桩型无可比拟的优越性[2]。闫明礼,王明山等提出了多桩型复合地基设计计算方法[3]。从工程实践中碰到的具体问题和从经济方面考虑,发展多桩型复合地基来处理公路沟谷软基是一种趋势,开展多桩型复合地基的研究具有前瞻性和经济性。 赣定高速公路沿线路段大部分位于低山丘陵地 貌区,有些高路堤及拱涵重要结构都处于软基之上,下卧软土层最厚处达到10m左右,属于典型的山区沟谷软基,因此必须对这些软土地基进行有效的处理,以保证公路路基的稳定性及变形要求。 在2003年1月~2004年5月,由赣定高速公路总指挥部牵头,联合天津大学及工程参建等单位,依托赣定高速公路,开展了“山区高速公路沟谷软基处理技术研究”的课题研究并获得成功,取得了良好的经济及社会效益。其中“多桩型复合地基处理山区沟谷软基技术研究”为其中的一个子课题,获得了较多的应用成果,值得同行业所借鉴和推广应用。 实践证明,该技术很好地解决了单一CFG桩间距不能过密,夯实桩水泥土桩深度受限等问题。多桩型复合地基有效地消除了单一桩型应力集中现象,可以更好地发挥其中任一桩型的荷载传递能力。 1 多桩型复合地基技术工程背景 如何选择不同桩型组成多桩型复合地基,是一个重要的研究内容。一般来说,桩身强度应刚柔并济,长度应长短结合。同时,桩的工程特性应存在较大的互补性,这样才能很好地发挥各自的长处,消除某种桩型单一布置带来的弊端。 1.1 水泥土夯实桩的工程特性 水泥土夯实桩是水泥或水泥系固化材料与土混 合形成的桩,由于土质的不同,其固化机理也有区别。用于砂性土时,水泥土的固化原理类同于建筑上常用的水泥砂浆,具有很高的强度,固化的时间也较短。用于粘性土时,由于水泥土惨量有限(7%~20%),且粘粒具有很大的比表面积并含有一定的活性物质,所

复合地基静载荷试验检测报告

水泥土搅拌桩复合地基静载荷试验 检测报告 检测内容:单桩静载荷试验 目录 一、前言 (4) 二、项目概况 (4) 三、地质概况 (4) 四、检测依据 (5) 五、现场检测 (5) 六、检测结果 (6) 七、检测结论 (7) 八、附图表 (7)

一、前言 受湖南金沙路桥建设有限公司梧贵高速公路第二施工合同段项目经理部委托,我公司对其在建的梧州至贵港高速公路K76+940~K77+025段的复合地基进行抗压静载荷试验,用来检验复合地基承载力。该工程采用水泥土搅拌桩复合地基。按合同约定此次共试验了三个试验点,试验采用单桩复合压板试验,承压板尺寸为1.0×1.0m。所试点位由甲方、监理选取,试点编号由甲方提供。外业试验于2010年12月02日至2010年12月20日进行。 二、项目概况 表1

三、地质概况 根据甲方提供的《不良地质地段表》,K76+940~K77+025属水田地段,为冲积灰色淤泥质粘土和褐黄色软塑状饱和粉质粘土,软土平均厚度6.0m,其下为可~硬塑状粉质粘土。 四、检测依据 1、《建筑地基处理技术规范》(JGJ 79-2002) 2、广西梧州至贵港高速公路有关设计及变更文件。 五、现场检测 1、加载方式 现场试验最大加载量按复合地基承载力标准值的2倍即300kPa进行,分为10级,每级加载量为30kPa,总堆载量360kN。 单桩复合地基静载荷试验承压板1.00m×1.00m,板底铺设50mm中粗砂找平层,试坑底开挖至基底标高,坑底面积为 6.00m×6.00m。采用电动油压千斤顶加载、工字钢搭设堆载平台、沙袋堆积提供反力,最大压重量360kN。 2、荷载及沉降测量 荷载值通过压力传感器测量,试桩沉降则通过承压板四边对称架设的位移传感器,测试仪自动记录测量,所有位移传感器均用磁性表座固定于由脚手架钢管构成的基准梁上,基准梁在独立的基准桩上安装,基准桩中心与承压板中心

碎石桩及其复合地基承载力的分析

碎石桩及其复合地基承载力的分析 王志亮 (河海大学岩土工程研究所,南京 210098) 摘 要:介绍单碎石桩及其复合地基的承载力机理及计算方法,并对碎石桩复合地基的工程设计等方面提出了一些建议。 关键词:碎石桩;复合地基;模型试验;滑动圆弧法 中图分类号:T U4 文献标识码:B 文章编号:1005-8524(2000)04-04 B earing C apacity Analysis for G ravel Pile and Composite Foundation WANG Zhi2liang (Institute o f G eotechnical Engineering,Hehai Univer sity,Nanjing 210098) Abstract:This paper introduces the bearing capacity mechanism and calculation methods of single gravel pile and related composite foundation,and presents s ome suggestion to the design of gravel pile composite founda2 tion. K ey w ords:gravel pile;composite foundation;m odel test;sliding arc method 碎石桩因具独特的优点应用日益广泛,大量工程实践表明,软土地基用碎石桩加固后,承载力明显提高,沉降量也减少。选择碎石桩处理地基,最关键的是碎石桩的承载力确定,桩的承载力越高,复合地基达到某一设计的承载力所需要的置换率就越低,地基处理费用在一定程度上就愈少。因此能正确的理解和计算碎石桩及复合地基的承载力意义重大。 1 单碎石桩的承载力模型试验和分析 地基中有一根碎石桩,桩径为r,碎石间的内摩擦角为φp,桩顶上施加荷载P p。假设地基是由各向同性的匀质粘性土组成,其不排水强度为C u。Brauns[1]认为不断增大P p,当P p达到极限荷载时,碎石桩及上部土体将发生被动破坏,破坏区域为倒梯形体abcd(图1),其中ab,cd分别为滑动面。他在作了一些假设,如桩的破坏长度h= 2rtgφ,φ=45°+φp/2;不计地基土和桩体的自重以及τM=0等的前提下,得出了碎石桩的极限承载力与粘性土的不排水强度成正比的结论。 为了研究单碎石桩承载力性状,作者设计了图2的试验装置,试验箱由钢板制成,筒直径350mm,高900mm。桩长分为两组,一组桩长300mm,桩直径为60mm;另一组

复合地基静载荷试验检测报告

××工程复合地基静荷载试验报告编号:07地基(J)02 检 测 报 告 ××检测中心 ×年×月×日

注意事项 1、报告无检测单位“报告专用章”无效; 2、报告无报告编写、报告校对、报告审核人签字无效; 3、报告涂改无效; 4、非经同意,不得部分复制本报告; 5、对本检测报告若有异议,应于收到报告之日起十五日内向检测单位提出,逾期不予受理; 6、对于委托检验,样品代表性由委托单位负责。

建设单位:×××高速公路建设项目办公室设计单位:×××设计院 监理单位:×××工程监理公司 施工单位:×××公司 检测单位:××检测中心 项目参与人员: 报告编写: 报告校对: 报告审核:

××工程复合地基静荷载试验检测报告 一、工程概况 ××工程地上2层。地基基础采用深层搅拌桩。桩径为ф700,基础混凝土强度等级为C25。单桩设计承载力为200kN,经深层搅拌处理后地基承载力特征值不得小于180KPa,建筑结构安全等级为二级。 我中心于历时3日完成对该工程地基的静载荷试验检测工作,试验点(桩)总数为6个。(具体情况见下表1,平面布置示意图见下图1)。现依据试验原始数据提交本次试验检测报告。 表1 各试验点具体情况一览表 二、检测依据 1、《建筑地基处理技术规范》(JGJ79—2002) 2、《岩土工程勘察规范》(GB50021-2001)

3、《建筑桩基技术规范》(JGJ 94-94) 4、《建筑基桩检测技术规范》(JGJ 106-2003) 5、《江西省桩基质量检测管理规定》(试行) 6、《江西省建筑基桩及复合地基检测方法及取样数量》 ---赣力基础【2005】第001号 7 、设计图纸及相关说明文件 三、载荷试验 ㈠、复合地基土载荷试验检测 1、试验设备 试验采用砂袋压重平台反力装置,千斤顶施压,主梁由4根18号工字钢组成,副梁由5根18号工字钢组成。采用1只QYL50型千斤顶加载,承压板顶面沉降变形分别采用对角的2个百分表(精度为0.01mm)测读。加载量由千斤顶上的精密压力表控制(承载板试验装置见图3-1-1)。 图3-1-1 承压板载荷试验装置 2、试验方法 采用分级对试点进行加载。试验标准参照《建筑地基处理技术规范》(JGJ79-2002)进行。 ①加载与卸载分级:分8级进行加载。 ②沉降观测时间:每级加载前后测读一次,以后每隔30min测读一次沉降。当1小时内沉降量小于0.1mm时,施加下一级荷载。 3、终止加载条件 当出现下列情况之一时,即可终止加载: ①沉降量急剧增大,土被挤出或承压板周围出现明显的隆起; ②承压板的累计沉降量已大于其宽度或直径的6%; ③当达不到极限荷载,而最大加载压力已大于设计要求压力值的2倍; 4、复合地基承载力特征值的确定: ①当压力-沉降曲线上极限荷载能确定,而其值不小于对应比例界限的2倍时,可取比例界限;当其值小于对应比例界限的2倍时,可取极限荷载的一半; ②当压力-沉降曲线是平缓的光滑曲线时,可按相对变形值确定:水泥土搅拌桩

CFG桩复合地基验收标准

4.13 水泥粉煤灰碎石桩复合地基 4.13.1 水泥、粉煤灰、砂石碎石等原材料应符合设计要求。 4.13.2 施工中应检查桩身混合料的配合比、坍落度和提拔钻杆速度(或提拔套管速度)、成孔深度、混合料灌入量等。 说明: 4.13.2 提拔钻杆(或套管)的速度必须与泵入混合料的速度相配,否则容易产生缩颈或断桩,而且不同土层中提拔的速度不一样,砂性土、砂质粘土、粘土中提拔的速度为1.2-1.5m/min,在淤泥质土中应当放慢。桩顶标高应高出设计标高0.5m。由沉管方法成孔后时,应注意新施工桩对已成桩的影响,避免挤桩。 4.13.3 施工结束后,应对桩顶标高、桩位、桩体质量、地基承载力以及褥垫层的质量做检查。 说明:4.13.3 复合地基检验应在桩体强度符合试验荷载条件时进行,一般宜在施工结束后2-4周后进行。 4.13.4 水泥粉煤灰碎石桩复合地基的质量检验标准应符合表4.13.4的规定 表4.13.4 水泥粉煤灰碎石桩复合地基质量检验标准 项序检查项目允许偏差或允许值 检查方法单位数值 主控项目1 原材料设计要求 查产品合格证或 抽样送检 2 桩径mm -20 用钢尺量或计算 填料量 3 桩身强度设计要求查28d试块强度 4 地基承载力设计要求按规定的办法 一般项目1 桩身完整性按桩基检测技术规范 按桩基检测技术 规范 2 桩位偏差 满堂布桩 ≤0.04D 条基布桩 ≤0.25D 用钢尺量,D为桩 径 3 桩垂直度% ≤1.5用经纬仪测桩管 4 桩长mm +100 测桩管长度或垂

球测孔深5 褥垫层夯填度≤0.9用钢尺量注:1、夯填土指夯实后的褥垫层厚度与虚体厚度的比值。 2、桩径允许偏差负值是指个别断面。

多桩复合地基

7.9 多桩型复合地基 7.9.1多桩型复合地基适用于处理不同深度具有持力层的正常固结土,或浅层存在欠固结土、湿陷性黄土、可液化土等特殊土,以及地基承载力和变形要求较高的地基处理。 7.9.2 多桩型复合地基的设计应符合下列原则: 1桩型及施工工艺的确定应考虑土层情况、承载力与变形控制要求、经济性、环境要求等综合因素; 2对复合地基承载力贡献较大或用于控制复合土层变形的长桩,应选择相对较好的持力层并应穿过软弱下卧层;对处理欠固结土的增强体,其长度应穿越欠固结土层;对消除湿陷性土的增强体,其长度宜穿过湿陷性土层;对处理液化土的增强体,其长度宜穿过可液化土层; 3 如浅部存有较好持力层的正常固结土,可采用刚性长桩与刚性短桩、刚性长桩与柔性短桩的组合方案; 4 对浅部存在软土或欠固结土,宜先采用预压、压实、夯实、挤密方法或柔性桩复合地基等处理浅层地基,而后采用刚性或柔性长桩进行处理的方案; 5 对湿陷性黄土应根据现行国家标准《湿陷性黄土地区建筑规范》GB50025的规定,选择压实、夯实或土桩、灰土桩等处理湿陷性,再采用刚性长桩进行处理的方案; 6 对可液化地基,可采用碎石桩等方法处理液化土层,再采用有黏结强度桩进行处理的方案; 7 对膨胀土地基采用多桩型复合地基方案时,宜采用灰土桩等处理其膨胀性,长桩宜穿越膨胀土层到达大气影响急剧层以下稳定土层,且不应采用桩身透水性较强的桩。 7.9.3 多桩型复合地基单桩承载力应由静载荷试验确定,初步设计可按第7.1.6条规定估算;对施工扰动敏感的土层,应考虑后施工桩对已施工桩的单桩承载力的折减。 7.9.4多桩型复合地基的布桩宜采用正方形或三角形间隔布置,刚性桩可仅在基础范围内布置,其他增强体桩位布置应满足液化土地基、湿陷性黄土地基、膨胀土地基对不同性质土处理范围的要求。 7.9.5多桩型复合地基垫层设置,对刚性长短桩复合地基宜选择砂石垫层,垫层厚度宜取对复合地基承载力贡献较大增强体直径的1/2;对刚性桩与其他材料增强体桩组合的复合地基,宜取刚性桩直径的1/2;对未要求全部消除湿陷性的黄土或膨胀土地基,宜采用灰土垫层,其厚度宜为300mm 。 7.9.6 多桩型复合地基承载力特征值应采用多桩复合地基静载荷试验确定,初步设计时可采用以下方式估算: 1 由具有黏结强度的A 桩、B 桩组合形成的多桩型复合地基(含长短桩复合地基、等长桩复合地基)承载力特征值: sk p a p a spk f m m A R m A R m f )1(2122221111--++=βλλ (7.9.6-1)

复合地基载荷试验一般要求

(1)复合地基载荷试验的一般要求 1)一般情况下应加载至复合地基或桩体(竖向增强体)出现破坏或达到终止加载条件,也可按设计要求的最大加载量加载。最大加载量不应小于复合地基或单桩(竖向增强体)承载力设计值的2倍。 2)承压板边缘(或试桩)与基准桩之间的距离,以及承压板(或试桩)与基准桩、压重平台支墩之间的距离均不得小于2m,基准梁应有足够的刚度,基准桩打入地面的深度不应小于1m。 3)加荷装置宜采用压重平台装置,量测仪器应有遮挡设备,严禁日光直射基准梁。每个单体建筑在同一设计参数和施工条件下的测试数量不宜少于3组,并不小于总桩数的0.5%~1%;试验间歇时间不应少于28d;所有荷载传感器和位移传感器、加荷计量装置均应每年送国家法定计量单位进行率定,并出具合格证。 (2)复合地基载荷试验要点。复合地基载荷试验要点如下: 1)本试验要点适用于单桩复合地基载荷试验和多桩复合地基载荷试验。 2)复合地基载荷试验用于测定承压板下应力主要影响范围内复合地基的承载力和变形参数。复合地基载荷试验应采用方形(矩形)或圆形的刚性承压板,其压板面积应按实际桩数所承担的处理面积确定,通常取一根桩或多根桩所承担的处理面积,其计算方法见复合地基参数计算。承压板的中心位置应与一根桩或多根桩所承担的处理面积的中心位置(形心)保持一致,并与荷载作用点重合。当同一工程的面积置换率为多种时,对于重要工程,应分别对几种置换率取有代表性的位置进行检测,对于一般工程可选择面积置换率相对较低,作用荷载相对较大的位置进行测试。 3)承压板底面高程应与基础底面设计高程相同。试验标高处的试坑长度和宽度,应不小于载荷板相应尺寸的3倍。基准梁支点应设在试坑之外。载荷板底面下宜铺设中、粗砂或砂石、碎石垫层,垫层厚度取50~150mm,桩身强度高时宜取大值。承压板安装前后都应保持试验土层的原状结构和天然湿度,应防止试验基

桩网复合地基沉降特性

88 桩网复合地基是近年来发展起来的一种新型地基处理技术。和传统的地基处理技术相比,它在减小总沉降和差异沉降、控制工后沉降、节约工程投资等多个方面具有优势,可以同时起到桩体、挤密、排水、加筋等作用,能保证桩土共同承担荷载,因此近年来在工程建设中得到了广泛应用和发展,尤其在软土地基处理方面卓有成效。 1 桩网复合地基的应用 国外早在1975年就开始了桩网复合地基的应用。国内铁路软土地基处理方面的应用实例主要有京沪高速铁路沪-宁段、江苏-昆山段、凤阳段及徐州段地基处理,遂-渝无砟轨道地基处理,改建铁路沪汉蓉通道老河口东至安康段地基处理,秦沈客运专线某路桥过渡段地基处理,武广客运专线地基处理,郑西客运专线地基处理,温福铁路连江车站、樟林车站及鳌江车站地基处理,南昆线永丰营车站地基处理等。 另外,桩网复合地基在其他领域也有应用,如浙江杭甬高速等公路软土地基处理、江苏泰州处理软基上的码头、日本北海道石狩河堤岸改造、秦沈客运专线某路桥过渡段地基的加固处理、江苏南京大型油罐软基处理、料场地基处理等大面积堆载场地的地基处理、江西吉安某河岸挡墙软基处理等。2 现场试验概况 为探索桩网复合地基的沉降特性,本文结合某客运专线车站范围内路基断面进行了现场试验研究。该车站填方高度5~7.5m,但由于进站口某涵洞设计方案的变更,受涵洞施工进度影响,试验断面在现场监测结束时填土高度仅为2.571m,试验断面所在处站坪宽度约为110m。 2.1 工程地质概况 试验段地属三角洲平原地貌,地形平坦开阔,地层主要由冲积相(Q4al )海陆交互相成因(Q4mc )淤泥及淤泥质粉质黏土、第四系上更新统冲积层(Q3al )的粉质黏土、粉土、中细砂、粗砂等组成。地层分层如下: (1)粉质黏土:褐黄色,硬塑,黏性一般,底部40cm,呈软塑状,层厚0.6~2m。 (2)淤泥:灰褐色,软塑,黏性好,可搓成细土条,层厚15.6~19.3m。 (3)黏土:灰黄色,硬塑,黏性一般,手捻有砂感,顶部50c m ,含中砂较多,层厚1.68~3.25m。 (4)粗砂:灰白色,饱和,中密,成分以长石、石英为主,含少量黏粒,层厚2.8~3.7m。 (5)黏土:灰黄色,下部灰褐色,硬塑,含少量有机质,层厚3.94~6.55m。 桩网复合地基沉降特性研究 马凤萍 (铁道第三勘察设计院集团有限公司,天津 300142) 摘要: 通过对现场试验采集的地基分层沉降数据的整理、分析,研究了路堤荷载下预应力管桩桩网复合地基的沉降特性,分析了地基不同深度处土层沉降随土体固结和路堤填筑高度的变化规律,同时得出了分层沉降在路基宽度范围内的分布规律。 关键词: 桩网复合地基;现场监测;分层沉降;差异沉降;软土地基中图分类号: U238;U213.1+5 文献标识码:A 文章编号:1009-2374(2012)29-0088-032012年第29期(总第236期)NO.29.2012 (CumulativetyNO.236)

复合地基承载力计算示例

1、单桩竖向承载力特征值: 设置桩长为空桩1.8m ,实桩6.5m ,桩底穿透淤泥质土夹粉砂5.2m ,进入粉质粘土0.5m ;桩距为1.5*1.5m 。 由桩周土和桩端土的抗力所提供的单桩承载力: kN 102.72455.014.31504.05.0152.5555.014.321=÷???+?+???=+=∑=)(p p n i i si p a A q l q u R α——① 由桩身材料强度确定的单桩承载力 kN 275.71455.014.3120025.02=÷???==p cu a A f R η——② 取①、②两者中较小值,R a =71.275kN ; 式中 cu f —与搅拌桩桩身水泥土配比相同的室内加固土试块(边长为70.7mm 的立方体,也可采用边长为50mm 的立方体)在标准养护条件下90d 龄期的立方体抗压强度平均值(kPa ); η—桩身强度折减系数,干法可取0.20~0.30;湿法可取0.25~0.33; p u —桩的周长(m ); n —桩长范围内所划分的土层数; si q —桩周第i 层土的侧阻力特征值; i l —桩长范围内第i 层土的厚度(m ); p q —桩端地基土未经修正的承载力特征值(kPa ),可按现行国家标准《建

筑地基基础设计规范》GB 50007的有关规定确定; α—桩端天然地基土的承载力折减系数,可取0.4~0.6,承载力高时取低值。 2、复合地基承载力特征值 kPa f m A R m sk p a 508.6750)1055.01(8.0237.0275.711055.0)1(f spk =?-?+?=-+=β 1055.05.1455.014.3m 2 2=÷?= 式中 spk f —复合地基承载力特征值(kPa ); m —面积置换率; a R —单桩竖向承载力特征值(kN ); p A —桩的截面积(m 2); β—桩间土承载力折减系数,宜按地区经验取值,如无经验时可取0.75~0.95,天然地基承载力较高时取大值。 要复合地基承载力达到90KPa ,需调整搅拌桩间距,最疏为1.1m*1.1m ,计算得: kPa kPa f m A R m sk p a 9017.9150)196.01(8.0237 .0275.71196.0)1(f spk >=?-?+?=-+=β 196.01 .1455.014.3m 22=÷?= 2010-11-10

搅拌桩复合地基静荷载试验

××工程复合地基静荷载试验 检 测 报 告 ××检测中心 ×年×月×日

注意事项 1、报告无检测单位“报告专用章”无效; 2、报告无报告编写、报告校对、报告审核人签字无效; 3、报告涂改无效; 4、非经同意,不得部分复制本报告; 5、对本检测报告若有异议,应于收到报告之日起十五日内向检测单位提出,逾期不予受理; 6、对于委托检验,样品代表性由委托单位负责。

建设单位:×××高速公路建设项目办公室设计单位:×××设计院 监理单位:×××工程监理公司 施工单位:×××公司 检测单位:××检测中心 报告编写: 报告校对: 报告审核:

××工程复合地基静荷载试验检测报告 一、工程概况 ××工程地上2层。地基基础采用深层搅拌桩。桩径为ф700,基础混凝土强度等级为C25。单桩设计承载力为200kN,经深层搅拌处理后地基承载力特征值不得小于180KPa,建筑结构安全等级为二级。 我中心于历时3日完成对该工程地基的静载荷试验检测工作,试验点(桩)总数为6个。(具体情况见下表1,平面布置示意图见下图1)。现依据试验原始数据提交本次试验检测报告。 表1 各试验点具体情况一览表

图1 各试验点平面布置示意图 二、检测依据 1、《建筑地基处理技术规范》(JGJ79—2002) 2、《岩土工程勘察规范》(GB50021-2001) 3、《建筑桩基技术规范》(JGJ 94-94) 4、《建筑基桩检测技术规范》(JGJ 106-2003) 5、《江西省桩基质量检测管理规定》(试行) 6、《江西省建筑基桩及复合地基检测方法及取样数量》 ---赣力基础【2005】第001号 7 、设计图纸及相关说明文件 三、载荷试验 ㈠、复合地基土载荷试验检测 1、试验设备 试验采用砂袋压重平台反力装置,千斤顶施压,主梁由4根18号工字钢组成,副梁由5根18号工字钢组成。采用1只QYL50型千斤顶加载,承压板顶面沉降变形分别采用对角的2个百分表(精度为0.01mm)测读。加载量由千斤顶上的精密压力表控制(承载板试验装置见图3-1-1)。 图3-1-1 承压板载荷试验装置

(复合地基静载试验)要点

XXXXXXXXXXXXXXXXXXXXXX工程桩基检验项目(复合地基静载试验) 检测技术方案

XXXXXXXXXXXX检测有限公司 二○一三年八月二十七日 1.工程概况 XXXXXXXXXXXXXXXXX1#、2#、3#、5#、6#、7#、8#、9#号楼工程桩基检 验项目位XXX。该工程基础采用CFG桩,桩径400mm, 混凝土标号为C20。1#、 2#、3#、5#、6#、7#楼桩间距为1450m m×1350mm,8#楼桩间距为1400m m ×1300mm,9#楼桩间距为1500m m×1300mm,呈矩形布桩。桩数及桩参数 见表1。 大唐名村名人居1#、2#、3#、5#、6#、7#、8#、9#号楼工程桩基检验项目参数表1 2.检测依据

依据标准:《建筑基桩检测技术规范》(JGJ 106-2003) 《建筑地基处理技术规范》(JGJ 79-2012)。3.检测项目及目的 3.1验收性检测阶段 (1)复合地基静载试验 确定复合地基承载力特征值是否满足设计要求。 (2)单桩静载试验 确定单桩承载力特征值是否满足设计要求。 (3)低应变法 检测桩身缺陷及位置,判定桩身完整性类别。 4.检测工作量 4.1验收性检测阶段 (1)复合地基静载试验: 检测数量24根,试验最大加载至极限值。 (2)单桩静载试验 检测数量24根,试验最大加载至极限值。 (3)桩身完整性(低应变法)试验 检测数量30%。 5.现场试验(检测) 5.1复合地基抗压静载试验 5.1.1仪器设备 (1)试验加载装置

反力系统:采用堆载反力装置组成,油压千斤顶加载,具体布置详见下图1。 1台超高压电动油泵站。 (2)荷载与沉降的量测仪表 荷载用液压传感器测定,试桩沉降采用位移传感器测定。使用仪表包括: 1套RS-JYB型静载荷测试分析系统 1只压阻式压力传感器; 4只调频式位移传感器。 该系统控制超高压油泵进行自动加载、自动补载,自动判稳;调频式位移传感器量程0~50mm,以量测桩身在荷载作用下的垂直沉降,沉降量由调频式位移传感器测读并被系统自动记录。 5.1.2复合地基静载试验实施细则

CFG桩网复合地基

CFG桩网复合地基 目录 第一章施工准备 (1) 第一节技术准备 (1) 第二节材料准备及混合料配合比试验 (1) 第三节工艺试验 (2) 第四节机具准备 (2) 第五节现场准备 (3) 第二章施工工艺控制 (4) 第一节长螺旋钻孔管内泵压CFG桩工艺 (4) 第二节振动沉管CFG桩工艺 (7) 第三章质量检验 (10) 附录1 CFG桩长螺旋钻孔管内泵压法施工质量通病及预防措施 . 12 附录2 CFG桩振动沉管法施工质量通病及预防措施 (13)

第一章施工准备 第一节技术准备 (一)工艺试验方案编制与审批。 (二)施工方案编制与审批。 (三)地表处理方案编制与审批。 (四)水准控制点的测设。 (五)施工场地内及邻近的架空电线电缆、地下管线、地上地下构筑物以及障碍物的调查。 (六)相关施工记录表、报审及报验表。 (七)施工人员岗前培训与技术安全交底。 第二节材料准备及混合料配合比试验 CFG桩所需原材料包括水泥、粉煤灰、砂、碎石(或卵石)和外加剂,通过检测试验,选定合格的原材料产地及供应方后,可进行混合料的配合比试验。 原材料中,水泥可采用袋装或散装42.5普通硅酸盐水泥,碎石(或卵石粒)径宜为5~25mm,砂可采用粗砂、中砂或细砂,粉煤灰可采用Ⅱ级或Ⅲ级粉煤灰。 混合料配合比试验时,除强度需满足设计要求外,坍落度在长螺旋钻管内泵压时宜控制在16~20cm,在振动沉管机管内投料时宜为3~5cm。 第三节工艺试验

施工单位应根据铁道部有关规范要求,在CFG桩正式施工前,应选择不同的地质条件、不同钻机类型等进行CFG桩施工工艺性试验,试验项目主要有: (一)长螺旋钻机的终孔电流及振动沉管桩机的配重。 (二)地层合适的拔管速度。 (三)混合料的坍落度。 (四)保护桩长。 (五)应地质条件下合理的桩距。 (六)桩位施工顺序。 (七)桩体完整性低应变法检测。 (八)单桩静载试验或复合地基载荷试验。 (九)不同钻机(桩机)工艺。 (十)长螺旋钻机的有效钻杆长度以及振动沉管桩机的机架高度与沉管的有效长度。 通过试验,要总结和确定合理的施工工艺及参数,为大面积CFG 桩施工提供科学依据。同时,对需要设计单位进行优化设计的,应将试桩资料和建议报送设计单位和建设单位。 第四节机具准备 根据地质条件和工艺试验结果等情况,选定合适的机械设备。 松软地质条件宜优先选用长螺旋钻机。长螺旋钻机的有效钻杆长度以及振动沉管桩机的机架高度与沉管的有效长度均应适当大于设计桩长。 当采用长螺旋钻孔、管内泵压混合料灌注成桩时,每台长螺旋钻机配1台混凝土泵、1台200kW发电机(无外部电源时)和1台混凝

一个多桩型复合地基设计计算实例

一个多桩型复合地基设计计算实例 A Example of the Calculation of Multi-type-pile Composite Subgrade 摘要:本文讨论了多桩型复合地基及其复合模量的基本概念。介绍了一个多桩型复合地基承载力和变形的计算实例。 关键词:多桩型复合地基,复合模量,承载力,变形 1 前言 复合地基中的纵向增强体习惯上称作桩,由两种或两种以上桩型组成的复合地基称为多桩型复合地基。比如,对可液化地基,为消除地基液化,可采用振动沉管碎石桩或振冲碎石桩方案。但当建筑物荷载较大而要求加固后的复合地基承载力较高,单一碎石桩复合地基方案不能满足设计要求的承载力时,可采用碎石桩和刚性桩(如CFG 桩)组合的多桩型复合地基方案。这种多桩型复合地基既能消除地基液化,又可以得到很高的复合地基承载力。如太原市华宇·绿洲项目12~22层住宅楼均采用该方案,经济效益较高。 又如,当地基土有两个好的桩端持力层,分别位于基底以下深度为Z 1(Ⅰ层)和Z 2(Ⅱ层)的土层,且Z 1<Z 2。在复合地基合理桩距范围内,若桩端落在Ⅰ层时,复合地基不能满足设计要求。若桩端落在Ⅱ层时,复合地基承载力又过高,偏于保守。此时,可考虑将部分桩的桩端落在Ⅰ层上,另一部分桩的桩端落在Ⅱ层上,形成长短桩复合地基,需说明的是,多桩型复合地基和长短桩复合地基意义一致,设计计算方法完全相同。 工程中单一桩型复合地基的设计计算方法相对比较成熟,工程经验积累非常多。但对于两种或两种以上桩型的多桩型复合地基、长短桩复合地基承载力和变形如何计算,虽有很多文献专门论述过,但工程经验不多,本文介绍一个工程实例,以积累多桩型复合地基设计算经验。 2 多桩型复合地基承载力计算 一般地,将复合地基中荷载分担比高的桩型定义为主控桩(桩的模量相对较高,桩相对较长)。其余桩型为辅桩,并按荷载分担比由大到小排序。工程中常用的是两种桩型组成的复合地基(或长短桩复合地基)。 下面先就两种桩型组成的复合地基承载力计算公式进行推导,并可推广到两种以上桩型的复合地基。基本思路为: (1)由天然地基和主控桩复合形成复合地基,视为一种新的等效天然地基,其承载力特征值为f spk1。 (2)将等效天然地基和辅桩复合形成复合地基,求得复合地基承载力即两种桩型复合地基承载力。 具体推导如下: 基础下天然地基土的承载力特征值为f ak 。主控桩的断面面积为A p1,平均面积置换率为m 1,单桩承载力特征值为R a1。则主控桩和天然地基形成的复合地基承载力特征值为 ()ak p a spk f m A R m f 1111 11 11-+=βα (1) 式中 α1—桩间土承载力提高系数,与土性和主控桩成桩工艺以及主控桩的桩径、桩距等有关。 对非挤土成桩工艺,α1=1; β1—桩间土承载力发挥系数,一般β1≤1。 基础下辅桩的断面面积为A p2,平均面积置换率为m 2,单桩承载力特征值为R a2。辅桩与承载力

建筑工程管理CFG桩复合地基承载力及施工检测

(建筑工程管理)CFG桩复合地基承载力及施工检 测

CFG桩复合地基承载力及施工检测 闫明礼1,申计春2,刘伟3,闫雪峰4 中国建筑科学研究院地基所,北京,100013;2.邢台钢铁X公司,邢台,054027;3.北京科技大学基建处,北京,100083;4.冶金部建筑研究总院地基所,北京,100088) 提要 本文讨论了CFG桩复合地基承载力确定,以及复合地基检测应注意的几个问题。 关键词:CFG桩复合地基,承载力,施工检测,褥垫厚度 Abstract:Inthispaper,bearingcapacityofCFGpilecompositefoundationanditstestingafterconstructiona rediscussed. Keywords:compositefoundationofCFGpile;bearingcapacity;constructiontesting;thicknessofflexiblec usion 中图分类号:TU4文献标识码:A 作者简介:闫明礼(1942-),男,汉族,河北乐亭人,研究员,博士生导师,硕士学位。壹、引言 CFG桩复合地基技术已在全国广泛推广应用,国家行业标准《建筑地基处理技术规范》(JGJ79-2002)的颁布,为工程技术人员进行CFG桩复合地基设计、施工及检测提供了技术依据。但在复合地基承载力的确定及复合地基检测方面,在不同地区基于某些地区性经验,存在壹些差异。本文将根据自己壹些粗浅体会就上述问题做壹些讨论。 二、复合地基承载力的确定 根据《建筑地基基础设计规范》(GBJ79-2002)(简称地基规范)和《建筑地基处理技术规范》(JGJ79-2002)(简称地基处理规范),复合地基承载力确定可分为设计阶段和竣工验收阶段进行讨论。 1、设计阶段 在复合地基设计阶段,地基规范规定:复合地基承载力特征值应通过现场复合地基载荷试验确定,或采用增强体的载荷试验结果和其周边土的承载力特征值结合经验确定;地基处理规范规定:复合地基承载力特征值,应通过现场复合地基载荷试验确定。初步设计时,也可按下式估算: fspk=mRa/Ap+β(1-m)fsk(1) 式中:fspk—复合地基承载力特征值(kpa); m—面积置换率; Ra—单桩竖向承载力特征值(kN); Ap—桩的截面积(m2); β—桩间土承载力折减系数,宜按地区经验取值,如无经验时可取0.75~0.95,天然地基承载力较高时取大值; fsk—桩间土承载力特征值(kPa),宜按当地经验取值,如无经验时,可取天然地基承载力特征值。 实际工程中,有条件时先在拟建场地做现场载荷试验,可为设计提供可靠的设计参数。而很多情况是在无试验资料条件下按(1)式估算复合地基承载力,但要结合工程实践经验,合理确定Ra、fsk、β等参数的取值。希望公式计算值接近但不大于载荷试验结果,而大量试验结果表明,公式计算结果壹般不大于载荷试验结果。 2、竣工验收阶段 由之上讨论可知,在复合地基设计阶段,确定复合地基设计参数时,用公式(1)估算复合地基承载力是符合规范要求的。在竣工验收阶段,能否只做单桩静载试验.用单桩承载力Ra和地质报告提供的天然地基承载力fak(或桩间土静载试验结果fsk)按公式(1)计算确定复合地基承

复合地基静载试验规范

建筑地基处理技术规范·附录A 复合地基载荷试验要点 本试验要点适用于单桩复合地基载荷试验和多桩复合地基载荷试验。 复合地基载荷试验用于测定承压板下应力主要影响范围内复合土层的承载力和变形参数。复合地基载荷试验承压板应具有足够刚度。单桩复合地基载荷试验的承压板可用圆形或方形。面积为一根桩承担的处理面积;多桩复合地基载荷试验的承压板可用方形或矩形,其尺寸按实际桩数所承担的处理面积确定。桩的中心(或形心)应与承压板中心保持一致,并与荷载作用点相重合。 承压板底面标高应与桩顶设计标高相适应。承压板底面下宜铺设粗砂或中砂垫层,垫层厚度取50~150MM,桩身强度高时宜取大值。试验标高处的试坑长度和宽度,应不小于承压板尺寸的3倍。基准梁的支点应设在试坑之外。 试验前应采取措施,防止试验场地地基土含水量变化或地基土扰动,以免影响试验结果。 加载等级可分为8~12级。最大加载压力不应小于设计要求压力值的2倍。 每加一级荷载前后均应各读记承压板沉降量一次,以后每半个小时读记一次。当一小时内沉降量小于时,即可加下一级荷载。 当出现下列现象之一时可终止试验: 1 沉降急剧增大,土被挤出或承压板周围出现明显的隆起; 2 承压板的累计沉降量已大于其宽度或直径的6%: 3 当达不到极限荷载,而最大加载压力已大子设计要求压力值的2倍。 卸载级数可为加载级数的一半,等量进行,每卸一级,间隔半小时,读记回弹量,待卸完全部荷载后间隔三小时读记总回弹量。 复合地基承载力特征值的确定: 1 当压力一沉降曲线上极限荷载能确定,而其值不小于对应比例界限的2倍时,可取比例界限;当其值小于对应比例界限的2倍时,可取极限荷载的一半; 2 当压力一沉降曲线是平缓的光滑曲线时,可按相对变形值确定: 1)对砂石桩、振冲桩复合地基或强夯置换墩:当以粘性土为主的地基,可取S/B

相关主题