搜档网
当前位置:搜档网 › 道路照明见度的计算模型研究

道路照明见度的计算模型研究

道路照明见度的计算模型研究
道路照明见度的计算模型研究

道路照明能见度的计算模型研究

WENG Ji, HU YingKui & YING Wen

摘要:能见度是道路照明中影响驾驶员视线可靠性的综合评价指标,也是影响道路照明安全和节能的重要因素。本文介绍了道路照明能见度的概念及其影响因素。也解释了道路照明设计的小目标能见度计算模型,并从视觉可靠性和驾驶员视觉舒适度的角度描述了制定城市道路照明能见度标准的意义。

关键字:道路照明,能见度,计算模型,设计标准

1、引言

城市道路照明的目的是确保交通安全,减少交通事故的发生,提高交通运输效率,为在夜间出行的机动车和非机动车驾驶员以及乘客建立一个良好的视觉环境。根据中国城市道路照明设计标准[1],道路基于其功能被分为四类,即快速路,主干路,次干路和支路。同时,评估道路照明的相应指标还包括平均路面亮度、整体均匀度、纵向均匀度、失真炫光限制和环绕比(SR )。另外,道路照明标准还需要良好的引导。

研究[2]表明,能够影响道路照明质量的各种影响因素,即平均路面亮度、环绕比和失真炫光之间存在着某些内在的关系。它们对道路驾驶员的视觉功能具有全面的影响,也就是说,把这些个别道路照明质量指标和目标亮度结合起来,共同决定了道路照明的能见度条件。能见度是一个能够全面评价影响驾驶员的视觉可靠性的指标,这对于道路照明安全和节能来说具有重要意义。为了充分发掘道路照明的功能,我们可以根据国际道路照明标准的发展趋势,结合中国道路照明的现状,对道路照明技术指标进行深入研究,从而制定出一个更加实用、更加科学、更加具有前瞻性和先进性的道路照明亮度标准。

能见度测量的范围是人眼识别现有对象或形状的困难程度,它是一个心理物理学测量,用来描述人眼观测和识别目标物时主观感受[3]。对于道路照明,路面照明亮度本身不足以确保驾驶员对道路目标物的准确识别,必须提高目标物背景的亮度差,使其大于可以识别的最小值。因此,能见度指标通常被表示为可视水平[2],即一个表示观测目标物亮度和背景亮度之间的差值与亮度差阈值的商的系数:

L L VL ??= (1) 这里,VL 表示能见度水平;ΔL 表示观测目标与背景亮度之间的差值,即ΔL=L t -L b ;ΔL 0表示目标刚好可以被识别时观测目标与背景之间的亮度差,即阈值亮度

差,也就是ΔL 0=L t0-L b 。

从上述公式可以看出,目标物亮度和其相邻的背景亮度以及阈值亮度差都是影响能见度水平的主要因素。研究[4]表明,阈值亮度差的重要因素是对相邻环境和失真眩光的亮度适应、目标对象的存在时间、观测者年龄和负对比度校正(目标物的亮度低于背景亮度)。为了更合理的道路照明设计,小目标能见度(STV )的设计标准按照美国道路照明标准RP-8-00[5]的推荐。这个标准中,为直干单行道的清晰表面计算出了STV ,是在识别时间和视场角分别为0.2s 和7.45’,并且驾驶员年龄为60岁以上、眼睛高度为1.45m 的不利条件下。在计算过程中,驾驶员被要求观测20个垂直放置的规格为0.18m*0.18m 的小目标漫反射板(表面反射率为0.5),距离驾驶员正前方83.07m 。然后计算每个均匀布置在两个灯柱两行之间的小目标能见度水平,使它们的加权作为STV 。标准RP-8-00中指定的小目标能见度计算模型是相当复杂的。为了更方便的计算道路照明能见度,本文利用阈值亮度测试和广义韦伯-费希纳定律来简化一定计算条件下的计算模型。

2、计算目标物和背景亮度的模型

2.1目标物亮度L t

假设目标物的表面反射遵从朗伯定律[6],可以来源于平方反比定律

)/(,)5.0(sin )(sin cos ),(222m cd h H LLF c c I L tp γ

ργγγ?-?????= (2) 其中,Ltp 表示单个灯具照射下的目标物亮度;c ,γ表示灯具相对P 点的角关系,参见图1;I 表示角γ和c 处的发光强度;LLF 表示灯具的光损耗因子;H 表示灯具的高度;ρ表示目标物的反射率;h 表示目标物的高度。

目标物亮度Lt 是所有灯具对目标物贡献亮度的总和。

图1 亮度计算的坐标图

2.2 背景亮度L b

某点P 在一个灯具照射下生成的路面亮度如下[7]:

)/(,),(),(22m cd H

MF LLF c I L i i i i pi ???=γβγγ (3) 点P 在n 个灯具照射下的亮度总和如下【7】:

)/(,),(),(212m cd H

MF LLF c I L n i i i i i p ∑=???=γβγγ (4) 其中,c i ,γi 表示点P 相对于灯具i 的坐标;I (c i ,γi )表示灯具i 在P 点产生的

光强度;γ(βi ,γi )表示简化的亮度系数,可以从标准路面的γ表中获得,标准

路面对应于实际路面;H 表示灯具的安装高度;LLF 表示灯具的光损耗因子;MF 表示r 表的生产系数,通常为10000。

在能见度的计算中,目标物的背景亮度(L b )应该选择为相对目标物上边界和下

边界(L b1和L b2,如图2)中间的平均亮度【6】

,即

)/(,2

221m cd L L L b b b += (5) 其中,L b1是目标物上边界的背景亮度,即在目标物后11.77m 处的路面亮度,由公

式(3)计算的得出;L b2是目标物下边界的背景亮度,即目标物正下方的路面亮度。

(a)俯视图 (b )侧视图

图2 计算目标物的背景亮度的位置图

3、阈值亮度差相关参数的计算模型

3.1等效光幕亮度L v

等效光幕亮度是由眩光源对人眼产生的照度

(E θi ),以及观测方向与光线从眩光源处入射方向之间所形成的角度(θ)所决定的。它可以表示为以下实验公式[7]:

)/(,21m cd E K L n i m i v ∑==θθ (6)

其中,K=10(平均);E θi 是灯具i 在观测者人眼平面产生的垂直亮度;θ是观测方

向和光线从眩光源处入射方向之间的夹角;当θ<20时,m=2.3-0.71g θ;当θ≥20时,m=2。

灯具与观测点P 之间的角度θ如图3所示,假定点A ,D 和P 在路面的坐标分别为为(xA ,yA ),(xD ,yD )和(xP ,yP ),可以导出一下式子:

212322212cos d d d d d -+=θ (7)

.

)()()09.0(,

07.83)09.045.1(,

)()()(22232222221D A D A D A D A y y x x H d d y y x x h H d -+-+-=+-=-+-+-=

根据平方反比定律:

θγθcos ),(21d LLF c I E A A i ?= (8)

图3 等效光幕亮度的计算

.)()(,2

2h H y y x x tg y y x x tgc D A D A A A

D D A A --+-=--=γ

在计算等效光幕亮度时,CIE 规范中假定光线被车辆顶部遮挡的角度为200[8]。这意味着200倾角上方的灯具不包括在眩光计算范围内,即只考虑图3中灯具角度在θ1≤200范围内的眩光影响。

如图3所示,

.45.1,938.0,07

.8309.045.1,

1A D a b b b a y y H tg tg --=

=-=

+=θθθθθθ

3.2 人眼的适应亮度La 根据《城市道路照明设计标准》,夜间路面平均亮度Lb 范围应为0.5-5.0cd/m2以配合人眼的适应,而人眼的适应亮度是目标物的背景亮度和等效光幕亮度之和:)/(,2m cd L L L v b a +=(9)

其中,La 为人眼的适应亮度;Lb 为目标物的背景亮度;Lv 为等效光幕亮度。

4、阈值亮度差的计算模型

能见度水平的计算取决于阈值亮度差。研究告诉我们阈值亮度差在一定条件下与人眼的适应亮度成比例,此时它与视场角成反比[2]。在标准RP-8-00中,基于阿德里安模型其可以被表述为以下公式[4,5]:

)/(,220m cd G F k L ??

? ??+=?α (10) 其中,k 是系数,并且k=2.6;A 为观测视场角,用“`”表示;F 表示人眼的亮度适应能力,F=f 1(L a );G 也表示人眼的亮度适应能力,G=f 2(L a )。

另外,标准[4,5]中还给出了复杂的F 和G 的表达式以适应不同人眼的亮度适应范围。因此,一个具有一定准确性的简化计算模型可以通过阈值亮度测试获得。

4.1 阈值亮度测试

阈值亮度测试利用的是恒定刺激法,其中屏幕背景亮度和不同大小的兰道尔环亮度可以独立运用不同的计算机仿真方法进行自由调整。从视力正常的年龄在20到30之间的人中选取一半男性一半女性共20名受试者,使他们观察兰道尔环的开口方向并作出判断,从而得到阈值亮度差在不同背景亮度(0.3515–11.67 cd/m2)和不同识别概率(P=33.33%, 44.44%, 55.56%, 66.67%, 77.78%, 88.89%)下的测量值。大约6000个值通过至少18000次测试获取。根据我们对城市道路的测量,城市机动车辆道路的路面亮度通常在0.5–5.0 cd/m 2之间。在这种情况下,如果视场角7.45′恒定,则可以通过对阈限亮度差ΔL 0和背景亮度L b 在识别概率为99.96%时的回归拟合推导出

下面的关系式:

()[])/(,/119.045.7/lg 3526.03927.16.222

5639.0%)96.99(0m cd n L L L b b p ++?=?=(11) 其中,L b 为目标物的背景亮度;n 为测试方法的调整系数,当L b ≥0.6 cd/m 2时,

n=3.34;当0.6cd/m2>L b>0.00418 cd/m2时,n=3.47。

从表1的对照中可以看出,利用公式(10)和(11)计算出的ΔL

结果几乎相同,相对误差在-1.25%到+1.47%之间。因为阈值亮度差通常比背景亮度低1%,所以如果把系统误差考虑在内的话,公式(11)可以被认为可靠的。此外,由于在标准RP-8-00中,视场角被指定为常量7.45′,结果证明这是一个非常实用的阈值亮度差简化计算模型,并且具有一定的准确性。

表1 公式(11)与标准RP-8-00中公式(10)的关于阈值亮度测试计算结果的对照表

4.2 阈值亮度差的校正系数

然而,在实际道路照明条件下,会发生在亮背景下观察黑色目标物的现象,也就是说,观察负对比条件下的目标物会更加便利。换句话说,人眼往往更容易感知亮背景下的黑色目标,这就需要对阈值亮度差进行负对比校正。

根据标准RP-8-00中计算负对比校正系数K

f

的数学模型[5]可知,这个系数随人眼适应亮度的增大而略有上升。如果我们把适应亮度Lb看做对人眼的光刺激量,把负对比校正系数Kf看做相应于光刺激量的视觉感知量,可以通过用广义的韦伯-费希纳定律

[10]对负对比校正系数K

f

和视场角α为7.45′时范围在0.5–5.00 cd/m2之间的人眼适应亮度La进行回归分析,推导出下面的关系表达式:

3

2480

.0

max

2

2480

.0

max

2480

.0

max

)

)

/

(ln(

2739

.0

)

)

/

(ln(

4036

.0

)

/

ln(

2052

.0

7185

.0

a

a

a

a a

a

f

L

L

L

L L

L

K +

+

+

=

(12)

其中,Lamax为人眼适应亮度La的最大值,在公式中为5cd/m2。

上述公式的确定系数为0.999,计算结果与标准RP-8-00表2中的每个Kf计算结果更加相符,全部相对误差在-0.03%到+0.01%之间。这表明,负对比校正系数与人眼适应亮度之间的关系完全符合广义的韦伯-费希纳定律,公式(2)可以用来计算道路照明亮度。

表2 不同计算模型的负对比校正系数的对照表

视力测试表明,识别时间越短,人眼对目标物的辨别能力越低。阈值亮度差的计算模型可以表述为公式(11),然而,这个模型是在识别时间为2s或者不限时的基础上计算出来的。因此,为了采取美国道路照明标准RP-8-00中规定的识别时间为0.2秒的小目标能见度评价方法,必须对识别时间进行校正。研究表明,识别时间校正系数Kt与视场角和人眼适应亮度有关。根据标准RP-8-00计算模型中的识别时间校正系数,对经典的韦伯-费希纳定律[10]进行回归分析,以简化计算。如果我们把适应时间

Lb 看做对人眼的光刺激量,把时间校正系数Kt 看做相应于光刺激量的视觉感知量,下面的关系式可以推导出校正系数Kf ,其中人眼适应亮度La 在0.75–5.00 cd/m2之间,视场角α为7.45′,观察时间为0.2s 。

a t L K lg 03415.06605.1+= (13)

上述公式中的确定系数为0.999,其计算结果与标准RP-8-00表3中的每个K t 计算

结果几乎相符,全部相对误差在-0.03%到+0.01%之间。这表明,时间校正系数与人眼适应亮度之间的关系完全符合韦伯-费希纳定律,因此当按照美国道路照明标准计算照明亮度时,公式(13)可以用来计算识别时间校正系数K t 。

表3 不同计算模型的识别时间校正系数的对照表

研究[5]表明,角膜和人眼的晶状体会随着年龄的增长逐渐变黄,瞳孔的收缩功能会变弱。人60岁时的光灵敏度相比于20岁时会下降到33%。在美国道路照明标准中,在识别时间为0.2s ,驾驶员年龄为60岁的不良条件下, 给出了小目标能见度的建议标准值。相对于标准RP-8-00给出的年龄校正系数表达式,在驾驶员年龄为60岁时其计算出的年龄校正系数Ka 的结果是1.7682。

综上所述,当人眼的适应亮度范围是0.75–5.00 cd/m 2

,识别时间和视场角分别是0。2s 和7.45′时,驾驶员为60岁的阈值亮度差(即经过识别时间、年龄和负对比校正后的阈值亮度差)如下所示:

)/(),lg 2060.01()6367.0lg 2532.01(07984.0225639.00m cd L L L K L a a

a f -?++=? (14)

其中,La 表示人眼适应亮度,单位为cd/m ;Kf 为负对比校正系数,通过公式(12)得到,正对比校正系数Kf=1。

5、STV 计算模型

当阈值亮度差已知时,能见度水平可以通过公式(1)得出。计算能见度水平首先用标准RP-8-00提出的模型,然后采用本文的简化模型,假定目标物与背景的亮度差ΔL 是常数0.5cd/m2,并且其他条件下也不变。其结果如表4所示,误差不随ΔL 的变化而变化。

表4 能见度水平两种方法计算结果的对照表

如表4所示,本文阈值亮度差测试的计算结果与标准RP-8-00中每个结果都相符,

且误差在-1.4%到+1.22%之间,这表明本文所使用的阈值亮度差的推导方法是正确的。因此,公式(14)可以用于道路照明设计中计算修正后的阈值亮度差。

能见度水平不管是正值还是负值,它们都可能是实际道路照明面积的影响因素,为了方便道路照明设计,这里采取正值。如果是这样,绝对值大的能见度水平表示更容易被观察或快速地发现。

因此,所得到的加权能见度水平RWVL [5]是

)(1.010VL ABS RWVL -= (15)

同样地,路面其他相关点的能见度水平也可以被计算出,其加权能见度水平可根据以下公式得到:

∑==m i i m

RWVL ARWVL 1/ (16)

其中,m 表示相关点的编号。

最后,STV 有下面式子得到

)lg(10ARWVL STV -= (17)

STV 其实是能见度水平(VL )的加权平均值。

6、总结

这个能见度计算模型表明,对于小目标能见度水平(STVL ),首先要考虑表面亮度和目标物的背景亮度产生的影响,人眼适应亮度和等效光幕亮度,同时要考虑负对比、观测时间(包括反应时间)和驾驶员年龄的校正。其次,在计算STVL 时,要分别计算各个点的STVL ,然后求其加权平均值。因此,路面亮度对应的最大值、最小值以及平均值可以分别计算出来,以便于使STV 包含路面亮度整体统一性的所有信息。此外,如果车道外的纬向宽5m ,这个区域的亮度也被认为是除了平均路面亮度之外的背景亮度,SR 的贡献也被包括在STV 的计算值内。因此,能见度水平是一个全面地表达影响驾驶员视觉功能的评价指标。

道路照明的主要目的是为了提供良好的能见度,在道路照明设计中,能见度能更准确地表述人眼的真实视觉效果。采用简化的 STV 计算模型,可能会更好地促进能见度在道路照明中设计中的应用。与此,可以创建更好的道路表面亮度分布、位置和间隔,因为灯具可以优化,可以确定合理光源光谱分布,可以获得最佳均匀性范围,从而确保道路照明的安全性和节能性。能见度指标应该尽快被纳入城市道路照明标准,充分提高中国的道路照明水平,满足安全要求不断提高的需求,降低能源消耗,实现节能降耗和积极推动绿色城市道路的发展。

参考文献:

[1] CJJ 45-2006 J 627-2006. 城市道路照明设计标准. 北京中国园林与建筑出版社, 2006

[2] Coaton J R, Marsde A M. Chen DH . 灯具与照明. 上海复旦大学出版社, 2000

[3] Pang Y F. 视觉与照明. 北京中国铁路出版社, 1993

[4] Adrian W. 目标能见度计算模型. 照明工程报. 1989(4): 26–31

[5] ANSI/IESNA RP-8-00. 道路照明, 2000

[6] Olkan C, Bugra E. 道路照明设计方法与评估.设计与工程科学社会, 2000

[7] Hu P S, Li J S.城市道路照明.北京水利电力出版社, 1990

[8] CIE.机动车与步行交通道路照明规范, 1995

[9] Weng J.道路照明设计调查. 重庆大学硕士学位论文, 2006

[10] Chen Z L, Weng J, Hu Y K, et al. 照明工程定性分析到定量分析的转变研究.[J]. 重庆大学硕士学位论文.2006, (4): 1–3

怎么用经纬度计算两地之间的距离

怎么用经纬度计算两地之间的距离? 1、地球赤道上环绕地球一周走一圈共40075.04公里,而@一圈分成360°,而每1°(度)有60,每一度一秒在赤道上的长度计算如下: 40075.04km/360°=111.31955km 111.31955km/60=1.8553258km=1855.3m 而每一分又有60秒,每一秒就代表1855.3m/60=30.92m 任意两点距离计算公式为 d=111.12cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]} 其中A点经度,纬度分别为λA和ΦA,B点的经度、纬度分别为λB和ΦB,d为距离。 2、分为3步计算: 第1步分别将两点经纬度转换为三维直角坐标: 假设地球球心为三维直角坐标系的原点,球心与赤道上0经度点的连线为X轴,球心与赤道上东经90度点的连线为Y轴,球心与北极点的连线为Z轴,则地面上点的直角坐标与其经纬度的关系为: x=R×cosα×cosβ y=R×cosα×sinβ z=R×sinα R为地球半径,约等于6400km; α为纬度,北纬取+,南纬取-; β为经度,东经取+,西经取-。 第2步根据直角坐标求两点间的直线距离(即弦长):

如果两点的直角坐标分别为(x1,y1,z1)和(x2,y2,z2),则它们之间的直线距离为:L=[(x1-x2)^2+(y1-y2)^2+(z1-z2)^2]^0.5 上式为三维勾股定理,L为直线距离。 第3步根据弦长求两点间的距离(即弧长): 由平面几何知识可知弧长与弦长的关系为: S=R×π×2[arc sin(0.5L/R)]/180 上式中角的单位为度,1度=π/180弧度,S为弧长。 3、1度的实际长度是111公里。但纬线的距离会越考两端越小,他的距离就会变成111乘COS纬度数,经度不变。 4、南北方向算出两点纬度差,一度等于60海里,1分等于1海里,海里与公里换算关系1海里等于1.852公里。东西方向量出距离到两点间纬度附近量出纬度差,得出海里数,再乘以1.852换算成公里。可按直角三角形原理求出两点间距离。 5、度的实际长度是111公里。但纬线的距离会越考两端越小,他的距离就会变成111乘COS纬度数,经度不变(如果在同一经度)

道路照明亮度计算

道路照明亮度计算 一、计算条件的若干规定 进行路面亮度计算时,计算是段的选择、计算点的设置、观察点的高度、纵向位置和横向位置等和测量路面亮度的规定相同,见第八章第二节。 二、路面上任意点亮度的计算 1、根据等光强曲线图和γ表进行计算 一个灯具在某点P上所产生的亮度(173页有一公式) 数个灯具在P点上产生的总亮度(173页有一公式) 式中c i,γ1——计算点(P)相对于第i 个灯具的坐标; I(c i,γ1)——第i个灯具指向计算点(P)的光强值。可由该种灯具的等光强曲线图查出或内插求出; γ(βi,γ1)——简化亮度系数。可从实际路面测得或从实际路面相对应的标准路面的γ表中查出(见附表); h——灯具的安装高度。 计算路面上某一点的亮度时,只需考虑位于计算点前方(即向观察位置一方)5倍安装高度、后方(即观察位置远侧)12倍安装亮度、两侧各5倍安装亮度范围内的灯具对该点亮度的贡献。 2、根据灯具的等亮度曲线图讲行计算 如果灯具的光度测试报告给出了等亮度曲线图,有时也可以用它来逐点计算路面上的亮度。 使用等亮度曲线图时应该注意的是,该图是对于平行于路轴并经过灯具的垂直平面(c=0?平面),并在路面上距离灯具的垂直投影点为10h的观察者进行计算和绘制的。因此,使用该图的方法与观察者的实际位置有关,可分为两种情况予以考虑。 (1)观察者位于灯具排列线上。 见图7-10,由于这时观察者的位置和计算、绘制等亮度图时所依据的条件一致,因此,使用起来就比较简单。首先画一张以灯具安装高度作标尺的、比例和等亮度曲线图相一致的缩尺道路平面图。然后叠加上透明的等亮度图,令道路的纵轴和等亮度图的纵轴平行,且使等亮度图的中心点(0,0)和灯具的投影位置重合。随后,在任意点上的相对亮度就可以读出。对第二个灯具继续重复这一过程,并把结果叠加,就可以求出该点的总相对亮度(事实上等

力学计算公式

? 常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σmax=N max/A≤[σ] 其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA @ 其中σ为应力,E为材料的弹性模量,ε为轴向应变, EA为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q 其中,Q为剪力,A Q为剪切面面积 4.静矩(是对一定的轴而言,同一图形对不同的坐标轴 的静矩不同,如果参考轴通过图形的形心,则x c=0, y c=0,此时静矩等于零) 对Z轴的静矩S z=∫A ydA=y c A 其中:S为静矩,A为图形面积,y c为形心到坐标轴的 距离,单位为m3。 5.惯性矩 … 对y轴的惯性矩I y=∫A z2dA

其中:A为图形面积,z为形心到y轴的距离,单位为m4 常用简单图形的惯性矩 矩形:I x=bh3/12,I y=hb3/12 圆形:I z=πd4/64 空心圆截面:I z=πD4(1-a4)/64,a=d/D (一)、求通过矩形形心的惯性矩 " 求矩形通过形心,的惯性矩I x=∫Ay2dA dA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12(二)、求过三角形一条边的惯性矩

I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h 》 则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy =[by3/3]h0-[by4/4h]h0=bh3/12 6.梁正应力强度条件(梁的强度通常由横截面上的正应 力控制) σmax=M max/W z≤[σ] 其中:M为弯矩,W为抗弯截面系数。 7.超静定问题及其解法 对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。 8.抗弯截面模量

经纬度计算距离

根据两点经纬度计算距离 这些经纬线是怎样定出来的呢?地球是在不停地绕地轴旋转(地轴是一根通过地球南北两极和地球中心的 假想线),在地球中腰画一个与地轴垂直的大圆圈,使圈上的每一点都和南北两极的距离相等,这个圆圈 就叫作“赤道”。在赤道的南北两边,画出许多和赤道平行的圆圈,就是“纬圈”;构成这些圆圈的线段, 叫做纬线。我们把赤道定为纬度零度,向南向北各为90度,在赤道以南的叫南纬,在赤道以北的叫北纬。 北极就是北纬90度,南极就是南纬90度。纬度的高低也标志着气候的冷热,如赤道和低纬度地地区无冬, 两极和高纬度地区无夏,中纬度地区四季分明。 其次,从北极点到南极点,可以画出许多南北方向的与地球赤道垂直的大圆圈,这叫作“经圈”;构成这 些圆圈的线段,就叫经线。公元1884平面坐标图年,国际上规定以通过英国伦敦近郊的格林尼治天文台的 经线作为计算经度的起点,即经度零度零分零秒,也称“本初子午线”。在它东面的为东经,共180度; 在它西面的为西经,共180度。因为地球是圆的,所以东经180度和西经180度的经线是同一条经线。各国 公定180度经线为“国际日期变更线”。为了避免同一地区使用两个不同的日期,国际日期变线在遇陆地时 略有偏离。 每一经度和纬度还可以再细分为60分,每一分再分为60秒以及秒的小数。利用经纬线,我们就可以确定 地球上每一个地方的具体位置,并且把它在地图或地球仪上表示出来。例如问北京的经纬度是多少?我们 很容易从地图上查出来是东经116度24分,北纬39度54分。在大海中航行的船只,只要把所在地的经度测 出来,就可以确定船在海洋中的位置和前进方向。纬度共有90度。赤道为0度,向两极排列,圈子越小, 度数越大。 横线是纬度,竖线是经度。 当然可以计算,四元二次方程。 经度和纬度都是一种角度。经度是个两面角,是两个经线平面的夹角。因所有经线都是一样长,为了度量 经度选取一个起点面,经1884年国际会议协商,决定以通过英国伦敦近郊、泰晤士河南岸的格林尼治皇家 天文台(旧址)的一台主要子午仪十字丝的那条经线为起始经线,称为本初子午线。本初子午线平面是起 点面,终点面是本地经线平面。某一点的经度,就是该点所在的经线平面与本初子午线平面间的夹角。在 赤道上度量,自本初子午线平面作为起点面,分别往东往西度量,往东量值称为东经度,往西量值称为西

路灯配电缆计算公式

道路照明配电相关问题汇总: 1. YJV 电缆各规格供电半径估算: 1.1 根据电压降计算初步确定电缆截面及长度: 一般情况下道路照明供电线路长,负荷小,导线截面较小,则线路电阻要比电抗大得多,计算时可以忽略电抗的作用。又由于照明负荷的功率因数接近1,故在计算电压损失时,只需考虑线路的电阻及有功功率。由此可得计算电压损失的简化计算公式: (0.5)%p X l M U CS CS +?== 由于从配电箱引出段较短为X ,支路电缆总长为L 。则: 2%CS U L X P ?=- 对于三相供电:1500S L X P =-,对于单相供电:251.2S L X P =- P —负荷的功率,KW ; L —线路的长度,m ; X —进线电缆的长度,m ; U%—允许电压损失(CJJ45-2006-22页,正常运行情况下,照明灯具端电压应维持在额定电压的90%—105%。为了估算电缆最大供电半径取%10%U ?= ) C —电压损失计算系数(三相配电铜导线75C =,单相配电铜导线 12.56C =)

举例:假设一回路负荷计算功率为N KW,试估算不同电缆截面的供电线路长度 ?

1.2 校验路灯单相接地故障灵敏度来确定电缆最大长度: 道路照明供电线路长、负荷小、导线截面较小,则回路阻抗较大。 故其末端单相短路电流较小(甚至不到100A ),这样就有可能在发生单相短路故障时干线保护开关不动作。 2. 路灯采用“TN-S 系统”相关配电问题汇总: 2.1路灯采用“ TN-S 系统”单相接地故障电流计算; 下面举例对TN-S 系统路灯单相接地故障进行计算: 一路灯回路长990m ,光源为250W 高压钠灯(自带电容补偿, cosa 0.85=,镇流器损耗为 10%)。布置间距为30m (该回路共有 990/30=30套灯具),采用一台100KV A 的路灯专用箱变来供电,箱变内带3m 长LMY —4(40X4)低压母线。采用三相配电,电缆截面为YlV —4X25+1X16。灯具引接线为BVV-3X2.5,灯杆高为10米。试计算其单相接地故障电流? 方法一:单相接地故障电流按照相—保回路进行计算。该相—保回路总共用高压系统、变压器、低压母线、低压电缆、灯头引接线等阻抗

力学计算公式

力学计算公式 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

常用力学计算公式统计 一、材料力学: 1.轴力(轴向拉压杆的强度条件) σmax=N max/A≤[σ] 其中,N为轴力,A为截面面积 2.胡克定律(应力与应变的关系) σ=Eε或△L=NL/EA 其中σ为应力,E为材料的弹性模量,ε为轴向应变,EA 为杆件的刚度(表示杆件抵抗拉、压弹性变形的能力) 3.剪应力(假定剪应力沿剪切面是均匀分布的) τ=Q/A Q 其中,Q为剪力,A Q为剪切面面积 4.静矩(是对一定的轴而言,同一图形对不同的坐标 轴的静矩不同,如果参考轴通过图形的形心,则 x c=0,y c=0,此时静矩等于零) 对Z轴的静矩S z=∫A ydA=y c A 其中:S为静矩,A为图形面积,y c为形心到坐标轴的 距离,单位为m3。 5.惯性矩 对y轴的惯性矩I y=∫A z2dA 其中:A为图形面积,z为形心到y轴的距离,单位为 m4

常用简单图形的惯性矩 矩形:I x=bh3/12,I y=hb3/12 圆形:I z=πd4/64 空心圆截面:I z=πD4(1-a4)/64,a=d/D (一)、求通过矩形形心的惯性矩 求矩形通过形心,的惯性矩I x=∫Ay2dA dA=b·dy,则I x=∫h/2-h/2y2(bdy)=[by3/3]h/2-h/2=bh3/12 (二)、求过三角形一条边的惯性矩 I x=∫Ay2dA,dA=b x·dy,b x=b·(h-y)/h 则I x=∫h0(y2b(h-y)/h)dy=∫h0(y2b –y3b/h)dy =[by3/3]h0-[by4/4h]h0=bh3/12 6.梁正应力强度条件(梁的强度通常由横截面上的正 应力控制) σmax=M max/W z≤[σ] 其中:M为弯矩,W为抗弯截面系数。 7.超静定问题及其解法 对一般超静定问题的解决办法是:(1)、根据静力学平衡条件列出应有的平衡方程;(2)、根据变形协调条件列出变形几何方程;(3)、根据力学与变形间的物理关系将变形几何方程改写成所需的补充方程。8.抗弯截面模量 W x=I x/y c

(整理)压杆稳定计算.

第16章压杆稳定 16.1 压杆稳定性的概念 在第二章中,曾讨论过受压杆件的强度问题,并且认为只要压杆满足了强度条件,就能保证其正常工作。但是,实践与理论证明,这个结论仅对短粗的压杆才是正确的,对细长压杆不能应用上述结论,因为细长压杆丧失工作能力的原因,不是因为强度不够,而是由于出现了与强度问题截然不同的另一种破坏形式,这就是本章将要讨论的压杆稳定性问题。 当短粗杆受压时(图16-1a),在压力F由小逐渐增大的过程中,杆件始终保持原有的直线平衡形式,直到压力F达到屈服强度载荷F s(或抗压强度载荷F b),杆件发生强度破坏时为止。但是,如果用相同的材料,做一根与图16-1a所示的同样粗细而比较长的杆件(图16-1b),当压力F比较小时,这一较长的杆件尚能保持直线的平衡形式,而当压力F逐渐增大至某—数值F1时,杆件将突然变弯,不再保持原有的直线平衡形式,因而丧失了承载能力。我们把受压直杆突然变弯的现象,称为丧失稳定或失稳。此时,F1可能远小于F s(或F b)。可见,细长杆在尚未产生强度破坏时,就因失稳而破坏。 图16-1 失稳现象并不限于压杆,例如狭长的矩形截面梁,在横向载荷作用下,会出现侧向弯曲和绕轴线的扭转(图16-2);受外压作用的圆柱形薄壳,当外压过大时,其形状可能突然变成椭圆(图16-3);圆环形拱受径向均布压力时,也可能产生失稳(图16-4)。本章中,我们只研究受压杆件的稳定性。

图16-3 所谓的稳定性是指杆件保持原有直线平衡形式的能力。实际上它是指平衡状态的稳定性。我们借助于刚性小球处于三种平衡状态的情况来形象地加以说明。 第一种状态,小球在凹面内的O点处于平衡状态,如图16-5a所示。先用外加干扰力使其偏离原有的平衡位置,然后再把干扰力去掉,小球能回到原来的平衡位置。因此,小球原有的平衡状态是稳定平衡。 第二种状态,小球在凸面上的O点处于平衡状态,如图16-5c所示。当用外加干扰力使其偏离原有的平衡位置后,小球将继续下滚,不再回到原来的平衡位置。因此,小球原有的干衡状态是不稳定平衡。 第三种状态,小球在平面上的O点处于平衡状态,如图16-5b所示,当用外加干扰力使其偏离原有的平衡位置后,把干扰力去掉后,小球将在新的位置O1再次处于平衡,既没有恢复原位的趋势,也没有继续偏离的趋势。因此。我们称小球原有的平衡状态为随遇平衡。 图16-5 图16-6 通过上述分析可以认识到,为了判别原有平衡状态的稳定性,必须使研究对象偏离其原有的平衡位置。因此。在研究压杆稳定时,我们也用一微小横向干扰力使处于

道路照明计算

道路照明计算 上海时代之光照明电器检测有限公司 夏清明 道路照明的主要目的是为了使各种机动车辆的驾驶者以及行人在自然光照不理想的情况下能辨认出道路上的各种情况,创造良好的视觉环境 ,保障交通安全,提高交通运输效率, 方便人民生活,降低犯罪率和美化城市环境。 根据道路使用功能,城市道路照明可分为主要供机动车使用的机动车交通道路照明和主要供非机动车与行人使用的人行道路照明两类。目前机动车交通道路照明以路面平均亮度、路面平均照度、路面亮度均匀度和纵向均匀度、路面照度均匀度、阈值增量、环境比作为主要评价指标。本文将以机动车道路照明作为重点,讲解以上评价指标的计算方法。 1.亮度系数和简化亮度系数 亮度系数定义为一定观察角度上某点的亮度与此点水平照度的比值。公式表达为: 1.1 事实上在道路照明计算中更常用的是简化亮度系数r,其定义式为: 1.2 ε为光线入射角。观察角α对r是有影响的,但是在道路照明计算时α通常固定为1°。 此时r是ε和β的函数。各角度的意义如图1.1所示。 图1.1 角度关系 进行路面亮度计算,需要灯具的光度数据和路面简化亮度系数r。实际路面的r值只有

通过测量才能获得。我国目前尚没有自己的路面亮度系数实测数据,道路照明计算时采用的是CIE和PIARC共同推荐的简化亮度系数表。形式如表1.1所示: 表1.1 简化亮度系数表 需要说明的是上表中r值放大了10000倍,且对于沥青路面和混凝土路面,其简化亮度系数表是不同的。简化亮度系数表有其适用范围,其所覆盖的平面区域如图1.2所示: 图1.2 简化亮度系数表的适用范围 H为灯具安装高度。

2.计算区域及布点 沿着道路纵向计算区域应位于同列两只路灯之间。在横向,如果没有中央隔离带,计算区域覆盖整个行车道,如果有中央隔离带,则覆盖其中一侧行车道。简化亮度系数表在观察角度位于0.5度到1.5度之间都是适用的,观察者眼睛的高度通常设定为1.5m,此时计算点距离观察者的距离大约是57m到172m,通常近似为60m到170m,如图1.3所示: 图1.3 计算区域及布点 纵向:相邻计算点之间的距离D=S/N S为计算区域纵向长度 N为纵向计算点的个数,当S≤30m时,N=10;当S>30m时,N取使得D≤3m 的最小整数 纵向最外侧计算点与计算区域边界的距离等于D/2 横向:相邻计算点之间的距离d=W L/3 W L为车道宽度 横向最外侧计算点与计算区域边界的距离等于d/2 观察者位于每条车道的中线上,如图1.4所示:

计算LED路灯的照度

用“利用系数”法计算LED路灯的照度及配置 摘要:路面平均照度是城市道路照明的评价指标之一,也是路灯配置的一项重要参考指标。一条城市道路要配置或更换为LED路灯,技术上首先就要计算照度指标。用“利用系数”法计算则是比较简单有效的方法之一。本文提供了“利用系数”法计算的公式、依据、数据及实例。 关键词:LED路灯照度利用系数计算 路面平均照度是城市机动车交通道路和人行道路照明的评价指标之一,也是路灯配置的一项重要参考指标。一条城市道路要配置或更换为LED路灯,技术上首先就要涉及到照明的相关指标的计算。用“利用系数”法计算则是比较简单有效的方法之一。 “利用系数”法计算的公式,绝对照搬传统照明理论研究的结论。我们要做的只是要将LED 路灯的一些实验或理论数据输入公式,得到结果并与道路照明设计标准的要求对照而已。不言而喻,这些计算也是LED路灯的设计、开发、改进、提高以及市场营销的必需。 一、概念 利用系数(U)是直接照在路面上的光通量与全部光源发出的光通量的比值,与路灯灯具的高度、仰角、布置方式、路面宽度等有关。 光通量(Φ)是光源发射并被人的眼睛接收的能量之总和。表示单位时间辐射光能量的多少,单位为流明lm。其它表示方法:cd.sr(cd是发光强度的单位:坎德拉。Sr是立体角球面度的单位。 照度(E)是光通量与被照射面积之间的比例系数,单位为勒克司lx。1lx即指1lm的光通量平均分布在面积1平方米的能量,即lm/m2。 路面平均照度(Eav)是按照有关规定在路面上预先设定的点上测得的或计算得到的各点照度的平均值。 维护系数(k)是照明装置使用一定时期之后,在规定表面上的平均照度或平均亮度与该装置在相同条件下新安装时在同一表面上所得到的平均照度或平均亮度之比。 灯具的安装高度(H)是灯具的光中心至路面的垂直距离。 灯具的安装间距(S)是沿道路的中心线测得的相邻两个灯具之间的距离。 悬挑长度(XL)是灯具的光中心至邻近一侧缘石的水平距离,即灯具伸出或缩进缘石的水平距离。 路面有效宽度(Weff)是用于道路照明设计的路面理论宽度,它与道路的实际宽度、灯具的悬挑长度和灯具的布置方式等有关。 部分相关概念见下图: 二、计算公式 根据照度的定义式,E=Φ/A (1) 式中,A—被照射面积,m2 路面平均照度,Eav=F/(W*S) (2) 式中,F—路灯光源的额定光通量,lm;

道路照度计算公式_如下

道路照度计算公式如下: E=φ(光通量)N(路灯单双侧)U(利用系数)/K(路面材料砼1.3、沥青2)B(路宽)D(电杆间距) 具体解释/定义 E:道路照度 φ:灯具光通量 N:路灯为对称布置时取2,单侧和交错布置时取1 U:利用系数 K:混泥土路面取1.3,沥青路面取2 B:路面宽度 D:电杆间距 关于平均照度的计算公式 偶然间得到一个求平均照度的公式 E=F.U.K.N/S.W 并有几组计算数据 E= 2x9000x0.65x0.36/18/30=7.8Lx (110w高压钠灯,杆高10米,间距30米,道路有效宽度:20-1-1,双侧对称布置) E=2x16000x0.65x0.36/18/30=13.8Lx (150W高压钠灯,杆高10米,间距30米,道路有效宽度:20-1-1,双侧对称布置) E=2x9000x0.65x0.36/18/28=8.35Lx (110W高压钠灯,杆高10米,间距28米,道路有效宽度:20-1-1,双排对称布置) 我查了资料了解到 U为利用系数 k为维护系数(混泥土路面取1.3,沥青路面取2 ) S为路灯安装间距(28,30为安装间距) W为道路宽度(18为道路有效宽度) N为路灯排列方式((N路灯为对称布置时取2,单侧和交错布置时取1) 我想问的是: 1、上边举例的数据中,2是代表对称布置取2,还是沥青路面取2(我得到资料中为提及路面) 2、U利用系数和K维护系数,分别代表数据中哪个数值? 3、公式中的F是什么数据?它对应数据中哪个数值?

4、除道路宽度W,路灯排列方式N,安装间距S以外,F、U、K的数据在新的计算中如何得到 1、上边举例的数据中,2是代表对称布置取2 2、U利用系数=0.65,K维护系数=0.36 3、公式中的F是光通量,它对应数据是9000和16000 4、除道路宽度W,路灯排列方式N,安装间距S以外,F、U、K的数据都是根据所选择的灯具和光源的类型得到的。 五,路灯灯具布置设计 以

道路照明计算书

道路照明计算书 Final revision by standardization team on December 10, 2020.

设计计算书 项目编号: 2016SD037SS 设计阶段:施工图设计 项目名称:济宁市火炬路跨日菏铁路跨线桥工程 子项或构筑物名称:路灯工程 计算专业:电气计算书册数: 第册共页 计算:2017年8月3日 校对:2017年8月4日 校核:2017年8月4日 审核:2017年8月4日 上海市政工程设计研究总院(集团)有限公司 一、项目概况 火炬路跨日菏铁路跨线桥工程:跨线桥全长829米,双向四车道,标准段宽米,接坡段长度277米。改建地面道路1247米,跨线桥:双向4车道,设计车速60km/h;地面道路:单向4车道,设计车速40km/h,路面为沥青混凝土路面。

二、设计条件 道路级别:主干路; 设计车速:跨线桥:60 km/h 地面道路:40km/h; 车道数:跨线桥:双向4车道地面道路:单向4车道; 路面宽度:跨线桥:地面道路:13m; 路面:沥青混凝土路面。 三、路灯初拟选用与布置 跨线桥:双向4车道: 路灯布置方式:两侧连续对称布置,沿道路方向,灯杆设置于防撞墩内; 灯具配光类型:半截光型; 路灯光源:200W LED灯(光效≥100lm/w); 路灯悬壁长度:2m。 地面道路:单向4车道 路灯布置方式:单侧布置,沿道路方向,灯杆中心距路沿石; 灯具配光类型:半截光型; 路灯光源:280W LED灯(光效≥100lm/w);

路灯悬壁长度:2m。 四、照明设计计算 1、跨线桥:双向4车道 (1)路面有效宽度Weff = ×()= (2)灯具安装高度H ≥× = 。 本工程拟选用灯杆高度,H=10m。 (3)路灯间距S ≤ = ×10 = 35m。 本工程拟设置路灯间距,S=30m。 (4)路面平均照度 依据路面平均照度公式:E = ηφMN/ (W S) 按照上述条件以及公式计算得: 路面平均照度:E =ηφMN/ (W S) = ×200×100××2/×30) = 31(lx)。 (5)照明功率密度:LPD = 200××2/×30) = (W/m2)。 地面道路:单向4车道 (1)路面有效宽度Weff = 13-1×()= (2)灯具安装高度H ≥× = 。

地球上两点的经纬度计算他们距离的公式

假设地球是一个标准球体,半径为R,并且假设东经为正,西经为负,北纬为正,南纬为负, 则A(x,y)的坐标可表示为(R*cosy*cosx, R*cosy*sinx,R*siny) B(a,b)可表示为(R*cosb*cosa ,R*cosb*sina,R*sinb) 于是,AB对于球心所张的角的余弦大小为 cosb*cosy*(cosa*cosx+sina*sinx)+sinb*siny=cosb*cosy*cos(a-x)+s inb*siny 因此AB两点的球面距离为 R*{arccos[cosb*cosy*cos(a-x)+sinb*siny]} 注:1.x,y,a,b都是角度,最后结果中给出的arccos因为弧度形式。 2.所谓的“东经为正,西经为负,北纬为正,南纬为负”是为了计算的方便。 比如某点为西京145°,南纬36°,那么计算时可用(-145°,-36°) 3.AB对球心所张角的球法实际上是求两向量的夹角K。 用公式*=|OA|*|OB|*cosK 可以得到 其中地球平均半径为6371.004 km

假设地球是个标准的球体:半径可以查出来,假设是R: 如图: 要算出A到B的球面距离,先要求出A跟B的夹角,即角AOB, 求角AOB可以先求AOB的最大边AB的长度。在根据余弦定律可以求夹角。 AB在三角形AQB中,AQ的长度可以根据AB的纬度之差计算。 BQ在三角形BPQ中,BP和PQ可求,角BPQ可以根据两者的经度求出,这样BQ的长度也可以求出来, 所以AB的长度是可以求出来的。因为三角形ABQ是直角三角形,已经得到两个边 知道了角AOB后,AB的弧长是可以求的。 这样推出其公式就不难了 关于用经纬度计算距离: 地球赤道上环绕地球一周走一圈共40075.04公里,而@一圈分成360°,而每1°(度)有60,每一度一秒在赤道上的长度计算如下: 40075.04km/360°=111.31955km 111.31955km/60=1.8553258km=1855.3m 而每一分又有60秒,每一秒就代表1855.3m/60=30.92m 任意两点距离计算公式为 d=111.12cos{1/[sinΦAsinΦB十cosΦAcosΦBcos(λB—λA)]} 其中A点经度,纬度分别为λA和ΦA,B点的经度、纬度分别为λB和ΦB,d为距离。至于比例尺计算就不废话了

道路照明计算书

设计计算书 项目编号:2016SD037SS 设计阶段:施工图设计 项目名称:济宁市火炬路跨日菏铁路跨线桥工程 子项或构筑物名称:路灯工程 计算专业:电气计算书册数: 第册共页 计算:2017年8月3日 校对:2017年8月4日 校核:2017年8月4日 审核:2017年8月4日 上海市政工程设计研究总院(集团)有限公司

一、项目概况 火炬路跨日菏铁路跨线桥工程:跨线桥全长829米,双向四车道,标准段宽17.5米,接坡段长度277米。改建地面道路1247米,跨线桥:双向4车道,设计车速60km/h;地面道路:单向4车道,设计车速40km/h,路面为沥青混凝土路面。 二、设计条件 道路级别:主干路; 设计车速:跨线桥:60 km/h 地面道路:40km/h; 车道数:跨线桥:双向4车道地面道路:单向4车道; 路面宽度:跨线桥:18.5m 地面道路:13m; 路面:沥青混凝土路面。 三、路灯初拟选用与布置 跨线桥:双向4车道: 路灯布置方式:两侧连续对称布置,沿道路方向,灯杆设置于防撞墩内; 灯具配光类型:半截光型; 路灯光源:200W LED灯(光效≥100lm/w); 路灯悬壁长度:2m。 地面道路:单向4车道 路灯布置方式:单侧布置,沿道路方向,灯杆中心距路沿石0.5m; 灯具配光类型:半截光型; 路灯光源:280W LED灯(光效≥100lm/w); 路灯悬壁长度:2m。 四、照明设计计算 1、跨线桥:双向4车道 (1)路面有效宽度Weff = 18.5-2×(2-0.5)=15.5m (2)灯具安装高度H ≥0.6×15.5 = 9.3m。 本工程拟选用灯杆高度,H=10m。 (3)路灯间距S ≤ 3.5H = 3.5×10 = 35m。 本工程拟设置路灯间距,S=30m。 (4)路面平均照度 依据路面平均照度公式:E = ηφMN/ (W S)

城市道路照度计算

城市道路照明设计计算 根据《城市道路照明规范》机动车交通道路照明标准,道路评价指标以路面平均亮度(或路面平均照度)、路面照度均匀度、眩光限制、环境比和诱导性为评价指标。亮度计算和眩光计算比较复杂,在实际照明工程设计中,照明计算通常只进行照度计算,当对照明质量要求较高时,才要求做亮度计算与眩光计算,因此,我们采用路面平均照度E v(lx)作为评价指标。 进行平均照度计算时,通常采用利用系数法 ,其中: 平均照度E v=N·nφ·μ·K S·W N——路灯排列方式,1代表单排、交错排列,2表示双排排列; 图1 常规照明灯具布置的五种基本方式: (a)单侧布置;(b)双侧交错布置;(c)双侧对称布置;(d)中心对称布置;(e)横向悬索布置 n——每盏灯中的光源数; φ——灯泡的光通量,灯泡的光通量与光源类型、光源功率、生产厂家都有关系,如:高压钠灯光效为80~130lm/W,金卤灯的光效为67~110lm/W; μ——灯具利用系数,指投射到参考平面上的光通量与照明装置中的光源的额定光通量之比,与灯具效率,灯具配光类型有关,可参

阅《照明手册》中灯具利用系数表,对普通照明要求场合亦可取经验值0.35~0.45; K ——维护系数,道路照明的维护系数为光源的光衰系数和灯具因污染的光衰系数的乘积。根据目前我国常用道路照明光源和灯具的品质及环境状况,以每年对灯具进行一次擦拭为前提,维护系数可按表1确定。 表1 道路照明的维护系数 I P (INTERNATIONAL PROTECTION )防护等级系统将灯具依其防尘防湿气之特性加以分级,是由两个数字所做成,第一个数字表示灯具离尘、防止外物侵入的等级,第二个数字表示灯具防湿气、防水侵入的密闭程度,数字越大表示其防护等级越高,IP54表示完全防止外物侵入,虽不能完全防止灰尘进入,但侵入的灰尘量并不会影响灯具正常工作,防止各方向飞溅而来的水进入灯具造成损害; S ——灯杆间距,灯杆间距与灯具的配光类型、布置方式、路面的有效宽度有关,见表2,m ; 表2 灯具的配光类型、布置方式与灯具的安装高度、间距的关系 注:Weff 为路面有效宽度(m)。

经纬度距离公式

地球表面两点间距离公式 陕西省榆林市第二实验中学 艾东宁 摘要:本文用几何的方法得出地球表面两点间距离公式。这是地理中的一个基本公式,在许多方面都有应用。 关键词:球面 距离 经纬度 圆心角 已知地球表面两点A ),(11j w 、B ),(22j w ,求两点间球面距离。(w 为纬度,j 为经度。) 解: 如图。 a 、 b 为A 、B 两点所在的经线平面,l 为地轴,MO 、 NO 为赤道平面与此二面角的交线,O 为地心,地球半径 为R 。 过A 作AC ⊥l ,过C 作DC ⊥l ,BD ∥l 。 在△ACD 中, AC=1cos w R ? DC=2cos w R ? ∠ACB=21j j - 据余弦定理可得: 22212 )cos ()cos (w R w R AD ?+?=)cos(cos cos 221212 j j w w R -?- 又21sin sin w R w R BE DE DB ?+?=+= 因△ABD 为Rt △, 故222DB AD AB += =2AB 22R )cos(cos cos 221212 j j w w R -?-212 sin sin 2w w R + 在△AOB 中,知道AB ,且AO=BO=R 。设∠AOB=α 由余弦定理可得:=αcos 212121sin sin )cos(cos cos w w j j w w -- 若经度东为正、西为负、纬度北为正、南为负,则公式为: =αcos 212121sin sin )cos(cos cos w w j j w w +- arccos =α〔212121sin sin )cos(cos cos w w j j w w +-〕 α为A 、B 两点所成的球心角。

根据地球上任意两点的经纬度计算两点间的距离

根据地球上任意两点的经纬度计算两点间的距离 地球是一个近乎标准的椭球体,它的赤道半径为6378.140千米,极半径为6356.755千米,平均半径6371.004千米。如果我们假设地球是一个完美的球体,那么它的半径就是地球的平均半径,记为R。如果以0度经线为基准,那么根据地球表面任意两点的经纬度就可以计算出这两点间的地表距离(这里忽略地球表面地形对计算带来的误差,仅仅是理论上的估算值)。设第一点A的经纬度为(LonA, LatA),第二点B的经纬度为(LonB, LatB),按照0度经线的基准,东经取经度的正值(Longitude),西经取经度负值(-Longitude),北纬取90-纬度值(90- Latitude),南纬取90+纬度值(90+Latitude),则经过上述处理过后的两点被计为(MLonA, MLatA)和(MLonB, MLatB)。那么根据三角推导,可以得到计算两点距离的如下公式: C = sin(MLatA)*sin(MLatB)*cos(MLonA-MLonB) + cos(MLatA)*cos(MLatB) Distance = R*Arccos(C)*Pi/180 这里,R和Distance单位是相同,如果是采用6371.004千米作为半径,那么Distance 就是千米为单位,如果要使用其他单位,比如mile,还需要做单位换算,1千米 =0.621371192mile 如果仅对经度作正负的处理,而不对纬度作90-Latitude(假设都是北半球,南半球只有澳洲具有应用意义)的处理,那么公式将是: C = sin(LatA)*sin(LatB) + cos(LatA)*cos(LatB)*cos(MLonA-MLonB) Distance = R*Arccos(C)*Pi/180 以上通过简单的三角变换就可以推出。 如果三角函数的输入和输出都采用弧度值,那么公式还可以写作: C = sin(LatA*Pi/180)*sin(LatB*Pi/180) + cos(LatA*Pi/180)*cos(LatB*Pi/180)*cos((MLonA-MLonB)*Pi/180) Distance = R*Arccos(C)*Pi/180 也就是: C = sin(LatA/57.2958)*sin(LatB/57.2958) + cos(LatA/57.2958)*cos(LatB/57.2958)*cos((MLonA-MLonB)/57.2958) Distance = R*Arccos(C) = 6371.004*Arccos(C) kilometer = 0.621371192*6371.004*Arccos(C) mile = 3958.758349716768*Arccos(C) mile 在实际应用当中,一般是通过一个个体的邮政编码来查找该邮政编码对应的地区中心的经纬度,然后再根据这些经纬度来计算彼此的距离,从而估算出某些群体之间的大致距离范围(比如酒店旅客的分布范围-各个旅客的邮政编码对应的经纬度和酒店的经纬度所计算的距离范围-等等),所以,通过邮政编码查询经纬度这样一个数据库是一个很有用的资源

道路照度计算公式_如下

1.道路照度计算公式: E=φNU/KBD E:道路照度,φ:灯具光通量,N:路灯为对称布置时取2,单侧和交错布置时取1,U:利用系数,K:混泥土路面取1.3,沥青路面取2 ,B:路面宽度,D:电杆间距 2.平均照度的计算公式: E=F.U.K.N/S.W U为利用系数,k为维护系数(混泥土路面取1.3,沥青路面取2 ,S为路灯安装间距(28,30为安装间距),W为道路宽度(18为道路有效宽度),N为路灯排列方式((N路灯为对称布置时取2,单侧和交错布置时取1) E= 2x9000x0.65x0.36/18/30=7.8Lx (110w高压钠灯,杆高10米,间距30米,道路有效宽度:20-1-1,双侧对称布置) E=2x16000x0.65x0.36/18/30=13.8Lx (150W高压钠灯,杆高10米,间距30米,道路有效宽度:20-1-1,双侧对称布置) E=2x9000x0.65x0.36/18/28=8.35Lx (110W高压钠灯,杆高10米,间距28米,道路有效宽度:20-1-1,双排对称布置) 1、上边举例的数据中,2是代表对称布置取2,还是沥青路面取2(我得到资料中为提及路面) 2、U利用系数和K维护系数,分别代表数据中哪个数值? 3、公式中的F是什么数据?它对应数据中哪个数值? 4、除道路宽度W,路灯排列方式N,安装间距S以外,F、U、K的数据在新的计算中如何得到 1、上边举例的数据中,2是代表对称布置取2 2、U利用系数=0.65,K维护系数=0.36 3、公式中的F是光通量,它对应数据是9000和16000 4、除道路宽度W,路灯排列方式N,安装间距S以外,F、U、K的数据都是根据所选择的灯具和光源的类型得到的。 3.路灯灯具布置设计 以30米宽的混凝土路面道路为例,假设该道路为次干路,车流较多,车速较快,则可选择双侧对称布置。 灯具高度H=8.5米,间距S=25米,灯具悬挑长2米,则有效路宽为26米,根据国家照明标准要求,其照明平均照度Eav不低于5.6Lx,照度均匀度Emin/ Eav 不小于0.35。 灯具采用超级LED路灯,功率为70W,其光通量为8000Lm,灯高8.5米道路平面等照度曲线为: 根据城市路面比较清洁的情况,选用路灯利用系数U=0.32(国际照明委员会推荐0.3),维护系数K=0.8;则路面平均照度为: Eav =U xфx N x K/W x S =0.32 x8000 x1 x0.8/13 x25

经纬度计算距离和方位角

经纬度计算距离和方位角 方位角(azimuthangle):从某点的指北方向线起,依顺时针方向到目标方向线之间的水平夹角,叫方位角。 (一)方位角的种类 由于每点都有真北、磁北和坐标纵线北三种不同的指北方向线,因此,从某点到某一目标,就有三种不同方位角。 (1)真方位角。某点指向北极的方向线叫真北方向线,而经线,也叫真子午线。由真子午线方向的北端起,顺时针量到直线间的夹角,称为该直线的真方位角,一般用A表示。通常在精密测量中使用。 (2)磁方位角。地球是一个大磁体,地球的磁极位置是不断变化的,某点指向磁北极的方向线叫磁北方向线,也叫磁子午线。在地形图南、北图廓上的磁南、磁北两点间的直线,为该图的磁子午线。由磁子午线方向的北端起,顺时针量至直线间的夹角,称为该直线的磁方位角,用Am表示。 (3)坐标方位角。由坐标纵轴方向的北端起,顺时针量到直线间的夹角,称为该直线的坐标方位角,常简称方位角,用a表示。 方位角在测绘、地质与地球物理勘探、航空、航海、炮兵射击及部队行进时等,都广泛使用。不同的方位角可以相互换算。 军事应用:为了计算方便精确,方位角的单位不用度,用密位作单位。换算作:360度=6000密位。 (二)三种方位角之间的关系

因标准方向选择的不同,使得一条直线有不同的方位角。 同一直线的三种方位角之间的关系为: A=Am+δ A=a+γ a=Am+δ-γ (三)坐标方位角的推算 1.正、反坐标方位角 每条直线段都有两个端点,若直线段从起点1到终点2为直线的前进方向,则在起点1处的坐标方位角a12称为直线12的正方位角,在终点2处的坐标方位角a21称为直线12的反方位角。 a反=a正±180° 式中,当a正<180°时,上式用加180°;当a正>180°时,上式用减180°。 2.坐标方位角的推算 实际工作中并不需要测定每条直线的坐标方位角,而是通过与已知坐标方位角的直线连测后,推算出各直线的坐标方位角。因β2在推算路线前进方向的右侧,该转折角称为右角;β3在推算路线前进方向的左侧,该转折角称为左角。从而可归纳出推算坐标方位角的一般公式为: a前=a后+180°+β左 a前=a后+180°-β右 如果计算的结果大于360?,应减去360°,为负值,则加上360?。

怎样推导压杆的临界力和临界应力公式.

06、基本知识 怎样推导压杆的临界力和临界应力公式(供参考) 同学们学习下面内容后,一定要向老师回信(849896803@https://www.sodocs.net/doc/0b16210920.html, ),说出你对本资料的看法(收获、不懂的地方、资料有错的地方),以便考核你的平时成绩和改进我的工作。回信请注明班级和学号的后面三位数。 1 * 问题的提出及其对策 (1) 1.1 问题的提出及其对策 ........................................................................................................ 1 1.2 压杆稳定分析概述——与强度、刚度分析对比 ............................................................ 2 2 压杆临界压力F cr 的计算公式 ................................................................................................. 3 2.1 压杆稳定的力学模型——弯曲平衡 ................................................................................ 3 2.2梁的平衡理论——梁的挠曲微分方程 ............................................................................. 4 2.3 按梁的平衡理论分析两端铰支的压杆临界压力 ............................................................ 6 2.4 按梁的平衡理论分析一端固定一端自由的压杆临界压力 ............................................ 8 2.5 按梁的平衡理论分析一端固定一端铰支的压杆临界压力 .......................................... 10 2.6 按梁的平衡理论分析两端固定的压杆临界压力 .......................................................... 14 2.7 将四种理想压杆模型的临界力公式及其推导分析图示的汇总 .. (18) 1 * 问题的提出及其对策 1.1 问题的提出及其对策 试计算长度为400mm ,宽度为10mm ,厚度为1mm 的钢锯条,在一端固定、一端铰支的情况下,许用的轴向压力。材料的许用应力为160MPa 。 解:1、按轴向拉压强度计计算 []2/160160120mm N MPa mm mm F A F N N ==≤?== σσ 2、按压杆稳定临界力公式计算 ()43 33 5120121121mm mm mm bh I Z =??== ()()N mm mm MPa l EI F CR 28.123 4002102000002 4 222=????==πμπ 分析:1、按轴向拉压杆的强度条件计算结果,该钢板尺可以安全承压 3.2kN 。这是一 个什么概念呢?一袋水泥重50kg ,对应重力N s m kg mg W 500/10502 =?==,即该钢 kN N mm N mm mm F N 2.33200/1601202==??≤

相关主题