搜档网
当前位置:搜档网 › §6 余弦函数的图像与性质

§6 余弦函数的图像与性质

§6 余弦函数的图像与性质
§6 余弦函数的图像与性质

§6 余弦函数的图像与性质

6.1余弦函数的图像

6.2 余弦函数的性质 课时目标 1.能用描点法作出余弦函数的图像,了解余弦函数的图像与正弦函数的图像之间的联系.2.能借助余弦函数图像理解和记忆余弦函数的性质.

1.余弦函数y =cos x (x ∈R )的图像叫作__________.y =cos x ,x ∈[0,2π]的图像上起关键

作用的五个点为________,________________,__________,______________,________.

2.余弦函数的性质

函数 y =cos x

定义域

R 值域 [-1,1]

奇偶性 偶函数

周期性 以________为周期(k ∈Z ,k ≠0), ________为最小正周期

单调性 当x ∈________________时,递增; 当x ∈________________时,递减.

最大值与 最小值 当x =______________时,最大值为____;

当x =________________时,最小值为____.

3.余弦函数的对称中心是余弦曲线与x 轴的交点,这些交点的坐标为

________________________________________________________________________, 余弦曲线的对称轴一定过余弦曲线的最高点或最低点,对称轴的方程为______________,此时余弦值取得最大值或最小值.

一、选择题

1.若y =sin x 是减函数,y =cos x 是增函数,那么角x 在( )

A .第一象限

B .第二象限

C .第三象限

D .第四象限

2.函数y =2-cos x 的单调递增区间是( )

A .[2k π+π,2k π+2π] (k ∈Z )

B .[k π+π,k π+2π] (k ∈Z )

C .?

???2k π,2k π+π2 (k ∈Z ) D .[2k π,2k π+π] (k ∈Z )

3.下列不等式正确的是( )

A .cos 158π

π B .cos515°

C .cos ????-235π

?-17π4 D .cos(-120°)>cos330°

4.在(0,2π)内使sin x >|cos x |的x 的取值范围是( )

A .????π4,3π4

B .????π4,π2∪????5π4,3π2

C .????π4,π2

D .????5π4,7π4

5.下列函数中,最小正周期为2π的是( )

A .y =|cos x |

B .y =cos|x |

C .y =|sin x |

D .y =sin|x |

6.下列函数中,周期为π,且在[π4,π2]上为减函数的是( )

A .y =sin(2x +π2)

B .y =cos(2x +π2)

C .y =sin(x +π2)

D .y =cos(x +π2)

二、填空题

7.函数y =2cos x +1的定义域是________________.

8.方程x 2-cos x =0的实数解的个数是________.

9.设0≤x ≤2π,且|cos x -sin x |=sin x -cos x ,则x 的取值范围为________.

三、解答题

10.求函数f (x )=cos x +lg(8x -x 2)的定义域.

11.(1)求函数y =3cos 2x -4cos x +1,x ∈????π3,2π3的值域;

(2)已知函数y =a cos ????2x +π3+3,x ∈????0,π2的最大值为4,求实数a 的值.

能力提升

12.已知奇函数f (x )在[-1,0]上为单调递减函数,又α、β为锐角三角形两内角,则(

) A .f (cos α)>f (cos β) B .f (sin α)>f (sin β)

C .f (sin α)>f (cos β)

D .f (sin α)

13.已知y =lgcos2x .

(1)求它的定义域、值域;

(2)讨论它的奇偶性;

(3)讨论它的周期性;

(4)讨论它的单调性.

1.求函数y =cos(ωx +φ) (ω>0)单调区间的方法是:

把ωx +φ看成一个整体,由2k π-π≤ωx +φ≤2k π(k ∈Z )解出x 的范围,所得区间即为增区间,由2k π≤ωx +φ≤2k π+π (k ∈Z )解出x 的范围,所得区间即为减区间.若ω<0,先利用诱导公式把ω转化为正数后,再利用上述整体思想求出相应的单调区间.

2.比较三角函数值的大小,先利用诱导公式把问题转化为同一单调区间上的同名三角函数值的大小比较,再利用单调性作出判断.

3.求三角函数值域或最值的常用求法

将y 表示成以sin x 或cos x 为元的一次或二次等复合函数再利用换元或配方、或利用函数的单调性等来确定y 的范围.

§6 余弦函数的图像与性质

6.1余弦函数的图像

6.2 余弦函数的性质

答案

知识梳理

1.余弦曲线 (0,1) (π2,0) (π,-1) (32

π,0) (2π,1) 2.2k π 2π [2k π-π,2k π](k ∈Z ) [2k π,2k π+π](k ∈Z )

2k π(k ∈Z ) 1 2k π+π(k ∈Z ) -1 3.(k π+π2

,0)(k ∈Z ) x =k π(k ∈Z )

作业设计

1.C

2.D [令u =-cos x ,则y =2u ,

∵y =2u 在u ∈(-∞,+∞)上是增函数.

∴y =2-cos x 的增区间,即u =-cos x 的增区间,

即u =cos x 的减区间[2k π,2k π+π] (k ∈Z ).]

3.C [y =cos x 在[π,2π]上单调递增,故cos 158π>cos 149

π;y =cos x 在[360°,540°]上单调递减,

故cos515°>cos530°;又cos(-120°)<0,cos330°>0,故cos(-120°)

由y =cos x 在[-5π,-4π]上单调递增,故cos ????-235π

?-174π.故选C .] 4.A [

∵sin x >|cos x |,

∴sin x >0,∴x ∈(0,π),在同一坐标系中画出y =sin x ,x ∈(0,π)与y =|cos x |,x ∈(0,π)的图像,观察图像易得

x ∈????π4,34π.]

5.B [画出y =sin|x |的图像,易知.D 不是周期函数,A 、C 周期为π,B 中y =cos|x |=cos x .T =2π.]

6.A [因为函数的周期为π,所以排除C 、D .又因为

y =cos(2x +π2)=-sin2x 在[π4,π2]上为增函数,故B 不符.只有函数y =sin(2x +π2

)的周期为π,且在[π4,π2

]上为减函数.故选A .] 7.?

???2k π-23π,2k π+23π,k ∈Z 解析 2cos x +1≥0,cos x ≥-12

, 结合图像知x ∈?

???2k π-23π,2k π+2π3,k ∈Z . 8.2

解析 作函数y =cos x 与y =x 2的图像,如图所示,

由图像,可知原方程有两个实数解.

9.????π4,5π4

解析 由题意知sin x -cos x ≥0,即cos x ≤sin x ,在同一坐标系画出y =sin x ,x ∈[0,2π]与y =cos x ,x ∈[0,2π]的图像,如图所示:

观察图像知x ∈[π4,54

π]. 10.解 由????? 8x -x 2>0cos x ≥0,得?????

0

结合图像可得:x ∈????0,π2∪???

?3π2,5π2. 11.解 (1)y =3cos 2x -4cos x +1=3?

???cos x -232-13. ∵x ∈????π3,2π3,∴cos x ∈???

?-12,12. 从而当cos x =-12,即x =2π3时,y max =154

; 当cos x =12,即x =π3时,y min =-14

. ∴函数值域为???

?-14,154. (2)∵x ∈????0,π2,∴2x +π3∈???

?π3,4π3, ∴-1≤cos ?

???2x +π3≤12. 当a >0,cos ????2x +π3=12时,y 取得最大值12

a +3, ∴12

a +3=4,∴a =2. 当a <0,cos ?

???2x +π3=-1时,y 取得最大值-a +3, ∴-a +3=4,∴a =-1.

综上可知,实数a 的值为2或-1.

12.D [∵α+β>π2,∴π2>α>π2

-β>0, ∴sin α>sin ????π2-β,即sin α>cos β

∴-1<-sin α<-cos β<0,

∵f (x )在[-1,0]上单调递减,

∴f (-sin α)>f (-cos β)

∴-f (sin α)>-f (cos β),∴f (sin α)

13.解 (1)要使函数f (x )=lgcos2x 有意义,则cos2x >0,

即-π2+2k π<2x <π2

+2k π,k ∈Z , -π4+k π

+k π,k ∈Z , ∴函数的定义域为

????

??x |-π4+k π

∴lgcos2x ≤0,∴函数的值域为(-∞,0].

(2)∵f (-x )=lgcos [2·(-x )]=lgcos2x

=f (x ),

∴函数是偶函数.

(3)∵cos2x 的周期为π,

即cos2(x +π)=cos2x .

∴f (x +π)=lgcos2(x +π)=lgcos2x =f (x ).

∴函数的周期为π.

(4)y =lg u 是增函数.

当x ∈???

?-π4+k π,k π (k ∈Z )时,u =cos2x 是增函数; 当x ∈???

?k π,π4+k π (k ∈Z )时,u =cos2x 是减函数. 因此,函数y =lgcos2x 在????-π4+k π,k π (k ∈Z )上是增函数;在???

?k π,π4+k π (k ∈Z )上是减函数.

必修4正弦函数和余弦函数的图像与性质

必修4正弦函数和余弦函数的图像与性质 例1 用五点法做出下列函数的图像 11(1)2sin ,[0,2];(2)cos(),[,]666 y x x y x x ππππ=-∈=+∈- 例2 求下列函数的定义域和值域 (1)lgsin ;(2)y x y == 练:求函数sin ()log (12cos )x f x x =+的定义域。 例3 已知函数()y f x =的定义域是1 [0,]4 ,求下列函数的定义域 221(1)(cos );(2)(sin )2 f x f x - 例4 求下列函数的最大值与最小值 22(1)2sin();(2)2cos 5sin 4;42(3)3cos 4cos 1,[,]33 y x y x x y x x π ππ=--=+-=-+∈

例5 设1 sin sin 3x y +=,求2sin cos M x y =-的最小值和最大值 例6 求下列函数的值域 2cos 2sin cos (1);(2)2cos 11sin x x x y y x x ==++ 例7已知a 是实数,则函数f (x )=1+asinax 的图象不可能是( ) A . B . C . D . 例8 求下列函数的周期。 (1)|sin ||cos |;(2)cos |2|(3)cos()6y x x y x y x π =+==-- 例9 判断函数7())2f x x π =+的奇偶性 例10 判断函数()lg(sin f x x =+的奇偶性

例11求函数1sin 2 x y π-=的单调区间 提升训练题 1.下列四个函数的图像中关于y 轴对称的是( ) .sin ;.cos ;.1sin ;.cos()2 A y x B y x C y x D y x π ==-=-=- 2.函数sin 2x y =的单调增区间是( ) 3.[2,2]();.[2,2]()2222 .[2,2]();.[2,2]()A k k k Z B k k k Z C k k k Z D k k k Z π πππππππππππππ- +∈++∈-∈+∈ 3.下列函数中是奇函数的是( ) .|sin |;.sin(||);.sin ||;.sin ||A y x B y x C y x D y x x =-=-== 4.sin()3y x π =-的单调减区间是( ) 55.[,]();[2,2]()666677.[,]();.[2,2]();6666A k k k Z B k k k Z C k k k Z D k k k Z ππππππππππππππππ-+ ∈-+∈--∈--∈ 5.函数2cos 3cos 2y x =-+的最小值为______________________ 6.函数|sin |2x y =的最小正周期____________________ 7.cos1,cos2,cos3的大小关系____________________ 8.函数3cos 1cos 2 x y x += +的值域是____________________

余弦函数图像和性质练习含答案

课时作业10 余弦函数、正切函数的图象与性质(一) 时间:45分钟 满分:100分 一、选择题(每小题6分,共计36分) 1.函数f (x )=cos(2x -π 6)的最小正周期是( ) A.π2 B .π C .2π D .4π 解析:本题考查三角函数的周期. T = 2π 2 =π. 余弦型三角函数的周期计算公式为2π ω (ω>0). 答案:B 2.设函数f (x )=cos ωx (ω>0),将y =f (x )的图象向右平移π 3个 单位长度后,所得的图象与原图象重合,则ω的最小值等于( ) A.13 B .3 C .6 D .9 解析:将f (x )向右平移π3个单位长度得g (x )=f (x -π 3)= cos[ω(x -π3)]=cos(ωx -π3ω),则-π 3 ω=2k π, ∴ω=-6k ,又ω>0,∴k <0,当k =-1时, ω有最小值6,故选C.

3.设f (x )是定义域为R ,最小正周期为3π 2 的函数,若f (x )= ????? cos x ? ?? ?? -π2≤x ≤0,sin x 0

对数函数图像及其性质

《对数函数及其性质》 学校:广西师范大学院系:数学科学学院 作者: 学号: 对数函数及其性质 一、教学设计理念本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的, GUANGXINOPMAL UNlVEPSITY 人教A版第二章第2.2.2节

针对学生的学习背景,体现新课标要求和“学生是课堂活动的主体,教师是学生活动的引导者、组织者、帮助者”的教学理念。首先,基于“人人有份”的数学教学思想,坚持面向全体学生,引导学生积极主动地参与获取知识的全部过程,体现了学生为中心的教育教学理念。其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。数学课堂教学应该是一个自然的知识发生过程,课堂教学要坚持以学生为主体,教师为主导的“双主”地位,结合学情,让学生参与数学基本活动,探究和挖掘数学知识本质,以恰时恰点的问题引导数学活动,培养学生的问题意识,孕育创新精神。遵循这样的理念,我对此课时进行了如下设计: 第一、在课堂活动中通过同伴合作、自主探究培养学生积极主动、勇于探索的学习方式。 第二、在教学过程中努力做到生生对话、师生对话,并且在对话之后重视体会、总结、反思,力图在培养和发展学生数学素养的同时让学生掌握一些学习、研究数学的方法。 第三、通过课堂教学活动向学生渗透数学思想方法。 二、学情分析 (一)学习的知识起点 学生在前面已经学习了指数函数及其性质,用研究指数函数的方法,进一步研究和学习对数函数的概念、图象和性质以及初步应用,有利于学生进一步完善初等函数的认识的系统性,加深对对函数的思想方法的理解。 (二)学习的经验起点大部分学生已经掌握了一些函数知识,具备一定学习函数的基本能力,如通过类比分析问题的能力;且有一定的自学能力。但由于高一学生思维的逻辑性还不是很严密,所以对于不同底数a 的对数函数的性质不能很好地进行区分。从学生的学习经验出发,让学生体验对数函数来源于实践,通过教师课件的演示,通过数形结合,让学生感受对数函数中底数a 取不同的值时反映出不同的函数图象,让学生观察、小组讨论、发现、归纳出图象的共同特征、函数图象的 规律,从而达到学生对对数函数知识的深刻掌握。 三、教材分析 (一)教材的地位与作用对数函数是在学生系统地学习了指数函数概念及性质, 掌握了对数与对数的运算性质的基础上展开研究的。作为重要的基本初等函数之一, 对数函数是指数函数知识的拓展和延伸,同时也为学生今后进一步学习对数方程、对数不等式等提供了必要的基础知识,因此对数函数在知识体系中起了承上启下的作用。它的教学过程,体现了数形结合的思想,同时蕴涵丰富的解题技巧,这对培养学生的观察、分析、概括的能力、发展学生严谨的思维能力有重要作

三角函数正余弦函数的图像及性质复习汇总

一、正弦函数和余弦函数的图象: 正弦函数sin y x =和余弦函数cos y x =图象的作图方法:五点法:先取横坐标分别为0,3,,,222ππ ππ 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 二、正弦函数sin ()y x x R =∈、余弦函数cos ()y x x R =∈的性质: (1)定义域:都是R 。 (2)值域: 1、都是[]1,1-, 2、sin y x =,当()22 x k k Z π π=+ ∈时,y 取最大值1;当()322 x k k Z π π=+ ∈时,y 取最小值-1; 3、cos y x =,当()2x k k Z π=∈时,y 取最大值1,当()2x k k Z ππ=+∈时,y 取最小值-1。 例:(1)若函数sin(3)6 y a b x π=-+的最大值为23,最小值为21 -,则=a __,=b _

(答:,12 a b ==或1b =-); ⑵ 函数y=-2sinx+10取最小值时,自变量x 的集合是_________________________。 (3)周期性: ①sin y x =、cos y x =的最小正周期都是2π; ②()sin()f x A x ω?=+和()cos()f x A x ω?=+的最小正周期都是2|| T πω=。 例:(1)若3 sin )(x x f π=,则(1)(2)(3)(2003)f f f f ++++=___(答:0) ; ⑵.下列函数中,最小正周期为π的是( ) A.cos 4y x = B.sin 2y x = C.sin 2x y = D.cos 4x y = (4)奇偶性与对称性: 1、正弦函数sin ()y x x R =∈是奇函数,对称中心是()(),0k k Z π∈,对称轴是直线()2 x k k Z π π=+ ∈; 2、余弦函数cos ()y x x R =∈是偶函数,对称中心是(),02k k Z ππ? ?+∈ ???,对称轴是直线()x k k Z π=∈ (正(余)弦型函数的对称轴为过最高点或最低点且垂直于x 轴的直线,对称中心为图象与x 轴的交点)。 例:(1)函数522y sin x π?? =- ??? 的奇偶性是______(答:偶函数); (2)已知函数31f (x )ax b sin x (a,b =++为常数),且57f ()=,则5f ()-=______(答:-5); (5)单调性: ()sin 2,222y x k k k Z ππππ??=-+∈????在上单调递增,在()32,222k k k Z ππππ? ?++∈????单调递减; cos y x =在[]()2,2k k k Z πππ+∈上单调递减,在[]()2,22k k k Z ππππ++∈上单调递增。特别提醒,别忘了k Z ∈! ⑴函数y=sin2x 的单调减区间是( )

正切函数的性质与图像教学设计

《正切函数的性质与图像》的教学设计 一.教材分析 1.地位与作用 《正切函数的性质与图像》是高中《数学》必修4第一章第四节内容。在学习了正弦函数、余弦函数的图像与性质,研究正切函数的图象与性质过程不仅是对正、余弦曲线研讨方法的一种再现,更是一种提升。 2.教材处理 教材采用探究的方法引导学生注意正切函数与正弦函数在研究方法上类似,我采用以提问的方式,让学生回忆如何由正弦线得到正弦曲线的作图过程与方法,进而启发、引导学生发现作正切曲线的一种方法。设计问题一步步引导学生注意画正切曲线的细节。我把空间留给学生,采用让学生自己设计一个得到正切曲线的方法。这样,不仅发挥了学生的能动性,增强动脑、动手绘图的能力。二.学情分析 通过对正弦函数图像与性质的研究,学生已经具备了一定的绘图技能,类比推理画出图象,并通过观察图象,总结性质的能力。但在画正切函数图象时,还有许多需要注意的地方,比如定义域,函数区间等问题。这又提升了学生分析问题的能力及严密认真的态度。 三.教学目标确定 正切函数是继正、余弦之后的又一个三角函数,三者在研究方法与研究内容上类似,但某些性质有所不同,这就养成学生在画图时必须全面考虑问题。本着课改理念,养成学生对知识的勇于探索精神,学生亲自体会正切曲线的获得过程,这样学生的动手实践能力有了提高,又体会到学习数学的乐趣,根据教学要求及学生现有的认知水平,现制定以下教学目标: 1.知识目标: 1)、能用单位圆中的正切线画出正切函数的图像。 2)、熟练根据正切函数的图像推导出正切函数的性质。 3)、掌握利用数形结合思想分析问题、解决问题的技能。 2.能力目标: 1)、通过类比,联系正弦函数图像的作法 2)、能学以致用,结合图像分析得到正切函数的诱导公式和正切函数的性质。3、德育目标: 使同学们对正切函数的概念有一定的体会;会用联系的观点看问题,建立数形结合的思想,激发学习的学习积极性;培养学生分析问题、解决问题的能力;让学生体验自身探索成功的喜悦感,培养学生的自信心;培养学生形成实事求是的科学态度和锲而不舍的钻研精神。 4.重点与难点 重点:正切函数的图象及其主要性质。 难点:熟练运用诱导公式和性质分析问题、解决问题 教学模式:启发、探究式发现教学. 四.流程设计 (一).复习引入: (1)问题:如何用正弦线作正弦函数图像呢? (2)类比:利用正切线得到正切函数x 的图像 y tan

高中常用函数性质及图像汇总

高中常用函数性质及图像 一次函数 (一)函数 1、确定函数定义域的方法: (1)关系式为整式时,函数定义域为全体实数; (2)关系式含有分式时,分式的分母不等于零; (3)关系式含有二次根式时,被开放方数大于等于零; (4)关系式中含有指数为零的式子时,底数不等于零; (5)实际问题中,函数定义域还要和实际情况相符合,使之有意义。 (二)一次函数 1、一次函数的定义 一般地,形如y kx b =+(k ,b 是常数,且0k ≠)的函数,叫做一次函数,其中x 是自变量。当0b =时,一次函数y kx =,又叫做正比例函数。 ⑴一次函数的解析式的形式是y kx b =+,要判断一个函数是否是一次函数,就是判断是否能化成以上形式. ⑵当0b =,0k ≠时,y kx =仍是一次函数. ⑶当0b =,0k =时,它不是一次函数. ⑷正比例函数是一次函数的特例,一次函数包括正比例函数. 2、正比例函数及性质 一般地,形如y=kx(k 是常数,k≠0)的函数叫做正比例函数,其中k 叫做比例系数. 注:正比例函数一般形式 y=kx (k 不为零) ① k 不为零 ② x 指数为1 ③ b 取零 当k>0时,直线y=kx 经过三、一象限,从左向右上升,即随x 的增大y 也增大;当k<0时,?直线y=kx 经过二、四象限,从左向右下降,即随x 增大y 反而减小. (1) 解析式:y=kx (k 是常数,k ≠0) (2) 必过点:(0,0)、(1,k ) (3) 走向:k>0时,图像经过一、三象限;k<0时,?图像经过二、四象限 (4) 增减性:k>0,y 随x 的增大而增大;k<0,y 随x 增大而减小 (5) 倾斜度:|k|越大,越接近y 轴;|k|越小,越接近x 轴 3、一次函数及性质 一般地,形如y=kx +b(k,b 是常数,k≠0),那么y 叫做x 的一次函数.当b=0时,y=kx +b 即y=kx ,所以说正比例函数是一种特殊的一次函数. 注:一次函数一般形式 y=kx+b (k 不为零) ① k 不为零 ②x 指数为1 ③ b 取任意实数 一次函数y=kx+b 的图象是经过(0,b )和(- k b ,0)两点的一条直线,我们称它为直线y=kx+b,它可以看作由直线y=kx 平移|b|个单位长度得到.(当b>0时,向上平移;当b<0时,向下平移)

函数的性质与函数图像的关系

函数的性质与函数图像的关系 由特殊到一般,得出指数函数的 图象特征,进一步得出图象性质: 教师组织学生结合图像讨论指数函数的性质。 探究:指数函数的图象和性质 问题:你能类比前面讨论函数性质时的思路,提出研究指数函数性质的内容和方法吗? 研究方法:画出函数的图象,结合图象研究函数的性质. 研究内容:定义域、值域、特殊点、单调性、最大(小)值、奇偶性. 探索研究: 1.在同一坐标系中画出下列函数的图象: (1)x )31 (y = (2)x )21 (y = (3)x 2y = (4)x 3y = (5)x 5y = 2.从画出的图象中你能发现函 数x 2y =的图象和函数x )2 1 (y =的图象有什么关系?可否利用x 2y =的图象 画出x )2 1 (y =的图象?

3.从画出的图象(x 2y =、x 3y =和x 5y =)中,你能发现函数的图象与其底数之间有什么样的规律? 图象特征 函数性质 1a > 1a 0<< 1a > 1a 0<< 向x 、y 轴正负方向无限延伸 函数的定义域为R 图象关于原点和y 轴不对称 非奇非偶函数 函数图象都在x 轴上方 函数的值域为R + 函数图象都过定点(0,1) 1a 0= 自左向右看, 图象逐渐上升 自左向右看, 图象逐渐下降 增函数 减函数 在第一象限内的图象纵坐标都大于1 在第一象限内的图象纵坐标都小于1 1a ,0x x >> 1a ,0x x <> 在第二象限内的图象纵坐标都小于1 在第二象限内的图象纵坐标都大于1 1a ,0x x << 1,0>=且值域是)]b (f ),a (f [或)]a (f ),b (f [; (2)若0x ≠,则1)x (f ≠;)x (f 取遍所有正数当且仅当R x ∈; (3)对于指数函数)1a 0a (a )x (f x ≠>=且,总有a )1(f =; (4)当1a >时,若21x x <,则)x (f )x (f 21<;[来源:学科网 要充分调动学生的积极性、主动性,发挥他们的潜能,尽量由学生自主得出性质,以便能够更深刻的记忆、更熟练的运用。在理解指数函数定义的基础上掌握指数函数的图像与性质,是本节的重点。关键在于弄清底数a 对于函数值变

正弦函数和余弦函数图像与性质

6、1正弦函数与余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T 、 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α= ===; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定的 角与它的正弦值(或余弦值)之间就是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法 步骤1:等分、作正弦线——将单位圆等分,作三角函数线(正弦线)得三角函数值; 步骤2:描点——平移定点,即描点()x x sin ,; 步骤3:连线——用光滑的曲线顺次连结各个点 小结:几何描点法作图精确,但过程比较繁。 【方案2】——五点法 步骤1:列表——列出对图象形状起关键作用的五点坐标;

五大基本初等函数性质及其图像

五、基本初等函数及其性质和图形 1.幂函数 函数称为幂函数。如,, ,都是幂函数。没有统一的定义域,定义域由值确定。如 ,。但在内 总是有定义的,且都经过(1,1)点。当 时,函数在上是单调增加的,当时,函数在内是单调减少的。下面给出几个常用的幂函数: 的图形,如图1-1-2、图1-1-3。 图1-1-2

图1-1-3 2.指数函数 函数称为指数函数,定义域 ,值域;当时函数为单调增加 的;当时为单调减少的,曲线过点。高等 数学中常用的指数函数是时,即。以与 为例绘出图形,如图1-1-4。 图1-1-4 3.对数函数

函数称为对数函数,其定义域 ,值域。当时单调增加,当 时单调减少,曲线过(1,0)点,都在右半平面 内。与互为反函数。当时的对数 函数称为自然对数,当时,称为常用对数。以为例绘出图形,如图1-1-5。 图1-1-5 4.三角函数有 ,它们都是周期函 数。对三角函数作简要的叙述: (1)正弦函数与余弦函数:与定义域都是,值域都是。它们都是有界函数,周期都是,为奇函数,为偶函数。图形为图1-1-6、图1-1-7。

图1-1-6正弦函数图形 图1-1-7余弦函数图形 (2)正切函数,定义域,值 域为。周期,在其定义域内单调增加的奇函数,图形为图1-1-8 图1-1-8 (3)余切函数,定义域,值域为 ,周期。在定义域内是单调减少的奇函数,图形如图1-1-9。

图1-1-9 (4)正割函数,定义域,值域为,为无界函数,周期的偶函数,图形如图1-1-10。 图1-1-10 (5)余割函数,定义域,值域为 ,为无界函数,周期在定义域为奇函 数,图形如图1-1-11。

高中各种函数图像画法与函数性质

一次函数 二次函数

反比例函数 1、反比例函数图象:反比例函数的图像属于以原点为对称中心的中心对称的双曲线 反比例函数图像中每一象限的每一支曲线会无限接近X轴Y轴但不会与坐标轴相交(K≠0)。 2、性质: 1.当k>0时,图象分别位于第一、三象限,同一个象限内,y随x的增大而减小;当k<0时,图象分别位于二、四象限,同一个象限内,y随x的增大而增大。 2.k>0时,函数在x<0上同为减函数、在x>0上同为减函数;k<0时,函数在x<0上为增函数、在x>0上同为增函数。 定义域为x≠0;值域为y≠0。 3.因为在y=k/x(k≠0)中,x不能为0,y也不能为0,所以反比例函数的图象不可能与x轴相交,也不可能与y轴相交。 4. 在一个反比例函数图象上任取两点P,Q,过点P,Q分别作x轴,y轴的平行线,与坐标轴围成的矩形面积为S1,S2则S1=S2=|K| 5. 反比例函数的图象既是轴对称图形,又是中心对称图形,它有两条对称轴 y=x y=-x(即第一三,二四象限角平分线),对称中心是坐标原点。

指数函数y=a x (a>0,a≠1) 注意:⒈指数函数对外形要求严格,前系数要为1,否则不能为指数函数。 ⒉指数函数的定义仅是形式定义。 指数函数的图像与性质 规律:1. 当两个指数函数中的a互为倒数时,两个函数关于y轴对称,但这两个函数都不具有奇偶性。 2.当a>1时,底数越大,图像上升的越快,在y轴的右侧,图像越靠近y轴; 当0<a<1时,底数越小,图像下降的越快,在y轴的左侧,图像越靠近y轴。 在y轴右边“底大图高”;在y轴左边“底大图低”。

3.四字口诀:“大增小减”。即:当a>1时,图像在R上是增函数; 当0<a<1时,图像在R上是减函数。 4. 指数函数既不是奇函数也不是偶函数 比较幂式大小的方法: 1.当底数相同时,则利用指数函数的单调性进行比较; 2.当底数中含有字母时要注意分类讨论; 3.当底数不同,指数也不同时,则需要引入中间量进行比较; 4.对多个数进行比较,可用0或1作为中间量进行比较 底数的平移: 在指数上加上一个数,图像会向左平移;减去一个数,图像会向右平移。 在f(X)后加上一个数,图像会向上平移;减去一个数,图像会向下平移。

三角函数正余弦函数的图像及性质复习汇总

课题三角函数的图像及性质 1.借助单位圆中的三角函数线推导出诱导公式( π2/±α , π的±正α弦、余弦、正切) 教学目标 2.利用单位圆中的三角函数线作出y sin x,x R的图象,明确图象的形状; 3.根据关系cosx sin(x ) ,作出y cosx,x R的图象; 2 4.用“五点法”作出正弦函数、余弦函数的简图,并利用图象解决一些有关问题; 重点、难点 1、正确地用三角函数线表示任意角的三角函数值 2、作余弦函数的图象。 教学内容 、正弦函数和余弦函数的图象: -1 正弦函数y sin x 和余弦函数y cos x图象的作图方法:五点法:先取横坐标分别为0,, ,3 ,2 22 的五点,再用光滑的曲线把这五点连接起来,就得到正弦曲线和余弦曲线在一个周期内的图象。 二、正弦函数y sin x(x R) 、余弦函数y cosx(x R) 的性质: ( 1)定义域:都是R。 (2)值域: 1、都是1,1 , 2、y sinx ,当x 2k k 2 3、y cosx ,当x 2k k Z 例: ( 1)若函数y a bsin(3 x Z 时,y 取最大值1 ;当x 时,y 取最大值1,当x 2k ) 的最大值为3,最小值为 62 3 2k 3 k Z 时,y 取最小值-1; 2 k Z 时,y 取最小值- 1 。 1,则 a __, b _ 2 3 y -2 1 y=cosx -3 -5 -32 -4 -7 -2 -3 22

1 答: a 1 2,b 1或b 1); ⑵ 函数 y=-2sinx+10 取最小值时,自变量 x 的集合是 3)周期性 : (正(余)弦型函数的对称轴为过最高点或最低点且垂直于 x 轴的直线,对称中心为图象与 x 轴的交 点)。 5)单调性 : 别忘了 k Z ! ⑴函数 y=sin2x 的单调减区间是( ① y sin x 、 y cos x 的最小正周期都是 2 ; ② f ( x) A sin( x )和 f (x) Acos( 2 x ) 的最小正周期都是 T 2 sin 3x ,则 f (1) f (2) ⑵.下列函数中,最小正周期为 例: (1)若 f (x) f (3) L 的是( A. y cos 4x B. y sin 2x C.y f (2003) = 答: 0); x sin 2 D.y x cos 4 ( 4)奇偶性与对称性 : 1、正弦函数 y sin x ( x R ) 是奇函 数, 对称中心是 k ,0 k Z ,对称轴是直线 x k k Z ; 2 2、余弦函数 y cosx (x R ) 是偶函数, 对称中心是 k 2 ,0 k Z ,对称轴是直线 x k k Z 5 例:(1) 函数 y sin 5 2 2x 的奇偶性是 答:偶函数); 2)已知函数 f ( x ) a x bsin 3 x 1( a,b 为常数), 且 f (5 ) 7, 则 f ( 5) 答:- 5); y sin x 在 2k , 2k 2 k Z 上单调递增,在 2k , 2k 2 3 k Z 单调递减; 2 y cosx 在 2k ,2 k Z 上单调递减,在 2k ,2k k Z 上单调递增。 特别提醒 ,

正余弦函数的图象与性质

精心整理 正、余弦函数的图象与性质 [知识回顾] 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{}36036090,k k k αα?<

原点的距离是()0 r r=>,则sin y r α=,cos x r α=,() tan0 y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sinα=MP,cosα=OM,tanα=AT. 12、同角三角函数的基本关系: 222222

[考点例题精讲] 考点一:正余弦函数图象的应用 例1 利用正弦函数和余弦函数的图象,求满足下列条件的x 的集合: 2 1 sin )1(≥ x 解:作出正弦函数y=sinx ,x ∈[0,2π]的图象: 由图形可以得到,满足条件的x 的集合为:Z k k k ∈?? ? ???++,265, 26 ππππ 2 1 cos )2(≤ x 解:作出余弦函数y=cos ,x ∈[0,2π]的图象: 由图形可以得到,满足条件的x 的集合为:Z k k k ∈?? ? ???++,235, 23 ππππ 考点二:求与正余弦函数有关的定义域问题 例2求下列函数的定义域: (1)y =1+ x sin 1 (2)y =x cos 解:(1)由1+sin x ≠0,得sin x ≠-1即x ≠2 3π +2k π(k ∈Z ) ∴原函数的定义域为{x |x ≠ 23π +2k π,k ∈Z } (2)由cos x ≥0得-2π +2k π≤x ≤2 π+2k π(k ∈Z ) ∴原函数的定义域为[-2π+2k π,2 π +2k π](k ∈Z ) 方法小结:求三角函数的定义域实质就是解三角不等式(组).一般可用三角函单调性 在2,22 2k k ππππ??-+??? ? ()k ∈Z 上是增函 数; 在32,22 2k k π πππ??++ ??? ? () k ∈Z 上是减函数. 在[]()2,2k k k πππ-∈Z 上是增函数; 在[]2,2k k πππ+()k ∈Z 上是减函 数. 对称性 对称中心()(),0k k π∈Z 对称轴()2 x k k π π=+∈Z 对称中心(),02 k k π π?? +∈Z ?? ? 对称轴()x k k π=∈Z

正余弦函数的图像与性质(周期性)

第一课时 题目:正弦函数、余弦函数的图象 授课时间:3月25日,星期一 课型:新授课 教学目标: 理解借助单位圆中的三角函数线(正弦线)画出y sin x =的图象,进而画出 y cos x =的图象;会用“五点法”画y sin x =和y cos x =在一个周期内的简图。 教学重点和难点: 重点:利用三角函数线画正弦函数[]x 0,2 蝡的图象,用“五点法”画y sin x =和 y cos x =在一个周期内的简图。 难点:正弦函数与余弦函数图象间的关系、图象变换。 学情分析: 学生在之前已经学了一次函数、二次函数、指数函数、对数函数和幂函数,已掌握了一些基础函数的图像和性质,并了解一些函数图像的画法。而且刚分班学生的学习动力很足,但学生分析、理解能力较差,对具体形象的事物比较感兴趣,但对学习抽象理论知识存在畏难情绪,缺乏学习主动性,因此在教学中要注意引导学生积极思考和多动手画图练习。 教学方法: 通过多媒体展示正弦函数的形成,是学生更直观形象的了解正弦函数的形成,加深印象增加兴趣。并配合适当讲授法。在五点法画图中要学生动手实践,加深印象和理解。 教具、学具的准备:多媒体、直尺、圆规 教学过程: (一)知识链接 1、正弦线的概念 2、诱导公式(六) (二)情景设置 在初中和必修一的函数学习中,我们知道函数的图像为我们解决相关的函数问题提供了重要的方法和工具,那么三角函数的图像是怎样的呢? 这节课让我们来共同探讨正、余弦函数的图像问题。 【设计意图】从原有知识出发,类比联想,引入问题情景,学生主动参与,积极思考 (三)课题导入 提问1、如何作正弦函数的图象? ①列表描点法: 步骤:列表、描点、连线 大家试着画出正弦函数sin y x =[]0,2x π∈的图像

高中常见函数图像及基本性质

常见函数性质汇总及简单评议对称变换 常数函数 f (x )=b (b ∈R) 1)、y=a 和 x=a 的图像和走势 2)、图象及其性质:函数f (x )的图象是平行于x 轴或与x 轴重合(垂直于y 轴)的直线 一次函数 f (x )=kx +b (k ≠0,b ∈R) 1)、两种常用的一次函数形式:斜截式—— 点斜式—— 2)、对斜截式而言,k 、b 的正负在直角坐标系中对应的图像走势: 3)、|k|越大,图象越陡;|k|越小,图象越平缓 4)、定 义 域:R 值域:R 单调性:当k>0时 ;当k<0时 奇 偶 性:当b =0时,函数f (x )为奇函数;当b ≠0时,函数f (x )没有奇偶性; 例题:y=f (x ); y=g (x )都有反函数,且f (x-1)和g -1 (x)函数的图像关于y=x 对称,若g (5)=2016,求)= 周 期 性:无 5)、一次函数与其它函数之间的练习 1、常用解题方法: b

反比例函数 f (x )= x k (k ≠0,k 值不相等永不相交;k 越大,离坐标轴越远) 图象及其性质:永不相交,渐趋平行;当k>0时,函数f (x )的图象分别在第一、第三 象限;当k<0时,函数f (x )的图象分别在第二、第四象限; 双曲线型曲线,x 轴与y 轴分别是曲线的两条渐近线; 既是中心对成图形也是轴对称图形 定 义 域:),0()0,(+∞-∞ 值 域:),0()0,(+∞-∞ 单 调 性:当k> 0时;当k< 0时 周 期 性:无 奇 偶 性:奇函数 反 函 数:原函数本身 补充:1、反比例函数的性质 2、与曲线函数的联合运用(常考查有无交点、交点围城图行的面积)——入手点常有两个——⑴直接带入,利用二次函数判别式计算未知数的取值;⑵利用斜率,数形结合判断未知数取值(计算面积基本方法也基于此) 3、反函数变形(如右图) 1)、y=1/(x-2)和y=1/x-2的图像移动比较 2)、y=1/(-x)和y=-(1/x )图像移动比较 3)、f (x )= d cx b ax ++ (c ≠0且 d ≠0)(补充一下分离常数) (对比标准反比例函数,总结各项内容) 二次函数 一般式:)0()(2 ≠++=a c bx ax x f 顶点式:)0()()(2 ≠+-=a h k x a x f 两根式:)0)()(()(21≠--=a x x x x a x f 图象及其性质:①图形为抛物线,对称轴为 ,顶点坐标为 ②当0>a 时,开口向上,有最低点 当00时,函数图象与x 轴有两个交点( );当<0时,函数图象与x 轴有一个交点( );当=0时,函数图象与x 轴没有交点。 ④)0()(2 ≠++=a c bx ax x f 关系 )0()(2 ≠=a ax x f 定 义 域:R 值 域:当0>a 时,值域为( );当0a 时;当0

正弦函数与余弦函数的图像与性质练习题

正弦函数与余弦函数的图像与性质 1.已知函数f (x )=sin(x -π2 )(x ∈R ),下面结论错误的是________. ①函数f (x )的最小正周期为2π ②函数f (x )在区间[0,π2 ]上是增函数 ③函数f (x )的图象关于直线x =0对称 ④函数f (x )是奇函数 2.函数y =2cos 2(x -π4 )-1是________.①最小正周期为π的奇函数 ②最小正周期为π的偶函数 ③最小正周期为π2的奇函数 ④最小正周期为π2 的偶函数 3.若函数f (x )=(1+3tan x )cos x ,0≤x <π2 ,则f (x )的最大值为________. 4.已知函数f (x )=a sin2x +cos2x (a ∈R )图象的一条对称轴方程为x = π12,则a 的值为________. 5.设f (x )=A sin(ωx +φ)(A >0,ω>0)的图象关于直线x =π3 对称,它的最小正周期是π,则f (x )图象上的一个对称中心是________(写出一个即可). 6.设函数f (x )=3cos 2x +sin x cos x -32 . (1)求函数f (x )的最小正周期T ,并求出函数f (x )的单调递增区间; (2)求在[0,3π)内使f (x )取到最大值的所有x 的和. B 组 1.函数f (x )=sin(23x +π2)+sin 23 x 的图象相邻的两条对称轴之间的距离是________.

2.给定性质:a 最小正周期为π;b 图象关于直线x = π3 对称.则下列四个函数中,同时具有性质ab 的是________. ①y =sin(x 2+π6) ②y =sin(2x +π6) ③y =sin|x | ④y =sin(2x -π6 ) 3.若π40)在[-2π3,2π3 ]上单调递增,则ω的最大值为________. 6.设函数y =2sin(2x +π3)的图象关于点P (x 0,0)成中心对称,若x 0∈[-π2 ,0],则x 0=________. 7.已知函数y =A sin(ωx +φ)+m 的最大值为4,最小值为0,最小正周期为 π2 ,直线x =π3 是其图象的一条对称轴,则下面各式中符合条件的解析式是________. ①y =4sin(4x + π6) ②y =2sin(2x +π3)+2 ③y =2sin(4x +π3)+2 ④y =2sin(4x +π6 )+2 8.有一种波,其波形为函数y =sin π2x 的图象,若在区间[0,t ]上至少有2个波峰(图象的

六大基本初等函数图像及其性质

六大基本初等函数图像及其性质一、常值函数(也称常数函数)y=C(其中C 为常数); α

1)当α为正整数时,函数的定义域为区间为),(+∞-∞∈x ,他们的图形都经过原点,并当α>1时在原点处与x 轴相切。且α为奇数时,图形关于原点对称;α为偶数时图形关于y 轴对称; 2)当α为负整数时。函数的定义域为除去x=0的所有实数; 3)当α为正有理数 n m 时,n 为偶数时函数的定义域为(0, +∞),n 为奇数时函数的定义域为(-∞,+∞),函数的图形均经过原点和(1 ,1); 4)如果m>n图形于x 轴相切,如果ma ,1≠a ),定义域是R ; [无界函数] 1.指数函数的图象: 2. 1)当1>a 时函数为单调增,当10<

3)当0=x 时,1=y ,所以它的图形通过(0,1)点。 3.(选,补充)指数函数值的大小比较* N ∈a ; a.底数互为倒数的两个指数函数 x a x f =)(, x a x f ? ? ? ??=1)( 的函数图像关于y 轴对称。 b.1.当1>a 时,a 值越大,x a y = 的图像越靠近y 轴; b.2.当10<∈>=n Z n m a a a n m n m y x f x x x x g ? ? ?=1)(

正弦函数和余弦函数图像与性质

6.1正弦函数和余弦函数的图像与性质 一、复习引入 1、复习 (1)函数的概念 在某个变化过程中有两个变量x 、y ,若对于x 在某个实数集合D 内的每一个确定的值,按照某个对应法则f ,y 都有唯一确定的实数值与它对应,则y 就是x 的函数,记作 ()x f y =,D x ∈。 (2)三角函数线 设任意角α的顶点在原点O ,始边与x 轴的非负半轴重合,终边与单位圆相交于点(,)P x y ,过P 作x 轴的垂线,垂足为M ;过点(1,0)A 作单位圆的切线,设它与角α的终边(当α在第一、四象限角时)或其反向延长线(当α为第二、三象限角时)相交于T . 规定:当OM 与x 轴同向时为正值,当OM 与x 轴反向时为负值; 当MP 与y 轴同向时为正值,当MP 与y 轴反向时为负值; 当AT 与y 轴同向时为正值,当AT 与y 轴反向时为负值; 根据上面规定,则,OM x MP y ==, 由正弦、余弦、正切三角比的定义有: sin 1 y y y MP r α====; cos 1 x x x OM r α====; tan y MP AT AT x OM OA α= ===; 这几条与单位圆有关的有向线段,,MP OM AT 叫做角α的正弦线、余弦线、正切线。 二、讲授新课 【问题驱动1】——结合我们刚学过的三角比,就以正弦(或余弦)为例,对于每一个给定 的角和它的正弦值(或余弦值)之间是否也存在一种函数关系?若存在,请对这种函数关系下一个定义;若不存在,请说明理由. 1、正弦函数、余弦函数的定义 (1)正弦函数:R x x y ∈=,sin ; (2)余弦函数:R x x y ∈=,cos 【问题驱动2】——如何作出正弦函数R x x y ∈=,sin 、余弦函数R x x y ∈=,cos 的函数 图象? 2、正弦函数R x x y ∈=,sin 的图像 (1)[]π2,0,sin ∈=x x y 的图像 【方案1】——几何描点法

相关主题