搜档网
当前位置:搜档网 › 余弦定理

余弦定理

余弦定理
余弦定理

余弦定理

余弦定理是描述三角形中三边长度与一个角的余弦值关系的数学定理,是勾股定理在一般三角形情形下的推广,勾股定理是余弦定理的特例。余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求三角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活。

如下图所示,在△ABC中,

余弦定理表达式1

三角形

同理,也可描述为:

勾股定理是余弦定理的特例,当为时,,余弦定理可简化为,即勾股定理。余弦定理表达式2

余弦定理表达式3(角元形式)

平面几何法证明一

平面几何法证明

如上图所示,△ABC,在c上做高,将c边写:

将等式同乘以c得到:

对另外两边分别作高,运用同样的方法可以得到:

将两式相加:

平面几何法证明二

如图所示,在△ABC中,BC=a,AC=b,AB=c,作AD⊥BC 于D,则AD=c*sinB,DC=a-BD=a-c*cosB

在Rt△ACD中,

b2=AD2+DC2=(c*sinB)2+(a-c*cosB)2

=c2sin2B+a2-2ac*cosB+c2cos2B

=c2(sin2B+cos2B)+a2-2ac*cosB

=c2+a2-2ac*cosB

利用正弦定理证法

在△ABC中,

sin2A+sin2B-sin2C

=[1-cos(2A)]/2+[1-cos(2B)]/2-[1-cos(2C)]/2(降幂公式)

=-[cos(2A)+cos(2B)]/2+1/2+1/2-1/2+[cos(2C)]/2 =-cos(A+B)cos(A-B)+[1+cos(2C)]/2(和差化积)=-cos(A+B)cos(A-B)+cos2C(降幂公式)

=cosC*cos(A-B)-cosC*cos(A+B)(∠A+∠B=180°-∠C 以及诱导公式)

=cosC[cos(A-B)-cosC*cos(A+B)]

=2cosC*sinA*cinB(和差化积)(由此证明余弦定理角元形式)

设△ABC的外接圆半径为R

∴(RsinA)2+(RsinB)2-(RsinC)2=(RsinA)*(RsinB)*cosC

∴a2+b2-c2=2ab*cosC(正弦定理)

∴c2=a2+b2-2ab*cosC

平面向量证法

∵如图,有a+b=c(平行四边形定则:两个邻边之间的对角线代表两个邻边大小)

∴c·c=(a+b)·(a+b)

∴c2=a·a+2a·b+b·b∴c2=a2+b2+2|a||b|cos(π-θ)(以上粗体字符表示向量)

又∵cos(π-θ)=-cosθ(诱导公式)

∴c2=a2+b2-2|a||b|cosθ

此即c2=a2+b2-2ab cos C

即cos C=(a2+b2-c2)/2*a*b

同理可证其他,而下面的cos C=(c2-b2-a2)/2ab就是将cosC移到左边表示一下。

平面向量证法余弦定理是解三角形中的一个重要定理,可应用于以下三种需求:

当已知三角形的两边及其夹角,可由余弦定理得出已知角的对边。

?

?

当已知三角形的三边,可以由余弦定理得到三角形的三个内角。

?

?

当已知三角形的三边,可以由余弦定理得到三角形的面积。

?

求边

余弦定理公式可变换为以下形式:

因此,如果知道了三角形的两边及其夹角,可由余弦定理得出已知角的对边。

求角

因为余弦函数在

上的单调性,可以得到:

因此,如果已知三角形的三条边,可以由余弦定理得到三角形的三个内角。

求面积

由面积公式

知如果已知三角形的三条边,可以由余弦定理求出一个内角,从而得到三角形的面积。

判定定理一两根判别法

若记m(c1,c2)为c的两值为正根的个数,c1为c的表达式中根号前取加号的值,c2为c的表达式中根号前取减号的值。

①若m(c1,c2)=2,则有两解;

②若m(c1,c2)=1,则有一解;

③若m(c1,c2)=0,则有零解(即无解)。

注意:若c1等于c2且c1或c2大于0,此种情况算到第二种情况,即一解。

判定定理二角边判别法

一、当a>bsinA时:

①当b>a且cosA>0(即A为锐角)时,则有两解;

②当b>a且cosA<=0(即A为直角或钝角)时,则有零解(即无解);

③当b=a且cosA>0(即A为锐角)时,则有一解;

④当b=a且cosA<=0(即A为直角或钝角)时,则有零解(即无解);

⑤当b

二、当a=bsinA时:

①当cosA>0(即A为锐角)时,则有一解;

②当cosA<=0(即A为直角或钝角)时,则有零解(即无解)。

三、当a

四、例如:已知△ABC的三边之比为5:4:3,求最大的内角。

解:设三角形的三边为a,b,c且a:b:c=5:4:3.

由三角形中大边对大角可知:∠A为最大的角。

由余弦定理:

cosA=0

所以∠A=90°。

再如:△ABC中,AB=2,AC=3,角A为60度,求BC之长。

解:由余弦定理可知:

=4+9-2×2×3×cos60

=13-12x0.5

=7

所以

(cos60°=?)

以上两个小例子简单说明了余弦定理的作用。

余弦定理练习题及答案解析

1.在△ABC中,已知a=4,b=6,C=120°,则边c的值是() A.8B.217 C.6 2 D.219 解析:选D.根据余弦定理,c2=a2+b2-2ab cos C=16+36-2×4×6cos 120°=76,c=219. 2.在△ABC中,已知a=2,b=3,C=120°,则sin A的值为() A. 57 19 B. 21 7 C. 3 38D.- 57 19 解析:选A.c2=a2+b2-2ab cos C =22+32-2×2×3×cos 120°=19. ∴c=19. 由a sin A= c sin C得sin A= 57 19. 3.如果等腰三角形的周长是底边长的5倍,那么它的顶角的余弦值为__________. 解析:设底边边长为a,则由题意知等腰三角形的腰长为2a,故顶角的余弦值为4a2+4a2-a2 2·2a·2a= 7 8. 答案:7 8 4.在△ABC中,若B=60°,2b=a+c,试判断△ABC的形状.解:法一:根据余弦定理得 b2=a2+c2-2ac cos B. ∵B=60°,2b=a+c, ∴(a+c 2) 2=a2+c2-2ac cos 60°, 整理得(a-c)2=0,∴a=c. ∴△ABC是正三角形. 法二:根据正弦定理, 2b=a+c可转化为2sin B=sin A+sin C. 又∵B=60°,∴A+C=120°, ∴C=120°-A, ∴2sin 60°=sin A+sin(120°-A), 整理得sin(A+30°)=1, ∴A=60°,C=60°. ∴△ABC是正三角形. 课时训练一、选择题 1.在△ABC中,符合余弦定理的是() A.c2=a2+b2-2ab cos C B.c2=a2-b2-2bc cos A C.b2=a2-c2-2bc cos A D.cos C=a2+b2+c2 2ab 解析:选A.注意余弦定理形式,特别是正负号问题. 2.(2011年合肥检测)在△ABC中,若a=10,b=24,c=26,则最大角的余弦值是() A.12 13 B. 5 13

余弦定理证明过程(完整版)

余弦定理证明过程 余弦定理证明过程 =a,∠da=π-∠ba=π-,根据三角函数的定义知d点坐标是,asin)即d点坐标是,∴ad=而ad=b∴=∴asin=sina………… ①-aos=osa-b…… ②由 ①得asina=sin,同理可证asina=bsinb,∴asina=bsinb=sin.由 ②得aos=b-osa,平方得: a2os2=b2-2bosa+2os2a,即a2-a2sin2=b2-2bosa+2-2sin2a.而由 ①可得a2sin2=2sin2a∴a2=b2+2-2bosa.同理可证b2=a2+2- 2aosb,2=a2+b2-2abos.到此正弦定理和余弦定理证明完毕。3△ab的三边分别为a,b,,边b,a,ab上的中线分别为ma.mb,m,应用余弦定理证明: mb= m=ma=√^2-a*osb) =√ 由b^2=a^2+^2-2a*osb 得,4a*osb=2a^2+2^2-2b^ 2,代入上述ma表达式: ma=√ =√ 同理可得: mb=

m= 4 ma=√^2-a*osb) =√ 由b^2=a^2+^2-2a*osb 得,4a*osb=2a^2+2^2-2b^ 2,代入上述ma表达式: ma=√ =√ 证毕。 第五篇: 余弦定理的多种证明 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活. 对于任意三角形三边为a,b, 三角为a,b, 满足性质 a^2=b^2+^2-2*b**osa b^2=a^2+^2-2*a**osb ^2=a^2+b^2-2*a*b*os os=2ab osb=2a osa=2b 证明:

余弦定理说课稿范文

余弦定理说课稿范文 一、说教材 (一)教材地位与作用 《余弦定理》是必修5第一章《解三角形》的第一节内容,前面已经学习了正弦定理以及必修4中的任意角、诱导公式以及恒等变换,为后面学习三角函数奠定了基础,因此本节课有承上启下的作用。本节课是解决有关斜三角形问题以及应用问题的一个重要定理,它将三角形的边和角有机地联系起来,实现了“边”与“角”的互化,从而使“三角”与“几何”产生联系,为求与三角形有关的量提供了理论依据,同时也为判断三角形形状,证明三角形中的有关等式提供了重要依据。 (二)教学目标 根据上述教材内容分析以及新课程标准,考虑到学生已有的认知结构,心理特征及原有知识水平,我将本课的教学目标定为: ⒈知识与技能: 掌握余弦定理的内容及公式;能初步运用余弦定理解决一些斜 三角形 ⒉过程与方法: 在探究学习的过程中,认识到余弦定理可以解决某些与测量和几何计算有关的实际问题,帮助学生提高运用有关知识解决实际问题的能力。 ⒊情感、态度与价值观:

培养学生的探索精神和创新意识;在运用余弦定理的过程中,让学生逐步养成实事求是,扎实严谨的科学态度,学习用数学的思维方式解决问题,认识世界;通过本节的运用实践,体会数学的科学价值,应用价值; (三)本节课的重难点 教学重点是:运用余弦定理探求任意三角形的边角关系,解决与之有关的计算问题,运用余弦定理解决一些与测量以及几何计算有关的实际问题。 教学难点是:灵活运用余弦定理解决相关的实际问题。 教学关键是:熟练掌握并灵活应用余弦定理解决相关的实际问题。 下面为了讲清重点、难点,使学生能达到本节设定的教学目标,我再从教法和学法上谈谈: 二、说学情 从知识层面上看,高中学生通过前一节课的学习已经掌握了余弦定理及其推导过程;从能力层面上看,学生初步掌握运用余弦定理解决一些简单的斜三角形问题的技能;从情感层面上看,学生对教学新内容的学习有相当的兴趣和积极性,但在探究问题的能力以及合作交流等方面的发展不够均衡。 三、说教法和学法 贯彻的指导思想是把“学习的主动权还给学生”,倡导“自主、合作、探究”的学习方式。让学生自主探索学会分析问题,解决问题。

余弦定理讲义解析

余弦定理(一) 1.余弦定理 三角形中任何一边的平方等于其他两边的平方的和减去这两边与它们的夹角的余弦的积的两倍.即a 2=b 2+c 2-2bc cos_A ,b 2=c 2+a 2-2ca cos_B ,c 2=a 2+b 2-2ab cos_C . 2.余弦定理的推论 cos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ca ;cos C =a 2+b 2-c 2 2ab . 3.在△ABC 中: (1)若a 2+b 2-c 2=0,则C =90°; (2)若c 2=a 2+b 2 -ab ,则C =60°; (3)若c 2=a 2+b 2+2ab ,则C =135°. 一、选择题 1.在△ABC 中,已知a =1,b =2,C =60°,则c 等于( ) A. 3 B .3 C. 5 D .5 答案 A 2.在△ABC 中,a =7,b =43,c =13,则△ABC 的最小角为( ) A.π3 B.π6 C.π4 D.π12 答案 B 解析 ∵a >b >c ,∴C 为最小角, 由余弦定理cos C =a 2+b 2-c 2 2ab = 72+(43)2-(13)2 2×7×43 = 32.∴C =π 6 . 3.在△ABC 中,已知a =2,则b cos C +c cos B 等于( ) A .1 B. 2 C .2 D .4 答案 C 解析 b cos C +c cos B =b ·a 2+b 2-c 22ab +c ·c 2+a 2-b 22ac =2a 2 2a =a =2. 4.在△ABC 中,已知b 2=ac 且c =2a ,则cos B 等于( ) A.14 B.34 C.24 D.23 答案 B 解析 ∵b 2=ac ,c =2a ,∴b 2=2a 2,b =2a , ∴cos B =a 2+c 2-b 22ac =a 2+4a 2-2a 22a ·2a =3 4 . 5.在△ABC 中,sin 2A 2=c -b 2c (a ,b ,c 分别为角A ,B ,C 的对应边),则△ABC 的形

余弦定理的八种证明方法

余弦定理的八种证明方法 2011年高考数学卷(陕西卷)考出了“说明并证明余弦定理”这个考题,使平时不注重翻阅课本的同学大部分吃了亏,虽然这是书本上的知识,且课本上只给出了一种证明方法,但仍让同学们很难想到会考这个证明题,因此我们利用这次研究性学习活动,以论文的方式来介绍一下多种余弦定理的证明方法,来增强我们对课本知识的理解。 用多种方法证明余弦定理,扩展思维,了解更多的过程。 余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形便可适当移于其它知识。 一余弦定理的内容 对于任意三角形,任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的两倍积,若三边为a,b,c 三角为A,B,C ,则满足性质 a2 = b2 + c2- 2·b·c·cosA b2 = a2 + c2 - 2·a·c·cosB c2 = a2 + b2 - 2·a·b·cosC 二证明方法 方法一:平面几何法 ∵如图,有a+b=c ∴c·c=(a+b)·(a+b) ∴c2=a·a+2a·b+b·b ∴c2=a2+b2+2|a||b|cos(π-θ) 又∵Cos(π-θ)=-Cosθ∴c2=a2+b2-2|a||b|cosθ 再拆开,得c^2=a2+b2-2*a*b*cosC

方法二:勾股法 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC2=AD2+DC2 b2=(sinB*c)2+(a-cosB*c)2 b2=(sinB*c)2+a2-2ac*cosB+(cosB)2*c2 b2=(sinB2+cosB2)*c2-2ac*cosB+a2 b2=c2+a2-2ac*cosB 方法三:解析法 在三角形ABC建立直角坐标系,使A点为原点,B点落在x轴正半轴上,设三角形三边abc 则有三点坐标为A(0,0)B(c,0)C(bcosA,bsinA) ∵BC=a 则由距离公式得a=(c-bcosA)2-(bsinA)2 化简得a=c2+b2-2bccosA ∴a2=c2+b2-2bccosA 方法四:面积法 S△ACQ=(1/2)bc(cos∠BAC), S△PBC=(1/2)ac(cos∠CBA),

余弦定理知识点+经典题(有答案)

余弦定理 余弦定理:三角形中任意一边的平方等于其他两边的平方的和减去这两边与它们夹角的余弦的两倍。即: 2222cos a b c bc A =+- 2222cos b a c ac B =+- 2222cos c a b ab C =+- 2.利用余弦定理解三角形: (1)已知两边和它们所夹的角: (2)已知三边: 余弦定理 1.在△ABC 中,如果BC =6,AB =4,cos B =1 3 ,那么AC 等于( )A .6 B .2 6 C .3 6 D .4 6 3.在△ABC 中,a 2=b 2+c 2+3bc ,则∠A 等于( ) A .60° B .45° C .120° D .150° 4.在△ABC 中,∠A 、∠B 、∠C 的对边分别为a 、b 、c ,若(a 2+c 2-b 2)tan B = 3ac , 则∠B 的值为( ) A.π6 B.π3 C.π6或5π6 D.π3或2π3 5.如果把直角三角形的三边都增加同样的长度,则这个新的三角形的形状为( ) A .锐角三角形 B .直角三角形 C .钝角三角形 D .由增加的长度决定 6.已知锐角三角形ABC 中,|AB →|=4,|AC →|=1,△ABC 的面积为3,则AB →·AC →的值为( ) A .2 B .-2 C .4 D .-4

7.在△ABC中,b=3,c=3,B=30°,则a为( ) A. 3 B.2 3 C.3或2 3 D.2 8.已知△ABC的三个内角满足2B=A+C,且AB=1,BC=4,则边BC上的中线AD的长为________. 9.△ABC中,sin A∶sin B∶sin C=(3-1)∶(3+1)∶10,求最大角的度数.10.已知a、b、c是△ABC的三边,S是△ABC的面积,若a=4,b=5,S=53,则边c 的值为________. 11.在△ABC中,a=32,cos C=1 3 ,S△ABC=43,则b=________. 12.已知△ABC的三边长分别为AB=7,BC=5,AC=6,则AB→·BC→的值为________. 13.已知△ABC的三边长分别是a、b、c,且面积S=a2+b2-c2 4 ,则角C=________. 14.(2015年广州调研)三角形的三边为连续的自然数,且最大角为钝角,则最小角的余弦值为________. 15.在△ABC中,BC=a,AC=b,a,b是方程x2-23x+2=0的两根,且2cos(A+B)=1,求AB的长.

两角和与差的余弦公式证明

两角和与差的余弦公式的五种推导方法之对比 沈阳市教育研究院王恩宾 两角和与差的余弦公式是三角函数恒等变换的基础,其他三角函数公式都是在此公式 基础上变形得到的,因此两角和与差的余弦公式的推导作为本章要推导的第一个公式,往 往得到了广大教师的关注. 对于不同版本的教材采用的方法往往不同,认真体会各种不同 的两角和与差的余弦公式的推导方法,对于提高学生的分析问题、提出问题、研究问题、 解决问题的能力有很大的作用.下面将两角和与差的余弦公式的五种常见推导方法归纳如下:方法一:应用三角函数线推导差角公式的方法 设角α的终边与单位圆的交点为P1,∠POP1=β,则∠POx=α-β. 过点P作PM⊥x轴,垂足为M,那么OM即为α-β角的余弦线,这里要用表示α,β 的正弦、余弦的线段来表示OM. 过点P作PA⊥OP1,垂足为A,过点A作AB⊥x轴,垂足为B,再过点P作PC⊥AB,垂 足为C,那么cosβ=OA,sinβ=AP,并且∠PAC=∠P1Ox=α,于是OM=OB+BM=OB +CP=OA cosα+AP sinα=cosβcosα+sinβsinα. 综上所述,. 说明:应用三角函数线推导差角公式这一方法简单明了,构思巧妙,容易理解. 但这种推 导方法对于如何能够得到解题思路,存在一定的困难. 此种证明方法的另一个问题是公式是在均为锐角的情况下进行的证明,因此还要考虑的角度从锐角向任意角的推 广问题. 方法二:应用三角形全等、两点间的距离公式推导差角公式的方法

设P1(x1,y1),P2(x2,y2),则有|P1P2 |= . 在直角坐标系内做单位圆,并做出任意角α,α+β和,它们的终边分别交单位圆于P2、P3和P4点,单位圆与x轴交于P1,则P1(1,0)、P2(cosα,sinα)、P3(cos(α+β),sin(α+β))、. ∵,且, ∴,∴, ∴ , ∴, ∴,. 说明:该推导方法巧妙的将三角形全等和两点间的距离结合在一起,利用单位圆上与角有关的四个点, 建立起等式关系,通过将等式的化简、变形就可以得到符合要求 的和角与差角的三角公式. 在此种推导方法中,推导思路的产生是一个难点,另外对于三点在一条直线和三点在一条直线上时这一特殊情况,还需要加以解释、说明.

最新余弦定理教案设计

余弦定理 一、教材分析 本节主要研究xxxxxx,分两课时,这里是第一课时。它是在学生已经学习了正弦定理的内容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解三角形的基础上进行学习的。通过利用平面几何法、坐标法(两点的距离公式)、向量的模,正弦定理等方法推导余弦定理,学生会正确理解余弦定理的结构特征和表现形式,解决“边、角、边”和“边、边、边”问题,初步体会余弦定理解决“边、边、角”问题,体会方程思想,理解余弦定理是勾股定理的特例, 从多视角思考问题和发现问题,形成良好的思维品质,激发学生探究数学,应用数学的潜能,培养学生思维的广阔性。 二、学情分析 本课之前,学生已经学习了三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用向量方法探求余弦定理,学生已有一定的学习基础和学习兴趣。总体上学生应用数学知识的意识不强,创造力较弱,看待与分析问题不深入,知识的系统性不完善,使得学生在余弦定理推导方法的探求上有一定的难度,在发掘出余弦定理的结构特征、表现形式的数学美时,能够激发学生热爱数学的思想感情;从具体问题中抽象出数学的本质,应用方程的思想去审视,解决问题是学生学习的一大难点。 本节内容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了"边"和"角"的互化,从而使"三角"与"几何"有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了"已知三角形的两边和夹角,无法用正弦定理去解三角形",进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完

最新高中数学《余弦定理》教案精编版

2020年高中数学《余弦定理》教案精编版

仅供学习与交流,如有侵权请联系网站删除 谢谢5 1.1.2余 弦 定 理(1) 一、教学内容分析 《余弦定理》第一课时。通过利用平面几何法,坐标法(两点的距离公式),向量的模,正弦定理等方法推导余弦定理,正确理解余弦定理的结构特征,初步体会余弦定理解决“边、角、边”和“边、边、边”问题,理解余弦定理是勾股定理的特例, 从多视角思考问题和发现问题,形成良好的思维品质,激发学生学习数学的积极性和浓厚的兴趣,培养学生思维的广阔性。 二、学生学习情况分析 本课之前,学生已经学习了两点间的距离公式,三角函数、向量基本知识和正弦定理有关内容,对于三角形中的边角关系有了较进一步的认识。在此基础上利用多种方法探求余弦定理,学生已有一定的学习基础和学习兴趣。 三、教学目标 继续探索三角形的边长与角度间的具体量化关系、掌握余弦定理的两种表现形式,体会多种方法特别是向量方法推导余弦定理的思想;通过例题运用余弦定理解决“边、角、边”及“边、边、边”问题;理解余弦定理是勾股定理的特例,理解余弦定理的本质。 四、教学重点与难点 教学重点:余弦定理的证明过程特别是向量法与坐标法及定理的应用; 教学难点:用正弦定理推导余弦定理的方法 五、教学过程: 1.知识回顾 正弦定理 在一个三角形中,各边和它所对角的正弦的比相等,即 正弦定理可以解什么类型的三角形问题? (1)已知两角和任意一边,可以求出其他两边和一角(AAS,ASA); (2)已知两边和其中一边的对角,可以求出三角形的其他的一边和另外两角(SSA)。 2.提出问题 已知三角形两边及其夹角如何求第三边? (SAS 问题) 在三角形ABC 中,已知边a,b,夹角C, 求边c C c B b A a sin sin sin = =

余弦定理教学设计

1.1.2余弦定理教学设计 作者:毛晓进一、教学目标 认知目标:在创设的问题情境中,引导学生发现余弦定理的容,推证余弦定理,并简单运用余弦定理解三角形; 能力目标:引导学生通过观察,推导,比较,由特殊到一般归纳出余弦定理,培养学生的创新意识和观察与逻辑思维能力,能体会用向量作为数形结合的工具,将几何问题 转化为代数问题; 情感目标:面向全体学生,创造平等的教学氛围,通过学生之间、师生之间的交流、合作和评价,调动学生的主动性和积极性,给学生成功的体验,培养学生学习数学兴趣 和热爱科学、勇于创新的精神。 二、教学重难点 重点:探究和证明余弦定理的过程;理解掌握余弦定理的容;初步对余弦定理进行应用。 难点:利用向量法证明余弦定理的思路;对余弦定理的熟练应用。 探究和证明余弦定理过程既是本节课的重点,也是本节课的难点。学生已经具备了勾股定理的知识,即当∠C=900时,有c2=a2+b2。作为一般的情况,当∠C≠900时,三角形的三边满足什么关系呢?学生一时很难找到思路。最容易想到的思路就是构造直角三角形,尝试应用勾股定理去探究这个三角形的边角关系;用向量的数量积证明余弦定理更是学生想不到的,原因是学生很难将向量的知识与解三角形的知识相结合。因而教师在授课时可以适当的点拨、启发,鼓励学生大胆的探索。在教学中引导学生从不同的途径去探索余弦定理的证明,这样既能开拓学生的视野,加强学生对余弦定理的理解,又能培养学生形成良好的思维习惯,激发学生学习兴趣,这是本节课教学的重点,也是难点。 三、学情分析和教学容分析 本节容是人教B版普通高中课程标准实验教科书必修5第一章第一节余弦定理的第一课时。余弦定理是关于任意三角形边角之间的另一定理,是解决有关三角形问题与实际应用问题(如测量等)的重要定理,它将三角形的边和角有机的结合起来,实现了“边”和“角”的互化,从而使“三角”与“几何”有机的结合起来,为求与三角形有关的问题提供了理论依据,同时也为判断三角形的形状和证明三角形中的等式提供了重要的依据。教科书首先通过设问的方式,指出了“已知三角形的两边和夹角,无法用正弦定理去解三角形”,进而通过直角三角形中的勾股定理引导学生去探究一般三角形中的边角关系,然后通过构造直角三角形去完成对余弦定理的推证过程,教科书上还进一步的启发学生用向量的方法去证明余弦定理,最后通过3个例题巩固学生对余弦定理的应用。 在学习本节课之前,学生已经学习了正弦定理的容,初步掌握了正弦定理的证明及应用,并明确了用正弦定理可以来解哪些类型的三角形。在此基础上,教师可以创设一个“已知三角形两边及夹角”来解三角形的实际例子,学生发现不能用上一节所学的知识来解决这一问题,从而引发学生的学习兴趣,引出这一节的容。在对余弦定理教学中时,考虑到它比正弦定理形式上更加复杂,教师可以有目的的提供一些供研究的素材,并作必要的启发和引导,让学生进行思考,通过类比、联想、质疑、探究等步骤,辅以小组合作学习,建立猜想,获得命题,再想方设法去证明。在用两种不同的方法证明余弦定理时,学生可能会遇到证明思路上的困难,教师可以适当的点拨。

余弦定理内容以及解析

余弦定理详解 余弦定理定义及公式 余弦定理,是描述三角形中三边长度与一个角的余弦值关系的数学定理。是勾股定理在一般三角形情形下的推广。 a2=b2+c2-2bccosA 余弦定理证明 如上图所示,△ABC,在c上做高,根据射影定理,可得到: 将等式同乘以c得到: 运用同样的方式可以得到: 将两式相加: 向量证明

正弦定理和余弦定理 正弦定理 a/sinA=b/sinB=c/sinC=2R (1)已知三角形的两角与一边,解三角形 (2)已知三角形的两边和其中一边所对的角,解三角形 (3)运用a:b:c=sinA:sinB:sinC解决角之间的转换关系 直角三角形的一个锐角的对边与斜边的比叫做这个角的正弦。 余弦定理 是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三 边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起 来更为方便、灵活。 直角三角形的一个锐角的邻边和斜边的比值叫这个锐角的余弦值 在△DEF中有余弦定理:DE2=DF2+EF2-2DF?EFcos∠DFE.拓展到空间,类比三角形的余弦定理,在斜三棱柱ABC-A1B1C1的中ABB1A1与BCC1B1所成的二面角的平面角为θ,则得到的类似的关系式是_____. 答案: . 解析: 由平面和空间中几何量的对应关系,和已知条件可写出类比结论 解:平面中的点、线、面分别对应空间中的线、面、体,平面中的长度对应空间中的面积,平面中线线的夹角,对应空间中的面面的夹角 故答案为: 证明如下:如图斜三棱柱ABC-A1B1C1 设侧棱长为a 做面EFG垂直于侧棱AA1、BB1、CC1,则∠EFG=θ 又∵ 在△EFG中,根据余弦定理得:EG2=EF2+FG2-2EF?FG?COSθ

苏教版数学高二第一章1.2余弦定理(第二课时)课时活页训练

一、填空题 1. (2009年高考天津卷)如图,AA 1与BB 1相交于点O ,AB ∥A 1B 1且AB =12 A 1 B 1.若△AOB 的外接圆的直径为1,则△A 1OB 1的外接圆的直径为________. 解析:在△AOB 中,由正弦定理得AB sin ∠AOB =1,sin ∠AOB =AB ,在△A 1OB 1中,由正弦定理得2R =A 1B 1sin ∠A 1OB 1=A 1B 1AB =2. 答案:2 2.在△ABC 中,内角A 、B 、C 的对边分别为a 、b 、c ,且cos 2A 2=b +c 2c ,则△ABC 的形状为________. 解析:由cos 2 A 2=1+cos A 2=b +c 2c , 整理得cos A =b c . 又cos A =b 2+c 2-a 2 2bc , 联立以上两式整理得c 2=a 2+b 2, ∴C =90°.故△ABC 为直角三角形. 答案:直角三角形 3.已知在△ABC 中,a +b =3,A =π3,B =π4 ,则a 的值为________. 解析:由正弦定理,得b =a sin B sin A =63 a . 由a + b =a +63a =3, 解得a =33-3 2. 答案:33-3 2 4.已知在△ABC 中,若sin A a =cos B b =cos C c ,则△ABC 是________三角形. 解析:由sin A a =sin B b ,得sin B b =cos B b ,∴tan B =1,B =45°. 同理由sin A a =sin C c ,得C =45°,∴A =90°.即△ABC 是等腰直角三角形. 答案:等腰直角 5.三角形的一边长为14,这条边所对的角为60°,另两边之比为8∶5,则这个三角形的面积是________. 答案:40 3 6.在不等边三角形中,a 是最大的边,若a 2<b 2+c 2,则角A 的取值范围是________.

正弦定理和余弦定理的应用举例(解析版)

正弦定理和余弦定理的应用举例 考点梳理 1.用正弦定理和余弦定理解三角形的常见题型 测量距离问题、高度问题、角度问题、计算面积问题、航海问题、物理问题等. 2.实际问题中的常用角 (1)仰角和俯角 与目标线在同一铅垂平面内的水平视线和目标视线的夹角,目标视线在水平视线上方的角叫仰角,目标视线在水平视线下方的角叫俯角(如图①). (2)方向角:相对于某正方向的水平角,如南偏东30°,北偏西45°,西偏北60°等; (3)方位角 指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(4)坡度:坡面与水平面所成的二面角的度数. 【助学·微博】 解三角形应用题的一般步骤 (1)阅读理解题意,弄清问题的实际背景,明确已知与未知,理清量与量之间的关系.侧重考查从实际问题中提炼数学问题的能力. (2)根据题意画出示意图,将实际问题抽象成解三角形问题的模型. (3)根据题意选择正弦定理或余弦定理求解. (4)将三角形问题还原为实际问题,注意实际问题中的有关单位问题、近似计算的要求等. 解三角形应用题常有以下两种情形 (1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解. (2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时

需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解. 考点自测 1.(2012·江苏金陵中学)已知△AB C的一个内角为120°,并且三边长构成公差为4的等差数列,则三角形的面积等于________. 解析 记三角形三边长为a-4,a ,a +4,则(a+4)2=(a -4)2+a2-2a (a-4) co s 120°,解得a =10,故S =12×10×6×s in 120°=15错误!. 答案 15错误! 2.若海上有A ,B ,C 三个小岛,测得A ,B 两岛相距10海里,∠BAC =60°,∠ABC =75°,则B ,C间的距离是________海里. 解析 由正弦定理,知 B Csi n 60° =错误!.解得BC =5错误!(海里). 答案 5错误! 3.(2013·日照调研)如图,一船自西向东匀速航行,上午10时到达一座灯塔P 的南偏西75°距塔68海里的M 处,下午2时到达这座灯塔的东南方向的N 处,则这只船的航行速度为________海里/时. 解析 由正弦定理,得MN =68si n 120°si n 45° =34\r(6)(海里),船的航行速度为错误!=错误!(海里/时). 答案 错误! 4.在△ABC 中,若2错误!abs in C =a 2+b 2+c 2,则△ABC 的形状是________. 解析 由23ab sin C =a2+b 2+c 2,a 2+b2-c 2=2ab cos C 相加,得a 2+b 2=2ab sin 错误!.又a2+b 2≥2ab ,所以 sin 错误!≥1,从而s in 错误!=1,且a =b,C =错误!时等号成立,所以△ABC 是等边三角形. 答案 等边三角形 5.(2010·江苏卷)在锐角△A BC中,角A,B ,C 的对边分别为a ,b ,c.

余弦定理

平面几何证法: 在任意△ABC中 做AD⊥BC. ∠C所对的边为c,∠B所对的边为b,∠A所对的边为a 则有BD=cosB*c,AD=sinB*c,DC=BC-BD=a-cosB*c 根据勾股定理可得: AC^2=AD^2+DC^2 b^2=(sinB*c)^2+(a-cosB*c)^2 b^2=sin^2B*c^2+a^2+cos^2B*c^2-2ac*cosB b^2=(sin^2B+cos^2B)*c^2-2ac*cosB+a^2 b^2=c^2+a^2-2ac*cosB cosB=(c^2+a^2-b^2)/2ac 从余弦定理和余弦函数的性质可以看出, 如果一个三角形两边的平方和等于第三 边的平方,那么第三边所对的角一定是直 角,如果小于第三边的平方,那么第三边所 对的角是钝角,如果大于第三边,那么第三边 所对的角是锐角.即,利用余弦定理,可以判断三角形形状. 同时,还可以用余弦定理求三角形边长取值范围. 冰魄来袭0968 2014-09-21 余弦定理余弦定理是揭示三角形边角关系的重要定理,直接运用它可解决一类已知三角形两边及夹角求第三边或者是已知三个边求角的问题,若对余弦定理加以变形并适当移于其它知识,则使用起来更为方便、灵活.该图中,a与b应互换位置

对于任意三角形三边为a,b,c 三角为A,B,C 满足性质 (注:a*b、a*c就是a乘b、a乘c .a^2、b^2、c^2就是a的平方,b的平方,c 的平方.) a^2=b^2+c^2-2*b*c*CosA b^2=a^2+c^2-2*a*c*CosB c^2=a^2+b^2-2*a*b*CosC CosC=(a^2+b^2-c^2)/2ab CosB=(a^2+c^2-b^2)/2ac CosA=(c^2+b^2-a^2)/2bc 证明: ∵如图,有a→+b→=c→ ∴c·c=(a+b)·(a+b) ∴c^2=a·a+2a·b+b·b∴c^2=a^2+b^2+2|a||b|Cos(π-θ) 整理得到c^2=a^2+b^2-2|a||b|Cosθ(注意:这里用到了三角函数公式) 再拆开,得c^2=a^2+b^2-2*a*b*CosC 同理可证其他,而下面的CosC=(c^2-b^2-a^2)/2ab就是将CosC移到左边表示一下. --------------------------------------------------------------------------------------------------------------- 平面几何证法: 在任意△ABC中 做AD⊥BC.

余弦定理教学设计说明

数学:1.1《正弦定理与余弦定理》教案(新人教版必修5)(原创) 余弦定理 一、教材依据:人民教育出版社(A版)数学必修5第一章第二节 二、设计思想: 1、教材分析:余弦定理是初中“勾股定理”内容的直接延拓,是解三角形这一章知识的一个重要定理,揭示了任意三角形边角之间的关系,是解三角形的重要工具,余弦定理与平面几何知识、向量、三角形有着密切的联系。因此,做好“余弦定理”的教学,不仅能复习巩固旧知识,使学生掌握新的有用的知识,体会联系、发展等辩证观点,而且能培养学生的应用意识和实践操作能力,以及提出问题、解决问题等研究性学习的能力。 2、学情分析:这节课是在学生已经学习了正弦定理及有关知识的基础上,转入对余弦定理的学习,此时学生已经熟悉了探索新知识的数学教学过程,具备了一定的分析能力。 3、设计理念:由于余弦定理有较强的实践性,所以在设计本节课时,创设了一些数学情景,让学生从已有的几何知识出发,自己去分析、探索和证明。激发学生浓厚的学习兴趣,提高学生的创新思维能力。 4、教学指导思想:根据当前学生的学习实际和本节课的内容特点,我采用的是“问题教学法”,精心设计教学内容,提出探究性问

题,经过启发、引导,从不同的途径让学生自己去分析、探索,从而找到解决问题的方法。 三、教学目标: 1、知识与技能: 理解并掌握余弦定理的内容,会用向量法证明余弦定理,能用余弦定理解决一些简单的三角度量问题 2.过程与方法: 通过实例,体会余弦定理的内容,经历并体验使用余弦定理求解三角形的过程与方法,发展用数学工具解答现实生活问题的能力。 3.情感、态度与价值观: 探索利用直观图形理解抽象概念,体会“数形结合”的思想。通过余弦定理的应用,感受余弦定理在解决现实生活问题中的意义。 四、教学重点: 通过对三角形边角关系的探索,证明余弦定理及其推论,并能应用它们解三角形及求解有关问题。 五、教学难点:余弦定理的灵活应用 六、教学流程: (一)创设情境,课题导入: 1、复习:已知A=030,C=045,b=16解三角形。(可以让学生板练 ) 2、若将条件C=045改成c=8如何解三角形? 设计意图:把研究余弦定理的问题和平面几何中三角形全等

高一数学余弦定理公式

正弦、余弦定理 解斜三角形 建构知识网络 1.三角形基本公式: (1)内角和定理:A+B+C=180°,sin(A+B)=sinC, cos(A+B)= -cosC, cos 2C =sin 2B A +, sin 2C =cos 2B A + (2)面积公式:S=21absinC=21bcsinA=2 1 casinB S= pr =))()((c p b p a p p --- (其中p=2 c b a ++, r 为内切圆半径) (3)射影定理:a = b cos C + c cos B ;b = a cos C + c cos A ;c = a cos B + b cos A 2.正弦定理: 2sin sin sin a b c R A B C ===外 证明:由三角形面积 111 sin sin sin 222S ab C bc A ac B === 得sin sin sin a b c A B C == 画出三角形的外接圆及直径易得:2sin sin sin a b c R A B C === 3.余弦定理:a 2 =b 2 +c 2 -2bccosA , 222 cos 2b c a A bc +-=; 证明:如图ΔABC 中, sin ,cos ,cos CH b A AH b A BH c b A ===- 222222 2 2 sin (cos )2cos a CH BH b A c b A b c bc A =+=+-=+- 当A 、B 是钝角时,类似可证。正弦、余弦定理可用向量方法证明。 要掌握正弦定理、余弦定理及其变形,结合三角公式,能解有关三角形中的问题. 4.利用正弦定理,可以解决以下两类问题:(1)已知两角和任一边,求其他两边和一角; (2)已知两边和其中一边的对角,求另一边的对角; 有三种情况:bsinA

余弦定理题目解析

2.余弦定理 类型一 余弦定理的证明 例1已知△A B C ,B C =a ,A C =b 和角C ,求解c .解 如图, 设=a ,=b ,=c ,由=-知c =a -b ,C B →C A →A B →A B →C B →C A → 则|c |2 =c ·c =(a -b )·(a -b ) =a ·a +b ·b -2a ·b =a 2+b 2-2|a ||b |c o s C .所以c 2=a 2+b 2-2a b c o s C . 跟踪训练1例1涉及线段长度,能不能用解析几何的两点间距离公式来研究这个问题?解 如图,以A 为原点,边A B 所在直线为x 轴建立直角坐标系, 则A (0,0),B (c ,0),C (b c o s A ,b s i n A ), ∴B C 2=b 2c o s 2A -2b c c o s A +c 2+b 2s i n 2A ,即a 2=b 2+c 2-2b c c o s A . 同理可证:b 2=c 2+a 2-2c a c o s B ,c 2=a 2+b 2-2a b c o s C . 类型二用余弦定理解三角形 例2在△A B C 中,已知b =60c m ,c =34c m ,A =41°,解三角形(角度精确到1°,边长精确到1c m ).解 根据余弦定理,a 2=b 2+c 2-2b c c o s A =602+342 -2×60×34×c o s 41°≈1676.82, 所以a ≈41(c m).由正弦定理得,s i n C = ≈≈≈0.5440.c s i n A a 34×s i n 41°4134×0.656 41 因为c 不是三角形中最大的边,所以C 为锐角,利用计算器可得C ≈33°,所以B =180°-(A +C )≈180°-(41°+33°)=106°. 跟踪训练2在△A B C 中,已知a =2,b =2,C =15°,求A . 2

余弦定理证明过程

余弦定理证明过程(精选多篇) 余弦定理证明过程ma=√ -ac*cosb) =√ 由b =a +c -2ac*cosb 得,4ac*cosb=2a +2c -2b ,代入上述ma表达式: ma=√ =√ 证毕。 2 在任意△abc中,作ad⊥bc. ∠c对边为c,∠b对边为b,∠a对边为a--> bd=cosb*c,ad=sinb*c,dc=bc-bd=a-cosb*c

勾股定理可知: ac2=ad2+dc2 b2=2+2 b2=sin2b*c2+a2+cos2b*c2-2ac*cosb b2=*c2-2ac*cosb+a2 b2=c2+a2-2ac*cosb 所以,cosb=/2ac 2 如右图,在abc中,三内角a、b、c 所对的边分别是a、b、c.以a为原点,ac 所在的直线为x轴建立直角坐标系,于是c点坐标是,由三角函数的定义得b 点坐标是.∴cb=.现将cb平移到起点为原点a,则ad=cb.而|ad|=|cb|=a,∠dac=π-∠bca=π-c,根据三角函数的定义知d点坐标是,asin)即d点坐标是,∴ad=而ad=cb∴=∴asinc=csina…………①-acosc=ccosa-b……②由①得asina=csinc,同理可证asina=bsinb,∴asina=bsinb=csinc.由②得acosc=b-ccosa,平方得:a2cos2c=b2-2bccosa+c2cos2a,即a2-a2sin2c=b2-2bccosa+c2-c2sin2a.而

由①可得a2sin2c=c2sin2a∴a2=b2+c2-2bccosa.同理可证b2=a2+c2-2accosb,c2=a2+b2-2abcosc.到此正弦定理和余弦定理证明完毕。3△abc 的三边分别为a,b,c,边bc,ca,ab上的中线分别为,mc,应用余弦定理证明: mb= mc=ma=√ -ac*cosb) =√ 由b =a +c -2ac*cosb 得,4ac*cosb=2a +2c -2b ,代入上述ma表达式: ma=√ =√ 同理可得: mb= mc= 4 ma=√ -ac*cosb) =√ 由b =a +c -2ac*cosb 得,4ac*cosb=2a +2c -2b ,代入

余弦定理

1.2余弦定理(1) 学习目标:1.掌握余弦定理,熟记定理的结论,会利用向量的数量积证明 余弦定理 2.理解余弦定理与勾股定理的关系。 学习重点:利用向量的数量积证明余弦定理,余弦定理的初步应用。 学习难点:用向量的数量积证余弦定理的思路。 学习过程: 一、前置性补偿: 1. 正弦定理的内容: 2.正弦定理解决的三角形问题: (1) ; (2) 。 3. 已知?==60,5,4的夹角为与BC AB ,= 二、新知探究 1.实际问题: 隧道工程设计,经常要测算山脚的长度,工程技术人员先在地面上选一适当的位置A ,量出A 到山脚B 、C 的距离,再利用经纬仪测出A 对山脚BC (即线段BC )的张角(CAB ∠),最后通过计算求出山脚的长度BC 。 2.问题解决: 如果已知三角形的一个角和夹此角的两边,能否求出此角的对边? 即已知⊿ABC 中,BC ,CA ,AB 的长分别为a,b,c ,试证明: A bc c b a cos 2222-+=。 3.轮换a,b,c ,可以得到另两个类似的等式,由此可得余弦定理: 三角形任何一边的平方等于________________________________。即 。 ,, _____________________________________________________________________222===c b a

4.若已知三角形的三边求角,又可表示为: 。 , , _____________________cos _____________________cos _____________________cos ===C B A 5.用余弦定理可以解决哪两类解三角形问题? (1)、____________________ ______: (2)、____________________ ______。 三、例题分析: 例1:实际问题中,已测得:AB=1千米,AC =1.5千米,∠A=?60 求山脚BC的长度. 例2: 变式训练 在ABC ?中,7:5:3::=c b a ,,求这个三角形的最大角。 ;,6,10,7)2.,150,2,33)3;,6013)1B c b a b B c a a A c b ABC 求已知求已知求,,已知中, 在===?===?===?

相关主题