搜档网
当前位置:搜档网 › 基于拼接重构的长导轨直线度测量方法

基于拼接重构的长导轨直线度测量方法

用合象水平仪或框式水平仪测量直线度误差

实验四用合象水平仪或框式水平仪 测量直线度误差 一、实验目的 1. 掌握用水平仪测量直线度误差的方法及数据处理。 2. 加深对直线度误差定义的理解。 二、实验内容 用合象水平仪或框式水平仪测量直线度误差。 三、测量原理及计量器具说明 机床、仪器导轨或其他窄而长的平面,为了控制其直线度误差,常在给定平面(垂直平面、水平平面)内进行检测。常用的计量器具有框式水平仪、合象水平仪、电子水平仪和自准直仪等。使用这类器具的共同特点是测定微小角度变化。由于被测表面存在着直线度误差,计量器具置于不同的被测部位上,其倾斜角度就要发生相应的变化。如果节距(相邻两测点的距离)一经确定,这个变化的微小倾角与被测相邻两点的高低差就有确切的对应关系。通过对逐个节距的测量,得出变化的角度,用作图或计算,即可求出被测表面的直线度误差。由于合象水平仪的测量准确度高、测量范围大(±10 mm/m)、测量效率高、价格便宜、携带方便等优点,故在检测工作中得到了广泛的采用。 合象水平仪的结构如图1a、d所示,它由底板1和壳体4组成外壳基体,其内部则由杠杆2、水准器8、两个棱镜7、测量系统9、10、11以及放大镜6所组成。使用时将合象水平仪放于桥板(图2)上相对不动,再将桥板放于被测表面上。如果被测表面无直线度误差,并与自然水平基准平行,此时水准器的气泡则位于两棱镜的中间位置,气泡边缘通过合象棱镜7所产生的影象,在放大镜6中观察将出现如图1b所示的情况。但在实际测量中,由于被测表面安放位置不理想和被测表面本身不直,导致气泡移动,其视场情况将如图1c所示。此时可转动测微螺杆10,使水准器转动一角度,从而使气泡返回棱镜组7的中间位置,则图1c中两影象的错移量△消失而恢复成一个光滑的半圆头(图1b)。测微螺杆移动量s导致水准器的转角α(图1d)与被测表面相邻两点的高低差h有确切的对应关系,即 图1

直线度测量方法

直线度测量方法 1、光电法测量 光电法测量是以三台测径仪为基础进行检测的,可以用于测量运动中的 线、棒、管的外轮廓的直线度。 布置上图的的设备3台,三台设备同一时刻测量被测工件的位置数据左边和右边两台采集的位置连线,计算出中间设备的在直线度为0时的理论位置,与中间一台所获的的位置数据比较,差值即为被测工件在当前位置的直线偏差如下图所示。

测量单元的测量频率为500-1000HZ,采用电子同步控制单元实现3 台设备的同步采样,可连续检测,根据检测数据模拟出整根线、棒(管)材的直线度,左、右两台的距离可根据具体情况确定安装位置。 2、自准直法 自准直法直线度检测仪可用于圆管外径的直线度检测。平行光仪器是 将和准直望远镜结合为一体的一台仪器。 光源将位于物镜焦平面(物镜焦距二f)的分划板投射至无穷远(准直 光出射),经过平面反射镜返回的准直光经物镜后再次成像于同样位

于物镜焦平面(共焦系统)的光电传感器的探测面上,当反射镜发生了a 角度的偏转后,返回的分划板在光电传感器上的像会产生AS的位移,通过精确测量出AS值,即可准确计算出平面反射镜的偏转角度。 检测内孔直线度时,将平面反射镜伸入孔内,利用胀套保证反射镜与内孔垂直。当内孔有弯曲时反射镜将偏转一定的角度,通过反射镜的偏转角度可以计算出内孔的直线度。 3、PSD芯片激光测量法 激光器安装在激光器座上,激光器座的尾部有4个螺钉可以对激光的 照射角度进行微调。其头部与定心套连接后插入炮管孔内。位置检测单元

的激光位敏传感器安装在传感器座内,传感器座的头部与定心套连接,尾部与推杆连接。通过手动推动推杆可以使位置检测单元在炮管内孔内移动。 激光器定心去 工作时激光器发射1束激光射向激光位敏传感器,传感器内的PSD 芯片监测接收到的激光能量中心位置。定心套用来保证传感器一直处于炮管内孔的中心位置。当炮管在检测位置出现弯曲时,PSD芯片上的激光能量中心坐标值将发生变化。位置检测单元的电源线和数据线通过推杆中心孔与控制柜连接。

用水平仪测量导轨直线度的方法

用水平仪测量导轨直线度的方法 在机械维修专业中常用到水平仪,它是机床修理、调整、安装最常用的测量仪器之一,主要用于检测机床导轨直线度、工作台平面度等。下面我们来了解水平仪是怎样测量导轨直线度的。 机床工作台的直线移动精度,在很大程度上取决于床身导轨的直线度。但机床导轨一般比较长,往往难以用平尺、检验棒等作为基准测量导轨的直线度,这时可以用水平仪进行测量。其工作原理是:假设在被测导轨上有一条理想水平直线作为测量基准,再把被测导轨分成若干段,然后用水平仪分别测出各段相对于理想水平直线所倾斜的角度值,通过绘制坐标图来确定导轨与水平直线的最大误差格数,最后运用公式(△H=n I L)计算出导轨与水平直线的误差值。具体步骤如下: 1、将水平仪放在导轨中间,调平导轨,防止导轨倾斜,无法准确读出水平仪读数。 2、水平仪放在一定长度L)的平行桥板上,不能直接放置在被测表面上。 3、将导轨分段,每段长度与桥板相适应,依次首尾相接,逐段测量并记录下每段读数及倾斜方向。 4、根据各段读数画出导轨直线度曲线图:以导轨的长度为横坐标,水平仪读数为纵坐标。根据读数依次画出各折线

段,每一段的起点要与前一段的终点重合。 例如C6132 车床的导轨长 1600mm.用精 度为l000mm 的框式水平仪 测量导轨在垂直平面内直线度误差。水平仪桥板长度为200mm,分8段测量。每段读数依次为:+l、+1、+2、0、-1、-l、0、,如图1所示。 按一定比例画出纵横坐标,作出导轨直线度曲线。如图2所示。 5、用两端点连线法或最小区域法确定最大误差读数和误差曲线形状。 两端点连线法:若导轨直线度误差曲线呈单凸或单凹时,作首尾两端点连线I-I,并过曲线最高点或最低点)作Ⅱ-Ⅱ直线与I—I平行。两包容线间取大坐标值即为最人误差值。如图2所示,最大误差在导轨长为600mm处。曲线右端点坐标值为格,按相似三角形解法,导轨600mm处最大误差值为=格。 最小区域 法:如果直线 度误差曲线

三坐标测量位置度的方法及注意事项

摘要:位置度检测是机动车零部件检测中经常进行的一项常规检验。所谓“位置度”是指对被评价要素的实际位置对理想位置变动量的指标进行限制。在进行位置度检测时首先要很好地理解和消化图纸的要求,在理解的基础上选择合适的基准。位置度的检测就是相对于这些基准,它的定位尺寸为理论尺寸。 关键词:三坐标;位置度 1 位置度的三坐标测量方法 1.1 计算被测要素的理论位置 ①根据不同零部件的功能要求,位置度公差分为给定一个方向、给定两个方向和任意方向三种,可以根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面,如xy平面、xz平面、yz平面。②根据投影面和图纸要求正确计算被测要素在适当投影面的理论位置。 1.2 根据零部件建立合适的坐标系。在pc-dmis软件中,可以把基准用于建立零件坐标系,也可以使用合适的测量元素建立零件坐标系,建立坐标的元素和基准元素可以分开。 1.3 测量被测元素和基准元素。在被测元素和基准元素取点拟合时,最好使用自动程序进行,以减少手动检测的误差。 1.4 位置度的评价。①在pc-dmis软件中,位置度的评价可以直接点击位置度图标。②在位置度评价对话框中包含两个页面,特征控制框和高级,首先根据图纸要求设置相应的基准元素,在基准元素编辑窗口中只会出现在编辑当前光标位置以上的基准特征,如图1所示。 ③基准元素设置完成,回到特征控制框选择被测元素,设置基准,输入位置度公差。④在位置度评价的对话框中选择高级,在此对话框中可以设置特征控制框尺寸的信息输出方式和分析选项。如图2的对话框,在标称值一栏中手动键入被测要素的理论位置值,点击评价。 1.5 在报告文本中刷新就可以看到所评价的位置度结果。 2 三坐标测量位置度的注意事项 2.1 评价位置度的基准元素选择和建立坐标系的元素选择有相似之处,都要用平面或轴线作为a基准,用投影于第一个坐标平面的线作为b基准,用坐标系原点作为c基准。如果这些元素不存在,可以用构造功能套用、生成这些元素。 2.2 对位置度公差的理解。如位置度公差值t前加注φ,表示公差带是直径为t的圆内的区域,圆心的位置由相对于基准a和b的理论值确定。(如图3) 如位置度公差值前加注sφ,表示公差带是直径为t的球内的区域,球心的位置由相对于基准a、b和c的理论值确定。(如图4) 2.3 对于深度小于5mm的孔,可以直接计算测量其位置度。对于深度大于5mm的孔,必须采用先测量圆柱,然后与上、下端面求相交,再对交点求位置度的方法来控制测量误差,上、下端面一般是指整个孔的两端面。或者尽量取靠近两端面孔的截面位置,如果仅测量一个截面,求其位置度是不能保证此孔在整个长度范围上所有截面的位置度都合格的。因为交点是圆柱轴线与两端平面相交得到,不管轴线方向往哪个方向倾斜,如果两端交点位置度合格,中间各截面的位置度也应该是合格的。 2.4 对于有延伸公差带要求的,评价时要包含延伸的长度。 2.5 在位置度公差设置时,有时会出现[m] [l] 图标,它们的含义各不相同,其主要目的是为了尺寸公差和形状、位置度公差之间的相互补偿。 ①孔的最小实体位置度公差。 它的含义是计算位置度时,要遵守最小实体状态原则,并按最小实体要求输出其位置度误差值,如上所示φ14的孔,当其实测值小于φ14,例如为φ13.9时,孔的最小实体位置度公差补偿值=13.9-14。

超高层建筑物垂直度控制测量技术研究

超高层建筑物垂直度控制测量技术研究【摘要】近年来,我国城市化速度加快,超高层建筑比比皆是。它的主体结构需与外幕墙装修、电梯安装以及室内精装修等工程进行交接,所以对混凝土结构实体垂直度的要求十分严格。本文主要从超高层建筑物垂直度控制测量技术方法着手,分析建筑物产生垂直偏差的原因及预防措施,施工中的主要控制措施。从而实现对超高层建筑物垂直度测量的良好控制。 【关键词】超高层建筑物;垂直度控制;测量技术 一、引言 近些年来,随着我国经济的迅速发展,城市化的脚步也紧随其后,许多高层、超高层建筑不断增加。高层建筑的垂直度控制是保证高层建筑的质量基础,也是关键的质量控制环节之一,所以,现代建筑对高层建筑垂直度施工测量的方法和精度提出了更高的要求,尤其是电子全站仪、光学经纬仪、激光铅锤仪以及电子计算机技术在施工测量中的应用,使高层建筑施工测量发生了根本的改变。在本文中,我主要从测量的基本方法着手,阐述高层建筑垂直度控制技术。 二、高层建筑物竖向垂直度监测常用方法 高层建筑物竖向垂直度监测主要是解决各层轴线精确向上引测的问题。常用方法有经纬仪引桩投测法、激光铅垂仪和铅直坐标法三种,这三种方法已经在超高层建筑物垂直度控制测量中广泛使用。 1.经纬仪引桩投测法 经纬仪引桩投测法的基本原理,就是在轴线控制桩上用经纬仪盘左盘右取平均法向上投测轴线点。这种方法的优点是简便,仪器设备简单,但要求建筑物的场地较宽阔,视野大且附近有高楼及在阴天或无风天气下进行。 2.激光铅垂仪投测法 利用激光铅垂仪进行建筑物轴线自下向上的投测,是一种精度较高、速度较快的方法。其基本原理是利用该仪器发射的铅直激光束的投射光斑,在基准点上向上逐层投点,从而确定各层的轴线点位。这种方法的优点同样也是方便、快捷,对施工场地没有特殊的要求。但预留孔洞的尺寸大小在施工中不易掌握,其尺寸偏小不便于投测和偏大存在安全隐患。 3.铅直坐标法

垂直度误差检测

任务一垂直度误差检测 知识目标 理解直线度公差的含义 了解自准直仪的工作原理 技能目标 掌握自准直仪测量直线度误差的方法 熟悉直线度误差的评定方法 1、任务描述 2、任务分析 3、相关知识 (1)垂直度公差 限制实际要素对基准在垂直方向上变动量的一项指标。 垂直度公差也有面对面、面对线、线对面、线对线等情形,如图,面对面的垂直度公差带是间距等于公差值且与基准面垂直的两平行平面之间的区域。

线对面的垂直度公差带是直径等于公差值且与基准面垂直的圆柱面内的区域。 (2)检测原则 测量特征值的原则。 (3)方箱 是平台测量的主要辅助工具,具有垂直度精度很高的四个相邻平面,用作测量的辅助基准,也可用作划线使用。 (4)塞尺 也称厚薄规,测量精度一般为0.01mm,每把13、14、17、20片不等,当遇到测量很小的两个平面之间的距离时,塞尺可以测出缝隙的大小,使用时可以单片使用也可以不同厚度尺片组合一起。 使用时要注意用力适当,方向合适,不可强塞,防止弯曲过度甚至折断和操作,只检查某一间隙是否小于规定值时,则用符合规定的最大值的塞片塞该间隙,如果不能塞入即合格,反之不合格。 4、任务实施 (1)操作步骤 1)清洁工件、平板、方箱,检查百分表零位偏差 2)将方箱放在平板合适位置,将工件基准平面旋转在平板上 3)调整被测平面靠近方箱,保持基准平面与平板稳定接触 4)用塞尺测量间隙的最大值,并记录 5)塞尺读数的最大值就是垂直度误差,填写检测报告,给出合格性结论

6)仪器清洁保养并归位。 (2)注意事项 在检测过程中,实际基准平面要与平板保持稳定接触,用平板模拟理想基准平面。 5、知识拓展 (1)垂直度公差值 (2)垂直度误差其他检测方法介绍 垂直度误差可用平板和带指示表的表架、自准直仪和三坐标测量机等测量。主要有打表法、间隙法和水平仪光学仪器法。 1)先用直角尺调整指示表,当直角尺与固定支撑接触时,将指示表的指针调零,然后对工件进行测量,使固定支撑与被测实际表面接触,指示表的读数即该测点相对于理论位置的偏差。改变指示表在表架上的高度位置,对被测表面的不同点进行测量,取指示表读数的最大值与最小值之差作为被测表面对基准平面的垂直度误差。 2)面对线的垂直度误差测量 用导向块模拟基准轴线,将被测零件旋转在导向块内,然后测量整个被测表面,取指示表读数的最大值与最小值之差作为垂直度误差。 3)将被测零件的基准面固定在直角座上,同时调整靠近基准的被测表面的读数差为最小值,取指示表在整个表面各点测得的最大与最小读数之差,作为该零件睥垂直度误差。 4)将准直仪放置在基准实际表面上,时间调整准直仪使其光轴平行于基准实际表面,然后

直线度测量计算方法

1引言 在工程实际中,评定导轨直线度误差的方法常用两端点连线法和最小条件法。两端点连线法,是将误差曲线首尾相连,再通过曲线的最高和最低点,分别作两条平行于首尾相连的直线,两平行线间沿纵坐标测量的数值,通过数据处理后,即为导轨的直线度误差值;最小条件法,是将误差曲线的“高、高”(或“低、低”)两点相连,过低(高)点作一直线与之相平行,两平行线间沿纵标坐测量的数值,通过数据处理后,即为导轨的直线误差值。 最小条件法是仲裁性评定。两端点连线法不是仲裁性评定,只是在评定时简单方便,所以在生产实际中常采用,但有时会产生较大的误差。本文讨论这两种评定方法之间产生误差的极限值。 2误差曲线在首尾连线的同侧 测量某一型号液压滑台导轨的直线度误差,得到直线度误差曲线,如图1所示。由图可知,该误差曲线在其首尾连线的同侧。下面分别采用最小条件法和两端点连线法,评定该导轨直线度误差值。 (1)最小条件法评定直线度误差 根据最小条件法,图1曲线的首尾分别是低点1和低点2(低点1与坐标原点重合),用直a1a1线相连,如图2所示。通过最高点3作a1a1直线的平行线a2a2。

在a1a1和a2a2两平行线包容的区域,沿y轴测量的数值,经数据处理,即为该导轨的直线度误差值

δ最小法。 (2)两端点连线法评定直线度误差 根据两端点连线法,图1曲线的首尾也分别是曲线的两端点1和2,如图3所示。将曲线端点1和端点2,用直线b1b1相连,再通过高点作b1b1的平行线b2b2。在b1b1和b2b2两平行线包容的区域,沿y轴测量的数值,经数据处理,即为该导轨的直线度误差值δ两端点。 (3)求解两种评定方法产生的误差极限 由于是对同一导轨误差曲线求解直线度误差,图2中的“低点1”、“低点2”和“高点3”分别对应图3中的“端点1”、“端点2”和“高点3”,即直线 a1a1与直线b1b1重合,直线a2a2与直线b2b2重合,因此两种评定方法产生的误差值为零

建筑物垂直度标高全高测量记录(已填内容)

建筑物垂直度、标高、全高测量记录

注:垂直度测量平面示意图及偏差方向见背页 说 明 1. 超过允许偏差的偏差值在表中用~ ~标出; 2. 在备注栏中应注明建筑物标高、全高的设计值;每层所测的具体位置或轴线未描述清楚的也可在备注栏中标出或另外做出详细记录; 3. 主体结构验收前 , 应对建筑物每层楼面标高、各大角或转角垂直度进行测量;房屋竣工验收前,也应对各大角或转角垂直度进行测量,故本表每个工程均应有两张 。测量由监理单位会同施工单位进行, 测量数据作为验收的依据之一。 4. 砌体结构外墙垂直度全高查阳角,不应少于4处 , 每层每 20m 查一处;内墙按有代表性的 自然间抽 10%, 但不应少于3间 ,每间不应少于2处,柱不少于 5 根。混凝土结构按楼层、结构缝 或施工段划分检验批。在同一检验批中 , 对梁、柱 , 应抽查构件数量的 109 毛 , 且不少于 3 件 ; 对墙和板,应按有代表性的自然间抽查 10%, 且不少于3间;对大空间结构,墙可按相邻轴线间高度 5m 左右划分检查面,板可按纵横轴线划分检查面,抽查 10%, 且均不少于3面。

建筑物垂直度、标高、全高测量记录

注:垂直度测量平面示意图及偏差方向见背页 说明 1. 超过允许偏差的偏差值在表中用~~标出; 2. 在备注栏中应注明建筑物标高、全高的设计值;每层所测的具体位置或轴线未描述清楚的也可在备注栏中标出或另外做出详细记录; 3. 主体结构验收前, 应对建筑物每层楼面标高、各大角或转角垂直度进行测量;房屋竣工验收前,也应对各大角或转角垂直度进行测量,故本表每个工程均应有两张。测量由监理单位会同施工单位进行, 测量数据作为验收的依据之一。 4. 砌体结构外墙垂直度全高查阳角,不应少于4处, 每层每20m 查一处;内墙按有代表性的 自然间抽10%, 但不应少于3间,每间不应少于2处,柱不少于 5 根。混凝土结构按楼层、结构缝或施工段划分检验批。在同一检验批中, 对梁、柱, 应抽查构件数量的109 毛, 且不少于 3 件; 对墙

机床导轨直线度误差检测

实训十机床导轨直线度误差检测 一.实训目的 1、了解机床导轨直线度检测内容、原理、方法和步骤 2、掌握方框水平仪的使用方法 3、实训中测试数据的处理及误差曲线的绘制 二.实训设备 车床床身、方框水平仪、桥板 三.实训原理 直线度误差就是实际直线对其理想直线的变动量。直线度误差的评定方法有:1.最小包容区域法;2.最小二乘法;3.两端连线法。其中最小包容区域法的评定结果小于或等于其它两种方法。 在下图中,以最小包容区域线L MZ作为评定基线求得直线度误差f MZ的方法,就是最小包容区域法。对给定平面或给定方向的直线度误差f MZ,其计算方法:f MZ=f=d max-d min 式中d max、d min——检测中最大、最小偏离值,d i在L MZ上方取正值,下方取负值。 机床导轨直线度检测方法很多,有平尺检测、水平仪检测、自准仪检测、钢丝和显微镜检测等。本次实训用水平仪检测。 水平仪的刻度值有0.02/1000—0.05/1000,0.02/1000表示将该水 平仪放在1m长的平尺表面上,将平尺一端垫起0.02mm高时,平尺便倾斜一个α角,此时水平仪的气泡便向高处正好移动一个刻度值(即移动了一格)。水平仪和平尺的关系见下图

水平仪测量升(落)差原理图 tgα=ΔH/L=0.02/1000=0.00002 由于水平仪的长度只有200mm,所以tgα=ΔH1/L=ΔH1/200 ΔH1=200× tgα=200×0.00002=0.004mm 可见水平仪右边的升(落)差ΔH1与所用的水平仪规格有关,此外在实际使用水平仪也不一定是移动一格,例如移动了两格,水平仪还是200mm规格,则升(落)差ΔH1为 tgα=0.02×2/1000=ΔH1/200 ΔH1=200×0.02×2/1000=0.008mm 水平仪读数的符号,习惯上规定:气泡移动的方向和水平仪移动方向相同时,读数为正值,反之为负值。 四.实训步骤 1、检测床身前,擦净导轨表面将床身安置在适当的基础上,并基本调平。调平的目的是为了得到床身静态稳定性。 2、以200mm长等分机床导轨成若干段,将水平仪放置在导轨的左(右)端,作为检测工作的起点,记下此时水平仪气泡的位置,然后按导轨分段,首尾相接依次放置水平仪,记下水平仪每一段时气泡的位置,填入实训报告中。 3、作出实训报告。

量具测量位置度的方法及数据处理的三种方法

通用量具测量位置度的方法及数据处理分析 李全义1 冯文玉2 司登堂1 (1.北方股份公司质量保证部;2.内蒙古北方重工业集团有限公司网络信息公司,内蒙古包头014030) 摘 要:对位置度的测量一般有专用量具测量法、三坐标机测量法和通用量具测量法3种方法。第3种方法操作相对简便,对人员的要求也不高,使用的量具是通用的,成本低廉,但速度较慢,测量精度对操作人员的水平依赖性强。对生产规模中等,生产批量不大,生产品种较多的企业第3种方法比较适用。介绍了在实际中使用的通用量具测量位置度的方法及数据处理分析方法。 关键词:位置度;专用量具;通用量具;三坐标测量机 在机械加工行业数据测量方面,位置度测量相 对比较复杂,对人员和设备也要求较高。目前普遍 使用的有专用量具测量法、三坐标机测量法2种方 法。专用量具测量法操作简便,速度快,但适用范围 小,一种工件需一种量具,成本高;三坐标机测量法 测量速度快,准确,一机多用,但设备成本高,并要有 专门技术人员操作。还有一种通用量具测量法,与 前二者相比,可以扬长避短,但由于数据处理难度比 较大,往往拿着测量结果无法判定其结果是否合格, 也有出现误判的时候,使得此方法的使用受到极大的限制。 本文介绍在实际中使用的通用量具测量位置度的方法及数据处理分析方法。 1 测量方法 工件如图1所示。 图1 法兰盘示意图 测量过程与操作方法:将工件置于平台,进行调整,使基准A的轴线与平台面平行,顺序测量Ф100各孔的轴线位置并记录数据;将工件旋转90°,重复上述工序。测得的数据如表1。 表1 工件测量数据 坐标 孔序号 12345678910 X坐标值0-176.36-285.34-285.33-176.350.04176.35285.33285.33176.35 Y坐标值300.05242.7292.74-92.75-242.73-300.02-242.75-92.7592.74242.74位置度0.10.1020.0840.0940.0570.0890.0940.0940.0750.075 2 数据处理和计算方法 2.1 三角函数法 根据工件产品图的尺寸、位置公差要求,将在平台上的测量值在一定的几何图形中通过三角函数的计算得到实际位置度。 如图1所示工件,该件的公差是一个以圆心确定的Ф600圆周上以36°均布的理想位置为轴线,以Ф0.1为直径的10个圆柱形,如圆2所示,实际轴线 *收稿日期:2010-11-11 作者简介:李全义(1957-),男,包头人,北方重工集团工程师,主要从事机械加工方面的技术工作。计量检测:www.cqstyq.com 计量检测:www.cqstyq.com

位置度测量方法

1.基准﹔ 2.理論位置值﹔ 3.位置度公差 三、位置度公差帶 位置度公差帶是一以理論位置為中心對稱的區域。

四、位置度的標注與測量方法

3﹑以中心线左边第二根端子为例﹐测出实际尺寸D1(0.82)﹑D2(1.02)﹐根据位置定义﹐ DE=abs(Da-Dt) =abs{(D1+D2)/2-Dt)} =abs[(0.85+1.00)/2-0.90}] =0.025<0.05 其中﹐DE表示实际偏差 abs表示绝对值 Da表示实际位置尺寸 Dt表示理论位置尺寸﹐对于不同的端子﹐它们的理论位置尺寸是不测量时测量者须自行计算 DE=abs(Da-Dt) =abs{(D1+D2)/2-Dt)} =abs{[(d1+Dt)+(Dt-d2)]/2-Dt)} =abs[(d1-d2)/2]

(二)﹑IDE44P垂直位置度的标注与测量 如图﹐IDE44P端子在垂直方向上具有以下特点﹕排数少(只有两排)﹐每排端多(达22PIN)﹐长度值为端子材厚值﹐对于不同的端子﹐其值差异极小﹐因此我们排端子和下排端子分别看成两个整体。下面以下排端子为例介绍其测量方法。 一、测出角柱垂直方向上Φ1.70的实际尺寸﹐然后置中归零﹔ 二、往下偏移2.00﹐然后归零﹔ 三、

为基准﹐用于控制端子锡脚与与PCB板的配合﹐现其位置度公差0.18﹔另一个是端子域的位置度﹐此位置度以KEY为基准﹐用于控制端子接触区域与对插件的配合﹐现其度公差0.3。对于第一个位置度﹐其标注方式已统一﹔对于第二个位置度﹐有如下两种式﹕

以上两种标注方式中﹐第一种直接对124根端子接触区域一一测量其位置度﹐由接触区域是包在主体内部﹐若采用这种方式﹐测量繁琐困难﹔对于第二种测量方式﹐子是下料成型﹐且插在主体插槽中﹐插槽控制了端子的平面度﹐因此只须控制KEY相POST的位置度与端子锡脚相对POST的位置度﹐相应地也就控制了端子接触区域相对 水平位置度Th和垂直位置度Tv后﹐須再驗証其是否滿足公式Th2+Tv2≦0.152。

导轨直线度误差检测方法介绍

导轨直线度误差检测方法介绍

一、直经度的定义 限制实际直线对理想直线变动量的一种形状公差。由形状(理想包容形状)、大小(公差值)、方向、位置四个要素组成。用于限制一个平面内的直线形状偏差,限制空间直线在某一方向上的形状偏差,限制空间直线在任一方向上的形状偏差。 几何误差是指零件加工后的实际形状、方向和相互位置与理想形状、方向和相互位置的差异。在形状上的差异称形状误差,在方向上的差异称方向误差,在相互位置上的差异称位置误差。直线度在几何公差中是最基础的部分,按检测关系分直线度属于被测要素中的单一要素——指对要素本身提出形状公差要求的被测要素。 二、导轨直线度误差检测方法 直线度误差的检测方法很多。工件较小时,常以刀口尺、检验平尺作为模拟理想直线,用光隙法或间隙法确定被测实际要素的直线度误差。当工件较大时,则常按国标规定的测量坐标值原则进行测量,取得必要的一组数据,经作图法或计算法得到直线度误差,还有种高效的测量方法就是直接利用太友科技的数据采集仪连接百分表来测量,无需人工读数、作图、分析,采集仪会自动读数数据并进行数据分析,一旦测量结果不合格还会自动产生报警功能。 测量直线度误差常用的仪器有:框式水平仪、合象水平仪、电感式水平仪、自准直仪以及数据采集分析仪等。这类仪器的特点是:测定微小角度的变化,换算为线值误差。本实验用合象水平仪和数据采集分析仪来进行直线度测量。 1、利用合象水平仪测量直线度法 1)合象水平仪的介绍 合象水平仪采用光学放大,并以对称棱镜使双象重合来提高读数精度,利用杠杆和微动螺杆传动机构来提高测量精度和增大测量范围。将合象水平仪置于被测工件表面上,当被测两点相对水平线不等高时,将引起两气泡象不重合,转动度盘,使两气泡重合,度盘转过格数代表被测两点相对水平线的高度差,见图2-3。

机床导轨直线度的测量

机床导轨直线度测量 昆山高锋:李明 正在测量 Y轴平面 直线度 1、测量导轨平面直线度时镭射架设方式如上面照片所示; 平面直线度要求0.02mm以内,水平调整较好的情况下能达到0.01;

2、测量导轨侧边直线度时镭射架设方式如以上照片所示; 平面直线度要求0.01mm 以内,由于该侧边精度直接影响机床的直线度,因此要求较高; 侧边直线度 的测量

反射镜 3、反射镜安装于透镜后面,反射穿过透镜射过来的镭射光;

4、透射镜,镭射发射的光首先经过透射镜 ; 5、 镭射的架设,首先放置折射镜,放置如前面照片所示,标示面朝向要测量的平面,先不安装透射镜,在最近距离时先对好镭射光,再推动滑块后移,这时反射回来的光线会偏移这时用镭射机后面的微调左右上下调正,调整时不能调整平移和上发射光 回授光

下摇把,等到拉到最后面后,微调对好光,再移到最前面利用上下左右摇把调整对光,来回数次后在最远端镭射感应光是绿色及可加装透射镜如前面照片所示,再进行类似前面的调整,使光的强度在绿色区域即可;

上图数据设定的由来:(上图设定已经过核对) 脚间距:设定200mm 测量导轨时要先用彩色白板笔划线给导轨分段,用滑块一般为200mm长,划线并编上序号,编序号的目的是在测量后发现有问题段时,可以根据序号的对应很快对应到问题段; 导轨长度:设定=脚间距×分的段数 如:导轨以200分段后分出26段,其导轨长度设定就是200mm ×26段=5200mm 测站:数值由脚间距和导轨长度自动生成 测量时的操作步骤: 1、先用200长滑块给机床导轨分段,分段由架设镭射机一边 开始分段并编上序号,至导轨另一端结束,并记录最后号数; 2、摆放镜头并对镭射光; 3、设定镭射软件参数;

导轨直线度的检测方法

导轨直线度的检测方法 机床导轨一般时由两条以上的单根导轨组合而成。按外型可分为矩形导轨和V 型导轨。按工作方式可分为直线运动导轨和旋转运动导轨。导轨的直线度可分解为 互相垂直的两个平面的直线度,即垂直面内的直线度(见图3-3-1)和水平面内的直线度(见图3-3-2)。 图3-3-1 垂直平面内的直线度检测图3-3-2 水平面内的直线度检测 由图3-3-1和图3-3-2所示,导轨的直线度就时指:组成V形(或矩形)导轨的平面与通过该平面的垂直平面(或水平面)的交线的直线度。常用的检测工具有:水

平仪、平尺以及光学仪器入自准仪、钢丝和显微镜等。当被测件长度不大于 1600mm时,选用水平仪、平尺或光学仪器,当被测件长度大于1600mm时,测只可用水平仪和光学仪器检测。 评定机床导轨的直线度误差的方法有最小包容区域法和两点连线法两种。 1(间隙法 间隙法是指用量块(或)塞尺测量被测平面导轨和测量基准线(常用平尺类量具 体现)间的间隙,直接评定直线度法差值的方法。 如图3-3-3所示,将一标准平尺置于被测平面导轨上,在距离平尺两端各约 2/9L(L为平尺长度)处垫上等量块。然后用片状塞规或塞尺测检平尺工作面和被测 导轨面间的间隙。若将实测间隙减去所用的等高量块的高度值后,小于机床规定的 直线度允差:则说明该机床的导轨直线度误差符合精度要求。 图3-3-3 1——等高块 2——量块 例:某机床导轨的直线度的允差为0.012mm/m。等高量块高度为h。若选用h0mm 厚的片状塞规或塞尺,在导+0.012 轨上相距为1m的任何地方均不能塞入,则该导轨的直线度符合精度要求。

钻孔灌注桩垂直度的简易检验方法

钻孔灌注桩垂直度的简易检验方法 桩孔垂直度是钻孔灌注桩的检验项目之一,一般规定桩孔垂直度≤1%H(H为桩孔垂深)。钻孔灌注桩口径一般较大,使用口径小的测斜仪器,偏差值测不出来,满足不了工程需要。 我们在某新建的工程施工600 mm嵌岩钻孔灌注桩时出现了桩孔偏斜,钢筋笼下不到底,导管下不去。监理工程师、建设单位代表要求:桩孔垂直度必须达到设计要求,垂直度检验栏内必须填上数据,否则不能施工。我们利用重锤原理制作了一套检验器,根据几何原理计算桩孔垂直度(偏斜率)。随时进行检测,及时了解和掌握钻孔轴线在空间的位置,采取有效的防治措施,保证了施工质量,甲方非常满意。现将检测方法介绍如下。 2 检验器的制作 按设计桩孔直径用钢筋制作平底同径检验器(相当于重锤),其规格尺寸为:直径等于桩孔设计直径,长度为3倍桩径;主筋616 mm;加强筋14 mm@1000~1500 mm,在首尾加强筋内设呈90°交角的内支撑;上部为提引梁圆环,圆环中心与检验器轴线重合;用14 m m 钢筋制作与转盘通孔槽直径相等的开口检测圆环,内用12 mm钢筋呈90°焊牢,交点处用钢锯锯成十字条痕 3 检验方法 (1)移开转盘(桩孔直径小于转盘通孔直径时,可不移)。 (2)用升降机将检验器下入孔内,将转盘移回原位固定。

(3)提引绳从转盘中间穿过与检验器连接,将开口检测圆环放到转盘槽内,这时检测圆环的内支撑的交点O即是转盘中心又是设计钻孔中心。 (4)将检验器提起,下放到孔口,使其处于悬垂状态,此时提引绳与转盘平面有一个交点B( 见图1),用直尺量出OB距离(精确到1mm)。理论上O、B两点重合,实际情况并非如此。 (5)量出天车滑轮前沿距转盘平面的距离h(此高是固定的),以及转盘平面距孔口距离( 精确到1mm)。 (6)继续下放检验器到预测定的位置,此时提引绳与转盘平面又会产生一个交点B′,量出OB′的距离。 4 桩孔垂直度(偏斜率)计算 把检验测定的数据代入下列公式,计算出桩孔垂直度(偏斜 率)i,参看图1。 图1 钻孔垂直度(偏斜率)计算要素示意图

实验二 框式水平仪测量直线度误差

实验二 框式水平仪测量直线度误差 一、实验目的: 1、掌握用水平仪测量垂直平面内的直线度误差的方法。 2、掌握用作图法求直线度误差,用最小区域法评定直线度误差的方法。 3、了解其他测量直线度误差的方法。 二、实验内容: 测量导轨直线度误差或测量平板一对角线的直线度误差。 三、框式水平仪的结构、工作原理、读数方法: 1、 框式水平仪的结构 框式水平仪一般是制成200mm×200mm 的矩形框架,它们互相垂直平行,下方框边的上面装有一个水准器(密封的玻璃容器),本实验用 i=0.02mm /l000mm 框式水平仪。 水准器是一个具有一定曲率半径的圆弧形玻璃管,管内装有粘度很小的液体如乙醚或乙醇,不装满,留有一定长度的气泡,称水准气泡。我们就利用液体往低处流,气泡往高处跑的道理进行测量的。水准器玻璃管表面上的刻度相等,以圆弧中心相对称,其刻线间距为2 mm 。 2、测量工作原理: 以自然水平面为测量基准(摸拟理想要素)。用节距法(又称跨距法)对被测直线进行逐段测量,得到各段的读数然后经过数据处理,就可以用作图法或计算法求出误差值。 3、水平仪的读数方法: 实验采用双向读数法。双向读数法读数较准确。具体方法是:把水准器的刻度分成两大区间:二基线内为负区闭,二基线外为正区间。如下图所示。 正区间 正区间 读数时.看气泡左基线相距几格,气泡右端相距右基线几格,分别以n 左、n 右表示,并带上“十”、“一”符号。气泡相对水平位置移动的格数由公式算出: N=± 2 n n (右)左 (格) 式中: n 左一一气泡左端相距左基线几格

n 右一一气泡左端相距右基线几格 N 一一水平仪的实际移动格数(水平仪读数)。 绝对值前面的“+”、“-”符号的确定:我们约定,当整个气泡移向对称线的右边,绝对值前冠“+”号,反之为“-”号。 (b) 例如上图a 的读数为:格—)(—12 20N =--= 上图b 的读数:格32 5.25.3N +=--+= 四、实验步骤 1.将水平仪、桥板擦干净,将被测面去毛刺并擦净。 2.初步调平被测表面(导轨、平尺、平板、工作台)。 3.用节距法测量。桥板节距(跨距)l 由被测长度L 划分成若干等分段确定之,跨距l 一般为100~250mm 。将水平仪置于桥板上,从一端开始,逐段测量,做到相邻两段首尾相接。为使所作误差曲线图为实际形状误差的一致性,我们从左向右逐段进行测量。第一段的起点称为原点,第一段的末点是第1点,测得的读数表示该段末点相对起点的升降,将水平仪读数记于实验报告相应栏目中,然后将桥板连同水平仪滑移至第二段,使第一段末点(1点)与第二段的起点相衔接,就可测得第二点的读数。依此类推,直至测量完毕。 4.对测得值进行数据处理,用作图法求直线度误差f_。 例如水平仪的分度值为mm 1000mm 02.0i = ,桥板L=200mm ,水平仪读数如下:第1段, +1.5格;第2段,+2格;第3段,0;第4段,-2格;第5段,-2格,试求该被测素线的f_。 用包容区域为格值的数据处理法。根据下表作图3-5,从误差曲线图中可看出误差形状是向材料外凸起呢,还是向材料中凹下。

1).直线度和平面度

机 械 加 工 检 验 标 准 及 方 法.目的: .范围: 三.规范性引用文件 四.尺寸检验原则 1.基本原则: 2.最小变形原则: 3.最短尺寸链原则: 4.封闭原则: 5.基准统一原则: 6.其他规定 五.检验对环境的要求 1.温度 2.湿度 3.清洁度 4.振动 5.电压 六.外观检验 1.检验方法

2.检验目距 3.检测光源 4.检测时间 5.倒角、倒圆 7.伤痕 9.凹坑、凸起、缺料、多料、台阶10.污渍11.砂孔、杂物、裂纹12.防护包装

七.表面粗糙度的检验 1.基本要求 2.检验方法: 3.测量方向 4.测量部位 5.取样长度 八.线性尺寸和角度尺寸公差要求 1.基本要求2线性尺寸未注公差 九.形状和位置公差的检验 1.基本要求3.检测方法十?螺纹的检验 1.使用螺纹量规检验螺纹制件 2.单项检验 1^一 .外协加工件的检验规定 1.来料检验 2.成品检验计划十二.判定规则附注: 1.泰勒原则

.目的: 为了明确公司金属切削加工检验标准,使检验作业有所遵循,特制定本标准。 .范围: 本标准适用于切削加工(包括外协、制程、出货过程)各检验特性的检验。在本标准中, 切削加工指的是:车削加工、铣削加工、磨削加工、镗削加工、刨削加工、孔加工、拉削加 工和钳工作业等。本标准规定了尺寸检验的基本原则、对环境的要求、外观检验标准、线性 尺寸公差要求、形位公差要求、表面粗糙度的检验、螺纹的检验和判定准则。 注:本标准不适用于铸造、锻造、钣金、冲压、焊接加工后的检验,其检验标准另行制 定。本标准不拟对长度、角度、锥度的测量方法进行描述 ,可参看相关技术手册;形位公差 的测量可参看GB/T1958-1980;齿轮、蜗杆的检验可参看相关技术手册。 三.规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注日期的引用文件,其随后 所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达 成协议的各方研究是否 可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版 本适用于本 标准 计数抽样程序第1部分:按接收质量限(AQL )检索的 逐批检验抽样计划 GB/T 1958-1980 形状和位置公差 检测规定 GB/T 1957-1981 光滑极限量规 Q/HXB 3000.1抽样检查作业指导书 Q/HXB 2005.1产品的监视和测量控制程序 Q/HXB 2005.15不合格品控制程序 GB/T 2828.1-2003 (ISO 2859-1:1989) GB/T 1804- 2000 (ISO2768-1:104989) 一般公差未注公差的线性和角度尺寸的公差 GB/T 1184 - 1996(ISO2768-2:1989) 形状和位置公差未注公差值

三坐标测量位置度的方法及注意事项

三坐标测量位置度的方法及注意事项 位置度检测是机动车零部件检测中经常进行的一项常规检验。所谓“位置度”是指对被评价要素的实际位置对理想位置变动量的指标进行限制。在进行位置度检测时首先要很好地理解和消化图纸的要求,在理解的基础上选择合适的基准。位置度的检测就是相对于这些基准,它的定位尺寸为理论尺寸。 标签:三坐标;位置度 1 位置度的三坐标测量方法 1.1 计算被测要素的理论位置 ①根据不同零部件的功能要求,位置度公差分为给定一个方向、给定两个方向和任意方向三种,可以根据基准体系及确定被测要素的理论正确位置的两个理论正确尺寸的方向选择适当的投影面,如XY平面、XZ平面、YZ平面。②根据投影面和图纸要求正确计算被测要素在适当投影面的理论位置。 1.2 根据零部件建立合适的坐标系。在PC-DMIS软件中,可以把基准用于建立零件坐标系,也可以使用合适的测量元素建立零件坐标系,建立坐标的元素和基準元素可以分开。 1.3 测量被测元素和基准元素。在被测元素和基准元素取点拟合时,最好使用自动程序进行,以减少手动检测的误差。 1.4 位置度的评价。①在PC-DMIS软件中,位置度的评价可以直接点击位置度图标。②在位置度评价对话框中包含两个页面,特征控制框和高级,首先根据图纸要求设置相应的基准元素,在基准元素编辑窗口中只会出现在编辑当前光标位置以上的基准特征,如图1所示。③基准元素设置完成,回到特征控制框选择被测元素,设置基准,输入位置度公差。④在位置度评价的对话框中选择高级,在此对话框中可以设置特征控制框尺寸的信息输出方式和分析选项。如图2的对话框,在标称值一栏中手动键入被测要素的理论位置值,点击评价。 1.5 在报告文本中刷新就可以看到所评价的位置度结果。 2 三坐标测量位置度的注意事项 2.1 评价位置度的基准元素选择和建立坐标系的元素选择有相似之处,都要用平面或轴线作为A基准,用投影于第一个坐标平面的线作为B基准,用坐标系原点作为C基准。如果这些元素不存在,可以用构造功能套用、生成这些元素。 2.2 对位置度公差的理解。如位置度公差值t前加注φ,表示公差带是直径

轨道直线度误差的测量

轨道直线度误差测量 一、实验目的: 1、掌握用水平仪测量垂直平面内的直线度误差的方法。 2、掌握用作图法求直线度误差,用最小区域法评定直线度误差的方法。 3、了解其他测量直线度误差的方法。 二、实验内容: 测量导轨直线度误差或测量平板一对角线的直线度误差。 三、水平仪的结构、工作原理: 1、水平仪的结构 框式水平仪一般是制成矩形框架,它们互相垂直平行,下方框边的上面装有一个水准器(密封的玻璃容器),本实验用i=0.01mm/l000mm水平仪。 2、测量工作原理: 以自然水平面为测量基准。用节距法(又称跨距法)对被测直线进行逐段测量,得到各段的读数然后经过数据处理,就可以用作图法或计算法求出误差值。 四、测量时注意事项 1、使用水平仪要尽量避免人的体温对它的影响。 2、测好一段.应推动板桥向后一测量段滑进,等气泡完全静止下来再读数。水平仪置于板桥上是作为一整体使用,测量过程中二者之间尽量不要发生相对移动。 3、作图力求准确,比例恰当,图面清晰。

五、实验步骤 1.将水平仪、桥板擦干净,将被测面去毛刺并擦净。 2.初步调平被测表面(导轨、平尺、平板、工作台)。 3.用节距法测量。桥板节距由被测长度L划分成若干等分段确定,跨距一般为100~250mm。将水平仪置于桥板上,从一端开始,逐段测量,做到相邻两段首尾相接。为使所作误差曲线图为实际形状误差的一致性,我们从左向右逐段进行测量。第一段的起点称为原点,第一段的末点是第1点,测得的读数表示该段末点相对起点的升降,将水平仪读数记于实验报告相应栏目中,然后将桥板连同水平仪滑移至第二段,使第一段末点与第二段的起点相衔接,就可测得第二点的读数。依此类推,直至测量完毕。 4.对测得值进行数据处理,用作图法求直线度误差f_。 用分度值: i =0.01 mm/m的合象水平仪检测长导轨的直线度,桥板跨距为130mm.测量数据列于下表: 六、数据处理

导轨直线度误差测量

实验二导轨直线度误差测量 一、实验目的 1、掌握用水平仪测量直线度误差的方法及数据处理。 2、加深对直线度误差定义的理解。 二、实验内容 用合象水平仪测量直线度误差。 三、测量原理及计量器具说明 机床、仪器导轨或其他窄而长的平面,为了控制其直线度误差,常在给定平面(垂直平面、水平平面)内进行检测。常驻用的计量器具有框式水平仪、合象水平仪、电子水平仪和自准直仪等到。使用这类器具的共同特点是测定微小角度的变化。由于被测表面存在着直线度误差,计量器具置于不同的被测部位上,其倾斜度就要发生相应的变化。如果节距(相邻两测点的距离)一经确定,这个变化的微小倾角与被测相邻两点的高低差就有确切的对应关系。通过对逐个节距的测量,得出变化的角度,用作图或计算,即可求出被测表面的直线度误差值。由于合象水平仪的测量准确度高、测量范围大(±10mm/m)、测量效率高、价格便宜、携带方便等优点,故在检测工作中得到了广泛的采用。 合象水平仪的结构如图1a、d所示,它由底板1和壳体4组成外壳,其内部则由杠杆2、水准器8、两个棱镜7、测量系统9、10、11以及放大镜6所组成。 使用时将合象水平仪放于桥板(图2)上相对不动,再将桥板放于被测表面上。如果被测表面无直线度误差,并与自然水平基准平行,此时水准器的气泡边逐通过合象棱镜7所产生的影象,在放大镜6中观察将出现如图1b所示的情况。但在实际测量中,由于被测表面安放位置不理想和被测表面不宜,导致气泡移动,其视场情况将如图1c所示。此时可转动测微螺杆10,使水准器转动一角度,从而使气泡返回棱镜组7的中间位置,则图1c中的两影象的错移量*消失而恢复成一个光滑的半圆头(图1b)。测微螺杆移动量s导致水准器的转角a(图1d)与被测表面相邻两点的高低差h有确切的对应关系,即 h=0.01La(μm) 式中0.01——合象水平仪的分度值(mm/m); L——桥板节距(mm); α——角度读数值(用格数来计数)。 α值,为了阐述直线度误差的评定方法,后面将用实例加以叙述。 如此逐点测量,就可得到相应的 i (a)

相关主题