搜档网
当前位置:搜档网 › 超临界流体技术的应用与原理

超临界流体技术的应用与原理

超临界流体技术的应用与原理
超临界流体技术的应用与原理

超临界流体分离技术的原理及应用

超临界流体(SCF)是指在临界温度和临界压力以上的流体,高于临界温度和临界压力而接近临界点状态,称为超临界状态。处于超临界状态时,气液两相性质非常接近,以至于无法分辨,故称为SCF。超临界流体具有选择性溶解物质的能力,并随着临界条件(T,P)而变化。超临界流体可从混合物中有选择地溶解其中的某些组分,然后通过减压,升温或吸附将其分离析出。

超临界流体萃取分离过程的原理是超临界流体对脂肪酸、植物碱、醚类、酮类、甘油酯等具有特殊溶解作用,利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界流体萃取过程是由萃取和分离组合而成的。

超临界分离技术的特点:(1)萃取速度高与液体萃取,特别适合于固态物质的分离提取;(2)在接近常温条件下操作,能耗低于一般精馏发,适合于热敏性物质和易氧化物质的分离;(3)传热速率快,温度易于控制;(4)适合于挥发性物质的分离。

超临界流体具有许多不同于一般液体溶剂的物理化学特性,基于超临界流体的萃取技术具有传统萃取技术无法比拟的优势,近年来,超临界流体萃取技术的研究和应用从基础数据、工艺流程到实验设备等方面均有较快的发展。但由于对超临界流体本身尚缺乏透彻的认识,对其化学反应、传质理论以及反应中热力学的本质问题研究有待深入,而且超临界流体萃取分离技术需要高压装置,因而对工艺设备的要求往往也比较高,需要有较大的投入等原因的客观存在,因此目前超临界流体的大规模实际应用还存在诸多问题需要进一步解决。

目前国际上超临界流体萃取与造粒技术的研究和应用正方兴未艾,技术发展应用范围包括了:萃取(extraction),分离(separation),清洗(cleaning),包覆(coating),浸透(impregnation),颗粒形成(particle formation)与反应(reaction)。德国,日本和美国已处于领先地位,在医药,化工,食品,轻工,环保等方面研

究成果不断问世,工业化的大型超临界流体设备有5000L~10000L的规模,日本已成功研制出超临界色谱分析仪,而台湾亦有五王粮食公司运用超临界二氧化碳萃取技术进行食米农药残留及重金属的萃取与去除。

目前国际上超临界流体萃取的研究重点已有所转移,为得到纯度较高的高附加值产品,对超临界流体逆流萃取和分馏萃取的研究越来越多。超临界条件下的反应的研究成为重点,特别是超临界水和超临界二氧化碳条件下的各类反应,更为人们所重视.超临界流体技术应用的领域更为广泛,除了天然产物的提取,有机合成外还有环境保护,材料加工,油漆印染,生物技术和医学等;有关超临界流体技术的基础理论研究得到加强,国际上的这些动向值得我们关注。

由于超临界二氧化碳萃取技术在萃取后能将二氧化碳再次利用,把对环境的污染降至最低,所以未来传统工业若是能以超临界二氧化碳当作主要溶剂,那现在我们这颗唯一的地球,便能得到舒缓。

超临界二氧化碳萃取的优点有以下几点:(1)CO2临界温度和压力都较低,易于工业化;(2)CO2不可燃、无毒、化学稳定性好、易分离,不会产生副反应并且廉价易得;(3)CO2来源于化工副产物,应用过程中易于回收,能够减少温室气体的排放;(4)超临界CO2的溶解能力可通过流体的压力来调节。(5)超临界CO2处理后的产物易纯化、无溶剂残留;(6)超临界CO2对高聚物有很强的溶胀和扩散能力;(7)超临界CO2对含氟和硅聚合物具有优良的溶解性。

超临界CO2萃取的特点决定了其应用范围十分广阔。如在医药工业中,可用于中草药有效成份的提取,热敏性生物制品药物的精制,及脂质类混合物的分离;在食品工业中,啤酒花的提取,色素的提取等;在香料工业中,天然及合成香料的精制;化学工业中混合物的分离等。具体应用可以分为以下几个方面:(1)、从药用植物中萃取生物活性分子,生物碱萃取和分离;(2)、来自不同微生物的类脂脂类,或用于类脂脂类回收,或从配糖和蛋白质中去除类脂脂类;(3)、从多种植物中萃取抗癌物质,特别是从红豆杉树皮和枝叶中获得紫杉醇防治癌症;(4)、维生素,主要是维生素E的萃取;(5)、对各种活性物质(天然的或合成的)进行提纯,除去不需要分子(比如从蔬菜提取物中除掉杀虫剂)或

“渣物”以获得提纯产品;(6)、对各种天然抗菌或抗氧化萃取物的加工,如蜂胶、罗勒、串红、百里香、蒜、洋葱、春黄菊、辣椒粉、甘草和茴香子等。

同时,超临界二氧化碳还应用于材料加工,喷涂,发泡,增塑,清洗,制备超细微粒,聚合反应介质等。

21世纪的化学工业,医药工业等必须通过调整自身的产业结构和产品结构,研究开发清洁化生产和绿色工业的新工艺和新技术。超临界流体技术就是近30年来迅速发展起来的这样一种新技术.我们应当从这个战略高度来认识超临界流体技术研究和推广应用的重要性,制定研究规划,加大投入,加强对该技术的基础和应用研究,使它真正用于工业化生产,造福于人类,造福于社会。同时,超临界流体萃取技术还应用于食品,化妆品香料等领域。

在医药工业方面,西德Saarland大学的Stahl教授对许多药用植物采用SCFE法对其有效成分(如各种生物碱,芳香性及油性组分)实现了满意的分离。在抗生素药品生产中,传统方法常使用丙酮、甲醇等有机溶剂,但要将溶剂完全除去,又不使药物变质非常困难,若采用SCFE法则完全可以符合要求。美国ADL公司从7种植物中萃取出了治疗癌症的有效成分,使其真正应用于临床。许多学者认为摄取鱼油和ω-3脂肪酸有益于健康。这些脂类物质也可以从浮游植物中获得。这种途径获得的脂类物质不含胆固醇,J.K.Polak等人从藻类中萃取脂类物质获得成功,而且叶绿素不会被超临界CO2萃出,因而省去了传统溶剂萃取的漂白过程。另外,用SCFE法从银杏叶中提取的银杏黄酮,从鱼的内脏,骨头等提取的多烯不饱和脂肪酸(DHA,EPA),从沙棘籽提取的沙棘油,从蛋黄中提取的卵磷脂等对心脑血管疾病具有独特的疗效。日本学者宫地洋等从药用植物蛇床子、桑白皮、甘草根、紫草、红花、月见草中提取了有效成分。

在化工方面,在美国超临界技术还用来制备液体燃料。以甲苯为萃取剂,在Pc=100atm, Tc=400-440℃条件下进行萃取,在SCF溶剂分子的扩散作用下,促进煤有机质发生深度的热分解,能使三分之一的有机质转化为液体产物。此外,从煤炭中还可以萃取硫等化工产品。美国最近研制成功用超临界二氧化碳既作反应剂又作萃取剂的新型乙酸制造工艺。俄罗斯、德国还把SCFE法用于油料脱沥青技术。

在食品方面,传统的食用油提取方法是乙烷萃取法,但此法生产的食用油所含溶剂的量难以满足食品管理法的规定,美国采用超临界二氧化碳萃取法(SCFE)提取豆油获得成功,产品质量大幅度提高,且无污染问题。目前,已经可以用超临界二氧化碳从葵花籽、红花籽、花生、小麦胚芽、棕榈、可可豆中提取油脂,且提出的油脂中含中性脂质,磷含量低,着色度低,无臭味。这种方法比传统的压榨法的回收率高,而且不存在溶剂法的溶剂分离问题。专家们认为这种方法可以使油脂提取工艺发生革命性的改进。咖啡中含有的咖啡因,多饮对人体有害,因此必须从咖啡中除去。西德Max-plank煤炭研究所的Zesst博士开发的从咖啡豆中用超临界二氧化碳萃取咖啡因的专题技术,现已由西德的Hag 公司实现了工业化生产,并被世界各国普遍采用。这一技术的最大优点是取代了原来在产品中仍残留对人体有害的微量卤代烃溶剂,咖啡因的含量可从原来的1%左右降低至0.02%,而且CO2的良好的选择性可以保留咖啡中的芳香物质。美国ADL公司最近开发了一个用SCFE技术提取酒精的方法,还开发了从油腻的快餐食品中除去过多的油脂,而不失其原有色香味及保有其外观和内部组织结构的技术,且已申请专利。

化妆品香料方面天然香精香料的提取,用SCFE法萃取香料不仅可以有效地提取芳香组分,而且还可以提高产品纯度,能保持其天然香味,如从桂花、茉莉花、菊花、梅花、米兰花、玫瑰花中提取花香精,从胡椒、肉桂、薄荷提取香辛料,从芹菜籽、生姜,莞荽籽、茴香、砂仁、八角、孜然等原料中提取精油,不仅可以用作调味香料,而且一些精油还具有较高的药用价值。啤酒花是啤酒酿造中不可缺少的添加物,具有独特的香气、清爽度和苦味。传统方法生产的啤酒花浸膏不含或仅含少量的香精油,破坏了啤酒的风味,而且残存的有机溶剂对人体有害。超临界萃取技术为酒花浸膏的生产开辟了广阔的前景。美国SKW公司从啤酒花中萃取啤酒花油,已形成生产规模。天然色素的提取,目前国际上对天然色素的需求量逐年增加,主要用于食品加工、医药和化妆品,不少发达国家已经规定了不许使用合成色素的最后期限,在我国合成色素的禁用也势在必行。溶剂法生产的色素纯度差、有异味和溶剂残留,无法满足国际市场对高品质色素的需求。超临界萃取技术克服了以上这些缺点,目前用SCFE法提取天然色素(辣椒红色素)的技术已经成熟并达到国际先进水平。

超临界萃取原理

超临界萃取原理 超临界流体萃取是当前国际上最先进的物理分离技术。 常见的临界流体中,由于CO2化学性质稳定,无毒害和无腐蚀性,不易燃和不爆炸,临界状态容易实现,而且其临界温度(31.1℃)接近常温,在食品及医药中香气成分,生理活性物质、酶及蛋白质等热敏物质无破坏作用,因而常用CO2作为作为萃取剂进行超临界萃取。 一、超临界CO2 纯CO2的临界压力是7.3MPa和31.1℃时,此状态CO2被称为超临界CO2。在超临界状态下,CO2流体是一种可压缩的高密度流体,成为性质介于液体和气体之间的单一状态,兼有气液两相的双重特点:它的密度接近液体,粘度是液体的1%,自扩散系数是液体的100倍,因而它既具有与气体相当的高扩散系数和低粘度,又具有与液体相近的密度和对某些物质很强的溶解能力,可以说超临界CO2对某些物质有着特殊的渗透力和溶解能力。 二、超临界CO2萃取过程 超临界CO2密度对对温度和压力变化十分敏感,所以调节正在使用的CO2的压力和密度,就可以通过调节CO2密度来调整该CO2对欲提取物质的溶解能力;对应各压力范围所得到的的萃取物不是单一的,可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,与被萃取物质完全或部分分开,从而达到分离提纯的目的。 三、超临界CO2溶解选择性 超临界状态下的CO2具有选择性溶解,对低分子、弱极性、脂溶性、低沸点的成分如挥发油、烃、酯、内脂、醚、环氧化合物等表现出优异的溶解性,而对具有极性集团(-OH、-COOH等)的化合物,极性基团愈多,就愈难萃取,故多元醇、多元酸及多羟基的芳香物质均难溶于超临界CO2。对于分子量大的化合物,分子量越大,越难萃取,分子量超过500的高分子化合物几乎不溶,因而对这类物质的萃取,就需加大萃取压力或者向有效成分和超临界CO2组成的二元体系中加入具有改变溶质溶解度的第三组成粉(即夹带剂),来改变原来有效成分的溶解度。一般来说,具有很好性能的溶剂,也往往是很好的夹带剂,如甲

超临界萃取的技术原理

一、超临界萃取的技术原理 利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界CO2流体萃取过程是由萃取和分离过程组合而成的。 超临界CO2是指处于临界温度与临界压力(称为临界点)以上状态的一种可压缩的高密度流体,是通常所说的气、液、固三态以外的第四态,其分子间力很小,类似于气体,而密度却很大,接近于液体,因此具有介于气体和液体之间的气液两重性质,同时具有液体较高的溶解性和气体较高的流动性,比普通液体溶剂传质速率高,并且扩散系数介于液体和气体之间,具有较好的渗透性,而且没有相际效应,因此有助于提高萃取效率,并可大幅度节能。 超临界CO2的物理化学性质与在非临界状态的液体和气体有很大的不同。由于密度是溶解能力、粘度是流体阻力、扩散系数是传质速率高低的主要参数,因此超临界CO2的特殊性质决定了超临界CO2萃取技术具有一系列的重要特点。超临界CO2的粘度是液体的百分之一,自扩散系数是液体的100倍,因而具有良好的传质特性,可大大缩短相平衡所需时间,是高效传质的理想介质;具有比液体快得多的溶解溶质的速率,有比气体大得多的对固体物质的溶解和携带能力;具有不同寻常的巨大压缩性,在临界点附件,压力和温度的微小变化会引起CO2的密度发生很大的变化,所以可通过简单的变化体系的温度或压力来调节CO2 的溶解能力,提高萃取的选择性;通过降低体系的压力来分离CO2和所溶解的产品,省去消除溶剂的工序。 在传统的分离方法中,溶剂萃取是利用溶剂和各溶质间的亲和性(表现在溶解度)的差异来实现分离的;蒸馏是利用溶液中各组分的挥发度(蒸汽压)的不同来实现分离的。而超临界CO2萃取则是通过调节CO2的压力和温度来控制溶解度和蒸汽压这2个参数进行分离的,故超临界CO2萃取综合了溶剂萃取和蒸馏的2种功能和特点,进而决定了超临界CO2萃取具有传统普通流体萃取方法所不具有的优势:通过调节压力和温度而方便地改变溶剂的性质,控制其选择性;适当地选择提取条件和溶剂,能在接近常温下操作,对热敏性物质可适用;因粘度小、扩散系数大,提取速度较快;溶质和溶剂的分离彻底而且容易。从它的特性和完整性来看,相当于一个新的单元操作,因此引起了国内外的广泛关注。二、超临界萃取的特点

超临界流体技术的应用与原理

超临界流体分离技术的原理及应用 超临界流体(SCF)是指在临界温度和临界压力以上的流体,高于临界温度和临界压力而接近临界点状态,称为超临界状态。处于超临界状态时,气液两相性质非常接近,以至于无法分辨,故称为SCF。超临界流体具有选择性溶解物质的能力,并随着临界条件(T,P)而变化。超临界流体可从混合物中有选择地溶解其中的某些组分,然后通过减压,升温或吸附将其分离析出。 超临界流体萃取分离过程的原理是超临界流体对脂肪酸、植物碱、醚类、酮类、甘油酯等具有特殊溶解作用,利用超临界流体的溶解能力与其密度的关系,即利用压力和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,将超临界流体与待分离的物质接触,使其有选择性地把极性大小、沸点高低和分子量大小的成分依次萃取出来。当然,对应各压力范围所得到的萃取物不可能是单一的,但可以控制条件得到最佳比例的混合成分,然后借助减压、升温的方法使超临界流体变成普通气体,被萃取物质则完全或基本析出,从而达到分离提纯的目的,所以超临界流体萃取过程是由萃取和分离组合而成的。 超临界分离技术的特点:(1)萃取速度高与液体萃取,特别适合于固态物质的分离提取;(2)在接近常温条件下操作,能耗低于一般精馏发,适合于热敏性物质和易氧化物质的分离;(3)传热速率快,温度易于控制;(4)适合于挥发性物质的分离。 超临界流体具有许多不同于一般液体溶剂的物理化学特性,基于超临界流体的萃取技术具有传统萃取技术无法比拟的优势,近年来,超临界流体萃取技术的研究和应用从基础数据、工艺流程到实验设备等方面均有较快的发展。但由于对超临界流体本身尚缺乏透彻的认识,对其化学反应、传质理论以及反应中热力学的本质问题研究有待深入,而且超临界流体萃取分离技术需要高压装置,因而对工艺设备的要求往往也比较高,需要有较大的投入等原因的客观存在,因此目前超临界流体的大规模实际应用还存在诸多问题需要进一步解决。 目前国际上超临界流体萃取与造粒技术的研究和应用正方兴未艾,技术发展应用范围包括了:萃取(extraction),分离(separation),清洗(cleaning),包覆(coating),浸透(impregnation),颗粒形成(particle formation)与反应(reaction)。德国,日本和美国已处于领先地位,在医药,化工,食品,轻工,环保等方面研

超临界流体技术原理及其应用

“超临界流体技术原理及其应用” 院选课读书报告 (2012~2013下学期) 题目:SC—CO2流体技术基本原理及其应用前景系专业名称: 学生姓名: 学号: 指导教师:

SC—CO2流体技术基本原理及其应用前景 摘要 超临界流体是指物质处于极其临界的温度和压强下形成的一种新的流体,它的性质介于液体和气体之间,并且兼具二者的有点。现研究较多的流体包括:二氧化碳等。超临界二氧化碳是一种液态的二氧化碳,在一定的条件,如果达到临界点或者以上,会形成一种新的状态,兼顾气态和液态的部分性质,而且拥有新的性质。超临界二氧化碳萃取技术是一种新型分离技术,超临界CO2萃取是采用CO2作为溶剂,在超临界状态下的CO2流体密度和介电常数较大,对物质溶解度很大,并随压力和温度的变化而急剧变化,因此,不仅对某些物质的溶解度有选择性,且溶剂和萃取物非常容易分离。超临界CO2萃取特别适用于脂溶性,高沸点,热敏性物质的提取,同时也适用于不同组分的精细分离,即超临界精镏。超流体流体应用前景目前应用十分的广泛,目前已应用于食品工业、化妆品香料工业、医药工业、化工工业等方面,超临界流体应用将越来越广泛于各个行业的发展。 关键词:“超临界流体,超临界二氧化碳,超临界二氧化碳萃取,超临界流体应用前景” 一、SC—CO2流体技术基本原理 (一)SC—CO2超流体技术的基本原理概述 超临界流体(SCF)是指处于临界温度和压强的情况下,它的物理性质介于液体和气体之间。⑴这种流体同时据有气态和液态的特点,它既具有与液体相近的密度和其优良的溶解性。溶质在某溶剂中的溶解度与溶剂的密度相关,溶质在超临界流体中的溶解度也与其类似。因此,通过改变超临界流体的压强和温度,改变其密度,便可以溶解许多不同类型的物质。 超临界流体萃取分离过程是利用超临界流体的溶解力和其密度的关系,即利用压强和温度对超临界流体溶解能力的影响而进行的。在超临界状态下,其拥有

超临界流体萃取原理及其特点

超临界流体萃取技术 超临界流体概念 任何物质,随着温度、压力的变化,都会相应的呈现为固态、液态和气态这三种状态,称为物质的三态。三态之间互相转化的温度和压力值叫做三相点,每种分子量不太大的稳定的物质都具有一个固有的临界点,严格意义上,临界点由临界温度、临界压力、临界密度构成。在临界温度以上,无论怎样加压,气态物质绝不会被液化。当温度和压力超过了临界点时,该物质就进入了超临界状态,超临界状态下的物质既非气体又非液体的状态,叫做超临界流体[11],SCF是气体和液体状态以外的第三流体。 超临界流体萃取原理及其特点 所谓超临界流体萃取[12],是指利用超临界条件下的流体作为萃取剂,从液体或固体中萃取出特定成分,以达到某种分离目的。SCF的密度对温度和压力的变化很敏感,而其溶解能力在一定压力范围内与其密度成比例,因此可以通过控制温度和压力来改变物质在SCF中的溶解度,特别是在临界点附近,温度和压力的微小变化可导致溶质溶解度发生几个数量级的突变,这就是SFE的依据。 与其它常规分离方法相比,SFE具有以下特点[13]: 1) 通过调节温度和压力可全部或选择性地提取有效成分或脱除有害物质; 可在较低温度和无氧环境下操作,分离、精制热敏 2)选择适宜的溶剂如CO 2 性物质和易氧化物质; 3)临界流体具有良好的渗透性和溶解性,能从固体或粘稠的原料中快速提 取有效成分; 4)降低超临界相的密度,很容易使溶剂从产品中分离,无溶剂污染,且回 收溶剂无相变过程,能耗低; 5)兼有蒸馏和萃取双重功能,可用于有机物的分离、精制。 SFE存在的不足有[14]: 1) 高压下萃取,相平衡较复杂,物性数据缺乏; 2) 高压装置与高压操作,投资费用高,安全要求亦高; 3) 超临界流体中溶质浓度相对还是较低,故需大量溶剂循环; 4) 超临界流体萃取过程固体物料居多,连续化生产较困难。 超临界流体的选择

超临界萃取技术应用及发展

石河子大学 分离工程课程论文 《超临界萃取技术的应用及发展》 学院:化学化工学院 专业:生物化工 学号: 姓名: 指导教师: 中国·新疆·石河子 2012年7月

超临界萃取技术的应用及发展 (石河子大学化学化工学院/新疆兵团化工绿色过程重点实验室,新疆石河子,832003) 摘要: 超临界流体萃取(SFE)是一种新型的分离方法,具有广阔的发展前景。本文简要介绍了超临界流体的基本性质,原理、萃取过程和技术特点,综述了超临界技术在萃取分离、环境保护、材料科学、反应工程、生物技术、清洗工业等方面的发展状况,并对超临界技术对多氯联苯的提取中的应用作了简要介绍。 关键词:超临界流体超临界萃取应用有机农药 引言 超临界流体萃取(Supercritical Fluid Extraction,简称SFE)是一种提取天然物质成分的新技术。其起源于20世纪40年代,70年代投入工业应用,以其环保、高效等显著特性迅速超越了传统技术,并取得成功。过去,分离天然的有机成分一直沿用水蒸汽蒸馏法、压榨法、有机溶剂萃取法等。水蒸汽蒸馏法需要将原料加热,不适用于化学性质不稳定成分的提取;压榨法得率低;有机溶剂萃取法在去除溶剂时会造成产品质量下降或有机溶剂残留;超临界流体萃取法则有效地克服了传统分离方法的不足,它利用在临界温度以上的高压气体作为溶剂,分离、萃取、精制有机成分。近二十多年来,超临界技术在国内外迅猛发展,在食品、化工、香料、环保、纳米材料、生物医药等诸多领域均有广阔的应用前景,也取得了众多的重要成果。 德国在1978年建立了世界上第一套用于脱除咖啡豆中咖啡因的工业化SFE 装置[1],后各国也相继建立了SFE实用装置。随后美国、日本等国也投人大量人力物力对超临界流体萃取技术进行研究,其研究范围涉及食品、香料、化工、医药等领域,并取得一系列进展[2-3]。我国从事SFE技术的研究是近十几年的事,也取得了一些可喜的成绩[4]。本文针对目前研究很热的超临界流体萃取技术进行一个简单的综述,并对其巨大的应用的前景提出展望。 1 超临界流体特性简介[5] 超临界流体(Supercritical fluid,简写SCF)是处于临界温度和临界压力以上的非凝缩性的高密度流体。物质的气液平衡线并不随温度和压力的增加而无限延伸,当系统处于高于临界压力和临界温度时,气相和液相的界面消失,这时称为

超临界二氧化碳萃取技术

摘要:介绍了超临界二氧化碳萃取技术的基本原理和特点,简单说明了该技术在香料、医药、食品等工业上的应用。 关键词:超临界二氧化碳萃取分离技术基本原理 前言 超临界流体萃取,又称超临界萃取、压力流体萃取、超临界气体萃取。它是以高压、高密度的超临界状态流体为溶剂,从液体或固体中萃取所需要的组分,然后采用升温、降压或二者兼用和吸收(吸附)等手段将溶剂与所萃取的组分分离。 早在1897年,人们就已经认识到了超临界萃取这一概念。当时发现超临界状态的压缩气体对于固体具有特殊的溶解作用。例如再高于临界点的条件下,金属卤化物可以溶解再在乙醇或四氯化碳中,当压力降低后又可以析出。但直到20世纪60年代,才开始了其工业应用的研究。目前超临界二氧化碳萃取已成为一种新型萃取分离技术,被广泛应用于食品、医药、化工、能源、香精香料的工业的生产部门。 1 超临界萃取的原理 当液体的温度和压力处于它的临界状态。 如图1是纯流体的典型压力—温度图。图中, AT表示气—固平衡的升华曲线,BT表示液— 固平衡的熔融曲线,CT表示气-液平衡的饱 和液体的蒸汽压曲线,点T是气-液-固三相 共存的三相点。按照相率,当纯物的气-液- 固三相共存时,确定系统状态的自由度为零, 即每个纯物质都有自己确定的三相点。将纯物 质沿气-液饱和线升温,当达到图中的C时, 气-液的分界面消失,体系的性质变得均一, 不再分为气体和液体,称点C为临界点。与该点相对应的临界温度和压力分别称 为临界温度T 0和临界压力P 。图中高于临界温度和临界压力的有影阴的区域属 于超临界流体状态。 在这种状态下,它既不完全与一般气相相同,又不是液相,故称为超临界流体。超临界流体有气、液相的特点,它既有与气体相当的高渗透力和低粘度,又兼有液体相近的密度和对物质优良的溶解能力。这种溶解能力能随体系参数的变化而连续的改变,因而可以通过改变体系的温度和压力,方便的调节组分的溶解度和萃取的选择性。利用上述特点,超临界二氧化碳萃取技术主要分为两大类原理流程即恒温降压流程和恒压升温流程。前者萃取相经减压,后者萃取相经升温。

超临界流体技术

如对您有帮助,请购买打赏,谢谢您! 超临界流体技术提取天然药物 张莲莲 目录 超临界流体 超临界流体技术 生物碱类化合物提取 黄酮类化合物的提取 正文 超临界流体 超临界流体,就是高于临界温度和临界压力以上的流体,简称SCF。超临界流体具有液体和气体的双重特性,有与液体接近的密度,同时有与气体接近的黏度极高的扩散系数,故具有很强的溶解能力和良好的流动、传递性能。例如,水的密度、离子、介电常数等以临界温度374℃为分界,发生急剧的变化。特别是在常温状态下极性溶剂-水的介电常数到了临界点以上会急剧减小,超临界水的介电常数减小到与有机溶剂相同的水平。由于这种特性,水在超临界状态,便具有与有机溶剂相同的特性,变成了可以与有机物完全混合的状态。超临界流体具有较高的扩散性,从而减小了传质阻力,这对多孔疏松的固态物质和细胞材料中的化合物的萃取特别有利;超临界流体对改变操作条件(如压力、温度)特别敏感,这就提供了操作上的灵活性和可调性;超临界流体可在低温下进行,对分离热敏性物料尤为有利;超临界流体具有低的化学活泼性和毒性。 超临界流体技术 由于超临界流体以上良好的性能,超临界流体被广泛应用于有效成分的提取。在高压条件下,使超临界流体与物料接触,使物料中的有效成分溶于超临界流体中,与物料分离,然后通过降低溶有溶质的超临界流体的压力或升温的方法,使溶质析出,这样的技术称为超临界流体技术,简称SFE技术。能够作为超临界流体萃取的物质应具有临界压力和临界温度、惰性、低毒性及低价格、来源广等特点。超临界流体技术具有萃取效率高、分离工艺简单、不需要溶剂回收设备、工作条件温和、无毒、无残留、绿色生产等特点,在我国中医药工业上,尤其是在天然药有效成分提取分离上,已开始广泛应用,而且有着越来越广阔的应用前景。

超临界流体的应用

大庆师范学院 超临界流体的应用 年级: 09工四 学号: 200901030938 姓名: 王心 专业: 化学工程与工艺 指导老师: 刘海燕 二零一二年三月十八日

摘 要 本论文从超临界流体定义、性质开始介绍,最后谈谈它更多的应用。超临界流体萃取是国际上最先进的物理萃取技术。在较低温度下,不断增加气体的压力时,气体会转化成液体,当温度增高时,液体的体积增大,对于某一特定的物质而言总存在一个临界温度和临界压力,高于临界温度和临界压力后,物质不会成为液体或气体,这一点就是临界点。再临界点以上的范围内,物质状态处于气体和液体之间,这个范围之内的流体成为超临界流体。超临界流体具有类似气体的较强穿透力和类似于液体的较大密度和溶解度,具有良好的溶剂特性,可作为溶剂进行萃取。 关键词:超临界流体的定义 性质 优点 应用

目 录 摘 要................................................................................................................................ 1 第1章 绪 论...................................................................................................................... 1.1 本论文的背景和意义 ........................................................................................... 1.2 本论文的主要方法和研究进展 ........................................................................... 3 1.3 本论文的主要内容 ............................................................................................... 4 第2章 超临界流体的介绍 (5) 2.1超临界流体的概念.................................................................................................. 5 2.2超临界流体的优点.................................................................................................. 5 2.3超临界流体的性质.................................................................................................. 5 第3章 超临界流体的应用 (6) 3.1超临界流体应用原理.............................................................................................. 6 3.2超临界流体的应用.................................................................................................. 6 结 论................................................................................................................................ 8 参考文献.. (9)

超临界流体的特性及其应用

浙江工商大学 研究生课程论文 论文题目:超临界流体的特性及其应用 课程名称:现代食品工程技术 专业名称:食品科学 学号: 24 姓名:陈方娟 指导教师:励建荣、石玉刚 成绩: 日期:超临界流体的特性及其应用 摘要:本文主要介绍了超临界流体的理化性质,并对超临界流体在化工、生

物质及环保等领域的应用进行了综述,同时对超临界技术的发展前景进行了展望。 关键词:超临界流体;理化性质;应用;前景展望 The Properties and Application of the Supercritical Fluids Abstract : This paper describes the physical and chemical properties of supercritical fluids, then introduce the application in the fields of chemical industry, biomass and environmental protection, and so on, while prospect the development of supercritical technology. keywords:supercritical fluids;physical and chemical properties;application;prospection 超临界流体(SCF)是介于气体和液体之间的一种特殊聚集态。19世纪60年代,英国科学家Thomas Andrews首次发现超临界现象;1879年,Hannay 和Hogarth发表了第一篇有关超临界流体的论文“超临界流体能够溶解固体物质”,为超临界流体萃取技术的应用提供了依据。随着对超临界流体性质认识的深入,超临界干燥、化学反应等新技术不断涌现并得到快速发展,所涉及的应用范围也迅速扩大。目前,在ISI Web of Knowledge数据库中有关超临界的论文已高达17000篇。我国在这一领域的研究工作起步较晚。1985年北京化工学院从瑞士进口了第一台超临界流体萃取装置,进行了不少研究工作。之后相继成立了相关的学术组织,定期召开国际性或

超临界流体技术原理及应用

〈〈超临界流体技术原理及应用〉〉教学大纲 课程名称:超临界流体技术原理及应用 课程英文名称:Supercritical Fluid Technology-Principles and practices 课内学时:32 课程学分:2 课程性质:选修课开课学期:每学年第二学期 教学方式:课堂讲授考核方式(考试/考查):考试 大纲执笔人:赵锁奇主讲教师:赵锁奇 师资队伍:赵锁奇、许志明、孙学文 一、课程内容简介 讲授超临界流体技术的基本热力学原理,分析超临界流体萃取、超临界流体在材料制备及超临界流体中化学反应等领域中的各种现象及规律,介绍超临界流体技术的发展动向。 二、课程目的与要求 掌握超临界流体技术的基本热力学原理,并运用这些原理分析超临界流体萃取,超临界流体在材料制备及超临界流体超临界流体中化学反应等领域中的各种现象,并能灵活运用解决实际问题。了解超临界流体技术的发展动向。 学习本课程后,应达到以下基本要求: 1.掌握超临界流体的高压流体相平衡基本行为规律。 2.掌握超临界流体萃取的热力学和传递因素对萃取过程的影响规律。 3.掌握超临界流体中均相及非均相化学反应的特性。 4.掌握超临界流体技术在材料制备中几种基本过程的热力学原理 5.了解超临界流体技术在天然物质萃取,化学反应,印染、材料制备及半导体清洗等方面的应用。 三、教学内容及学时安排 绪论(2学时) 介绍超临界流体基本概念,超临界流体技术的起源发展及现状,超临界流体的参考书及信息源;讲解课程重点内容纲要 第一章纯流体近临界相行为及物理化学性质(2学时) 讲解纯流体相图及临界点的定义和临界参数与分子结构关系,纯流体的临界性质及临界参数的估算方法,临界点的经典和非经典描述,纯流体的传递性质。 第二章超临界流体混合物相行为(4学时) 讲授混合物的临界点热力学判据,详细分析含超临界流体的二元系六类高压流体相特性及其间的变化规律,对超临界流体萃取的指导意义,讲授三元系相图的热

超临界流体技术在环境保护领域中应用

超临界流体技术在环境保护领域中的应用摘要:随着现代社会的发展,环境污染问题已日趋严重。为了 有效地解决这一问题,许多新技术被引入到环境保护领域中。超临界流体技术就是其中之一。超临界流体技术因为其经济、快速和高效等特点,近年来发展迅速。本文即介绍超临界流体的特性和超临界流体技术(超临界萃取、超临界水氧化和超临界色谱)在环境保护领域中的应用。 关键词:超临界流体技术,超临界萃取,超临界水氧化,超临 界色谱,环境保护 abstract: with the development of modern society, the environmental pollution has become more and more serious. in order to effectively solve the problems, many new technology is introduced to the environmental protection in the field. supercritical fluid technology is one of them. supercritical fluid technology because its economy, rapid, efficient and other characteristics, developed very rapidly in recent years. this paper introduces the characteristics of that supercritical fluid and supercritical fluid technology (supercritical fluid extraction, supercritical water oxidation and supercritical fluid chromatography) in the environmental protection field of application. keywords: supercritical fluid technology, supercritical

超临界流体的理化性质及应用_李娴

超临界流体的理化性质及应用 李 娴, 解新安 (华南农业大学1.食品学院,2.生物质能研究所,广东广州510641) 摘 要:主要介绍了常温、常压下为液态的超临界流体的理化性质,包括密度、粘度、离子积、还原性等,并对超临界流体在化工、生物质及环保等领域的应用进行了综述,同时对超临界技术的发展前景进行了展望。 关键词:超临界流体;理化性质;超临界技术中图分类号:T Q 013.1 文献标志码:A 文章编号:0367-6358(2010)03-0179-04 T he Physicochemical Properties and A pplications of Supercritical Fluid LI Xian 1, XIE Xin -an 2 (S outh China Ag riculture Univ e rsity , 1.Colleg e of Food S cience ,2.I nstitu te of B ioener gy T ech nolog y ,Guang d ong ,G uang zh ou 510641,Ch ina) Abstract:T he physical and chemical properties of supercritical fluid that w as liquid under nor mal temperature and pressure,including density,viscosity ,ion product and r educibility,w ere introduced.The applications o f supercritical fluid in chemical industry,biom ass and environmental protection w ere described.Furthermor e,the future developm ent w as discussed. Key words:super critical fluid;physicochem ical properties;supercritical fluid technolog y 收稿日期:2009-06-19 基金项目:广东省科技计划国际合作项目(2007B050200010) 作者简介:李 娴(1986~),女,硕士生,E -m ail:lx ian1986@https://www.sodocs.net/doc/0c12290389.html, 。 超临界流体(SCF)是介于气体和液体之间的一种特殊聚集态。19世纪60年代,英国科学家Thom as Andr ew s 首次发现超临界现象;1879年,H annay 和H ogarth 发表了第一篇有关超临界流体的论文/超临界流体能够溶解固体物质0,为超临界流体萃取技术的应用提供了依据。随着对超临界流体性质认识的深入,超临界干燥、化学反应等新技术不断涌现并得到快速发展,所涉及的应用范围也迅速扩大。目前,在ISI Web of Know ledg e 数据库中有关超临界的论文已高达17000篇。我国在这一领域的研究工作起步较晚。1985年北京化工学院从瑞士进口了第一台超临界流体萃取装置,进行了不少研究工作。之后相继成立了相关的学术组织,定期召开国际性或全国性超临界流体会议,并且有许 多论文、专著等学术性文章发表。目前我国在中国知网数据库中发表的关于超临界的文章数已超过14000篇。本文对常温、常压下为液态的超临界流 体的理化性质及其应用进行了综述,并对此技术的发展前景进行了展望,以期能为我国在超临界这方面的研究工作提供参考。 1 超临界流体的性质及其机理 超临界流体是指温度和压力均高于临界点的流体。图1为纯物质的压力-温度相图,图中的临界点C 是指相图中气液平衡线向高温延伸时气液界面恰好消失的那个点,此处所对应的温度和压力即为临界温度和临界压力。图中阴影部分即超临界区。 # 179#第3期化 学 世 界

超临界流体萃取原理及其特点

第二章 文献综述 2.1超临界流体萃取技术 2.1.1超临界流体概念 任何物质,随着温度、压力的变化,都会相应的呈现为固态、液态和气态这三种状态,称为物质的三态。三态之间互相转化的温度和压力值叫做三相点,每种分子量不太大的稳定的物质都具有一个固有的临界点,严格意义上,临界点由临界温度、临界压力、临界密度构成。在临界温度以上,无论怎样加压,气态物质绝不会被液化。当温度和压力超过了临界点时,该物质就进入了超临界状态,超临界状态下的物质既非气体又非液体的状态,叫做超临界流体[11],SCF是气体和液体状态以外的第三流体。 2.1.2 超临界流体萃取原理及其特点 所谓超临界流体萃取[12],是指利用超临界条件下的流体作为萃取剂,从液体或固体中萃取出特定成分,以达到某种分离目的。SCF的密度对温度和压力的变化很敏感,而其溶解能力在一定压力范围内与其密度成比例,因此可以通过控制温度和压力来改变物质在SCF中的溶解度,特别是在临界点附近,温度和压力的微小变化可导致溶质溶解度发生几个数量级的突变,这就是SFE的依据。 与其它常规分离方法相比,SFE具有以下特点[13]: 1) 通过调节温度和压力可全部或选择性地提取有效成分或脱除有害物质; 2) 选择适宜的溶剂如CO2可在较低温度和无氧环境下操作,分 离、精制热敏性物质和易氧化物质; 3) 临界流体具有良好的渗透性和溶解性,能从固体或粘稠的原料 中快速提取有效成分;

4) 降低超临界相的密度,很容易使溶剂从产品中分离,无溶剂污 染,且回收溶剂无相变过程,能耗低; 5) 兼有蒸馏和萃取双重功能,可用于有机物的分离、精制。 SFE存在的不足有[14]: 1) 高压下萃取,相平衡较复杂,物性数据缺乏; 2) 高压装置与高压操作,投资费用高,安全要求亦高; 3) 超临界流体中溶质浓度相对还是较低,故需大量溶剂循环; 4) 超临界流体萃取过程固体物料居多,连续化生产较困难。 2.1.3 超临界流体的选择 可用作SFE的溶剂很多,不同的溶剂其临界性质各不相同,而不同的萃取过程要求采用不同的溶剂。可用作超临界萃取剂的流体主要有乙烷、乙烯、丙稀、二氧化碳等。采用SFE技术提取天然物质,CO2是人们首选的溶剂,因为CO2作为一种溶剂,具有如下的主要优点[15]: 1) CO2与大多数的有机化合物具有良好的互溶性,而CO2液体与萃出 物相比,具有更大的挥发度,从而使萃取剂与萃出物的分离更容 易; 2) 选择性好,超临界CO2对低分子量的脂肪烃,低极性的亲脂性化合 物,如酯、醚、内脂等表现出优异的溶解性能; 3) 临界温度(31.1℃)低,汽化焓低,更适合于工业化生产; 4) 临界压力(7.38MPa)低,较易达到; 5) 化学惰性,无燃烧爆炸危险,无毒性,无腐蚀性,对设备不构 成侵蚀,不会对产品及环境造成污染;且价格便宜,较高纯度 的CO2容易获得; 6) 在萃取体系中,高浓度的CO2对产品具有杀菌、防氧化的作 用。 2.1.4 超临界CO2萃取技术的国外研究进展 早在100多年前英国的Thomas Andrews[16]就发现超临界现象。1879年Hannay[17]等人发现了SCF与液体一样,可以用来溶解高沸点的固体物

超临界流体及其应用

超临界流体及其应用 摘要:本文介绍了一种新的物质状态——超临界流体,介绍了它的相关特性,并对关于超临界流体近几年的研究做了简单介绍,以及对其发展前景做了展望。 关键词:超临界流体相物质状态 一、引言: 通常我们对物质的认识是固态、液态、气态三种,然而随着科学的发展物态便无法简单的限制到这三态之间,一些新型物态陆续被提出。1879年克鲁克斯(Sir William Crookes,1832-1919)首次发现等离子态(Plasma),作为一以由自由电子和带电离子为主要成分的物质,它无法被划分入固液气三态,于是它被视为物质的第四态。1822年法国Cagniard在进行实验时发现超临界流体的特性,他将炮管密封,其中加入不同温度的流体,再放入燧石的小球,球在炮管中滚动时会有声音的不连续变化,但当温度超过临界温度时,声音的不连续变化消失了,炮管的流体中液体和气体的密度变得相同,变成一个超临界流体的相,因此也没有二相之间的相界限。这种特殊的相态同样无法划归入之前的三态,亦属一种新的相态。1877年德国科学家奥托·雷曼(Otto Lehmann,1855-1922)运用偏光显微镜首次观察到了液晶化的现象,之后和德国植物生物学家弗里德里希·莱尼泽(Friedrich Reinitzer,1857-1927)合作进一步研究,最终发现了这种介于固体和液体之间的新的相态——液晶。最近的研究又表明更有超固态和中子态存在。 当前人提出了这些新相态,我们似乎便可以突破思维定势,相信在气体之上、液气之间、固液之间、固体之下都有其他状态。当然也存在其他分类方式,科学家也按照分子之间的相互关系作分类,则存在固态、液态、气态、等离子态、费米子凝聚态和夸克-胶子酱这几种状态。但是任一种分类法无法完全涵盖所有物质状态,我们同样相信仍然还有很多物质形态是我们目前所无法解释的,这也是我们孜孜以求的目标。 限于篇幅和所学知识,本文仅就超临界流体做一介绍。 二、超临界流体及其性质: 当物质超过临界温度和临界压 力之上时,气体和液体的性质会趋于 类似,最后会形成一个均匀相,在相 图中可以更清楚的看到: 当温度高于300K,压强大于 100bar时,两相分界线消失,此时 液体和气体性质相似,这就是超临界 流体。 Figure 1 超临界流体相图

超临界流体萃取技术和分子蒸馏技术

超临界流体萃取技术和分子蒸馏技术 传统的植物有效成分的提取方法,主要有水提法、水蒸气蒸馏法和有机溶剂萃取法。它们都有明显的缺陷,如水提法浓缩困难且提取选择性不高,往往会将许多物质提取出而给后续纯化工作带来困难;水蒸气蒸馏法由于温度较高,会引起一些热敏性成分的热分解和易水解成分的水解;有机溶剂萃取法除了面临大量的溶剂筛选工作外,萃取所得产品还必需经过一系列的脱溶剂操作,才能得到最终产品,而且,产品中不可避免的会含有残余的有机溶剂,产品的使用范围受到很大的限制。在崇尚“回归自然”的今天,天然食品日益受到人们的欢迎,而在传统的加工过程中致使热敏性的营养素受到破坏或残留有害的化学物质,导致加工的食品失去其天然性。因此寻求新的提取分离技术以解决这些问题,成为当务之急,也是当前一个新的研究领域。通过不懈的努力,研究者们提出了超临界流体萃取(supercritical fluid extraction,SFE)技术和分子蒸馏(Molecular distillation)技术。 一、超临界流体萃取(SFE)技术 1、超临界流体萃取(SFE)技术原理 超临界流体萃取,是指处于临界温度(T C)和临界压力(P C)下的一种物质状态,P C和T C称为临界点。在临界点附近的范围内,流体的密度变化非常大,气体与液体之间的区别消失,不会发生冷凝或蒸发,只能以流体的形式存在,处于临界状态的流体,其物理化学性质与在非临界状态下相比有显著不同,其密度接近于液体,有较大的溶解能力,其扩散系数接近于气体,传质非常快,因而可以作为萃取溶剂。超临界流体温度和压力的轻微改变,都可导致物质物理化学性质如密度、介电常数、扩散系数、粘度、溶解度的巨大变化,导致溶剂和溶质的分离。由于其具有低能耗、无污染和适合于处理易热分解和易氧化物质等特性,在化学工业、能源工业和医药工业中引起广泛的兴趣和应用。 2、超临界流体萃取(SFE)技术萃取剂的选择 常见SFF萃取剂有CO2、SO2、NH3、CH3CH3、CH2=CH2等,但在食品工业中,以CO2作为超临界流体的应用最为广泛。超临界CO2流体与普通的有机溶剂相比,具有明显的优势,它是环境友好型溶剂,对人畜无害,不污染环境,也不会残留在产品中,而且临界温度(31.1 ℃)和临界压力(7.387 MPa)较低,故操作条件相对较温和。并且,其溶解能力和选择性很方便的通过改变压力和温度进行调节,萃取速率快,操作时间短,所以一直受到大家的重视。利用CO2作为萃取剂主要有以下优点: (1) 可以在35~40 ℃的条件下进行提取,能够防止热敏性物质的变质和挥发性物质的逸散。 (2) 在CO2气体笼罩下进行萃取,萃取过程中不发生化学反应;又由于完全隔绝了空气中的氧,因此,萃取物不会因氧化或化学变化而变质。

超临界流体萃取技术小论文

超临界流体萃取技术 摘要 超临界流体萃取技术是一项发展很快、应用很广的新型的分离技术。由于其具有高效、方便、安全、低温萃取、无溶剂残留、选择性好等优点,使得这项技术在天然产物活性成分的提取上得到迅速发展,应用范围和种类也不断扩大。70年代以来超临界二氧化碳萃取技术应用日趋广泛,广发应用于香料的提取,也可萃取药用有效成分。超临界流体萃取技术在化学反应和分离提纯领域开展了广泛深入的研究,在医药、化工、食品、轻工等成果累累。 在此主要介绍超临界CO2萃取的原理、特点、影响因素及其在天然产物研究中的应用,并对其发展前景做了展望。 关键词超临界流体萃取天然产物超临界C02 萃取技术应用 超临界流体萃取(简称SFE)技术是利用临界压力和临界温度以上的流体具有特异增加的溶解能力而发展起来的一种化工分离技术。超临界流体萃取具有高效、方便、安全、环保、选择性好等优点,在天然植物中活性成分的提取中具有独特的优势。由于其具有工艺简单、操作温度低、无溶剂残留等特点及其他方法所不可取代的良好应用前景而得到越来越广泛应用和重视。超临界流体技术必将成为未来从天然植物中提取活性成分的一种新型工艺之一。 超临界流体萃取的基本原理和特点 1、超临界流体萃取的基本原理 SFE分离的原理比较简单,是利用溶质在不同条件下在超临界流体中溶解度的不同而进行的溶解分离。当气体的温度、压力高于临界温度Tc和临界压力Pc时,便进人临界状态,此时的流体成为超临界流体。超临界流体对物质有较强的溶解能力,兼有液体和气体的双重特性,即粘度接近气体,密度接近液体。在超临界状态下,温度、压力的变化会引起流体密度的显著变化,通过控制压力和温度使其有选择性地把不同极性、不同沸点和相对分子质量的成分萃取出来,然后借助减压等方法使超超临界流体变成普通气体,被萃取物质则自动析出,从而达到分离提纯的目的。超临界流体萃取的效率远远优于液-液萃取。 2、超临界流体萃取技术的特点 既利用了萃取剂和被萃取物质之间的分子亲和力实现分离,又利用了混合物各组分挥发度的差别,具有较好的选择性; 萃取效率高,过程易于控制。如临界点附近的CO2,温度压力的微小变化,都会引起其密度显著变化,从而引起待萃物的溶解度发生变化,可通过控制温度或压力的方法达到萃取的目的。工艺流程短、耗时少、节约成本。 萃取温度低,可以有效地防止热敏性成分的氧化和逸散,能较完好保存中药有效成分不被破坏,不发生次生化,而且能把高沸点、低挥发性、易热解的物质在其沸点温度以下萃取出来。特别适宜于对热敏感、易氧化分解成分的提取。 萃取流体可循环使用,防止了提取过程对人体的毒害和对环境的污染。如临界CO2流体常态下是气体,无害,与萃取成分分离后,完全没有溶剂的残留,有效地避免了传统提取条件下溶剂毒性的残留。 3、超临界萃取技术的问题 相平衡及传递研究不充分,物性数据少;缺乏能正确推算超临界萃取过程的基本热力学模型。操作压力高,对设备、管道材质要求高;压缩设备投资大。 在生产的连续化上还存在着设备和工艺方面的困难。 超临界二氧化碳萃取(SC—CO2) SC-CO2萃取剂的特性

相关主题