搜档网
当前位置:搜档网 › 示波器主要技术指标及选择资料

示波器主要技术指标及选择资料

示波器主要技术指标及选择资料
示波器主要技术指标及选择资料

精品文档

一、数字示波器的主要性能指标在选择数字示波器时,我们主要考虑其是否能够真实地显示被测信号,即显示信号与被测信号的一致性。数字示波器的性能很大程度上影响到其实现信号完整性的能力,下面根据其主要性能指标进行详细分析。示波器最主要的技术指标是带宽、采样率和存储深度

1、带宽如图1所示,数字示波器带宽指输入不同频率的等幅正弦波信号,当输出波形的幅度随频率变化下降到实际幅度的70.7%时的频率值(即f-3dB)。带宽决定了数字示波器对信号的基本测量能力。随着信号频率的增加,数字示波器对信号的准确显示能力下降。实际测试中我们会发现,当被测信号的频率与数字示波器带宽相近时,数字示波器将无法分辨信号的高频变化,显示信号出现失真。例如:频率为100MHz、电压幅度为1V的信号用带宽为100MHz的数字示波器测试,其显示的电压只有0.7V左右。图2为同一阶跃信号用带宽分别为4GHz、1.5GHz和300MHz 的数字示波器测量所得的结果。从图中可以看出,数字示波器的带宽越高,信号的上升沿越陡,显示的高频分量成分越多,再现的信号越准确。实际应用中考虑到价

(数字示波格因素器带宽越高价格经过实践越贵),我们经验的积累,发现只要数字示波器带宽为被测信号最高频率的倍,即可获得3-5的精2%3%到±±满足一般的测度,示波器所试需求。能准确测量的频大家都遵率范围,循测量的五倍法示波器所需带则:被测信号的最宽=使,高信号频率*5用五倍准则选定的示波器的测量误差将不会超过,对大多-2%+/的操作来说已经足够。

、采样率,2指数字示波器对信号采样的频率,精品文档.

精品文档

表示为样点数每秒(S/s)。示波器的采样速率越快,所显示的波形的分辨率和清晰度就越高,重

要信息和事件丢失的概率就越小,信号重建时也就越真实。根据奈奎斯特定理,采样速率要大于等于2倍的被测信号频率,才能不失真地还原原始信号。但这个定理的前提是基于无限长的时间和连续的信号,在实际测试中,数字示波器的技术无法满足此条件。根据实践经验的积累,数字示波器为了准确地再现原始信号,采样速率一般为原始信号最高频率的2.5-10倍。

采样率又分为实时采样率跟等效采样率,实时采样率就是指单次采样所能达到的最大采样率. 等效采样率是指用多次采样得到的信号共同完成信号的重建,因此1G实时采样率的示波器可以达到很高的等效采样率. 但是他只能适用于周期信号. 单次信号只能用实时采样方式来捕获.我们平常所说的采样率是指实时采样率,这是因为实时采样率可以用来实时地捕获非周期异常信号,而等效采样率则只能用于采集周期性的稳定信号。单位GSA/S 为每秒千兆采样,1G=1000M, Sa 为sample的缩写。

3、存储深度是示波器所能存储的采样点多少的量度。如果需要不间断的捕捉一个脉冲串,则要求示波器有足够的内存以便捕捉整个事件。将所要捕捉的时间长度除以精确重现信号所须的取样速度,可以计算出所要求的存储深度,也称记录长度。并不是有些国内二流厂商对外宣称的“存储深度是指波形录制时所能录制的波形最长记录“,这样的偷换概念,完全向相反方向引导人们的理解,难怪乎其技术指标高达”1042K“的记录长度。这就是为什么他们不说存储深度是在高速采样下,一次实时采集波形所能存储的波形点数。把经过A/D数字化后的八位二进制波形信息存储到示波器的高速CMOS内存中,就是示波器的存储,这个过程是“写过程”。内存的容量(存储深度)是很重要的。对于DSO,其最大存储深度是一定的,但是在实际测试中所使用的存储长度却是可变的。

在存储深度一定的情况下,存储速度越快,存储时间就越短,他们之间是一个反比关系。同时采样率跟时基(timebase)是一个联动的关系,也就是调节时基檔位越小采样率越高。存储速度等效于采样率,存储时间等效于采样时间,采样时间由示波器的显示窗口所代表的时间决定,所以;存储深度=采样率×采样时间(距离 = 速度×时间)由于DSO的水平刻度分为12格,每格的所代表的时间长度即为时基(timebase),单位是s/div,所以采样时间= timebase × 12. 由存储关系式知道:提高示波器的存储深度可以间接提高示波器的采样率,当要测量较长时间的波形时,由于存储深度是固定的,所以只能降低采样率来达到,但这样势必造成波形质量的下降;如果增大存储深度,则可以以更高的采样率来测量,以获取不失真的波形。下图曲线揭示了采样率、存储深度、采样时间三者的关系及存储深度对示波器实际采样率的影响。比如,当时基选择10us/div文件位时,整个示波器窗口的采样时间是10us/div * 12格=120us,在1Mpts的存储深度下,当前的实际采样率为:1M÷120us︽8.3GS/s,如果存储深度只有250K,那当前的实际采样率就只要2.0GS/s了!存储深度决定了实际采样率的大小,一句话,存储深度决定了DSO 同时分析高频和低频现象的能力,包括低速信号的高频噪声和高速信号的低频调制。明白了存储深度与取样速度密切关系后,我们来浅谈下长存储对于我们平常的测量带来什么的影响呢?平常分析一个十分稳定的正弦信号,只需要500点的记录长度;但如果要解析一个复杂的数字元数据流,则需要有上万个点或更多点的存储深度,这是普通存储是做不到的,这时候就需要我们选择长存储精品文档.

精品文档)公司推出的模式。可喜的是现在国产示波已经具有这样的选择,比如鼎阳(Siglent 的存储深度,是目前国产示波器最大的存储深度示波器,打ADS1000CA系列示波器高达2M以便对一些操破了只有高端示波器才可能具有大的存储深度的功能。通过选择长存储模式,实时采样率以及高刷新率,完美再现捕获波形。长存储作中的细节进行优化,同时配备1G这是由于功对平常的测量中,影响最明显的是在表头含有快速变化的数据链和功率测量中。的示1MHz),这对

于我们选择示波器带宽来说300MHz率电子的频率相对较低(大部分小于但很多时候我们却忽略了对采样率KHz的电源开关频率来说已经足够,波器带宽相对于几百或者电压开关的频率一般在200KHz和存储深度的选择.比如说在常见的开关电源的测试中,工程师需要捕获工频信号的四分之一周期或者更快,由于开关信号中经常存在着工频调制, 100ns,我们建议为保证精确的半周期,甚至是多个周期。开关信号的上升时间约为

,即采样率至少5/100ns=50MS/s 重建波形需要在信号的上升沿上有5个以上的采样点,对于至少捕获一个工频周期的要求,100/5=20ns,也就是两个采样点之间的时间间隔要小于长的波形,这样我们可以计算出来示波器每通道所需的存储意味着我们需要捕获一段20ms!这就是为什么我们需要大的存储深度的原因了!如果此时存储深=20ms/20ns=1Mpts 深度呢?那么要么我们无法观测如此长周期信号,要K度达不到1 Mpts,只有普通示波器的几结果波形重建的时候根本无法详细么就是观测如此长周期信号时只能以低采样率进行采样,又既保证了采样在高速率下对信号进行采样,显示开关频率的波形情况。长存储模式下,那么在不同时基下扩展波如果此时只进行单次捕捉或停止采集,能保证记录长时间的信号。这对于工程师发可以很好观测迭加在信号上面的小毛刺等异常信号,形时由于数据点充分,为了保持高的采样率,则在长的记而如果是普通存储,现问题、调测设备带来极大的便利。内存中的数据并不是一则内存中已经记录了几帧数据,录时间内,由于示波器的连续采样,则只能达到有限并对波形旋转时基进行放大显示,次采集获得的数据,此时如果停止采集,)可DSO中,通过快速傅立叶变换(FFT的几个文件位,无法实现全扫描范围的观察。在来观察进而在频域对一个信号进行分析。如电源谐波的测量需要用FFT以得到信号的频谱,FFT频谱,在高速串行数据的测量中也经常用FFT来分析导致系统失效的噪声和干扰。对于(奈奎斯特频运算来说,示波器可用的采集内存的总量将决定可以观察信号成分的最大范围,10 kHz500 MHz,分辨率为f率),同时存储深度也决定了频率分辨率△。如果奈奎斯特频率为的分辨率,则采集时间10kHz 考虑一下确定观察窗的长度和采集缓冲区的大小。若要获得内存的数字示波器,可以分100kB T = 1/△f = 1/10 kHz = 100 ms,对于具有至少为:能DSO来说,长存储×析的最高频率为:△f × N/2 = 10 kHz 100kB/2 = 500MHz。对于结果,既增加了频率分辨率又提高了信号对噪声的比率,一句话,长存储产生更好的 FFT 同时分析高频和低频现象的能存储深度决定了DSO起到一个总览全局又细节呈现的的效果,力,包括低速信号的高频噪声和高速信号的低频调制。也就是说它们示波器触发:示波器的同步是指示波器的扫描信号与被观测的信号同步,我们可以设定一些条件,的频率之间存在着整数倍的关系。为了使扫描信号与被测信号同步,从而使将被测信号不断地与这些条件相比较,只有当被测信号满足这些条件时才启动扫描,也就是同步。这种技术我们就称为得扫描的频率与被测信号相同或存在整数倍的关系,“触发”,而这些条件我们称其为“触发条件“。

用作触发条件的形式很多,最常用最基本的就是“边沿触发”,即将被测信号的变化(即

信号上升或下降的边沿) 与某一电平相比较,当信号的变化以某种选定的方式达到这一电平

精品文档.

精品文档 0V,当时,产生一个触发信号,启动一次扫描。例如在图3 中,我们可以将触发电平选在就产生一次扫描,这样我们就得到了与被测信号同步的被测信号从低到高跨越这个电平时,等等,、“斜率触发”、“状态触发”扫描信号。其它的触发条件有“脉宽触发”

示波器最技术指标除了带宽、采样率和存储深度还有上升时间、频率响应

,所示)%的这段时间(如图310、上升时间上升时间的定义为脉冲幅度从%上升到904才能准数字示波器必须要有足够快的上升时间,它反映了数字示波器垂直系统的瞬态特性。确地捕获

快速变换的

节。数字示波信号细

器的上升时间越快,对信号的快速变换的捕获也就越准确。一般数字示波器的上升时间和带宽满足以 tr=kf-3dB 式:下公为上升时间,其中,trkf-3dB为频带宽度,之0.35-0.45为介于间的常数(不同型号的数字示波器取值不同,可以查阅相应的说明书)。通过计算,并参考带宽的选取原则,可以得出:只要数字示波器的上升时间小于被测信号的三分之一到五分之一,就能满足一般的测试需求。

它包含从直频率响应为当输入不同频率的等幅正弦波信号时的响应性能,、频率响应 5流或交流低频几赫兹的正弦信号一直到无法显示幅度的频率为止的全部频率范围内的幅度在对响应。实际测量中只考虑带宽性能还不足以保证数字示波器能够准确重现原始信号,

会出现数字示波器计量工作中,我们发现有的数字示波器频率响应曲线在低频段并不平坦,即使数字示波器的带宽比较大的起伏,如果测试相应频率的信号就会出现失真现象。此时,也不能真实重现信号。因此,在选择数字示波器时,针对不同的被被测信号频率高出很多,测信号,其频率响应也是考虑的性能指标之一。在实际工作中,还必须使用探头系统(包括探头和探头连接附二、探头对测试的影响

因此探头系统的性能直接决定了引入到数字把被测电路的信号引入到数字示波器内部,件)为获得有效的测量结果,为了真实地重现被测信示波器的信号与被测信号的一致性程度。对电路操作的影响最小以及与号,选择探头系统时主要考虑的以下三个因素为:物理连接、最后一个因素则需要正原始信号的一致性程度。对于前两个因素需正确选择探头连接附件,因此带宽是由系统内带宽最低的部分决定的,在整个测试系统中,确选择探头系统的带宽。探头系统也成为了被测电路而同时,测试信号时探头系统的带宽也是必须考虑的因素之一。探头系统的输入电阻、有一定的负载效应。的一部分,探头系统的负载特性表现在三个方面:充分发挥数字示与数字示波器配对的理想的探头系统将最小化这种负载特性,电容和电感。精品文档.

精品文档

波器真实再现被测信号的能力、特性和容限。因此选择探头系统时,最好选用厂家所推荐的探头型号,并按功能选择相应的连接附件。

综上所述,实现信号完整性的能力是测试中选择数字示波器的核心衡量标准,影响数字示波器信号完整性的实现的几个因素是:数字示波器的带宽、上升时间、频率响应、采样速率和探头系统的带宽和负载效应。在实际购买时,为了取得最优性价比,可以遵循以下原则:数字示波器带宽

为被测信号最高频率的3-5倍,上升时间小于被测信号的三分之一到五分之一,频率响应曲线平坦,采样速率为被测信号最高频率的2.5-10倍,同时选择厂家推荐的探头系统,即可满足一般的测试需求。

精品文档.

示波器原理及其应用分析解析

示波器原理及其应用 示波器介绍 示波器的作用 示波器属于通用的仪器,任一个硬件工程师都应该了解示波器的工作原理并能够熟练使用示波器,掌握示波器是对每个硬件工程师的基本要求。 示波器是用来显示波形的仪器,显示的是信号电压随时间的变化。因此,示波器可以用来测量信号的频率,周期,信号的上升沿/下降沿,信号的过冲,信号的噪声,信号间的时序关系等等。 在示波器显示屏上,横坐标(X)代表时间,纵坐标(Y)代表电压,(注,如果示波器有测量电流的功能,纵坐标还代表电流。)还有就是比较少被关注的-亮度(Z),在TEK的DPO示波器中,亮度还表示了出现概率(它用16阶灰度来表示出现概率)。 1.1.示波器的分类 示波器一般分为模拟示波器和数字示波器;在很多情况下,模拟示波器和数字示波器都可以用来测试,不过我们一般使用模拟示波器测试那些要求实时显示并且变化很快的信号,或者很复杂的信号。而使用数字示波器来显示周期性相对来说比较强的信号,另外由于是数字信号,数字示波器内置的CPU或者专门的数字信号处理器可以处理分析信号,并可以保存波形等,对分析处理有很大的方便。

1.2.1 模拟示波器 模拟示波器使用电子枪扫描示波器的屏幕,偏转电压使电子束从上到下均匀扫描,将波形显示到屏幕上,它的优点在于实时显示图像。 模拟示波器的原理框图如下: 见上图所示,被测试信号经过垂直系统处理(比如衰减或放大,即我们拧垂直按钮-volts/div),然后送到垂直偏转控制中去。而触发系统会根据触发设置情况,控制产生水平扫描电压(锯齿波),送到水平偏转控制中。 信号到达触发系统,开始或者触发“水平扫描”,水平扫描是一个是锯齿波,使亮点在水平方向扫描。触发水平系统产生一个水平时基,使亮点在一个精确的时间内从屏幕的左边扫描到右边。在快速扫描过程中,将会使亮点的运动看起来

数字示波器基础知识

数字示波器基础知识 耦合 耦合控制机构决定输入信号从示波器前面板上的BNC输入端通到该通道垂直偏转系统其它部分的方式。耦合控制可以有两种设置方式,即DC耦合和AC耦合。 DC耦合方式为信号提供直接的连接通路。因此信号提供直接的连接通路。因此信号的所有分量(AC 和:DC)都会影响示波器的波形显示。 AC耦合方式则在BDC端和衰减器之间串联一个电容。这样,信号的DC分量就被阻断,而信号的低频AC分量也将受阻或大为衰减。示波器的低频截止频率就是示波器显示的信号幅度仅为其直实幅度为71%时的信号频率。示波器的低频截止频率主要决定于其输入耦合电容的数值。 和耦合控制机构有关的另一个功能是输入接地功能。这时,输入信号和衰减器断开并将衰减器输入端连至示波器的地电平。当选择接地时,在屏幕上将会看到一条位于0V电平的直线。这时可以使用位置控制机构来调节这个参考电平或扫描基线的位置。 输入阻抗 多数示波器的输入阻抗为1MΩ和大约25pF相关联。这足以满足多数应用场合的要求,因为它对多数电路的负载效应极小。 有些信号来自50Ω输出阻抗的源。为了准确的测量这些信号并避免发生失真,必须对这些信号进行正确的传送和端接。这时应当使用50Ω特性阻抗的电缆并用50Ω的负载进行端接。某些示波器,如PM3094和PM3394A,内部装有一个50Ω的负载,提供一种用户可选择的功能。为避免误操作,选择此功能时需经再次确认。由于同样的理由,50Ω输入阻抗功能不能和某些探头配合使用。 相加和反向 简单的把两个信号相加起来似乎没有什么实际意义。然百,把两个有关信号之一反向,再将二者相加,实际上就实现了两个信号的相减。这对于消除共模干扰(即交流声),或者进行差分测量都是非常有用的。 从一个系统的输出信号中减去输入信号,再进行适当的比例变换,就可以测出被测系统引起的失真。 由于很多电子系统本身就具有反向的特性,这样只要把示波器的两个输入信号相加就能实现我们所期望的信号相减。 带宽

色谱分析复习题及参考答案

色谱分析综合体 一.选择题 1.在色谱分析中,用于定量的参数是( B ) A 保留时间 B 调整保留值 C 峰面积 D 半峰宽 2.塔板理论不能用于( D ) A 塔板数计算 B 塔板高度计算 C 解释色谱流出曲线的形状 D 解释色谱流出曲线的宽度与哪些因素有关 3.在气-固色谱分析中, 色谱柱内装入的固定相为( D ) A 一般固体物质 B 载体 C 载体+固定液D固体吸附 剂 4.当载气线速越小,范式方程中,分子扩散项B越大,所以应选下列气体中哪一种 作载气最有利?( D ) A H2 B He C Ar D N2 5.试指出下述说法中, 哪一种是错误的? ( C ) A 根据色谱峰的保留时间可以进行定性分析 B 根据色谱峰的面积可 以进行定量分析 C 色谱图上峰的个数一定等于试样中的组分数 D 色谱峰的区域宽度 体现了组分在柱中的运动情况 6.为测定某组分的保留指数,气相色谱法一般采取的基准物是:( C ) A 苯 B 正庚烷 C 正构烷烃 D 正丁烷和丁二 烯 7.试指出下列说法中,哪一个不正确?气相色谱法常用的载气是( C ) A N2 B H2 C O2 D He 8.试指出下列说法中,哪一个是错误的?( A ) A 固定液是气相色谱法固定相 B N2、H2等是气相色谱流动相

C 气相色谱法主要用来分离沸点低,热稳定性好的物质 D 气相色谱法是一个分离效能高,分析速度快的分析方法 9. 在气-液色谱法中, 首先流出色谱柱的组分是 ( A ) A 溶解能力小 B 吸附能力小 C 溶解能力大 D 吸附能力大 10.根据范第姆特议程式,指出下面哪种说法是正确的? ( A ) A 最佳流速时,塔板高度最小 B 最佳流速时,塔板高度最大 C 最佳塔板高度时,流速最小 D 最佳塔板高度时,流速最大 二.填空题 1.按流动相的物态可将色谱法分为 气相色谱法 和 液相色谱法 。前者的流动相的 气体 ,后者的流动相为 液体 。 2.气相色谱法多用 高 沸点的 有机 化合物涂渍在惰性载体上作为固定相,一般只要在 450 ℃以下,有 1.5 至 10 Kp a 的蒸气压且 稳定 性好的 有机和 无机 化合物都可用气相色谱法进行分离。 3.气相色谱仪由如下五个系统构成:气路系统、进样系统、分离系统、温控系统和检测记录系统。 4.气相色谱常用的检测器有 热导检测器 , 氢火焰检测器 , 电子捕获检测器 和 火焰光度检测器 。 三、简答题 1、组分A 、B 在某气液色谱柱上的分配系数分别为495和467。试问在分离时哪个组分先流出色谱柱。 答:根据分配系数的定义: g s c c K = 分配系数小的组分先流出色谱柱,因此B 先流出色谱柱。 2、为什么说分离度R 可以作为色谱柱的总分离效能指标? 答:由 )2()1()1()2()2()1() 1()2()(2)(21b b R R b b R R W W t t W W t t R +-=+-= 及1,21,2)2(') 1(')2(144r r n t t t n R eff R R R eff -?=-?= 可知 R 值越大,相邻两组分分离越 好。而R 值的大小则与两组分保留值和峰的宽度有关。对于某一色谱柱来说,两组分保留值差别的大小主要取决于固定液的热力学性质,反映了柱选择性的好坏;

色谱分离条件的选择

分离度R作为色谱柱的分离效能指标,其定义为相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值 一、分离度 两个组分怎样才算达到完全分离?首先是两组分的色谱峰之间的距离必须相差足够大,若两峰间仅有一定距离,而每一个峰却很宽,致使彼此重叠,则两组分仍无法完全分离;第二是峰必须窄。只有同时满足这两个条件时,两组分才能完全分离。 判断相邻两组分在色谱柱中的分离情况,可用分离度R作为色谱柱的分离效能指标。其定义为相邻两组分色谱峰保留值之差与两个组分色谱峰峰底宽度总和之半的比值 R值越大,就意味着相邻两组分分离得越好。因此,分离度是柱效能、选择性影响因素的总和,故可用其作为色谱柱的总分离效能指标。 从理论上可以证明,若峰形对称且满足于正态分布,则当R=1时,分离程度可达98%;当R=1.5时,分离程度可达99.7%因而可用R=1.5来作为相邻两峰已完全分开的标志。 当两组分的色谱峰分离较差,峰底宽度难于测量时,可用半峰宽代替峰底宽度,并用下式表示分离度: 二、色谱分离基本方程式: 值,亦可使分析时间在不至于过长。使峰的扩展不会太严重对检测发生影响。

由分离度基本方程式可看出: (1)分离度与柱效的关系(柱效因子) 分离度与n的平方根成正比。 (2)分离度与容量比的关系(容量因子),k >10时,k/(k+1)的改变不大,对R的改进不明显,反而使分析时间在为延长。因此k值的最佳范围是1< k <10,在此范围内,既可得到大的R 表2-2 k值对k/(k+1)的影响 k 0.5 1.0 3.0 5.0 8. 0 10 30 50 k/(k+1) 0.33 0.50 0.75 0.83 0.89 0.91 0.97 0.98 (3)分离度与柱选择性的关系(选择因子),α越大,柱选择性越好,分离效果越好。分离度从1.0增加至1.5,对应于各α值所需的有效理论塔板数大致增加一倍。 分离度、柱效和选择性参数之间的联系为: a n有效 R=1.0R=1.5 1.00 1.005 1.01 1.02 1.05 1.07 1.10 1.15 1.25 1.50 2.0 ∞ 650000 163000 42000 7100 3700 1900 940 400 140 65 ∞ 1450000 367000 94000 16000 8400 4400 2100 900 320 145 三、分离操作条件的选择 1.载气及其流速的选择 对一定的色谱柱和试样,有一个最佳的载气流速,此时柱效最高,根据下式 H=A+B/u+C U 用在不同流速下的塔板高度H对流速u作图,得H-u曲线图。在曲线的最低点,塔板高度H最小(H最小) 。此时柱效最高。该点所对应的流速即为最佳流速u最佳,及H最小可由式(14-17)微分求得:

信号源基础知识

信号源基础知识

信号源基础知识 1、认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器。 谈及模拟式函数信号源,结构图如下: 这是通用模拟式函数信号发生器的结构,是以三角波产生电路为基础经二极管所构成的正

弦波整型电路产生正弦波,同时经由比较器的比较产生方波。 而三角波是如何产生的,公式如下: 换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是

信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路: 1、频率(周期)不变,脉宽改变,其方法如下: 改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性,但其最主要的缺点是占空比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下:

如何选择色谱柱

如何选择色谱柱? 要选择色谱柱,首先需要确定要使用的是填充柱还是毛细管柱。 填充柱或毛细管柱?填充柱比毛细管柱具有更高的样品容量,虽然这一差距由于HP 发明了大孔 530mm 毛细管而大大缩小。检测器灵敏度的改进也减少了对大剂量样品的需要。填充柱可能具有优势的领域是气体样品的分析。 对于几乎所有的其他样品,毛细管柱具有高很多的效率(窄峰),这可以大大改进峰分离。实际上,分离能力很大,以至于许多分析物在很简单的分析中使用非常短的色谱柱就可以完成分离了。节省的时间可以直接转化为循环时间的缩短和样品通量的增加。 对于新的或更新的方法,如果没有非常具有说服力的理由使用填充柱的话,我们推荐使用毛细管柱。 色谱柱材料 这种材料必须尽可能是惰性的,尤其是对于痕量分析或容易拖尾的化合物,例如硫醇或类似的活性化合物。对于毛细管柱,熔融石英是可选的材料。 有两种类型的熔融石英毛细管柱:壁涂开管柱 (WCOT) 色谱柱和多孔层开管柱(PLOT) 色谱柱。WCOT 色谱柱是固定相液膜涂渍在去活的色谱柱壁上。这是气相色谱中最常用的色谱柱。PLOT 色谱柱中固定相是固体物质涂渍到色谱柱壁上。填充柱可以是玻璃或金属,通常是不锈钢的。金属虽然比较有活性,但其对非极性物质比较稳定。但是如果样品中有极性组分需要分析,请选择玻璃柱。如果玻璃柱还是活性强(引起峰拖尾、样品丢失等),请进行去活处理。 固定相 选择毛细管柱时,首先需要确定是否需要 PLOT 色谱柱。下面是 3 种 PLOT 色谱柱的典型应用领域: 分子筛不挥发气体,对水比较敏感 二乙烯基苯 (DVB) — HP-PLOT Q C1 到 C3 全部异构体的分离,部分 C4 和更高的(直到 C14)的异构体分离,极性化合物,挥发性溶剂可以允许含水 氧化铝 Al2O3 C1 到 C10 异构体的分离, 对水比较敏感 如果上面提到的应用没有感兴趣的,则您可以选择一个 WCOT 类型色谱柱。 当面对一种未知样品时,首先尝试目前在 GC 上的色谱柱。如果不能获得满意的结果,请考虑所了解的样品信息。基本原理是分析物与具有相似化学性质的固定相间更容易相互作用。这意味着了解的样品信息越多,越容易找到最佳分离固定相。 最重要的步骤是确定分析物的极性特征: § 非极性分子—通常只包含碳氢原子没有偶极距。 § 直链碳氢化合物(n-烷烃)是非极性化合物的例子。 § 极性分子—主要包含碳氢,也包含氮、氧、磷、硫或卤原子。例如醇、胺、硫醇、酮、腈、有机卤化物等。 § 可极化的分子—主要包含碳氢,也包含不饱和键。例如烯烃、炔烃和芳香族化合物。 针对特定分离需要提供正确的固定相:样品是具有相同化学类型的非极性物质的混合物吗?例如大多数石油馏分中的碳氢化合物?请尝试非极性色谱柱,如 HP-1,可以将它们按(近似)沸点顺序分离。如果怀疑有一些芳香族化合物,请尝试 HP-5 或 HP-35 等适用苯基化合物的色谱柱。

示波器的原理和使用

示波器的原理和使用 实验目的 (1) 了解示波器的主要结构和显示波形的基本原理; (2) 掌握模拟示波器和函数信号发生器的使用方法; (3) 观察正弦、矩形、三角波等信号发生器的使用方法; (4) 通过示波器观察李萨如图形,学会一种测量正弦振动频率的方法,并加深对互相垂直振动合成理论的理解。 实验方法原理 (1) 模拟示波器的基本构造 示波器主要由示波管、垂直放大器、水平放大器、扫描信号放大器、触发同步等几个基本部分组成。 (2) 示波器显示波形原理 如果只在垂直偏转板上加一交变正弦电压,则电子束的亮点随电压的变化在竖直方向上按正弦规律变化。要想显示波形,必须同时在水平偏转板上加一扫描电压,使电子束所产生的亮点沿水平方向拉开。 (3) 扫描同步 当扫描电压的周期T x 是被观察周期信号的整数倍时,扫描的后一个周期扫绘的波形与前一个周期完全一样,荧光屏上得到清晰而稳定的波形,这叫做信号与扫描电压同步。 (4) 多踪显示 根据开关信号的转换频率不同,有两种不同的时间分割方式,即“交替”和“断续”方式。 (5) 观察李萨如图形并测频率 x y y x f f N Y N X =数方向切线对图形的切点数方向切线对图形的切点 实验步骤 (1) 熟悉示波器各控制开关的作用,进行使用前的检查和校准。 (2) 将信号发生器的输出信号连接到示波器的CH1或CH2,观察信号波形。 (3) 用示波器测量信号的周期T 、频率f 、幅值U 、峰-峰值Up-p 、有效值Urms,频率和幅值任选。 (4) 观察李萨如图形和“拍”。 (5) 利用多波形显示法和李萨如图形判别法观测两信号的相位差 ① 多波形显示法观测相位差。 ② 李萨如图形判别法观测相位差。 数据处理 0p p u p p =-= --显显U U U E 000=-=T T T E T π 2 4 44 2 4 π2 0 频率相同位相不同时的李萨如图形

气相色谱法检测时色谱柱的选择

气相色谱法检测时色谱柱的选择 气相色谱柱是样品中残留溶剂测定的理论与物质基础,所以对色谱柱的选择也是最关键的步骤。气相色谱柱可分为填充柱和毛细管柱两大类,其中填充柱又分玻璃柱和不锈钢柱;毛细管柱按柱__口直径一般又有0153mm和0132mm两种规格,前者又叫大口径毛细管柱,柱容量大,在残留溶剂测定中应用较多。由于毛细管柱造价高,中国药典2000年版结合中国国情,用填充柱测定,美国药典24版(USPXXIV)和英国药典2000年版(BP2000)要求用毛细管柱。从填料来分,填充柱一般选用高分子多孔小球系列(GDX101,GDX102,GDX103,GDX301,GDX401)直接测定。GDX的表面积大(1~500m2/g),有一定的机械强度,可在250℃以下应用。无论极性还是非极性物质,在这种固定相上的拖尾现象都降到最低限度;它和羟基的化合物亲和力极小,可使水、醇类物质大大提前流出柱子;氧化氮、HCN、NH3、SO2、COS等活泼气体可以很快流出,不干扰测定,这些优点对残留溶剂测定来说是比较理想的。 这类填料的应用约占填充柱测定残留溶剂的文献的90%。GDX既是性能优良的吸附剂,能直接作为气相色谱的固定相,直接用于气固分析,也能作为担体涂布 PEG系(PEG20M,PEG2M,PEG10000,PGE5000),DEGS(丁二酸二乙二醇酯),DG (缩二甘油),丙二醇乙二酸聚酯,OV- 225,SE52(苯基甲基硅酮)等固定液,用于残留溶剂测定,当然担体的选择也有多种,如6201、硅藻土、PoraparkQ等。在柱子的选择上,一般选用GDX系列就能解决问题,但对于某些样品,就需要用某些固定液来进行分离才能满足要求,如二甲基甲酰胺26。选择原则是相似相溶,对于醇、胺等能形成氢键的物质,除上面介绍的GDX外,也可选择极性固定液。另外也可将不同极性的固定液混合涂布在担体上进行分离27。 毛细管柱的种类也很多,如 OV-101,SE-54,CP-Sil-5CB28,AC-20,SE-30,HP-5,HP-20M,100%二甲基硅氧 烷,AT- 624,TFAP等,一般长10~30m不等。填充柱价格便宜,易得,一直占据溶剂残留量检测的主导地位,只是柱效较低,只有500~1000左右,分离复杂样品的能力差。杨绍英、陈志华在测定心痛定中两种残留溶剂时就分别用两种色谱条件,比较麻烦29。但填充柱仍然是我们的首要选择。张咏梅、洪铮在紫杉醇原料药中有机溶剂残留量的气相色谱分析中,应用GDX401填充柱同时检测甲醇、乙酸乙酯、二氯甲烷,方法准确可靠30。王卫、高立勤在测定盐酸莫索尼定有机溶剂残留量时以正丙醇为内标,用GDX-401填充柱测定乙醚和异丙醇的残留量,方法灵敏、准确、可信31。 邓湘昱也用GDX-401填充柱测定盐酸土霉素中残留甲醇,结果证明方法简单可靠32。黄剑英、顾以振用GDX-401填充柱、用恒温条件建立同时测定中国药典规定的7种溶剂的测定方法,方法分离度较好,准确可靠33。这些均说明填充柱在测定残留溶剂中的重要作用。近年来,毛细管柱应用越来越多,有取而代之的趋势。特别是近两年,文献报道关于残留溶剂测定的文章中,用毛细管柱测定的约占总数的90%,填充柱只占10%,由此可见其趋势。毛细管柱的理论塔板数约为10万左右,与填充柱相比柱效和灵敏度均要高的多,对复杂和微量残留溶剂的分析能力有极大的提高,所以选择毛细管柱一般都能解决分离问题。其中柱口直径为0153mm的大口径毛细管柱因其柱容量大尤其应用广泛。姚倩、李章万、张

气相色谱最佳实验条件选择

气相色谱最佳实验条件的选择 1、优选色谱柱的原则 (1)以美国EPA 提出的重点控制有机污染物为目标,讨论色谱柱的优选。 (2)这些污染物有如下特点。 ● 种类多组成复杂,可分为八大类(见下表)(重点控制有机污染物部分测定 的色谱条件) ● 一些化合物结构相似、极性相近,不易分离 ● 一些化合物挥发性差,在气相色谱中不易出峰,灵敏度低,出峰慢 ● 沸点范围宽,低沸点化合物和高沸点化合物沸点相差200℃多,对柱温要求 差别大,要有恰当的程序升温,最后需要温度高达290℃。 化合物 名称 色谱条件 保留时间 t R min 响应因子 灵敏度Si [(mV·s )/g] 检测限Di 绝对值[μg/(V·s)] 标准偏差s 相对值 卤代烷 类 酚类 酯类 胺类 (乙酰胺) 40℃(4min ) 25℃/min 95℃(2min ) 10℃/min 140℃ 35℃/min 285℃(10min ) 14.550 2.52 0.18 2.60 1.06×1010 1.89×10-11 苯系物 多环芳 烃 烯类 (丙烯腈) 30℃(1min ) 25℃/min 150℃(2min ) 2.775 1.72 0.28 1.15 2.95×1011 3.39×10-12 烷烃类

2、色谱柱应具备的性能 [1].选择性好(对不同组分有不同的溶解和解析能力) [2].极性范围广(具有多种类型的作用力,可分析多种类型的样品) [3].化学稳定性强(不与样品反应) [4].液态粘度小(组分在其中快速完成溶解和解析能力) [5].热稳定性高(有较宽的工作温度范围,能承受较高的工作温度和较低的 凝固点,以便完成对沸程较宽的样品的分离分析) [6].附着力强(在载体表面上形成的薄膜不易脱落,有利于提高柱效率) [7].蒸汽压低(流失少、基线稳定、柱寿命长) 3、柱温的选择 (一)柱温范围 柱温是一个重要的色谱分析参数,它对分离效能和分析速度影响很大。显然,柱温不能高于固定液最高使用温度,否则会造成固定液流失,柱效降低,直至失效。升温可以增加气相和液相的传质速率,提高柱效能,缩短分析时间;但使各组分靠拢,不利分离。降低柱温可使选择性增大,但太低则被分离组分在两相间的扩散速率大大减少,不能迅速达到平衡,峰型变宽,并延长了分析时间。因此,应综合考虑在能将最难分离的组分分开的前提下,尽量采用低柱温。 (二)程序升温 通常把柱温恒温在试样各组分的平均沸点,称此法为恒温色谱法。对于沸点范围较宽的试样,则低沸点组分因柱温太高而使色谱峰相互重叠;高沸点组分又因柱温太低,流出很慢,峰形宽而平,有些甚至不能流出。对这种样品应采用程序升温的办法。即按一定加热速率,柱温随时间增加,使混合物各组分在最佳温度下流出色谱柱,得到良好分离。 程序升温按柱温-时间变化方式不同,分线性升温和非线性升温二种。以一种速率升温为线性升温;以两种或两种速率升温,有时中间还夹有恒温过程者称非线性升温。非线性升温中设定一次升温速率称为一阶,一次恒温称为一个平台。(三)柱温选择 在色谱实验中,一般根据样品的沸点来选择柱温,同时要考虑固定液的用量。

气相色谱分离的条件选择word精品

气相色谱分离的条件选择 一?载气及流速 1.载气对柱效的影响:主要表现在组分在载气中的扩散系数 D m(g)上,它与载气分子量的平方根成反比,即同一组分在分子量较大的载气中有 较小的D m(g)。 (1 )涡流扩散项与载气流速无关; (2)当载气流速u小时,分子扩散项对柱效的影响是主要的,因此选用分子量较大的载气,如N2、Ar,可使组分的扩散系数D m(g)较小,从而减小分子扩散的影响,提高柱效; (3)当载气流速u较大时,传质阻力项对柱效的影响起主导作用,因此选用分子量较小的气体,如H2、He作载气可以减小气相传质阻力,提高柱效。 2.流速(u)对柱效的影响:从速率方程可知,分子扩散项与流速成反 比,传质阻力项与流速成正比,所以要使理论塔板高度H最小,柱效最高,必有一最佳流速。对于选定的色谱柱,在不同载气流速下测定塔板高度,作H-u图。 由图可见,曲线上的最低点,塔板高度最小,柱效最高。该点所对应均流速即为最佳载气流速。在实际分析中,为了缩短分析时间,选用的载气流速稍高于最佳流速。 图1 H-u曲线 二.固定液的配比又称为液担比。

从速率方程式可知,固定液的配比主要影响C s U,降低d f,可使C s U减小从而提高柱效。但固定液用量太少,易存在活性中心,致使峰形拖尾;且会引起柱容量下降,进样量减少。在填充柱色谱中,液担比一般为 5 %?25 %。 三.柱温的选择重要操作参数,主要影响来自于K、k、D m(g) 、D s(l) ;从而直接影响分离效能和分析速度。柱温与R和t密切相关。提高t,可以改善Cu, 有利于提高R,缩短t。但是提高柱温又会增加B/u导致R降低,5 变小。但降低t 又会使分析时间增长。 在实际分析中应兼顾这几方面因素, 选择原则是在难分离物质对能得到良好的 分离, 分析时间适宜且峰形不托尾的前提下,尽可能采用较低的柱温。同时,选用的柱温不能高于色谱柱中固定液的最高使用温度(通常低20-50 C)。对于沸程宽的多组分混合物可采用程序升温法”可 以使混合物中低沸点和高沸点的组分都能获得良好的分离。 四.气化温度的选择 气化温度的选择主要取决于待测试样的挥发性、沸点范围。稳定性等因素。气化温度一般选在组分的沸点或稍高于其沸点, 以保证试样完全气化。对 于热稳定性较差的试样,气化温度不能过高,以防试样分解。 五.色谱柱长和内径的选择 能使待测组分达到预期的分离效果, 尽可能使用较短的色谱柱。一般常用的填充柱为I?3m。填充色谱柱内径为3?4mm。 六.进样时间和进样量的选择 1.进样迅速(塞子状) ——防止色谱峰扩张; 2.进样量要适当:在检测器灵敏度允许下,尽可能少的进样量:液体样0.1 ?10uI,气体试样为0.1?10ml

模拟示波器的基本工作原理

模拟示波器的基本工作原理 1.回顾中学的沙漏实验——随时间变化的信号如何在平面展示 利用心电图机的结构,已经可以记录电压信号,但是,示波器在大量的应用中,并不需要通过消耗纸张来记录波形,而仅仅是观察波形。因此,可以重复使 用的荧光屏,被应用到示波器的设计中。 2.在示波器上描绘一条曲线——电子枪 和 荧光屏 当在Y 偏转板上加入被测信号,而在X 偏转板上不加电压,可以在示波管的荧光屏上看到光点随着被 测电压的变化而发生位置变化——电压越大,光点位 置越靠上方。 当在X 偏转板上加入一个锯齿波,而在Y 偏转板上不加电压,可以看到光点从荧光屏左边出现,匀速移动到右边,然后又迅速在左边重复出现。 当在X 偏转板上加入一个锯齿波,而在Y 偏转板上加入一个正弦波,则可以看到,光点在匀速左移的同时,其Y 方向位置出现了正弦变化的规律,也就是说,光点的移动轨迹是一个正弦波。 3 .怎样将周期性电压信号稳定地显示于荧光屏? ○ 1~○6时刻,具有相同的特征:都是以上升的方式经过0V 电压。示波器内部,用微分电路可以区分被测信号上升或者下降,用比较器配合外部的电压设置,可以判断被测信号是否经过这个比较电压(比如图中的0V )。这样,再经过一套逻辑电路,可以在被测信号具有相同初相角的时刻,控制X 轴偏转板,发 出一个锯齿 波。这种利用被测信号的周期性,在相 同 初相角时刻,触发X 轴锯齿波扫描信号,使得波形被重叠、稳定地显示于示波器荧光屏的技术,称为同步触发扫描。图中, 锯齿波在○ 1~○6时刻满足触发条件,但仅在○1、○3、○5时刻被触发,是因为在○2、○4、○6时刻,此前的锯齿波尚未扫描结束。 因此,在 示波器外部面板上,有控制被测信号在电压多大时触发锯 齿波产生的电 平旋钮,英文标识为Level ,这个电压称为触发电平。有控制被测信号是上升或者下降经过Level 电压的选择开关,英文标识为Slope 图1.1.3 沙漏摆动留下的正弦波 图1.1.4 示波管的结构示意图 Y 轴偏转板 被测信号 X 轴偏转板 锯齿波 Y 轴偏转板 被测信号 X 轴偏转板 锯齿波

色谱柱选择

氰基柱与C18柱都是以球形硅胶微粒(通过无孔硅胶聚集成)为基质,只不过氰基柱键合的有机分子中含有极性基团,吸附活性较空白硅胶低,常用于正相操作。氰基柱能与某些含有双键的化合物发生选择性相互作用,因而对双键异构体或含有不等量双键的环状化合物有更好的分离能力。所以在选择极性键合相的柱子中,氰基柱是首选。 氰基柱可用于非极性、弱极性和中等极性化合物分析,在反相模式下,其保留性弱于C18,但对强极性化合物的保留强于C18(C18基本不保留强极性化合物)。氰基柱还可用于正相模式。 所以C18与氰基柱能够分析的化合物有一定的重合,但是两者的选择性有很大不同。C18是目前适用范围最广的色谱柱,适用于非极性、弱极性和中等极性化合物分析,某些强极性化合物配合离子对流动相也可以用C18分析,C18为纯反相柱。通常来说,化合物在正辛醇-水中的分配系数有一定差异,C18就能很好的分离它们。氰基柱上有极性基团,所以它对化合物的极性相互作用的强弱是分离化合物的基础,一般,化合物上极性基团的种类、数量或位置有差异,往往就能在氰基柱上较好分离。 氨基和氰基柱的使用和保养 氰基柱的使用和保养 CN基柱作反相色谱,操作和维护和C18柱完全相同。CN柱用于反相条件时,CN键会水解,尤其是在pH1.5-7.0范围以外,在极端酸性和碱性条件下柱寿命会下降很快,如果在这个条件下使用,需要清洗一下,也需要用10倍柱体积溶液冲洗,如下:95%水/5%乙腈、THF 四氢呋喃、95%乙腈/5%水并保持95%乙腈/5%水继续冲洗,以低流速0.2-0.5mL/min过夜冲洗。在pH1.5-7.0条件时,也比较伤柱子,使用完以后要注意冲洗,可以参照上述方法,时间不需要那么长,可适当减少。柱子使用一定时间后,柱效下降,老化,也可如正相时清洗一下柱子恢复柱性能,清洗时用10倍柱体积的下列溶液冲洗:95%水/5%乙腈THF四氢呋喃95%乙腈/5%水再走流动相即可。 CN柱用于正相使用时没什么问题,当柱子使用一定时间后,柱效下降,柱子老化,可清洗一下恢复柱性能。清洗时用10倍柱体积的下列溶液冲洗:氯仿、异丙醇、二氯甲烷再走流动相即可。 如果在pH 2.0-5.0条件时用流动相平衡一下即可,这是最理想的pH范围。 CN柱子不使用时,可用异丙醇或正己烷保存,两端封好。流动相改变时要注意过渡,比如缓冲盐过渡到有机相时需要先用水冲洗再走有机相。

如何选择色谱柱

如何选择色谱柱,比较一下C-18及C-8柱的硅烷基质 C-18和C-8硅烷色谱柱是高效液相色谱(HPLC)中最常使用的色谱柱,而且,在美国市场上有多于100种C-18和C-8色谱柱出售。面对这么多可供选择的色谱柱,分析工作者很难从中选出适当的色谱柱来具体使用,同时更难选择出一根合适的替换柱。 对于非极性样品(如小分子芳烃)或弱极性样品(如对羟基苯甲酸酯),C-18和C-8色谱柱是最容易选择的。对于这类样品,色谱柱之间的主要差异在于保留因子(k);而在选择性方面却只有微小的差异。但对于极性和中等极性样品色谱柱的选择却相当困难。例如含氨基或酸性基团的药物化合物。分析工作者会发现极性样品在保留时间、选择性和峰形都有很大的差别。 色谱柱的选择性和峰形受到担体硅胶的影响远大于键合相的影响。另外,有研究报道在反相色谱中表面硅烷醇、硅酸及金属杂质的影响。在特殊情况下,选择性的差异可由填料制备时使用的键合过程决定的。 通常情况下,色谱工作者选择HPLC色谱柱是通过比较由色谱柱供应商所提供的填料介质的规格来决定的。这些规格内容包括:表面积、末端封尾、含碳量、颗粒形状、颗粒尺寸、孔径、孔容积、装填密度和键合度。含碳量和键合度仅由色谱制造商提供,没有这些规格使用者不可能计算出碳的克数,也不可能计算出一根色谱柱中键合相的微分子数。分析工作者可使用这两个数据来估计一根色谱柱的疏水性质。然而,即使制造商提供所有上述规格数据,使用者也不可能精确地预测出色谱柱对含有极性官能团的化合物的选择性。 由于色谱的保留时间是基于分析物和填充基质之间许多微妙的相互作用,我们建议使用混合物测试来比较填充基质的规格与性能。Engelhardt 和他的同伴回顾了硅烷反相色谱的特性,并且提出用溶解物试验来描述固定相的疏水性和亲硅基醇特性。另外有一些人也改进了测试条件和方法来解释那些色谱数据,但他们只测试了很少的商品色谱柱,并且在他们的测试混合物中没有羧酸。在本文中,我们使用了一个含有羧酸的测试混合物来收集了86根C-18和C-8硅烷色谱柱(见表1)的数据。我们将测试结果详细描述如下。表1:研究中所使用的色谱柱的生产商(略)。 在我们的比较中,我们使用了含有6种物质的测试混合物,此6种物质列于图1。每一种物质在测试混合物中都起特殊的作用。尿嘧啶是用于产生空体积。甲苯是测试色谱柱的疏水性。吡啶和N,N-二甲基苯胺是用来测试硅醇基对碱性物质的活性的碱性胺类物质。苯酚是一种弱酸,用于与吡啶联合起来确定活性担体硅的数量。4-正丁基苯甲酸是一种用于测试硅醇基对酸性物质的活性羧酸,此方面是色谱柱制造者开发碱性去活色谱柱来作胺类物质分析时经常忽略的。 我们使用的流动相是含有65%的乙腈和35%的浓度为0.05M的磷酸钾混合溶液,pH值为3.2。pH=3.2的缓冲溶液可使4-正丁基苯甲酸质子化,同时可提高吡啶和N,N-二甲基苯胺的保留时间的重现性。我们发现使用没有加缓冲溶液的流动相,如65%乙腈和35%水,即使我们使用同一瓶流动相,也无法得到重现性较好的保留时间和峰形。高离子强度的缓冲溶液,如本次测试所使用的0.05M的缓冲溶液,会抑制一些硅醇基的活性(2,5),但对于将胺从一些非碱性去活的反相色谱柱中洗脱下来,有一些抑制作用是必要的。 我们测试过另外两种缓冲溶液,但它们的作用均少于pH=3.2的0.05M磷酸钾溶液。0.01M 磷酸钾缓冲溶液在pH=3.2时,胺类化合物在有些色谱柱中产生前移峰。0.05M磷酸钾缓冲溶液在pH=7时,胺类物质产生的峰形比在pH=3.2时更好。吡啶和N,N-二甲基苯胺的pKa 均大约为5.2;因此,这些组分在pH=7时未质子化并且呈中性,同时并不与强酸性的硅醇基发生离子交换作用。 液相色谱柱原理

示波器基本原理

目录 第一章示波器基本原理 (2) 1、1 模拟示波器 (2) 1、1、1示波管 (2) 1、1、2模拟示波器方框图 (3) 1、2 数字存储示波器(DSO) (4) 第二章示波器的使用 (5) 2、1示波器的各个系统和控制 (5) 2、2示波器的正确使用 (7) 第三章模拟示波器的校准 (9) 第四章数字存储示波器的使用和校准 (13) 4、1 TDS220的结构 (13) 4、2 TDS220的常规检查 (14) 4、3 TDS220的校准过程 (16)

第一章 示波器基本原理 示波器是一种图形显示设备,它能够直接观测和真实显示被测信号,是观察电路实验现象、分析实验中的问题、测量实验结果必不可少的重要仪器,它可分为模拟和数字类型。下面就分模拟和数字部分对示波器的基本原理进行简单介绍。 1、1 模拟示波器 模拟示波器是第一代示波器产品,拥有极佳的"波形更新率"(约每秒超过二十万次),它仅仅在扫描的回扫时间及闭锁(Hold off )时间内不显示信号,因此又称为模拟实时示波器(Analog Real Time Oscilloscope )。由于模拟示波器是数字示波器在的基础,我们先来看模拟示波器的工作原理。 1、1、1示波管 模拟示波器的心脏是阴极射线管(CRT ),示波管由电子枪、偏转系统和荧光屏组成,它们被密封在真空的玻璃壳内,如图1-1所示。 电子枪向屏幕发射电子,发射的电子经聚焦形成电子束,并打在荧光屏上,荧光屏的内表面涂有荧光物质,这样电子束打中的点就发出光来。 电子在从电子枪到屏幕的途中要经过

偏转系统,在偏转系统上施加电压就可以使光点在屏幕上移动。偏转系统由水平(X )偏转板和垂直(Y )偏转板组成。这种偏转方式称为静电偏转。 将输入信号加到Y 轴偏转板上,而示波器自己使电子束沿X 轴方向扫描。这样就使得光点在屏幕上描绘出输入信号的波形。这样扫出的信号波形称为波形轨迹 1、1、2模拟示波器方框图 从上一小节可以看出,只要控制X 轴偏转板和Y 轴偏转板上的电压,就能控制示波管显示的图形形状。因此,只要在示波管的X 轴偏转板上加一个与时间变量成正比的电压,在y 轴加上被测信号(经过比例放大或者缩小),示波管屏幕上就会显示出被测信号随时间变化的图形。电信号中,在一段时间内与时间变量成正比的信号是锯齿波。因此,往往给X 轴加上锯齿波。 示波器的基本组成框图如图1-2所示,它主要由示波管、Y 轴系统、X 轴系统三部分组成。此外还包括电源电路,它产生电路中需要的多种电源。示波器中还往往有一个精确稳定的方波信号发生器,供校验示波器用。 被测信号通过探头到达示波器的垂直系统,经衰减器适当衰减后送至垂直放大器,放大后产生足够大的信号,加到示波管的Y 轴偏转板上,控制亮点在屏幕中的上下移动。为了在屏幕上显示出完整的稳定波形,将Y 轴的被测信号引入X 轴系统的触发系统,启动或触

示波器基础(一)——示波器基础知识之一

示波器基础(一)——示波器基础知识之一1.1 说明和功能 我们可以把示波器简单地看成是具有图形显示的电压表。 普通的电压表是在其度盘上移动的指针或者数字显示来给出信号电压的测量读数。而示波器则与共不同。示波器具有屏幕,它能在屏幕上以图形的方式显示信号电压随时间的变化,即波形。 示波器和电压表之间的主要区别是: 1.电压表可以给出祥测信号的数值,这通常是有效值即RMS值。但是电压表不能给出有关信号形状的信息。有的电压表也能测量信号的峰值电压和频率。然而,示波器则能以图形的方式显示信号随时间变化的历史情况。 2.电压表通常只能对一个信号进行测量,而示波器则能同时显示两个或多个信号。 显示系统 示波器的显示器件是阴极射线管,缩写为CRT,见图1。阴极射线管的基础是一个能产生电子的系统,称为电子枪。电子枪向屏幕发射电子。电子枪发射的电子经聚焦形成电子束,并打在屏幕中心的一点上。屏幕的内表面涂有荧光物质,这样电子束打中的点就发出光来。

图1 阴极射线管图 电子在从电子枪到屏幕的途中要经过偏转系统。在偏转系统上施加电压就可以使光点在屏幕上移动。偏转系统由水平(X)偏转板和垂直(Y)偏转板组成。这种偏转方式称为静电偏转。 在屏幕的内表面用刻划或腐蚀的方法作出许多水平和垂直的直线形成网络,称为标尺。标尺通常在垂直方向有8个,水平方向有10个,每个格为1cm。有的标尺线又进一步分成小格,并且还有标明0%和100%的特别线。这些特别的线和标明10%和90%的标尺配合使用以进行上升时间的测量。我们后面会讨论这个问题。 如上所述,受到电子轰击后,CRT上的荧光物质就会发光。当电子束移开后,荧光物质在一个短的时间内还会继续发光。这个时间称为余辉时间。余辉时间的长短随荧光物质的不同而变化。最常用的荧光物质是P31,其余辉时间小于一毫秒(ms).而荧光物质P7的余辉时间则较长,约为300ms,这对于观察较慢的信号非常有用。P31材料发射绿光,而P7材料发光的颜色为黄绿色。 将输入信号加到Y轴偏转板上,而示波器自己使电子束沿X轴方向扫描。这样就使得光点在屏幕上描绘出输入信号的波形。这样扫出的信号波形称为波形轨迹。 影响屏幕的控制机构有:

信号源基础知识

信号源基础知识 1、认识函数信号发生器 信号发生器一般区分为函数信号发生器及任意波形发生器,而函数波形发生器在设计上又区分出模拟及数字合成式。众所周知,数字合成式函数信号源无论就频率、幅度乃至信号的信噪比(S/N)均优于模拟,其锁相环( PLL)的设计让输出信号不仅是频率精准,而且相位抖动(phase Jitter)及频率漂移均能达到相当稳定的状态,但毕竟是数字式信号源,数字电路与模拟电路之间的干扰,始终难以有效克服,也造成在小信号的输出上不如模拟式的函数信号发生器。 谈及模拟式函数信号源,结构图如下: 这是通用模拟式函数信号发生器的结构,[是以三角波产生电路为基础经二极管所构成的正弦波整型电路产生正弦波,同时经由比较器的比较产生方波]。 而三角波是如何产生的,公式如下: 换句话说,如果以恒流源对电容充电,即可产生正斜率的斜波。同理,右以恒流源将储存在电容上的电荷放电即产生负斜率的斜波,电路结构如下: 当I1 =I2时,即可产生对称的三角波,如果I1 > >I2,此时即产生负斜率的锯齿波,同理I1 < < I2即产生正斜率锯齿波。 再如图二所示,开关SW1的选择即可让充电速度呈倍数改变,也就是改变信号的频率,这也就是信号源面板上频率档的选择开关。同样的同步地改变I1及I2,也可以改变频率,这也就是信号源上调整频率的电位器,只不过需要简单地将原本是电压信号转成电流而已。 而在占空比调整上的设计有下列两种思路:

1、频率(周期)不变,脉宽改变,其方法如下: [改变电平的幅度,亦即改变方波产生电路比较器的参考幅度,即可达到改变脉宽而频率不变的特性],但其最主要的缺点是占空 比一般无法调到20%以下,导致在采样电路实验时,对瞬时信号所采集出来的信号有所变动,如果要将此信号用来作模数(A/D)转换,那么得到的数字信号就发生变动而无所适从。但不容否认的在使用上比较好调。 2、占空比变,频率跟着改变,其方法如下: 将方波产生电路比较器的参考幅度予以固定(正、负可利用电路予以切换),改变充放电斜率,即可达成。 这种方式的设计一般使用者的反应是“难调”,这是大缺点,但它可以产生10%以下的占空比却是在采样时的必备条件。 以上的两种占空比调整电路设计思路,各有优缺点,当然连带的也影响到是否能产生“像样的”锯齿波。 接下来PA(功率放大器)的设计。首先是利用运算放大器(OP) ,再利用推拉式(push-pull)放大器(注意交越失真Cross-distortion 的预防)将信号送到衰减网路,这部分牵涉到信号源输出信号的指标,包含信噪比、方波上升时间及信号源的频率响应,好的信号源当然是正弦波信噪比高、方波上升时间快、三角波线性度要好、同时伏频特性也要好,(也即频率上升,信号不能衰减或不能减太大),这部分电路较为复杂,尤其在高频时除利用电容作频率补偿外,也牵涉到PC板的布线方式,一不小心,极易引起振荡,想设计这部分电路,除原有的模拟理论基础外尚需具备实际的经验,“Try Error”的耐心是不可缺少的。 PA信号出来后,经过π型的电阻式衰减网路,分别衰减10倍(20dB)或100倍(40dB),此时一部基本的函数波形发生器即已完成。(注意:选用π型衰减网络而不是分压电路是要让输出阻抗保持一定)。 一台功能较强的函数波形发生器,还有扫频、VCG、TTL、 TRIG、 GATE及频率计等功能,其设计方式在此也顺便一提: 1. 扫频:一般分成线性(Lin)及对数(Log)扫频; 2. VCG:即一般的FM,输入一音频信号,即可与信号源本身的信号产生频率调制; 上述两项设计方式,第1项要先产生锯齿波及对数波信号,并与第2项的输入信号经过多路器(Multiplexer)选择,然后再经过电压对电流转换电路,同步地去加到图二中的I1、I2上; 但注意这样的TTL信号须再经过缓冲门(buffer)后才能输出,以增加扇出数(Fan Out),通常有时还并联几个buffer。而TTL INV 则只要加个NOT Gate即可;

相关主题