搜档网
当前位置:搜档网 › 飞机的故障自修复技术研究

飞机的故障自修复技术研究

飞机的故障自修复技术研究
飞机的故障自修复技术研究

飞机的故障自修复技术研究

姓名:

学号:

专业:

学院:

摘要

飞机在飞行过程中,如果发生升降舵、副翼、方向舵等操纵面的突然卡死或损伤等故障,会导致飞行品质严重降低,甚至会破坏飞行控制系统的稳定性而导致飞机的坠毁。本文以某型飞机模型为对象,重点研究飞机自修复飞行控制技术,在飞机出现操纵面故障或者战斗受损时,能够使飞机的稳定和恢复过程自动化,避免飞行事故的发生。

首先,建立了某型飞机的六自由度非线性方程,在MATLAB语言环境下运用三次样条函数插值方法对大量的气动力参数及气动力矩参数数据进行了插值处理,并在此基础上建立了飞机正常和故障飞行的仿真模型。其次,将神经网络与逆系统理论结合,分别建立了飞机俯仰、滚转和偏航操纵通道的神经网络逆系统,克服了传统的逆系统设计中将不可忽视的非线性关系用线性关系代替或者忽略的弊端。再次,应用基于神经网络动态逆方法的自适应跟踪自修复控制方案对飞机在几种典型故障下的自修复控制进行了仿真研究。克服了单纯用线性控制系统理论来控制象飞机这样的复杂非线性系统鲁棒性能较差的问题。对由于建模误差、不确定因素等引起的非线性系统逆误差则由自组织模糊小脑模型关节控制器神经网络来对消,以获得预期的控制效果,从而达到自修复控制目的。

关键词:飞机自修复飞行控制神经网络自适应控制逆系统

一、研究的目的和意义

飞机飞行过程中有时会发生机翼、平尾折断或升降舵、副翼、方向舵等操纵面突然卡死的现象,而驾驶员主要通过管理和监控复杂的飞行控制和导航等来操纵飞机。但是对于驾驶员来说,即使是经验丰富的驾驶员,恰当地应付突发性故障和反常情况是很困难的。因而,在飞行控制系统设计时,利用故障自修复技术增加系统对故障的适应能力,使飞机在遇到故障和危险时仍可安全飞行。实际上,飞机的每一个控制操纵面的偏转都能产生不同轴向的附加力矩,可以在飞机某操纵面发生故障时,将另外一侧操纵面及其它操纵通道的控制作用重新调整来消除或者减小故障操纵面的影响,也就是说飞机的控制操纵面之间存在着功能的冗余。这就有了另一种提高飞行控制系统安全性的方法,即利用飞行控制操纵面的功能冗余,通过控制软件对控制效果进行再分配,把失效舵面的力和力矩分配到其它功能完好的控制舵面上,使出现有限操纵面故障或损伤的飞机仍能安全飞行,这就是飞机的故障自修复控制问题。

对于飞机的飞行控制系统而言,提高其可靠性是保障飞行安全的要求。如果飞机具有故障自修复控制功能的飞机控制系统,具有重要的现实意义:当飞机出现操纵面故障或者战斗受损时,使飞机的稳定和恢复过程自动化,避免由于飞行员慌张之下作出错误判断或处理不当而导致飞行事故,保障飞机继续执行任务或者安全返航,提高飞机的安全性、可靠性和生存能力。

二、国内外的研究现状

飞机的故障自修复技术研究从二十世纪七八十年代就开始了,陆续有了不少成果。1984年美国空军动力实验室制定了一项自修复飞控系统(SRFCS)研究计划,目的是改善飞控系统的可靠性、可维护性、可生存性并减少其生命周期代价。在二十世纪八十年代,许多学者都对伪逆法在飞控系统重构控制方面的应用做了大量的理论研究和仿真计算,1989年至1990年,美国空军在F一15验证机上进行了飞行验证,表明其是一种有效的重构控制方法。1999年,美国启动了无尾飞机飞控系统重构与自适应研究计划,目的是为2000年以后使用的无尾隐身战斗机研制一种可重构自适应飞行控制系统。该系统可通过机械计算机协调多个操纵机构动作,自动适应飞行条件以及飞机构型的变化,自动补偿操纵面有限故障或战斗损伤对飞控系统的影响。这一计划研制了一种动态逆方法与神经网络相结合的最新飞行控制系统,采用在线神经网络来调整相应期望模型和实际飞机响应之间的误差,在故障或损伤发生后不需要故障准确信息就可使飞机稳定,大大降低了整个自修复控制中系统辨识的严格要求。这项技术将动态逆和神经网络技术结合起来,并且在很多飞机上得到成功的应用,例如无尾战斗机飞控系统等,这也说明故障自修复控制技术进入了实用阶段,自修复控制技术也是现代先进战斗机的技术要求之一。

在我国航空领域,飞行控制系统的自修复控制己成为研究重点之一。南京航空航天大学和北京航空航天大学为飞机自修复控制的研究奠定了一定的理论和实践基础,近几年来在结合工程实际的基础上取

得了一些阶段性的研究成果。

三、研究的具体内容

1、建立数学模型

建立某型飞机的六自由度非线性方程,在MATLAB语言环境下运用三次样条函数插值方法对大量的气动力参数及气动力矩参数数据进行了插值处理,并在此基础上建立了飞机正常和故障飞行的仿真模型。飞机动力学仿真是在飞机一般运动方程的基础上根据仿真目标的需求建立仿真数学模型,描述飞机在地面上运动和空中飞行时的性能和动态特性。

2、分析所建立的数学模型

将神经网络与逆系统理论结合,采用直接逆系统辨识方法建立了飞机操纵通道的BP神经网络逆系统。飞机操纵通道中存在三个互相耦合的子系统:滚转、偏航和俯仰子系统。因此需要三个BP神经网络来分别建立飞机三个操纵通道的逆系统模型。利用BP神经网络建立的飞机俯仰、滚转和偏航通道的神经网络逆系统,能够抵消对象的非线性耦合特性和时变特性,使系统成为若干积分环节串联的线性化解耦时不变系统(伪线性系统)。

把一个非线性系统解耦为伪线性系统,具有十分重要的意义,解耦后的伪线性系统我们能够运用线性系统的结构特性来分析该数学模型,使用线性系统的各种设计理论来完成伪线性系统的综合。

3、飞机故障自修复的控制

基于神经网络动态逆方法的自适应跟踪控制方案对飞机在几种

典型故障下的自修复控制进行了研究。通过应用此方法,克服了单纯用线性控制系统理论控制飞机这样复杂的非线性系统鲁棒性能较差的问题,对于建模误差、不确定因素等引起的非线性系统逆误差则由SOFCMAC神经网络来对消以获得预期的控制效果,从而达到自修复控制目的。

四、研究的关键问题

1、建模的复杂与简化问题

飞机对象的数学建模是研究飞行控制系统的基础。飞机空间运动有六个自由度,由于其系统庞大、结构复杂、气动数据多,所以建立完整的六自由度全量飞机模型比较困难。以往研究-荀民对象时,将飞机按纵向和横向分开建模,采用小扰动增量飞机方程和固定气动系数来建立五或六自由度飞机对象模型。用以上方法研究飞机对象在一定程度上也可以反映飞机的特性,但随着研究工作的不断深入以及对飞机模型推确性要求的不断提高,这种建模方法已经不能满足要求,必须建立更为准确的六自由度飞机模型。

2、模型的分析方法问题:

为了保证研究的精度,我们建立的模型是复杂的非线性系统模型,这给模型后期的分析处理制造了很大的困难。为了保证研究的经度而又能够运用线性系统的理论来研究非线性问题,我们引入了反馈线性化方法。

反馈线性化是通过非线性反馈和非线性坐标变换(或者动态补偿)将非线性系统变换为线性系统,然后对变换后的线性系统采用成熟的

线性系统的理论进行研究的一种理论方法。

在反馈线性化理论研究中,微分几何法是用的较早的一种方法,这种方法需要通过一个微分同胚坐标变换和一个非线性状态反馈给出解耦结构,需要将问题变换到几何域。另一种反馈线性化的方法是逆系统方法。逆系统方法不需要对所研究的问题进行中间变换,可以直接进行研究,所以逆系统方法直观而且容易理解和实现。逆系统方法是指:对于给定的被控系统,根据被控系统的精确数学模型求出它的正则积分逆系统,并用这种逆系统与原系统复合,将原系统线性化解耦成若干相互独立的积分型解祸子系统(伪线性系统)。运用逆系统方法的目的是将非线性系统线性化解祸为伪线性系统,便于使用线性系统的各种设计理论来完成伪线性系统的综合。

五、研究的技术手段

1、建立系统的数学模型

建立了某型飞机的六自由度非线性方程,在MATLAB 语言环境下运用三次样条函数插值方法对大量的气动力参数及气动力矩参数数据进行了插值处理,并在此基础上建立了飞机正常和故障飞行的仿真模型。飞机的动力学仿真模型结构如图1所示。

飞行仿真系统接收来自操纵负荷系统的操纵面位置,经过仿真系

气动数据操纵系统 图1

统的计算,获取飞机的姿态和位置以及其它飞行参数,然后和其它部分组成闭环仿真系统动力学仿真模型中的运动方程模块由多个子模块组成,主要完成飞机六自由度刚体运动方程的解算,该模块中,首先综合飞机所受的各种力和力矩,包括重力、气动力、发动机推力及各种力矩,计算沿机体轴的线加速度和角加速度;然后应用积分产生飞机的合成速度,计算飞行轨迹参数;把机体轴角速度分解到稳定轴上,计算飞机迎角、侧滑角及其变化率,以提供给气动模型使用;把角速度分解到地轴上,用积分方法计算三个欧拉角(俯仰、滚转和偏航),为运动系统提供飞机姿态参数。气动系数模块数学模型和软件完成飞机空气动力特性的仿真,计算飞机的横侧向和纵向气动系数、气动力和力矩,调用插值子程序求出飞行瞬间对应的气动数据,供计算气动系数使用。

2、所建立数学模型的分析

对所建立的数学模型用反馈控制系统中的基于神经网络的动态逆系统分析方法进行分析。对于一个具有动态过程的系统,有相应的逆过程,或称为逆系统。如果一个信号先后经过逆过程和原过程,其结果等价于经过一个被标准化了的单位映射,从而等价于经过一个线性解耦系统。根据这种逆系统的线性化解耦思想人们提出一种直接反馈线性化解耦方法—逆系统方法

要求知道系统精确的模型解析式,而且还必须求出逆系统的显式表示,这对大多数非线性系统来说往往难以实现。神经网络为解决这个问题提供了有效的方法。神经网络就能一致逼近于任意连续函数,

这说明神经网络在构造逆系统时较为合适。图2和图3分别为单输入单输出和多输入多输出时,基于原系统内部特性的神经网络逆系统及相应的伪线性复合系统。

图2 单输入单输出

图3 多输入多输出

3、飞机俯仰、滚转和偏航操纵通道神经网络a阶逆系统

飞机操纵通道中存在三个互相祸合的子系统:滚转、偏航和俯仰子系统。因此需要三个BP神经网络来分别建立飞机三个操纵通道的逆系统模型。由于三个逆系统模型类似,仅以俯仰子系统为给出用

BP神经网络来建立俯仰角的二阶积分逆系统。俯仰通道伪线性系统结构和俯仰角二阶积分逆系统仿真结构示意图如图4和图5所示:

图4 俯仰通道伪线性系统结构

图5 俯仰角二阶积分逆系统仿真结构示意图

4、飞机故障自修复控制

飞机故障自修复控制系统控制方案如图6所示。

图6 基于神经网络动态逆的直接自适应重构控制系统该方案中的近似动态逆由BP神经网络来实现并与原系统模型构成伪线性系统(第三章);参考模型和线性控制器按期望的系统性能进行设计;SOFCMAC神经网络用来补偿逆误差。控制的目标是设计控制律u使得闭环系统稳定,且状态x跟踪参考模型状态x。

结论

本文建立了某型飞机的六自由度非线性模型,在此基础上研究飞机自修复控制技术,对正常和故障情况下的飞机进行了数学建模。将神经网络与逆系统理论结合,直接对飞机的强耦合、强非线性方程求逆,建立了歼击机神经网络逆系统并设计了伪线性控制器。在此基础上,应用基于神经网络动态逆的非线性模型参考自适应自修复控制方案对飞机在各种故障条件下进行了自修复控制的研究。当飞机操纵面发生故障时,可以在线消除系统的近似逆误差和前向神经网络的映射误差,使飞机控制达到或接近正常状态。

参考文献:

[1] Dr.J.M.MacieJowski. Reeonfigurable Flight Control First Year

RePort.

[2] Jovan D Boskovic and Raman K. Mehra. A multiple model一

based reconfigurable fight control system design . .In Proeeedings on the 37th IEEE Conference on Decision&Control.

[3] JosePh S. Brinker Kevin A. Wise,Reconfigurable flight eontrol for a

tailess advanced aircraft.

[4] Moshe Idan,Matthew Johnson,and Anthony J.Calise. A

hierarchieal approach to adaptive eontrol for improved flight safety.

AIAA Joumalon Guidanee,Control and Dynajnies.

[5] A.J. Calise,R.T Page,Noulinear adaptive flight control using

neural networks, IEEE Control System magazine.

[6] 李春文,冯元馄.多变量非线性控制的逆系统方法. 清华大学出版

[7] 徐丽娜.神经网络控制.哈尔滨工业大学出版社

试谈飞机故障诊断技术

1.故障是指产品丧失了规定的功能,或产品的一个或几个性能指标超过了规定的范围。它是产品的一种不合格状态。 2.故障按其对功能的影响分为两类:功能故障和潜在故障。 功能故障是指被考察的对象不能达到规定的性能指标;潜在故障又称作故障先兆,它是一种预示功能故障即将发生的可以鉴别的实际状态或事件。 3.故障按其后果分四类: 安全性后果故障:采取预防维修的方式;使用性后果故障:对使用能力有直接的不利影响,通常是在预防维修的费用低于故障的间接经济损失和直接修理费用之和时,才采用预防维修方式;非使用性后果故障:对安全性及使用性均没有直接的不利影响,只是使系统处于能工作但并非良好的状态,只有当预防维修费用低于故障后的直接维修费用时才进行预防维修,否则一般采用事后维修方式; 隐患性后果故障:通常须做预定维修工作。 4.故障按其产生原因及故障特征分类可分为早期故障、偶然故障和损耗故障。偶然故障也称随机故障,它是产品由于偶然因素引起的故障。对于偶然故障,通常预定维修是无效的。耗损故障是由于产品的老化、磨损、腐蚀、疲劳等原因引起的故障。这种故障出现在产品可用寿命期的后期,故障率随时间增长,采用定期检查和预先更换的方式是有效的。 5.故障模式或故障类型是故障发生时的具体表现形式。故障模式是由测试来判断的,测试结果显示的是故障特性。 6.故障机理是故障的内因,故障特征是故障的现象,而环境应力条件是故障的外因。 7.应力-强度模型:当施加在元件、材料上的应力超过其耐受能力时,故障便发生。这是一种材料力学模型。 8.高可靠度状态(图1.2-2(a)):应力和强度分布的标准差很小,且强度均值比应力均值高得多,安全余量Sm很大,所以可靠度很高。 图1.2-2(b)所示为强度分布的标准差较大,应力分布标准差较小的情况,采用高应力筛选法,让质量差的产品出现故障,以使母体强度分布截去低强度范围的一段,使强度与应力密度曲线下重叠区域大大减小,余下的装机件可靠度提高。 图1.2-2(c)所示为强度分布标准差较小,但应力分布标准差较大的情况,解决的办法最好是减小应力分布的标准差,限制使用条件和环境影响或修改设计。

机械故障诊断技术课后复习资料

机械故障诊断技术 (第二版张建)课后答案 第一章 1、故障诊断的基础是建立在能量耗散的原理上的。 2、机械故障诊断的基本方法课按不同观点来分类,目前流行的分类方法有两种:一是按机械故障诊断方法的难易程度分类,可分为简易诊断法和精密诊断法;二是按机械故障诊断的测试手段来分类,主要分为直接观察法、振动噪声测定法、无损检测法、磨损残余物测定法、机器性能参数测定法。 3、设备运行过程中的盆浴曲线是指什么? 答:指设备维修工程中根据统计得出一般机械设备劣化进程的规律曲线(曲线的形状类似浴盆的剖面线) 4、机械故障诊断包括哪几个方面内容? 答:(1)运行状态的检测根据机械设备在运行时产生的信息判断设备是否运行正常,其目的是为了早期发现设备故障的苗头。 (2)设备运行状态的趋势预报在状态检测的基础上进一步对设备 运行状态的发展趋势进行预测,其目的是为了预知设备劣化的速度,以便生 产安排和维修计划提前做好准备。 (3)故障类型、程度、部位、原因的确定最重要的是设备类型的确定,它是在状态检测的基础上,确定当机器已经处于异常状态时所需进一步解决的问题,其目的是为了最后诊断决策提供依据。 5、请叙述机械设备的故障诊断技术的意义? 答:设备诊断技术是一种了解和掌握设备在使用过程中的状态,确定其整体或局部是正常或异常,早期发现故障及其原因,并能预报故障发展趋势的技术。机械设备的故障诊断可以保证整个企业的生产系统设备的运行,减少经济损失,还可以减少某些关键机床设备因故障存在而导致加工质量降低,保证整个机器产品质量。 6、劣化曲线沿横、纵轴分别分成的三个区间分别是什么,代表什么意义? 答:横轴包括1、磨合期 2、正常使用期 3、耗损期纵轴包括1、绿区(故障率最低,表示机器处于良好状态)2、黄区(故障率有抬高的趋势,表示机器

飞机故障诊断

1、民航客机事故? ①设计和维修方案不合理; ②人为差错导致飞行事故; ③环境因素造成飞机故障。 2、维修性:产品维修的难易程度。 3、故障:指产品丧失了规定的功能,或产品的一个或几个性能指标超过了规定的范围 4、规定的功能:指国家有关法规、质量标准,以及合同规定的对产品适用、安全和其他特性的要求。 5、故障类型的划分:①按功能的影响划分为功能故障和潜在故障;②按故障的后果划分为安全性后果故障、使用性后果故障、非使用 性后果故障和隐患性后果故障;③按故障产生的原因及故障特征分为早期故障、偶然故障和耗损故障。 6、故障模式:是故障发生时的具体表现形式。 7、故障机理:在应力和时间的条件下,导致故障发生的物理、化学、生物或机械等过程。 8、故障机理是故障的内因,故障特征是故障的现象,环境应力条件是故障的外因。 9、有关机械、电气机械等零部件故障的机理通常归为以下六大类:蠕变或应力断裂、腐蚀、磨损、冲击断裂、疲劳和热,这种分类方 法简称“SCWIFT”分类。 10、应力-强度模型是指当施加在元件、材料上的应力超过其耐受能力时,故障便发生。 11、常用的故障模型有应力-强度模型,反应论模型、最弱环模型和累积损伤模型。 12、故障物理这门学科的目的是在于研究产品在正常或特殊应力下,故障发生和发展过程以及故障的原因,提出减少故障措施,从

而改进产品的可靠性。 13、采用故障物理分析方法的步骤:①详细记录在研制、试验和使用中所出现的故障、缺陷和不良现象;②对故障过程进行调查、 分析,详细观测故障现象;③做出故障外因和故障机理假设,建立故障过程模型;④通过对故障过程分析,验证假设;⑤提出改进措施。 14、故障树分析法:检查FTA法,是一种将系统故障形成的原因由总体至部分按树枝状逐级细化的分析方法,目的是判明基本故障, 确定故障的原因,影响和发生概率。 15、故障树:一张由事件符号和逻辑门符号组成的逻辑图。 16、故障树分析法的优点:①直观、形象;②灵活性强;③具有通用性。 17、故障树分析法的缺点:①理论性强,逻辑性严密,因此要求分析人员对所研究的对象必须有彻底的了解,并有比较丰富的设计 和运行经验;②建树工作量大,易导致错漏,若故障树中遗漏了一些重要事件,则可能导致完全错误的结果。 18、故障树中使用的符号可分为事件符号和逻辑门符号,常见的故障事件符号有顶事件、中间事件、底事件、省略事件和转移事件。 逻辑门符号分为常用逻辑门符号和特殊逻辑门符号,常用逻辑门符号有逻辑与门、逻辑或门和逻辑非门;特殊逻辑门符号有逻辑禁门、异或门、表决门和顺序与门。 19、建造故障时的方法有两种,人工演绎法和计算机辅助法。 20、建造故障树的步骤:①建树准备(收集相关资料);②选择顶事件;③建造故障树;④审查与简化故障树。 21、顶事件选取应当遵循的原则:①顶事件必须有确切的定义,不能含混不清,模棱两可;②顶事件必须是能分解的,以便分析顶 事件和底事件之间的关系;③顶事件能被监测和控制,以便对其进行测量、定量分析,并采取措施防止其发生;④顶事件最好有代

机械故障诊断综合大作业—航空发动机的状态监测和故障诊断

机械系统故障诊断 综合大作业 航空发动机的状态监测和故障诊断 1.研究背景与意义 航空发动机不但结构复杂,且工作在高温、大压力的苛刻条件下。从发动机发展现状看,无论设计、材料和工艺水平,抑或使用、维护和管理水平,都不可能完全保证其使用中的可靠性。而发动机故障在飞机飞行故障中往往是致命的,并且占有相当大的比例,因此常常因发动机的故障导致飞行中的灾难性事故。 随着航空科学技术的发展并总结航空发动机设计、研制和使用中的经验教训,航空发动机的可靠性和结构完整性已愈来愈受到关注。自70年代初期即逐步明确航空发动机的发展应全面满足适用性、可靠性和经济性的要求,也就是在保证达到发动机性能要求的同时,必须满足发动机的可靠性和经济性(维修性和耐久性)的要求。 可靠性工作应贯穿在发动机设计-生产-使用-维护全过程的始终。对新研制的发动机,应在设计阶段就同时进行可靠性设计、试验和预估;对在役的发动机,应经常进行可靠性评估、监视和维护。军机和民用飞机的主管部门,设计、生产、使用和维护等各部门,应形成有机的、闭环式的可靠性管理体制,共同促进航空发动机可靠性的完善和提高。 2.国内外进展 自70年代前期,国外一些先进的民用和军用航空公司即着手研究和装备发动机的状态监视和故障诊断系统。电子技术与计算机技术的迅速发展,大大促进了航空发动机的状态监视与故障诊断技术的发展。至今,监视与诊断技术作为一项综合技术,已发展成为一门独立的学科,其应用已日趋广泛和完善。 按民航适航条例规定航空发动机必须有15个以上的监视参数。现今美国普?惠公司由有限监视到扩展监视,逐步完善了其TEAMIII等系统,美国通用电气公司也不断在发展其ADEPT系统。 从各国空军飞机发动机的资料来看,大都采用了发动机状态监视与故障诊断系统。包括发动机监视系统EMS,发动机使用情况监视系统EUMS和低循环疲劳计数器LCFC等,同时为了帮助查找故障,近年来还发展了发动机故障诊断的专家系统,如XMAN和JET—X。美国自动车工程协会(SAE)E-32航空燃气涡轮监视委员会研究并颁布了一系列指南,包括航空燃气涡轮发动机监视系统指南、有限监视系统指南、滑油系统监视指南、振动监视系统指南、使用寿命监视及零件管理指南等。 我国相关民用航空公司和院校开展的发动机状态监测与故障诊断的研究工作已初见成效。并且对于新研制的高性能发动机已将实施状态监视列为重要的技、战术指标,因此正较全面的开展这方面的研究工作。但是总的看来,国内该项工作开展得还不够,亟待有计划、有步骤地借鉴国外的成功经验,发展并推广我们自己的状态监视与故障诊断技术,以适应飞机和发展的需要。

飞机结构故障形式及其危害毕业设计

目录 第1章总论 1.1 历史回顾与认识 1.2 飞机结构故障形式及其危害 1.3 故障成因分析方法 1.4 故障治理方法 1.5 值得反思地问题 第2章复合材料调节板前缘断裂故障分析及设计改进 2.1 引论 2.2 复合材料调节板前缘结构失效分析 2.3 调节板前缘结构设计改进 2.4 调节板前结构改进实施效果 2.5 经验教训 第3章歼8飞机后减速板断裂故障治理 3.1 引论 3.2 减速板失效分析 3.3 后减速板结构设计改进 3.4 后减速板改进地实施效果

3.5 经验教训 第4章歼8飞机第42框腐蚀损伤与综合治理 4.1 引论 4.2 第42框下半框腐蚀开裂失效分析 4.3 第42框下半框腐蚀故障修理 4.4 下半框补强修理、改进设计地效果 4.5 经验与教训 第5章歼8飞机腹鳍结构故障分析与治理 第6章歼8飞机后机身尾尖结构故障综合治理 第7章准全尺寸疲劳试验翼身组合体翼根结构设计改进第8章平尾静力试验断裂失效与设计改进 第9章歼8飞机机翼第2梁腐蚀失效分析与修理 第10章歼8飞机机翼第1梁片耳片应力腐蚀控制 第11章歼8飞机主起落架机轮半轴裂纹故障分析及处理第12章歼8飞机空速管断裂与前轮摆振故障治理

简介 歼八类型飞机是上世纪70年代是由中国沈阳飞机研究所和沈阳飞机制造公司研制和生产地高空高速战斗机,属于第二代战斗机,也被称为世界上最后一种第二代战斗机.相继研制出歼8白天型,全天型,歼8Ⅱ.特别是在歼8白天型飞机基础上研制出了歼8Ⅱ型飞机,歼8Ⅱ型飞机适用于国土防空作战,歼8Ⅱ型飞机现成为中国国土防空地主战机 型.矚慫润厲钐瘗睞枥庑赖。 歼-8地发展重点是武器系统、火控系统、机载电子设备和动力装置.为给大口径雷达天线提供空间,采用两侧进气方式,这也是该机与歼-8最大地外观区别.聞創沟燴鐺險爱氇谴净。 歼-8Ⅱ换装了两台涡喷-13A双转子发动机,单台推力6600千克.发动机推力地提高,可提高飞机地中低空机动性,也使起飞着陆性能得到改善;外挂增加至七个,可悬挂多种武器或副油箱,使飞机具有全天候拦截能力并兼有对地攻击能力,并装备了雷达制

机械设备故障诊断技术研究

题目:机械设备故障诊断技术研究 学号: 姓名: 专业: 指导教师: 2016 年 8 月 30 日

摘要 故障诊断技术对于机械设备的安全运行有着至关重要作用,一直是工程应用领域的重点和难点, 国内外已经对此问题进行了大量的研究工作。该论文介绍了机械设备故障诊断技术的基本概念,在总结研究各种诊断技术的基础上全面分析了现代故障诊断技术存在的问题, 并针对这些问题提出了故障诊断领域将来的研究方向。故障诊断是一项实用性很强的技术, 对其进行理论上的分析研究具有重要的现实意义。 关键词:机械设备故障;诊断技术;研究

第一章引言 随着现代科学技术在设备上的应用,现代设备的结构越来越复杂,功能越来越齐全,自动化程度也越来越高。由于许多无法避免的因素影响,会导致设备出现各种故障,从而降低或失去预定的功能,甚至会造成严重的以至灾难性的事故。国内外接连发生的由设备故障引起的各种空难、海难、爆炸、断裂、倒塌、毁坏、泄漏等恶性事故,造成了极大的经济损失和人员伤亡。生产过程中经常发生的设备故障事故,也会使生产过程不能正常运行或机器设备遭受损坏而造成巨大的经济损失。因此机械设备故障诊断技术在社会中的重要性越来越高,主要体现在[1]:(1)预防事故,保证人员和设备安全。 (2)推动设备维修制度的改革。维修制度从预防制度向预知制度的转变是必然的,而真正实现预知维修的基础是设备故障诊断技术的发展和成熟。 (3)提高经济效益。设备故障诊断的最终目的是避免故障的发生,使零部件的寿命得到充分发挥,延长检修周期,降低维修费用。 因此,机械设备故障诊断技术日益受到广泛重视,对机械设备故障诊断技术的研究也不断深入。但受于机械设备故障成因的复杂性和诊断技术的局限性,目前机械设备故障诊断仍存在一些问题。

机械故障诊断考试题目

机械故障诊断考试--题库 (部分内容可变为填空题) 第一章: 1、试分析一般机械设备的劣化进程。 答:1)早期故障期 阶段特点:开始故障率高,随着运转时间的增加,故障率很快减小,且恒定。 早期故障率高的原因在于:设计疏忽,制造、安装的缺陷,操作使用差错。 2)偶发故障期 阶段特点:故障率恒定且最低,为产品的最佳工作期。 故障原因:主要是使用不当、操作失误或其它意外原因。 3)耗损故障期 阶段特点:故障率再度快速上升。 故障原因:零件的正常磨损、化学腐蚀、物理性质变化以及材料的疲劳等老化过程。 2、根据机械故障诊断测试手段的不同,机械故障诊断的方法有哪些? 答:1′直接观察法-传统的直接观察法如“听、摸、看、闻”是最早的诊断方法,并一直沿用到现在,在一些情况下仍然十分有效。 2′振动噪声测定法-机械设备在动态下(包括正常和异常状态)都会产生振动和噪声。进一步的研究还表明,振动和噪声的强弱及其包含的主要频率成分和故障的类型、程度、部位和原因等有着密切的联系。 3′无损检验-无损检验是一种从材料和产品的无损检验技术中发展起来的方法 4′磨损残余物测定法(污染诊断法 5′机器性能参数测定法-机器的性能参数主要包括显示机器主要功能的一些数据 3、设备维修制度有哪几种?试对各种制度进行简要说明。 答:1o事后维修 特点是“不坏不修,坏了才修”,现仍用于大批量的非重要设备。 2o预防维修(定期维修) 在规定时间基础上执行的周期性维修 3o预知维修 在状态监测的基础上,根据设备运行实际劣化的程度决定维修时间和规 模。预知维修既避免了“过剩维修”,又防止了“维修不足”;既减少了 材料消耗和维修工作量,又避免了因修理不当而引起的人为故障,从而 保证了设备的可靠性和使用有效性。 第二章: 1、什么是故障机理? 答:机械故障的内因,即导致故障的物理、化学或机械过程,称为故障机理。 2、什么是机械的可靠性?机械可靠性的数量指标有哪两个?他们之间互为什么关系?

《机械故障诊断技术》课程论文

《机械故障诊断技术》论文 ---转子不平衡的故障机理和诊断 学院:机械工程学院 班级: 姓名: 学号: 指导教师: 日期: 2013年10月14日

摘要 旋转机械转子不平衡故障是由于转子部件质量偏心或转子部件出现缺陷造成的故障,旋转机械约有近七成的故障与转子不平衡有关,且旋转机械转子故障类型多样,故障特征相近,因此对旋转机械的转子不平衡故障的分析、诊断以及类型的甄别是十分必要的。转子不平衡是大型回转机械常见的故障之一,也是引起旋转机械振动的主要原因。因此,针对转子不平衡故障的诊断和分析越来越受到人们的重视。本文主要介绍了质量不平衡故障机理、原因和振动特征,并详细分析了旋转机械不平衡的故障机理与特征,找出了其故障原因并提出了解决措施,对从事设备维护工作的人员具有一定指导意义。 关键词:旋转机械转子不平衡故障诊断轴心轨迹全息谱 ABSTRACT Rotating machinery rotor unbalance fault is due to the quality of the eccentric rotor or rotor component parts defects caused by the failure, rotating machinery fault about around seventy percent on the rotor unbalance and rotor rotating machinery fault types, fault features are similar, so the rotating machinery rotor imbalance fault analysis, diagnostics and the type of screening is necessary. Rotor imbalance is a large rotating machinery common faults, is one of the main causes of rotating machinery vibration. Therefore, for rotor unbalance fault diagnosis and analysis of more and more people's attention. This paper describes the mechanism of mass unbalance fault, causes and vibration characteristics, and a detailed analysis of rotating machinery unbalanced fault mechanism and characteristics, to identify the cause of the failure and proposed solutions, engaged in equipment maintenance personnel working with certain guiding significance. Keywords: rotor unbalance fault diagnosis of rotating machinery Orbit holospectrum

机械故障诊断技术的现状及发展趋势

机械故障诊断技术的现状及发展趋势 摘要:随着机械行业的不断发展,机械故障诊断的研究也不断提出新的要求,进20年来,国内外的故障诊断技术得到了突飞猛进的发展,对机械故障诊断的发展现状进行了详细的论述,并对其发展趋势进行了展望。 关键词:故障诊断;现状;发展趋势 引言 机械故障诊断技术作为一门新兴的科学,自二十世纪六七十年代以来已经取得了突飞猛进的发展,尤其是计算机技术的应用,使其达到了智能化阶段,现在,机械故障诊断技术在工业生产中起着越来越重要的作用,生产实践已经证明开展故障诊断与状态预测技术研究其重要的现实意义。 我国的故障诊断技术在理论研究方面,紧跟国外发展的脚步,在实践应用上还是基本锣鼓后语国外的发展。在我国,故障诊断的研究与生产实际联系不是很紧密,研究人员往往缺乏现场故障诊断的经验,研究的系统与实际情况相差甚远,往往是从高等院校或者科研部门开始,在进行到个别企业,而国外的发展则是从现场发现问题进而反应到高等院校或者科研单位,是的研究有的放矢。 记过近二十年的努力,我国自己开发的故障诊断系统已趋于成熟,在工业生产中得到了广泛应用。但一些新的方法和原理的出现,使得故障诊断技术的研究不断向前发展,正逐步走向准确、方便、及时的轨道上来。 1.故障诊断的含义及其现状 故障诊断技术是一门了解和掌握设备运行过程中的状态,进而确定其整体或者局部是否正常,以便早期发现故障、查明原因,并掌握故障发展趋势的技术。其目的是避免故障的发生,最大限度的提高机械地使用效率。 1.1设备诊断技术的研究内容主要包括以下三个环节: (1)特征信号的采集:这一过程属于准备阶段,主要用一些仪器测取被测仪器的有关特征值,如速度、湿度、噪音、压力、流量等。 现在信号的采集主要用传感器,在这一阶段的主要研究基于各种原理的传感技术,目标是能在各种环境中得到高可靠、高稳定的传感测试信号。国内传感器类型:电涡流传感器、速度传感器、加速度传感器和湿度传感器等;最近开发的传感技术有光导纤维、激光、声发射等。(2)信号的提取与处理:从采集到的信号中提取与设备故障有关的特征信息,与正常信息只进行对比,这一步就可以称之为状态检测。目前,小波分析在这方面得到广泛应用,尤其是在旋转机械的轴承故障诊断中。基于相空间重构的GMD数据处理方法也刚刚开始研究,此方法对处理一些复杂机械的非线性振动,从而进一步预测故障的发展趋势非常有效。(3)判断故障种类:从上一步的结果中运用各种经验和知识,对设备的状态进行识别,进而做出维修决策。这一步关键是研究系统参数识别和诊断中相关的实用技术,探讨多传感器优化配置问题,发展信息融合技术、模糊诊断、神经网络、小波变换、专家系统等在设备故障诊断中的应用。 1.2故障诊断及时的发展历程· 故障诊断技术的大致三个阶段: (1)事后维修阶段;(2)预防维修阶段;(3)预知维修阶段。现在基本处于预知维修阶段,预知维修的关键在于对设备运行状态进行连续监测或周期检测,提取特征信号,通过对历史数据的分析来预测设备的发展趋势。 1.3故障诊断的发展现状 目前,国内检测技术的研究主要集中在以下几个方面:

设备故障诊断技术说明

设备故障诊断技术简介

上海华阳检测仪器有限公司 Shanghai Huayang MeasuringInstruments Co., Ltd 目录 设备故障诊断技术定义

-----------------------------------------------( 3)一.设备维修制度的进展-----------------------------------------------( 4)二.检测参数类型-------------------------------------------------------( 5) 三.振动检测中位移、速度和加速度参数的选择-----------------------------( 5) 四.测点选择原则------------------------------------------------------( 6) 五.测点编号原则------------------------------------------------------( 7) 六.评判标准----------------------------------------------------------( 7) 七.测量方向及代号----------------------------------------------------

(10) 八.搜集和掌握有关的知识和资料----------------------------------------(10) 九.故障分析与诊断----------------------------------------------------(11) 十.常见故障的识不----------------------------------------------------(14) 1.不平衡------------------------------------------------------------(14) 2.不对中------------------------------------------------------------(14) 3.机械松动----------------------------------------------------------(15) 4. 转子或轴裂纹

飞机故障诊断#教学文案

民航飞机故障诊断概述 民航飞机故障诊断的特点 1、故障诊断必须满足适航性的要求 民用航空,包括民用航空器的设计、制造、使用和维修均处十有关国际组织和I各国法规的严格控制之下。对飞机进行故障诊断的适航性要求主要体现在飞机。 2、故障征兆和I故障原因间不一定有明确的对应关系 飞机系统由30多个子系统组成,子系统之间相互关联。并目‘子系统又包含了多个分系统。在子系统内,层次之间的信息联系又是不确定的。例如A32。系列飞机的无线电导航系统、大气数据惯性基准系统(ADIRS、飞行管理、制导计算机系统(FMGCS、电子飞行仪表系统(EFIS)等都与飞行控制系统存在着数据通信。Ifn飞行控制系统内部的分系统之间又存在相互交联信号。由此可见,故障具有纵向传播和横向传播特性。较高层次系统的故障来源十底层次系统故障,同一层次上的不同系统之间在结构和功能上存在许多联系和祸合。 3、故障诊断涉及的结构层次有所提高 随着飞机模块化、集成化程度的提高,故障诊断的结构层次也相应提高。尤其是航线维护,当故障源查到某一部件层,就要求整体更换此部件来排除故障。即航线维护就是诊断到部件级,非兀件级。 4、诊断时间要求紧 航线维护是在航前、航后、短停期间进行。为了减少因航班延误带来的损失,要求航线维护在规定时间内完成。尤其是短停,时间要求紧。 5、航线可更换件维修的难点集中在诊断逻辑部分 飞机系统故障诊断的步骤主要为:首先要检测到故障特征信号并完成故障征兆的提取:这一步可由飞机的自检设备完成并显示征兆信息。在大多数情况下无须维修人员参与。其次根据故障征兆确定故障原因,此处是故障诊断的难点,尤其是对十疑难故障,BITE难以做到对故障的准确定位。 民航飞机故障诊断的知识来源 维修手册、维修大纲、可靠性分析报告}so]和专家经验是民航飞机故障诊断的主要知识来源。 1、维修手册 维修手册中包含了民航飞机的系统结构图、系统原理图、故障诊断步骤等信息,维修人员在使用时按自己的理解形成推理规则。维修手册内容主要包括传统的故障隔离和排除的全过程。由十维修手册是标准文件,未体现出飞机使用后的个体特征和环境差异,同时从维修手册中获取的规则往往比实际情况复杂。 2、维修大纲 维修大纲是民航飞机故障诊断依据的计划性文件,主要包含了部件的计划维修信息,包括故障发生的维修间隔、维修等级、计划维修项目、零部件的重要度等信息。通过维修大纲可以估计故障出现的时间,用这一时间与实际的工作时间比较,可以指导故障诊断。维修手册与维修大纲都是设计人员制订的。 3、可靠性报告 可靠性报告是由飞机制造商和航空公司定时发布的,是故障统计历史信息的

飞机降落曲线课程设计

中北大学理学院 课 程 设 计 题目:飞机降落曲线绘制 课程:数值分析

成员:1408024133 邢栋 1408024129 肖锦柽 目录 一.飞机降落问题介绍 (3) 二、问题分析 (4) 三.实验方法: (5) 方法一(多项式求解) (5) I思路 (5) II程序 (5) III运行结果 (6) IV图像 (6) 方法二(Hermite差值法) (7) I思路 (7) II程序 (7) III运行结果 (7) IV图像 (8) 四.实际案例: (8) 五.设计总结: (9) 六.心得体会: (10)

二.问题分析: 在研究飞机的自动着陆系统时,技术人员需要分析飞机的降落曲线.根据经验,一架水平飞行的飞机,其降落曲线是一条三次抛物线,已知飞机的飞行高度为1000m,开始降落时距原点的横向距离为12000m飞机的着陆点为原点O,且在整个降落过程中,飞机的水平速度始终保持为常数540km/h. 飞机降落图像有:

由此,我们假定降落曲线方程为:且该曲线方程满足已知条件

三.实验方法: 1.方法一(多项式求解): I思路.运用多项式求解方程组(Gauss),即将四个已知条件代入一般三次曲线方程中,得出关于a,b,c,d的新的方程组: II程序.在MATLAB中编写M文件如下: A=[12000^3,12000^2,12000,1;3*12000^2,2*12000,1,0;0 0 1 0;0 0 0 1]; b=[1000;0;0;0]; x=inv(A)*b y=poly2sym(x') x=0:12000; y=vectorize(y) y=eval(y);

飞机操控系统故障诊断方法研究

飞机操控系统故障诊断方法研究 发表时间:2016-01-12T10:05:19.350Z 来源:《基层建设》2015年18期供稿作者:郭莎[导读] 中航飞机研发中心本课题针对无人机在飞行过程中,操控系统易出现故障的缺点,提出了强跟踪卡尔曼滤波器的故障诊断方法,同时还结合专家系统及神经网络进行分析。中航飞机研发中心陕西汉中 723000 摘要:本课题针对无人机在飞行过程中,操控系统易出现故障的缺点,提出了强跟踪卡尔曼滤波器的故障诊断方法,同时还结合专家系统及神经网络进行分析。该方法不需要获取大量训练样本,无需占用过多的计算机资源,就能实现快速准确的诊断,克服了在线诊断能力差的缺点,该方法对无人机安全飞行意义重大。关键词:飞机操控系统;故障诊断方法;专家系统;神经网络;STF 引言 飞机对可靠性和安全性有严格的要求,必须对控制系统的潜在故障进行检测和诊断,及时发现输入、输出传感器、部附件和子系统的故障。故障诊断需要从系统结构上去检测和隔离故障。对控制系统故障检测技术的研究近年来发展很快,基于状态估计的故障诊断方法是利用状态观测器或 K a l m a n 滤波器,构造系统的状态空间观测器或滤波器,由系统的状态空间观测器或滤波器重构系统的状态或输出。把系统实测的状态或输出与利用这种数学关系得到的状态或输出进行比较,根据两者之间的差别进行故障诊断。 一、故障诊断技术的概况 1、故障诊断的涵义 飞机故障主要分为两种,一种是硬故障,一种是软故障。操作系统的故障属于软故障,故障诊断主要是对故障进行分析与判断,进而对其进行评价与决策。故障诊断需要花费大量的时间,才能诊断出故障的位置与大小,故障诊断主要的内容包括故障建模、故障检测、故障分析与故障决策。 2、故障诊断的技术 随着飞机设备的增多,其技术含量也在不断增加,为了保证飞机的安全,故障诊断技术得到了快速的发展,故障诊断的方法主要有三种,分别为模型解析法、信号处理法与知识法等。现阶段,故障诊断技术已经趋于成熟,其中线形系统技术的理论研究较多,但在具体的应用过程中仍需加强。 二、基于 STF 的飞控传感器故障诊断技术 通过强跟踪卡尔曼滤波器故障仿真实验研究发现,对垂直陀螺的注入故障时,故障观测器可以快速跟踪检测到故障的发生,以及对其他变量的跟踪和状态观测,但是对幅值估计并不是很精确。因此,本文主要是基于 STF 对飞控系统传感器故障诊断算法进行研究处理。 1、概述 强跟踪卡尔曼滤波器加上小波滤波去噪对飞控传感器进行故障诊断技术研究。其主要步骤:首先,依照飞控系统传感器的数学模型,将待测飞控系统的故障参数增加为状态变量,得到新的飞控系统传感器的数学模型,做好各个参数的匹配工作;其次,使用强跟踪卡尔曼滤波器对飞控系统传感器变量进行预测,算出飞控系统传感器的测量信息。最后,将强跟踪卡尔曼滤波所推理出的量测信息进行小波阈值去噪对飞控传感器的故障估计值进行去噪以便得到更精确的估计故障幅值。 2、基于强跟踪卡尔曼滤波的飞控传感器故障诊断 强跟踪卡尔曼卡尔曼滤波器是扩展卡尔曼滤波器的发展,为使扩展卡尔曼滤波器具有强跟踪的特点,须在线确定时变增益阵 K (k+1),使其满足正交性原理。此正交原理实质上是在状态估计残差最小方差性能指标的基础上有附加了一条输出残差序列,处处保持相互正交的性能指标。当由于模型不确定性的影响,造成滤波器的状态估计值偏离系统状态时,必然会在输出残差序列幅值上表现出来,这时只要在线适当调整增益阵K(k+1),使得残差序列仍相互保持正交,则可强迫滤波器仍保持对实际系统状态的跟踪。为了让扩展卡尔曼滤波器具有强跟踪滤波器的优良性能一种方法是采用变化的渐消因子对过去的数据进行渐消,实时调整状态预报误差的协方差阵以及相应的增益阵。由此构成了带次优渐消因子的扩展卡尔曼滤波器,即强跟踪卡尔曼滤波器。 3、强跟踪卡尔曼滤波器方法,可以有效地应用于一类非线性系统的在线传感器故障诊断。其基本思想:用扩展卡尔曼滤波器基础上算出残差,得到的残差值加强平方和运算实现故障检测;通过 STF 就能实现时变参数与系统状态的估计值;最后根据贝叶斯算法检验估计值,得到我们想要的诊断结果。 强跟踪滤波器的对飞控系统传感器故障诊断有如下的优点:: ①对于飞控系统的状态变量和故障参数有非常强的鲁棒性; ②飞控系统在建模时的测量噪声与系统噪声和系统的初值对我们观测变量和故障参数影响不是很大; ③如果飞控系统传感器故障发生了硬故障和软故障,故障参数的跟踪能力状态一直良好; ④适合于飞控系统传感器的在线估计状态变量和故障参数,它的计算量不大。 三、结合专家系统和神经网络 1、专家系统1.1概述 专家系统是利用一组计算机程序,通过知识推理从而协助人类进行故障的分类、诊断与决策等,并且根据专家的知识与经验结合自身的知识与经验,进而实现能力的完善。专家系统在众多领域均得到了应用,该系统提高了工作效率,节省了资源。 1.2具体设计

故障诊断技术发展历史(最新版)

故障诊断技术发展历史 故障诊断(FD)始于(机械)设备故障诊断,其全名是状态监测与故障诊断(CMFD)。它包含两方面内容:一是对设备的运行状态进行监测;二是在发现异常情况后对设备的故障进行分析、诊断。设备故障诊断是随设备管理和设备维修发展起来的。欧洲各国在欧洲维修团体联盟(FENMS)推动下,主要以英国倡导的设备综合工程学为指导;美国以后勤学(Logistics)为指导;日本吸收二者特点,提出了全员生产维修(TPM)的观点。美国自1961年开始执行阿波罗计划后,出现一系列因设备故障造成的事故,导致1967年在美国宇航局(NASA)倡导下,由美国海军研究室(ONR)主持成立了美国机械故障预防小组(MFPG),并积极从事技术诊断的开发。 美国诊断技术在航空、航天、军事、核能等尖端部门仍处于世界领先地位。英国在60~70年代,以Collacott为首的英国机器保健和状态监测协会(MHMG & CMA)最先开始研究故障诊断技术。英国在摩擦磨损、汽车和飞机发电机监测和诊断方面具领先地位。日本的新日铁自1971年开发诊断技术,1976年达到实用化。日本诊断技术在钢铁、化工和铁路等部门处领先地位。我国在故障诊断技术方面起步较晚,1979年才初步接触设备诊断技术。目前我国诊断技术在化工、冶金、电力等行业应用较好。故障诊断技术经过30多年的研究与发展,已应用于飞机自动驾驶、人造卫星、航天飞机、核反应堆、汽轮发电机组、大型电网系统、石油化工过程和设备、飞机和船舶发动机、汽车、冶金设备、矿山设备和机床等领域。 故障诊断的主要理论和方法 故障诊断技术已有30多年的发展历史,但作为一门综合性新学科——故障诊断学——还是近些年发展起来的。从不同的角度出发有多种故障诊断分类方法,这些方法各有特点。从学科整体可归纳以下理论和方法。 (1)基于机理研究的诊断理论和方法从动力学角度出发研究故障原因及其状态效应。针对不同机械设备进行的故障敏感参数及特征提取是重点。 (2)基于信号处理及特征提取的故障诊断方法主要有时域特征参数及波形特征诊断法、时差域特征法、幅值域特征法、信息特征法、频谱分析及频谱特征再分析法、时间序列特征提取法、滤波及自适应除噪法等。今后应注重实时性、自动化性、故障凝聚性、相位信息和引入人工智能方法,并相互结合。 (3)模糊诊断理论和方法模糊诊断是根据模糊集合论征兆空间与故障状态空间的某种映射关系,由征兆来诊断故障。由于模糊集合论尚未成熟,诸如模糊集合论中元素隶属度的确定和两模糊集合之间的映射关系规律的确定都还没有统一的方法可循,通常只能凭经验和大量试验来确定。另外因系统本身不确定的和模糊的信息(如相关性大且复杂),以及要对每一个征兆和特征参数确定其上下限和合适的隶属度函数,而使其应用有局限性。但随着模糊集合论的完善,相信该方法有较光明的前景。 (4)振动信号诊断方法该方法研究较早,理论和方法较多且比较完善。它是依据设备运行或激振时的振动信息,通过某种信息处理和特征提取方法来进行故障诊断。在这方面应注重引入非线性理论、新的信息处理理论和方法。

飞机液压系统常见故障及排除方法探究

飞机液压系统常见故障及排除方法探究 液压系统在现代飞机上已成为一个非常重要的大系统,如起落架的收放、前轮转弯操纵、刹车操纵及飞行操纵系统几乎都离不开液压传动及伺服控制技术。从运输机故障统计结果来看。有20%的机械故障属于液压系统,所以提高飞机维修人员对液压系统故障的预防、判断和排除的能力是非常重要的。 飞机液压系统可能产生的故障比较多,引起故障的可能原因也是多方面的,发生了故障往往不易找出具体原因。为了减少故障的发生,这里对飞机一般液压系统常见的故障及排除方法着一系统的分析。 一、噪音与振动 噪音是现代飞机液压系统不可避免的一种现象,要完全消除噪音是困难的,只能设法减小噪音和避免不正常的噪音。噪音往往拌随着出现振动。噪音恶化劳动条件,振动会引起飞机液压系统损坏。产生噪音与振动的可能原因如下:(1)由于液压系统进入空气而产生噪音。例如油泵由于吸油管太细,或吸油高度太高,或油滤阻塞,或工作液粘度太大,或油箱不通气,或油箱内油面太低,或油泵转速太高,或增压泵供油不够而使工作液不能填满油泵吸油腔时,溶解在工作液中的空气将分离出来,形成空穴现象,以及油泵吸入空气,都会引起严重的噪音。液压系统的其他地方含有空气也会引起噪音。 (2)由于液压元件设计与制造上的原因而引起噪音。例如油泵和油马达的流量脉动、闭死现象,齿轮泵的齿形误差,溢流阀等压力阀由于其自然频率与油泵的压力脉动频率相近而发生共振,或由于阀芯的阻尼太小而产生振动,引起液压力的流动和阀芯与阀座撞击等,都会产生噪音。 (3)由于液压系统安装上的原因而引起振动。例如油泵轴与原动机轴不同心或联轴节松动,系统管道细长使管内流速高而管道弯曲又多,都会引起振动。 (4)由于液压系统的使用维护不良或某些零件损坏而引起噪音。例如叶片泵的叶片和柱塞泵的柱塞卡住,溢流阀由于阻尼孔堵塞或杂质进入配合间隙或阀中弹簧疲劳及损坏或阀座损坏等原因而使阀的动作失灵,由于换向阀换向太快而造成系统内的液压冲击,以及油泵和油马达的轴承损坏,油泵转速过高等都会产生噪音。 (5)随动系统的振动主要是由于系统的参数选择不当和管道弹性变形以及传动机构中的间隙等因素而使系统不稳定所致。 消除噪音与振动的措施,除了改进设计与制造工艺以外,应从维护方面防止空气进入液压系统,注意排除系统内的空气,保持工作液的清洁,保持油泵与溢流阀等元件的结构完好,管道合理布置并加以固定,换向阀的换向速度调整得合理以避免液压冲击调整好油泵与原动机轴的同心度,防止油泵转速过高等 二、系统压力不足和执行元件运动速度不够 (1)造成液压系统压力不足或完全无压力有以下原因: a、油泵转向不对。则没有输出。 b、油泵吸油管漏气或吸油管阻力过大(如吸油管直径太小、吸油管油滤阻塞、工作液粘度太大等所致)而使油泵无输出。 c、油泵内泄漏太大。由于油泵磨损严重,或零件损坏或壳体有铸造缺陷而使压油腔与吸油腔串通,压力上不去。 d、电动机功率不足。当压力调高后。若驱动油泵的电动机功率不足,则转速会急剧下降,并有闷车的声音。

旋转机械故障相关诊断技术(最新版)

( 安全技术 ) 单位:_________________________ 姓名:_________________________ 日期:_________________________ 精品文档 / Word文档 / 文字可改 旋转机械故障相关诊断技术(最 新版) Technical safety means that the pursuit of technology should also include ensuring that people make mistakes

旋转机械故障相关诊断技术(最新版) 一、旋转机械故障的灰色诊断技术 灰色诊断技术就是在故障诊断中应用灰色系统理论,利用信息间存在的关系,充分发挥采集到的振动信息的作用,充分挖掘振动信息的内涵,通过灰色方法加工、分析、处理,使少量的振动信息得到充分的增值和利用,使潜在的故障原因显化。 二、旋转机械故障的模糊诊断技术 模糊诊断技术就是在故障诊断中引入模糊数学方法,将各类故障和征兆视为两类不同的模糊集合,同时用一个模糊关系矩阵来描述二者之间的关系,进而在模糊的环境中对设备故障的原因、部位和程度进行正确、有效地推理、判断。 三、旋转机械故障的神经网络诊断技术 所谓的神经网络就是模仿人类大脑中的神经元与连结方式,以

构成能进行算术和逻辑运算的信息处理系统。神经网络模型由许多类似于神经元的非线性计算单元所组成,这些单元以一种类似于生物神经网络的连结方式彼此相连,以完成所要求的算法。在旋转机械故障的诊断中,引入神经网络技术,以类似于人脑加工信息的方法对收集到的故障信息进行处理,从而对故障的原因、部位和程度进行正确的判断。 云博创意设计 MzYunBo Creative Design Co., Ltd.

设备故障诊断原理技术及应用

设备故障诊断原理技术及应用 机械设备故障诊断技术随着近十多年来国际上电子计算机技术、现代测量技术和信号处理技术的迅速发展而发展起来,是一门了解和掌握机械设备在使用过程中的状态,确定其整体或局部是否正常,早期发现故障及原因,并预报故障发展趋势的技术。 1.机械设备故障诊断的发展过程 设备故障诊断是指在一定工作环境下,根据机械设备运行过程中产生的各种信息判别机械设备是正常运行还是发生了异常现象,并判定产生故障的原因和部位,以及预测、预报设备状态的技术,故障诊断的实质就是状态的识别。 诊断过程主要有3 个步骤: ①检测设备状态的特征信号; ②从所检测的特征信号中提取征兆; ③故障的模式识别。其大致经历以下3 个阶段: ①基于故障事件原故障诊断阶段,主要缺点是事后检查,不能防止故障造成的损失; ②基于故障预防的故障诊断阶段; ③基于故障预测的故障诊断阶段,它是以信号采集与处理为中心,多层次、多角度地利用各种信息对机械设备的状态进行评估,针对不同的设备采取不同的措施。 2.开展故障诊断技术研究的意义 应用故障诊断技术对机械设备进行监测和诊断,可以及时发现机器的故障和预防设备恶性事故的发生,从而避免人员的伤亡、环境的污染和巨大的经济损失。应用

故障诊断技术可以找出生产设备中的事故隐患,从而对机械设备和工艺进行改造以 消除事故隐患。状态监测及故障诊断技术最重要的意义在于改革设备维修制度,现在多数工厂的维修制度是定期检修,造成很大的浪费。由于诊断技术能诊断和预报设备的故障,因此在设备正常运转没有故障时可以不停车,在发现故障前兆时能及时停车。按诊断出故障的性质和部位,可以有目的地进行检修,这就是预知维修—现代化维修 技术。把定期维修改变为预知维修,不但节约了大量的维修费用,而且,由于减少了许多不必要的维修时间,而大大增加了机器设备正常运转时间,大幅度地提高生产率,产生巨大的经济效益。因此,机械状态监测与故障诊断技术对发展国民经济有相当重要的作用。 3.机械故障诊断的研究现状 机械故障诊断作为一门新兴的综合性边缘学科,经过30 多年的发展,己初步形成了比较完整的科学体系。就其技术手段而言,已逐步形成以振动诊断、油样分析、温度监测和无损探伤为主,其他技术或方面为辅的局面。这其中又以振动诊断涉及的领域最广、理论基础最为雄厚、研究得最具生机与活力。目前,对振动信号采集来说, 计算机技术足以胜任各种场合的需要。在振动信号的分析处理方面,除了经典的统计分析、时频域分析、时序模型分析、参数辨识外,近来又发展了频率细化技术、倒谱分析、共振解调分析、三维全息谱分析、轴心轨迹分析以及基于非平稳信号假设的短时傅立叶变换、Wign2er 分布和小波变换等。就诊断方法而言,除了单一参数、 单一故障的技术诊断外,目前多变量、多故障的综合诊断已经兴起。 人工智能的研究成果为机械故障诊断注入了新的活力,故障诊断的专家系统不

相关主题