搜档网
当前位置:搜档网 › 串电阻启动

串电阻启动

串电阻启动
串电阻启动

串电阻(或电抗)降压起动控制线路

在电动机起动过程中,常在三相定子电路中串接电阻(或电抗)来降低定子绕组上的电压,使电动机在降低了的电压下起动,以达到限制起动电流的目的。一旦电动机转速接近额定值时,切除串联电阻(或电抗),使电动机进入全电压正常运行。这种线路的设计思想,通常都是采用时间原则按时切除起动时串入的电阻(或电抗)以完成起动过程。在具体线路中可采用人工手动控制或时间继电器自动控制来加以实现。

图2定子串电阻降压起动控制线路

图2是定子串电阻降压起动控制线路。电动机起动时在三相定子电路中串接电阻,使电动机定子绕组电压降低,起动后再将电阻短路,电动机仍然在正常电压下运行。这种起动方式由于不受电动机接线形式的限制,设备简单,因而在中小型机床中也有应用。机床中也常用这种串接电阻的方法限制点动调整时的起动电流。

图2(A)控制线路的工作过程如下:

按SB2 KM1得电(电动机串电阻启动)

KT 得电(延时)KM2得电(短接电阻,电动机正常运行)

按SB1,KM2断电,其主触点断开,电动机停车。

只要KM2得电就能使电动机正常运行。但线路图(A)在电动机起动后KM1与KT一直得电动作,这是不必要的。线路图(B)就解决了这个问题,接触器KM2得电后,

他励直流电动机串电阻启动的设计15613

题目 他励直流电动机串电阻启动的设计 专业:电气工程及其自动化 班级:13电牵1班 姓名:贤第 学号:20130210470103

Pan=200kw ;Uan=440v ;Ian=497A ;nN=1500r/min;Ra=0.076Ω; 采用分级启动,启动电流最大不超过2Ia N,,求各段电阻值,并且求出切除电阻时的瞬时转速和电动势,并作出机械特性曲线,对启动特性进行分析。 三、设计计划 第1天查阅资料,熟悉所选题目; 第2天根据基本原理进行方案分析; 第3天整理思路,按步骤进行设计; 第4天整理设计说明书; 第5天准备答辩; 四、设计要求 1、设计工作量为按要求完成设计说明书一份。 2、设计必须根据进度计划按期完成。 3、设计说明书必须经指导教师审查签字方可答辩。

摘要 他励直流电动机启动时由于电枢感应电动势Ea =CeΦn = 0 ,最初启动电流IS =U/Ra,若直接启动,由于Ra很小,ISt会十几倍甚至几十倍于额定电流, 无法换向,同时也会过热,因此不能直接启动。 要限制启动电流ISt的大小可以有两种方法:降低电枢电压和电枢回路串接附加电阻。本文仅以他励直流电动机的串电阻启动为主题进行详细的阐述。 在实际中,如果能够做到适当选用各级启动电阻,那么串电阻启动由于其启动设备简单、 经济和可靠,同时可以做到平滑启动,因而得到广泛应用。但对于不同类型和规格的直流电动机,对启动电阻的级数要求也不尽相同。 关键词:他励直流电动机;启动电流;串电阻启动; 目录 引言 (5) 1 直流电动机 (7) 1.1直流电动机的工作原理 (7) 1.2直流电动机的分类 (7) 1.3他励直流电机工作原理 (8)

三相绕线型异步电动机转子串电阻启动的设计说明

引言 三相异步电动机是目前应用最为广泛的电动机。要想讨论电力拖动中经常遇到的绕线型异步电动机转子电路串联电阻启动问题,首先我们要先了解三相异步电动机,这是讨论问题的基础。 异步电动机是交流电动机的一种。由于异步电动机在性能上有缺陷,所以异步电动机主要作电动机使用。 异步电动机按供电电源相数的不同,有三相、两相和单相之分。三相异步电动机结构简单、价格便宜、运行可靠、维护方便,是当前工业农业生产中应用最普通的电动机;单相异步电动机容量较小,性能较差,在实验室和家用电器中应用较多;两相异步电动机通常用作控制电机。 三相异步电动机分为三相笼型异步电动机和三相绕线型异步电动机。我的设计为三相绕线型异步电动机转子电路串电阻启动。

1 三相异步电机的工作原理和结构组成 1.1 工作原理 三相对称绕组,接通三相对称电源,流过三相对称电流,产生旋转磁场(电生磁),切割转子导体,感应电势和电流(磁变生电),载流导体在磁场中受到电磁力的作用,形成电磁转矩(电磁生力),使转子朝着旋转磁场旋转的方向旋转。 1.2 结构组成 三相异步电动机主要由定子、转子、气隙三部分组成。 1.2.1 定子 三相异步电动机的定子由定子铁心、定子绕组和机座三部分组成。 1)定子铁心定子铁心是异步电动机主磁通磁路的一部分。为了使异步电动机能产生较大的电磁转矩,希望有一个较强的旋转磁场,同时由于旋转磁场对定子铁心以同步转速旋转,定子铁心中的磁通的大小与方向都是变化的,必须设法减少由旋转磁场在定子铁心中所引起的涡流损耗和磁滞损耗,因此,定子铁心由导磁性能较好的0.5mm厚且冲有一定槽形的硅钢片叠压而成。对于容量较大(10kW以上)的电动机,在硅钢片两面涂以绝缘漆,作为片间绝缘之用。定子铁心上的槽形通常有三种半闭口槽,半开口槽及开口槽。从提高电动机的效率和功率因数来看,半闭口槽最好。 2)定子绕组定子绕组是异步电机定子部分的电路,它也是由许多线圈按一定规律联接面成。能分散嵌入半闭口槽的线圈由高强度漆包圆铜线或圆铝线绕成,放入半开口槽的成型线圈用高强度漆包扁沿线或扁铜线,或用玻璃丝包扁铜线绕成。开口槽也放入成型线圈,其绝缘通常采用云母带,线圈放入槽必须与槽壁之间隔有“槽绝缘”,以免电机在运行时绕组对铁心出现击穿或短路故障。一般根据定子绕组在槽布置的情况,有单层绕组及双层绕组两种基本型型。容量较大的异步电动机都采用双层绕组。双层绕组在每槽的导线分上下两层放置,上下层线圈边之间需要用层间绝缘隔开。小容量异步电动机常采用单层绕组。槽定子绕组的导线用槽楔紧固。槽楔常用的材料是竹、胶布板或环氧玻璃布板等非磁性材料。 3)机座机座的作用主要是固定和支撑定子铁心。中小型异步电动机一般都采用铸铁机坐,并根据不同的冷却方式而采用不同的机座型式。例如小型封闭式电动机、电机中损耗变成的热量全都要通过机座散出。为了加强散热能力,在机座的外表面有很多均匀分布的散热筋,以增大散热面积。对于大中型异步电动机,一般采用钢板焊接的机座。 1.2.2 转子 异步电机的转子由转子铁心、转子绕组和转轴组成。

直流电机串电阻启动(DOC)

指导教师评定成绩: 审定成绩: 重庆邮电大学移通学院 课程设计报告 设计题目:直流电机的串电阻启动过程设计 学校: 学生姓名: 专业: 班级: 学号: 指导教师: 设计时间:年月 重庆邮电大学移通学院

目录 一、直流电动机的综述 (4) 1.1直流电动机的基本工作原理 (4) 1.2直流电动机的分类 (5) 1.3直流电动机的特点 (5) 二、他励直流电动机 (5) 2.1他励直流电动机的机械特性 (5) 2.2固有机械特性与人为机械特性 (6) 三、他励直流电动机的起动 (7) 3.1直流电动机的启动过程分析 (8) 3.2他励直流电动机起动电阻的计算 (9) 四、设计内容 (10) 五、结论 (11) 六、心得体会 (12) 七、参考文献 (12)

一、直流电动机的综述 1.1直流电动机的基本工作原理 图1 是一台最简单的直流电动机的模型,N和S是一对固定的磁极(一般是电磁铁,也可以是永久磁铁)。磁极之间有一个可以转动的铁质圆柱体,称为电枢铁心。铁心表面固定一个用绝缘导体构成的电枢线圈abcd,线圈的两端分别接到相互绝缘的两个弧形铜片上,弧形铜片称为换向片,它们的组合体称为换向器。在换向器上放置固定不动而与换向片滑动接触的电刷A和B,线圈abcd通过换向器和电刷接通外电路。电枢铁心、电枢线圈和换向器构成的整体称为电枢。 如果将电源正负极分别接电刷A和B,则线圈abcd中流过电流。在导体ab中,电流由a 流向b,在导体cd中,电流由c流向d,如图(a)所示。载流导体ab和cd均处于N和S 极之间的磁场当中,受到的电磁力的作用。用左手定则可知,载流导体ab受到的电磁力F 的方向是向左的,力图使电枢逆时针方向运动,载流导体cd受到的电磁力F的方向是向右的, 也是力图使电枢逆时针方向运动,这一对电磁力形成一个转矩, 即电磁转矩T,其方向为逆时针方向,使整个电枢沿逆时针方向转动。当电枢转过180°, 导体cd转到N极下,ab转到S极上,如图(b)所示。由于电流仍从电刷A流入,使cd中的电流变为由d流向c,而ab中的电流由b流向a,再从电刷B流出。用左手定则判别可知,导体cd受到的电磁力的方向是向左的,ab受到的电磁力的方向是向右的,因而电磁转矩的方向仍是逆时针方向,使电枢沿逆时针方向继续转动。当电枢在转过180°,就又回到图(a)所示的情况。这就是直流电动机的基本工作原理。

绕线型异步电动机串电阻

课程设计名称:电子技术课程设计题目:绕线型异步电动机串电阻启动 学期:2013-2014学年第2学期 专业:电气技术 班级:电技12-2 姓名:周立君 学号:1205020229 指导教师:王巍

辽宁工程技术大学 课程设计成绩评定表

课程设计任务书 一、设计题目 绕线型三相异步电动机串电阻启动设计 二、设计任务 1、分析绕线型三相异步电动机的启动过程; 2、给出启动级数、各级启动电阻计算公式; 3、以实际例子说明启动级数和各级启动电阻的计算过程; 三、设计计划 电机与拖动课程设计共计1周内完成: 1、第1~2天查资料,熟悉题目; 2、第3~5天方案分析,具体按步骤进行设计及整理设计说明书; 3、第6天准备答辩; 4、第7天答辩。 四、设计要求 1、以实际例子说明启动级数和各级启动电阻的计算步骤; 2、对电枢串电阻启动进行优缺点分析; 指导教师:王巍 时间:年月日

摘要 三相异步电动机是交流电机的一种,主要用作电动机使用,因其结构简单、价格便宜、运行可靠、维护方便,是当前工农业当中应用最普遍的电动机。但是启动电流大是所有电动机启动的共性,电动机启动过程要求启动电流不能超出允许范围而且启动转矩不能太小,启动电流过大可能导致绕组烧坏,启动转矩太小会导致电动机启动过程缓慢甚至不能启动。所以,研究一种可行而适用易操作的启动方案就变得十分必要了。本课题研究绕线型三相异步电动机的电枢串电阻启动,通过理论计算,给出启动级数、各级启动电阻等详细参数,以达到增加最初起动转矩,使电动机以最大转矩T起动,避免因直接起动产生较大电流而带来的危害,提高启动的平稳性的可观效果。 关键词:异步电动机;电枢串电阻;启动

直流电动机串电阻分级启动仿真实验设计

直流电动机串电阻分级启动仿真实验 电路图搭建: 如果电动机直接启动的话,设置Step1/ Step2 /Step3的起始值为0,并且step time 设为0,也就是在0时刻开始以后一直都为0值,也就是三个电阻开关保持闭合,使所串电阻短路,仿真得到转速和电枢电流的启动图形: 可以发现,启动电流在很短的时间里就冲击到很大的值,我们将电流波形横坐标和纵坐标分别放大看看: 从图中可以看到,在时间约为0.08s时刻电流冲击到了大约1840A,这很显然不符合要求,电机一启动就烧,或者启动瞬间熔断丝就烧断。

如果这时候串一个1Ω的电阻,也就是讲三个电阻值都串进电路,设置Step1/ Step2 /Step3的step time 设置为20s,得到以下波形: 可以发现启动电流变小了很多,在200A左右,这也就满足启动电流限制的要求了,但是串联的电阻不能一直在电路中,这样会造成能量损耗,因为虽然电阻很小,但是电流很大,电流平方得到损耗电功率就很大了,即使是在额定运行时,额定电流大约在88.8A,而且我们还发现在时间t=10s时刻,电机还没有达到额定运行状态,也就是启动过程太慢,这主要是串了启动电阻的原因。

现在我们采用分级启动,下次电阻降低是在电流约为额定的1.2倍时,这样我们选t=3.5s时,把串的0.518Ω的电阻去掉,使所串电阻为0.482Ω,设置step3的step time 为3.5s,得到如下仿真图: 可以发现电流会在3.5s时又有一个冲击电流,大约是210V左右,一般也能满足要求, 也就是说,二次所串的电阻0.482欧姆能够满足要求,现在我们试试如果去掉0.838Ω的电阻,只剩一只0.162Ω时仿真的波形: 很显然看出,在时间3.5s时刻,冲击电流很大,大约460V(底下的放大波形可以清楚地看出),这也就不能满足电机的启动电流的要求。所以我们在去电阻时候要选择大小,不能一次性完全去掉,而是一次一次的分级去掉。下面就是我们进行的第二次去电阻。

绕线式电动机转子回路串电阻起动控制电路

绕线式电动机转子回路串电阻启动控制电路的安装、调试及故障排查 【课时安排】 2课时 【实训目标】 1.正确理解三相绕线转子异步电动机转子回路串电阻启动的工作原理。 2.能正确识读三相绕线转子异步电动机转子回路串电阻启动控制电路的原理图和布置图。 3.会按照工艺要求正确安装三相绕线转子异步电动机转子回路串电阻启动控制电路。 4..能用万用表对控制电路进行通电前的检查。 5.能熟练使用电钳工工具及低压测量仪表。 6.培养安全第一、科学严谨、团结合作、成本意识、节能环保意识。 【实训条件准备】 1.常用电工工具:包括试电笔、克丝钳、剥线钳、改锥、尖嘴钳、斜口钳等。 2.万用表 3.绝缘导线:主电路采用平方,控制电路采用BV1平方。 4.绕线式异步电动机 5.交流接触器、时间继电器、按钮、熔断器、热继电器等电器元件 【实训过程】 一、实训电路 1. 绕线式电动机转子回路串电阻启动控制电路原理图如图5所示 图5 绕线式电动机转子回路串电阻启动控制电路 2.小组讨论双速电动机控制线路工作原理。 起动控制:

停止控制: 3.备齐所需电气元器件及工具并检测元器件 配齐所用电气元件,并进行质量检验。元器件应完好,各项技术指标符合规定要求,否则予以更换。 二、计划与实施 1.绘制电器元器件布置图并安装电器元器件 2.绘制接线图 3.安装、接线 (1)小组成员讨论线路连接的思路与方法,并作介绍。 (2)小组合作根据电路图完成接线。 4.检测线路 (1)检查所接电路,按照电路图从头到尾按顺序检查

(2)用万用表初步测试电路有无短路情况。确保电路未通电的情况下把万用表打到欧姆档,用万用表检查电路,并填写在下表。 5.通电运行 (1)整理试验台多余的导线和工具,避免对电路造成影响 (2)为保证人身安全,在通电试车时,一人操作一人监护,认真执行、安全操作规程的有关规定,经老师检查并现场监护。 在教师检查无误后,经教师允许后才可以通电运行。 (1)通电顺序:先合上实验台总电源开关。 按下按钮SB1,观察并记录电动机工作状态,接触器KM状态,时间继电器KT1 状态。 (2)第一延时时间到,观察并记录M工作状态,接触器KM1状态,时间继电器KT2状态。 (3)第二延时时间到,观察并记录M工作状态,接触器KM2状态,时间继电器KT3状态。 (4)第三延时时间到,观察并记录M工作状态,接触器KM3状态。 (5)按下停止按钮SB2,观察并记录M工作状态,接触器KM1状态,接触器KM2状态,接触器KM3状态,时间继电器KT1状态,时间继电器KT2状态,时间继电器KT3状态。 6.故障排查 利用维修电工技能鉴定装置上进行绕线式异步电动机转子回路串电阻起动控制线路的排故练习。记录故障现象、判断记录故障部位、可能的故障原因并说明排故方法。 绕线式异步电动机转子回路串电阻起动控制电路排故记录 7.整理现场 三、评价反馈 双速电动机控制线路安装、调试项目评价表

电动机降压启动接线方法

电动机降压启动接线方法 一.自耦减压启动 自耦减压启动是笼型感应电动机(又称异步电动机)的启动方法之一。它具有线路结构紧凑、不受电动机绕组接线方式限制的优点,还可按允许的启动电流和所需要的启动转矩选用不同的变压器电压抽头,故适用于容量较大的电动机。 图1 自耦减压启动 工作原理如图1所示:启动电动机时,将刀柄推向启动位置,此时三相交流电源通过自耦变压器与电动机相连接。待启动完毕后,把刀柄扳至运行位置切除自耦变压器,使电动机直接接到三相电源上,电动机正常运转。此时吸合线圈KV得电吸合,通过连锁机构保持刀柄在运行位置。停转时,按下SB按钮即可。 自耦变压器次级设有多个抽头,可输出不同的电压。一般自耦变压器次级电压是初级的40%、65%、80%等,可根据启动转矩需要选用。 二.手动控制Y-△降压启动

Y-△降压启动的特点是方法简便、经济。其启动电流是直接启动时的1/3,故只适用于电动机在空载或轻载情况下启动。 图2 手动控制Y-△降压启动 图2所示为QX1型手动Y-△启动器接线图。图中L1、L2和L3接三相电源,D1、D2、D3、D4、D5和D6接电动机。当手柄扳到“0”位时,八副触点都断开,电动机断电不运转;当手柄扳到“Y”位置时,1、2、5、6、8触点闭合,3、4、7触点断开,电动机定子绕组

接成Y形降压启动;当电动机转速上升到一定值时,将手柄扳到“△”位置,这时l、2、3、4、7、8触点接通,5、6触点断开,电动机定子绕组接成△形正常运行。 三.定子绕组串联电阻启动控制 电动机启动时,在电动机定子绕组中串联电阻,由于电阻上产生电压降,加在电动机绕组上的电压低于电源电压,待启动后,再将电阻短接,使电动机在额定电压下运行,达到安全启动的目的。 定子绕组串联电阻启动控制线路如图3所示。当启动电动机时,按下按钮SB1,接触器KM1线圈得电吸合,使电动机串入电阻降压启动。这时时间继电器KT线圈也得电,KT常开触点经过延时后闭合,使KM2线圈得电吸合。KM2主触点闭合短接启动电阻,使电动机在全电压下运行。停机时,按下停机按钮SB2即可。 四.手动串联电阻启动控制 当三相交流电动机标牌上标有额定电压为220/380V(△/Y)的接线方法时,不能用Y-△方法做降压启动,可用这种串联电阻或电抗器方法启动。

直流电动机起动实验

实验一直流电动机起动实验 一、实验目的理解直流电机的工作原理,测试直流电动及直接起动的波形。说明负载转矩、转速、电流、电磁转矩之间为何具有相应的对应关系。 二、实验的主要内容 仿真一台直流并励电动机的起动过程。电动机参数为: PN =17kW, U N = 220V, n0= 3000r/min,电枢回路电阻R a =0. 0870,电枢电感La =0. 0032H,励磁回路电阻R F=181.50,电机转动惯量J=0.76 kg ?m2。 三、实验的基本原理直流电动机刚与电源接通的瞬间,转子尚未转动起来时,他励和串励电动机的电枢电流以及并励和复励电动机的输入电流称为起动电流,这时的电磁转矩称为起动转矩。一般情况下,在额定电压下直接起动时,起动电流可达电枢电流额定值的10~20倍,起动转矩也能达到额定转矩的10~20倍,这样的起动电流是换向所不允许的,而且过大的起动转矩会使电动机和它所拖动的生产机械遭受突然的巨大冲击,以致损坏传动机械和生产机械。由此可见,除了额定功率在数百瓦以下的微型直流电动机,因电枢绕组导线细、枢电阻大以及转动惯量又比较小,可以直接起动以外,一般的直流电动机是不允许采用直接起动的。 四、实验步骤 1) 建立并激电动机的仿真模型:直流电动机DCmotor 的电枢和励磁并联后由直流电源DC 供电,用Step 模块给定电动机的负载转矩,在DCmotor 的m 端连接了Demux 模块,将m 端输出的4 个信号分为4 路,以便通过示波器Scope 观察,m 端输出的转速单位为rad/s,这里使用了一个放大器(Gain), 将rad/s 转换为习惯的r/min,变换系数为:k=60/2 π =9.55。 2) 计算电动机参数: 励磁电流 励磁电感在恒定磁场控制时可取“ 0” 电枢电阻 R a =0.0870 电枢电感估算

他励直流电机串电阻启动

他励直流电动机串电阻启动仿真一、工作原理 电动机的起动是指电机合上电源后,从静止状态加速到所要求的稳定转速时的过程。起动时把电动机电枢直接加上额定电压是不允许的,因为在起动前,电机转速为零,由电枢电势公式可知,Ea也为零,电枢绕组电阻Ra又很小,若此时加上额定电压,会引起过大的起动电流Is,Is = UN/Ra,其值可达额定值的10~20倍。这样大的启动电流会产生强烈火花,甚至烧毁换向器;还会加剧电网电压的波动,影响同一电网上其他设备的正常运行,甚至可能引起电源开关跳闸。 直流电动机在电枢回路中串联电阻起动是限制起动电流和起动转矩的有效方法之一。建立他励直流电动机电枢串联电阻起动的仿真模型,仿真分析其串联电阻起动过程,获得起动过程的电枢电流、转速和电磁转矩的变化曲线。 二、参数计算 有一台他励直流电动机,参数如下: PN=100KW UaN=440V IaN=497A

nN=1500r/min Ra=0.076Ω 若采用串电阻启动,所串电阻计算如下: (1)选择I1和I2 I1=(1.5~2.0)IaN=(1.5~2.0)497A=(745.5~994)A I2=(1.1~1.2)IaN=(1.1~1.2)497A=(546.7~596.4)A 选择I1=850A ,I2=550A (2)求出起切电流比β 5.1550 85021===I I β (3)求出启动时的电枢电路电阻Ram Ω=Ω==518.0850 4401I U R aN am (4)求出启动级数m 74.45 .1lg 076.0518.0lg lg lg ===βa aN R R m 故取m=5 (5)重新计算β,校验I 2

电机与拖动课程设计---他励直流电动机串电阻启动

课程设计名称:电机与拖动课程设计 题目:他励直流电动机串电阻启动 专业:电气工程及其自动化 班级: 姓名: 学号:

直流电动机是人类最早发明和应用的一种电机。直流电机可作为电动机用,也可作为发电机用。直流电动机是将直流电能转换成机械能而带动生产机械运转的电器设备。与交流电动机相比,直流机因结构复杂、维护困难、价格较贵等缺点制约了它的发展,但是它具有良好的启动、调速和制动性能,因此在速度调节要求较要、正反转和启动频繁或多个单元同步协调运转的生产机械上,仍广泛采用直流电动机拖动。在工业领域直流电动机仍占有一席之地。因此有必要了解直流电动的运行特性。在四种直流电动机中,他励电动机应用最为广泛。 关键词:直流电机;串电阻;启动;原理;分类:机械特性;变速

1 直流电动机简介............................... 错误!未定义书签。 2 直流电机的基本结构 (1) 2.1 定子 (1) 2.2 转子.................................... 错误!未定义书签。 2.3 气隙.................................... 错误!未定义书签。 3 直流电动机的工作原理 (2) 4 直流电机的分类 (3) 5 他励直流电动机的机械特性 (5) 6 直流电机的名牌数据和主要系列 (6) 7 固有机械特性与人为机械特性 (7) 8 他励直流电动机串电阻起动 (8) 9 起动电阻的计算 (10) 10 设计得出结论 (12) 体会............................................ 错误!未定义书签。参考文献........................................ 错误!未定义书签。

绕线式电动机转子串电阻调速方法

绕线式电动机转子串电阻 调速方法 LELE was finally revised on the morning of December 16, 2020

绕线式电动机转子串电阻调速方法 绕线式异步电动机转子串入附加电阻,使电动机的转差率加大,电动机在较低的转速下运行。串入的电阻越大,电动机的转速越低。此方法设备简单,控制方便,但转差功率以发热的形式消耗在电阻上。属有级调速,机械特性较软。 1、串电阻启动增加,降低,起动达速后切除启动电阻(就是转子回路)全速运行。 2、串电阻启动(电阻最大值起动),根据需要调整电阻的阻值,可以改变电机的运行速度,达到调速的目的(是有范围的调速)。 绕线式电机的启动电流是可调的,通过调整转子串联的电阻大小,可以调节绕线式电机的启动电流! 原理:对于绕线式异步电动机,当电网电压及频率不变时,在转子回路中串入电阻后,可以改善电动机的起动转矩,在绕线电机转子中串接启动电阻,减小启动电流,电阻一般接为星形接法,根据公式: I0=U0/R0 当转子串接电阻时R0↑,在U0不变的情况下,I0↓,此分析忽略电机感抗的损耗。 启动前将电阻全部接入转子回路,随着启动过程的结束,启动电阻被逐级短接,KM1,KM2,KM3逐级吸合,保证始终有较大的起动转矩,短接方式可以遵循时间和电流调节原则,KA1,KA2,KA3中间继电器可以根据实际工作情况而 定。 RN=E N÷I N÷√3 R N:电机转子额定电阻 E N:电机转子额定电压 I N:电机转子额定电流 例:240KW-6极电机,定子电流436A,定子电压380V。转子电流376A,转子电压407V RN=(E N÷IN)÷√3=(407÷376)÷√3=()÷√3=Ω △RY1= RN =× =Ω △RY2= =×=Ω △R1= =× =Ω △R2= RN =× =Ω

绕线异步电动机串电阻启动

1.电动机 1.1旋转磁场 定子三相对称绕组中通以频率为f 1 的三相对称电流便会产生旋转磁场。旋转磁场的转速由下式确定 n 0= p f 1 60 式中,P为电机的极对数。n 又称为同步转速旋转磁场的转向由三相电 流通入三相绕组的相序决定。改变电流相序,旋转磁场的转向随之改变。 1.2异步电动机结构 Y形的电阻,或直接通过短路端环短三相异步电动机主要由静止的和转动的两部分构成,其静止部分称为定子。定子是用硅钢片叠成的圆筒形铁心,其内圆周有槽用来安放三相对称绕组:三相对称绕组每相在空间互差120°,可联接成Y形或Δ形。三相异步电动机转动的部分称为转子,是用硅钢片叠成的圆柱形铁心,与定子铁心共同形成磁路。转子外圆周有槽用以安放转子绕组。转子绕组有鼠笼式和线绕式两种。鼠笼式:将铜条扦入槽内,两端用铜环短接,或直接用熔铝浇铸成短路绕组。线绕式:安放三相对称绕组,其一端接在一起形成Y形,另一端引出连接三个已被接成路。 1.3异步电动机工作原理 转子绕组切割旋转磁场产生感应电势,并在短路的转子绕组中形成转子电流,转子电流与旋转磁场相互作用产生电磁力,形成转动力矩,使转子随旋转磁场以转速n转动并带动机械负载。转子和旋转磁场之间转速差的存在是异步电动机转动的必要条件,转速差以转差率s衡量

S= 0-n n n ×100% 1.4定子 定子铁芯:导磁和嵌放定子三相绕组:0.5mm 硅钢片冲制涂漆叠压而成;内圆均匀开槽;槽形有半闭口;半开口和开口槽三种:适用于不同的电机 定子绕组:电路;绝缘导线绕制线圈;由若干线圈按一定规律连接成三相对称绕组交流电机的定子绕组称为电枢绕组 机座:支撑和固定作用;铸铁或钢板焊接 1.5转子 转子铁芯:导磁和嵌放转子绕组;0.5mm 硅钢片;外圆开槽 转子绕组:分为笼型和绕线型两种 笼型绕组:电路;铸铝或铜条优缺点 绕线型绕组:对称三相绕组:星接;集电环优缺点 气隙:气隙大小的影响:中小型电机的气隙为0.2mm ~2mm 2.电动机的起动指标 起动是指电动机从静止状态开始转动起来,直至最后达到稳定运行。对于任何一台电动机,在起动时,都有下列两个基本的要求。 2.1起动转矩要足够大 堵转状态时电动机刚接通电源,转子尚未转动时的工作状态,工作点在特性曲线上的S 点。这时的转差s=1,转速n=0,对应的电磁转矩T st 称为起动转矩。 堵转状态说明了电动机的直接起动能力。因为只有在T st >T L <一般要求T st >(1.1~1.2)T L ,电动机才能起动起来。T st 大,电动机才能重载起动;T st

PLC课程设计-三相异步电动机转子串电阻启动

目录 摘要 (1) 关键词 (1) 1 关于PLC (2) 1.1概述 (2) 1.2 PLC的系统组成 (2) 2 S7-200简介 (3) 2.1 概述 (3) 2.2 组成 (3) 3 三相异步电动机的工作原理和结构组成 (3) 3.1 工作原理 (3) 3.2 结构组成 (4) 3.2.1 定子 (4) 3.2.2 转子 (4) 3.2.3 气隙 (4) 3.3 异步电动机的结构特点 (5) 3.4 转子串电阻启动的原理 (5) 3.5 启动电阻的使用原则 (5) 4 课程设计的目的 (5) 5 主接线图 (6) 5.1三相异步电动机转子串电阻启动主接线图 (6) 5.2绕线式的作用以及优缺点 (6) 6 硬件系统的设置 (6) 6.1 资源配置 (6) 6.2 PLC接线图 (7) 7 主程序设置 (7) 7.1 主程序梯形图 (7) 7.2 工作过程分析 (9) 8模拟软件上仿真动作与实验面板上调试演示结果 (10) 9课程设计总结 (11) 参考文献 (12)

三相异步电动机转子串电阻启动 三相异步电动机转子串电阻启动 指导教师 摘要:PLC在三相异步电机控制中的应用,与传统的继电器控制相比,具有控制速度快、可靠性高、灵活性强、功能完善等优点。长期以来,PLC始终处于工业自动化控制领域的主战场,为各种各样的自动化控制设备提供了非常可靠的控制应用。它能够为自动化控制应用提供安全可靠和比较完善的解决方案,适合于当前工业企业对自动化的需要。本文设计了三相异步电动机的PLC控制电路,该电路主要以性能稳定、简单实用为目的。 关键词:PLC;编程语言;三相异步电机;继电器 Three-phase Asynchronous Motor Rotor String Resistance Start Student majoring in Automation Liu Tong Tutor Zhou Jing Lei Abstract:PLC in three-phase asynchronous motor control application, compared with the traditional relay control, has control of speed, high reliability and flexibility, the perfect function etc. Long-term since, PLC is always in the industrial automation control field, igge for various automatic control equipment provides a very reliable control applications. It can provide security for automation control application reliable and comparatively perfect solutions, suitable for the current industrial enterprise of automation needs. This paper introduces the design of three-phase asynchronous motor, the PLC control circuit, this circuit mainly stable performance, simple and practical for the purpose. Key words: PLC;programming languages,;three-phase asynchronous motor,;relays

绕线型三相异步电动机串电阻启动

课程设计名称:电机与拖动课程设计 题目:绕线型三相异步电动机串电阻启动 专业:电气工程及其自动化 班级:电气09-1 姓名: XXX 学号:XXXXXXXXXX XXXX大学 课程设计成绩评定表

摘要 三相异步电动机是交流电机的一种,主要用作电动机使用,因其结构简单、价格便宜、运行可靠、维护方便,是当前工农业当中应用最普遍的电动机。但是启动电流大是所有电动机启动的共性,电动机启动过程要求启动电流不能超出允许范围而且启动转矩不能太小,启动电流过大可能导致绕组烧坏,启动转矩太小会导致电动机启动过程缓慢甚至不能启动。所以,研究一种可行而适用易操作的启动方案就变得十分必要了。本课题研究绕线型三相异步电动机的电枢串电阻启动,通过理论计算,给出启动级数、各级启动电阻等详细参数,以达到增加最初起动转矩,使电动机以最大转矩T起动,避免因直接起动产生较大电流而带来的危害,提高启动的平稳性的可观效果。 关键词:异步电动机电枢串电阻启动

目录 引言 (1) 1三相异步电动机 (2) 1.1 三相异步电动机的基本结构 (2) 1.1.1 定子 (2) 1.1.2 转子 (2) 1.2 三相异步电动机的工作原理 (2) 1.2.1 旋转磁场 (2) 1.2.2 电磁转矩的产生 (3) 1.3 异步电动机的启动方法 (3)

1.4 异步电动机的启动指标 (3) 2 绕线形异步电动机串电阻启动 (4) 2.1 启动过程分析 (4) 2.1.1 串联启动电阻Rst和Rst启动 (4) 2.1.2 切除启动电阻Rst2 (5) 2.1.3 切除启动电阻Rs1 (5) 2.2 启动电阻的计算 (5) 2.2.1 选择起动转矩Tst1和切换转矩Tst2…………………………… 5 2.2.2 求出起动转矩比β (5) 2.2.3 求出起动级数m (5) 2.2.4 重新计算β,校验T ,是否在规定范围内……………………… 7 2.2.5 求出转子每相绕组的电阻R (7) 2.2.6 计算各级总电阻 (7) 2.2.7 求出各级起动的电阻 (8) 3 实际例子分析 (9) 3.1 电动机相关参数 (9) 3.2 计算起动转矩T1 (9) 3.3 计算切换转矩T2 (9) 3.4 计算切换转矩比β (9) 3.5 计算起动级数 (9)

他励直流电动机串电阻的设计

淮阴工学院 课程设计说明书 作者: 学号: 学院: 机械工程学院 专业: 机械电子工程 题目: 他励直流电动机串电阻启动的设计指导者:

绪论 (1) 1直流电动机 (2) 1.1直流电动机的工作原理 (2) 1.2直流电动机的分类 (2) 1.3直流电动机的工作原理 (2) 2他励直流电动机 (4) 2.1他励直流电动机的机械特性 (4) 2.2他励直流电动机的启动 (5) 2.21对启动的要求 (5) 2.22电枢回路串电阻启动 (5) 2.3直流电动机电枢串电阻启动设计方案 (8) 2.31分级启动主回路和控制回路以及相关电器元件 (10) 2.32启动特性曲线 (10) 3设计体会 (11) 4参考文献 (12)

绪论 直流他励电动机控制器的优点是,线路无需切换即可实现牵引与制动的转换,带载能力强,防空转性能好。但是,如果不能掌握正确的启动方法,电机还是不能正常运行的。下面,我们就要对电机的启动过程和方法做一些必要的分析。 由于启动瞬间n=0,电枢电动势0=Φ=n K E e ,而电枢电阻有很小,所以启 动电流R U n =st I 将达到很大的数值。过大的启动电流,会引起电网电压的波动,影响其他用户的正常用电,并且会使电动机轴上受到很大的冲击。这种不采取任何措施就直接把电动机加上额定电压的启动办法,称为直接启动。处个别容量很小的电动机可以直接采用外,一般直流电动机不允许直接启动【1】。 在拖动装置要求不高的场合下,可以采用降低启动电压或在电枢回路串电阻的方法【2】。本文对他励直流电机进行细致的介绍,用图片与文字相结合的方式 对他励直流电机工作时过程中的变量与时间的关系进行描绘,使我们更加清楚的了解他励直流电机的工作原理。

转子串电阻调速

绕线转子异步电动机转子串电阻电感起动与调速方 法的研讨 绕城转子异步电动机能够通过转子串电阻进行起动与调速,但电阻上能耗大;如果转子串频敏变阻器,虽能减少损耗,但只能起动而不能调速。本文提出一种转子串电阻、电感的方法,既能用于起动与调速,又能较大程度地节能。IJ作原理如图1,在绕线电机转于绕组每相串入相同的电阻与电感。首先我们考虑只串电感L的情况,电机运行时的临界转差率式中r;——定子绕组的电阻X;——定于绕组的电抗r二。——转子绕组电阻的折算值X二——转子回路电抗的折算值teZ。H。0+XL其中X二。——转子绕组电抗的折算值X、——转子串电感L的电抗折算值由于r;<<x。,x;Wx。,略去r;、x;,则即Sm与人成反比,与固有特性相比,临界转差率的值减少。电机运行时的最大转矩为同理略去r;、x;,则式中m;——电机定子相数V;——电机定子相电压。。——电机同步角速度由式(2)可知,凡人与Xb也成反比,与固有特性相比,最大转矩减少。由以上分析可知,转子串电感时的机械特性如图2中的曲线1(曲线0为电机的固有特性)。在此基础上转子绕组再串入电阻Rnl 与Rn。,由式(l)、式(2)可知:临界转差率随转子回路电阻的增加而增大,而最大转短不变,其机械(本文共计3页)......[继续阅读本文] 转子上串联电阻可以降低启动电流增大启动转矩,同样也可以用于调速,但转子回路串联电阻调速的方式不理想,在电机轻载和空载的时候几乎起不到调速的作用,串联电抗器也可以减小起动电流,但是起动转矩也会减小很多,所以不采用串联电抗器来启动。 不是说三项绕线转子异步电动机转子回路串入电阻,可以增大起动转矩,串入电阻值越大,起动转矩越大?要合适 是应该三相都串的,以保持三相平衡。所串电阻增大,转速变低。因为电阻增大,相当于电机端电压降低,电机机械特性变软,转差率增大。负载恒定的时候,电机的电流会增大的。

绕线式电动机转子回路串电阻起动控制电路

【实训项目名称】 绕线式电动机转子回路串电阻启动控制电路的安装、调试及故障排查 【课时安排】 2课时 【实训目标】 1.正确理解三相绕线转子异步电动机转子回路串电阻启动的工作原理。 2.能正确识读三相绕线转子异步电动机转子回路串电阻启动控制电路的原理图和布置图。 3.会按照工艺要求正确安装三相绕线转子异步电动机转子回路串电阻启动控制电路。 4..能用万用表对控制电路进行通电前的检查。 5.能熟练使用电钳工工具及低压测量仪表。 6.培养安全第一、科学严谨、团结合作、成本意识、节能环保意识。 【实训条件准备】 1.常用电工工具:包括试电笔、克丝钳、剥线钳、改锥、尖嘴钳、斜口钳等。 2.万用表 3.绝缘导线:主电路采用BV1.5平方,控制电路采用BV1平方。 4.绕线式异步电动机 5.交流接触器、时间继电器、按钮、熔断器、热继电器等电器元件 【实训过程】 一、实训电路 1.绕线式电动机转子回路串电阻启动控制电路原理图如图5所示 图5 绕线式电动机转子回路串电阻启动控制电路 2.小组讨论双速电动机控制线路工作原理。 起动控制:

停止控制: 3.备齐所需电气元器件及工具并检测元器件 配齐所用电气元件,并进行质量检验。元器件应完好,各项技术指标符合规定要求,否则予以更换。 二、计划与实施 1.绘制电器元器件布置图并安装电器元器件 2.绘制接线图 3.安装、接线 (1)小组成员讨论线路连接的思路与方法,并作介绍。 (2)小组合作根据电路图完成接线。 4.检测线路

(1)检查所接电路,按照电路图从头到尾按顺序检查 (2)用万用表初步测试电路有无短路情况。确保电路未通电的情况下把万用表打到欧姆档,用万用表检查电路,并填写在下表。 5.通电运行 (1)整理试验台多余的导线和工具,避免对电路造成影响 (2)为保证人身安全,在通电试车时,一人操作一人监护,认真执行、安全操作规程的有关规定,经老师检查并现场监护。 在教师检查无误后,经教师允许后才可以通电运行。 (1)通电顺序:先合上实验台总电源开关。 按下按钮SB1,观察并记录电动机工作状态,接触器KM状态,时间继电器KT1 状态。 (2)第一延时时间到,观察并记录M工作状态,接触器KM1状态,时间继电器KT2状态。 (3)第二延时时间到,观察并记录M工作状态,接触器KM2状态,时间继电器KT3状态。 (4)第三延时时间到,观察并记录M工作状态,接触器KM3状态。 (5)按下停止按钮SB2,观察并记录M工作状态,接触器KM1状态,接触器KM2状态,接触器KM3状态,时间继电器KT1状态,时间继电器KT2状态,时间继电器KT3状态。 6.故障排查 利用维修电工技能鉴定装置上进行绕线式异步电动机转子回路串电阻起动控制线路的排故练习。记录故障现象、判断记录故障部位、可能的故障原因并说明排故方法。 绕线式异步电动机转子回路串电阻起动控制电路排故记录 7.整理现场 三、评价反馈

电流原则控制绕线式异步电动机转子串电阻起动控制线路

电流原则控制绕线式异步电动机转子串电阻起动控制线路 三相绕线式异步电动机的转子中有三相绕组,可以通过滑环串接外接电阻或频敏变阻器,实现降压起动。 按照起动过程中转子串接装置的不同,分为串电阻起动和串频敏变阻器起动两种起动方式。 串电阻起动中包括基于电流原则的起动和基于时间原则的起动控制线路,图3.14所示电路是基于电流原则的起动控制线路。在电动机的转子绕组中串接KI1、KI2、KI3这三个具欠电流继电器的线圈,它们具有相同的吸合电流和不同的释放电流。在起动瞬间,转子转速为零,转子电流最大,三个电流继电器同时吸合,随着转子转速的逐渐提高,转子电流逐渐减小,KI1、KI2、KI3依次释放,其常闭触点依次复位,使相应的接触器线圈依次通电,通过它们的主触点的闭合,去完成逐段切除起动电阻的工作。 三相异步电动机正反转电气控制线路

在图3.5中,(a)图为主电路,通过当接触器KM1三对主触点把三相电源和电动机的定子绕组按顺相序L1、L2、L3连接,,而KM2的三对主触点把三相电源和电动机的定子绕组按反相序L3、L2、L1连接, 使电动机可以实现正反两个方向上的运行。 而图3.5(b)中,按下正转起动按钮SB2,接触器KM1线圈通电且自锁,主触点闭合使电动机正转,按下停止按钮SB1,接触器KM1线圈断电,主触点断开,电动机断电停转。再按下反转起动按钮SB3,接触器KM2线圈通电且自锁,主触点闭合使电动机反转。但是在(b)图中,若按下正转起动按钮SB2再按下反转起动按钮SB3,或者同时按下SB2和SB3,接触器KM1和KM2线圈都能通电,两个接触器的主触点都会闭合,造成主电路中两相电源短路,因此,对正反转控制线路最基本的要求是:必须保证两个接触器不能同时工作,以防止电源短路,即进行互锁,使同一时间里只允许两个接触器中一个接触器工作。所以在图3.5(c)中,接触器KM1 、KM2线圈的支路中分别串接了对方的一个常闭辅助触点。工作时,按下正转起动按钮SB2,接触器KM1线圈通电,电动机正转,此时串接在KM2线圈支路中的KM1常闭触点断开,切断了反转接触器KM2线圈的通路,此时按下反转起动按钮SB3将无效。除非按下停止按钮 SB1,接触器KM1线圈断电,KM1常闭触点 复位闭合,再按下反转起动按钮SB3实现电动机的反转,同时,串接在KM1线圈支路中的KM2常闭触 点断开,封锁了接触器KM1使它无法通电。 这样的控制线路可以保证接触器KM1 、KM2不会同时通电,这种作用称为互锁,这两个接触器的常闭触点称为互锁触点,这种通过接触器常闭触点实现互锁的控制方式称为接触器互锁,又称为电气互锁。 时间原则控制绕线式异步电动机转子串电阻起动控制线路 图3.15所示电路是基于时间原则的起动控制线路。KT1、KT2、KT3为通电延时时间继电器,其延时时间与起动过程所需时间相对应。R1、R2、R3为转子外接电阻,起动后随着起动时间的增加,转子回路三段起动电阻的短接是靠三个时间继电器KT1、KT2、KT3与三个接触

三相绕线式转子异步电动机转子串电阻启动

哈尔滨理工大学荣成学院《可编程序控制器课程设计》 ---用PLC控制的三相绕线式转子异步 电动机转子串电阻启动 专业: 班级: 姓名: 学号: 日期:

一、实验目的 1.掌握可编程控制器程序的应用系统的调试、监控、运行方法。 2.进一步熟悉常用设备、元器件的类型和特征,并掌握合理运用原则和使用方法。培养严肃认真的工作作风和严谨的科学态度。 3.借助课程设计中的对三相绕线式转子异步电动机转子串电阻启动PLC设计,提高和掌握可编程序控制器的各种实际应用的能力。 4.综合运用所学的理论知识独立完成一个课题,培养学生独立分析和解决实际问题的能力,学会撰写课程设计总结报告。 二、实验内容及要求 1.实验任务: 根据电气实验原理图将其进行PLC改造。在启动前,启动电阻全部接入电路中,在启动过程中,启动电阻被逐级地短接切除,正常运行时所有外接启动电阻全部切除。具体操作要求:按下启动按钮主电路的主触点闭合,自锁,延时5S,R1电阻切除,延时3S后R2电阻切除,再延时3S后所有电阻均切除,启动完成。按下停止按钮,电动机停,实验原理图见图1。 2.电气实验原理图

3.绕线式的作用以及优缺点 三相异步电动机转子回路串接电阻,一方面可以减小起动电流,另一方面可以增加最初起动转矩,当串入某一合适电阻时,还能使电动机以它的最大转矩T 起动。当然,所串联的电阻超过一定数值后,最初起动转矩反而会减小。由于绕线异步电动机的转子串联合适的电阻,不但可以减少起动电流,而且可以增大起动转矩,因而,要求起动的转矩大或起动频繁的生产机械常用绕线型异步电动机。转子回路串三相对称可变电阻起动,这种方法既可限制起动电流,又可增大起动转矩,串接电阻值取得适当,还可使起动转矩接近最大转矩起动,适当增大串接电阻的功率,使起动电阻兼作调速电阻,一物两用,适用于要求起动转矩大,并有调速要求的负载。缺点:多级调速控制电路较复杂,电阻耗能大。 三、硬件系统的设计 1.资源配置 2.外部接线图

相关主题