搜档网
当前位置:搜档网 › 高考物理一轮总复习检测:第五章 第4课时 功能关系 能量守恒定律 Word版含答案

高考物理一轮总复习检测:第五章 第4课时 功能关系 能量守恒定律 Word版含答案

高考物理一轮总复习检测:第五章 第4课时 功能关系 能量守恒定律 Word版含答案
高考物理一轮总复习检测:第五章 第4课时 功能关系 能量守恒定律 Word版含答案

一、功能关系

二、能量守恒定律

1.内容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变.

2.表达式:ΔE减=ΔE增.

1.力对物体做了多少功,物体就有多少能量.(×)

2.功就是能,能就是功.(×)

3.滑动摩擦力做功时,一定会引起能量的转化.(√)

4.能量在转化或转移的过程中,其总量有可能增加,也可能减小.(×)

5.能量在转化或转移的过程中总量保持不变,故没有必要节约能源.(×)

1.(2017·鞍山模拟)如图所示是安装在列车车厢之间的摩擦缓冲器结构图,图中①和②为楔块,③和④为垫板,楔块与弹簧盒、垫板间均有摩擦.在车厢相互撞击使弹簧压缩的过程中()

A.缓冲器的机械能守恒

B.摩擦力做功消耗机械能

C.垫板的动能全部转化为内能

2020高考物理二轮复习专题二相互作用对对练含解析

相互作用 2020年高考必备 2015年2016年2017年2018年2019年Ⅰ 卷 Ⅱ 卷 Ⅰ 卷 Ⅱ 卷 Ⅲ 卷 Ⅰ 卷 Ⅱ 卷 Ⅲ 卷 Ⅰ 卷 Ⅱ 卷 Ⅲ 卷 Ⅰ 卷 Ⅱ 卷 Ⅲ 卷 考点一重力、弹力、摩擦力力的合成与分解 考点二受力分析 共点力的平衡 19 14 17 21 16 17 19 16 16 考点三实验:1.探究弹力和弹 簧伸长的关系 22 实验:2.验证力的平行 四边形定则 22 考点一重力、弹力、摩擦力力的合成与分解 命题角度1(储备)弹力与摩擦力的分析 【典题】(多选)(2019河北衡水高三月考)如图所示,质量为m的木块A放在质量为M的三角形斜面体B上,现用大小不相等、方向相反的水平力F1、F2分别推A和B,它们均静止不动,且F1

用假设法分析隐蔽的弹力与静摩擦力 (1)接触面形变情况不清晰,则相关弹力较为“隐蔽”.此时需用“假设法”判定弹力的有无和弹力的方向. 也可假设有弹力,做相似分析. (2)接触面间的相对运动趋势不明确,则相关静摩擦力较为“隐蔽”,此时需用“假设法”判定静摩擦力的有无和静摩擦力的方向. 也可假设有静摩擦力,做相似分析. (3)应用“假设法”时,一般结合力的合成与分解、平衡条件等知识分析. 典题演练提能·刷高分 1.

功能关系能量守恒定律专题

功能关系能量守恒定律专题 一、功能关系 1.内容 (1)功是的量度,即做了多少功就有发生了转化. (2)做功的过程一定伴随着 ,而且必通过做功来实现. 2.功与对应能量的变化关系 说明 每一种形式的能量的变化均对应一定力的功. 二、能量守恒定律 1.内容:能量既不会消灭,也 .它只会从一种形式为其他形式,或者从一个物体转移到另一个物体,而在转化和转移的过程中,能量的总量 . 2.表达式:ΔE减= . 说明ΔE增为末状态的能量减去初状态的能量,而ΔE减为初状态的能量减去末状态的能量. 热点聚焦 热点一几种常见的功能关系 1.合外力所做的功等于物体动能的增量,表达式:W合=E k2-E k1 , 即动能定理. 2.重力做正功,重力势能减少;重力做负功,重力势能增加.由于“增量”是终态量减去始态量,所以重力的功等于重力势能增量的负值,表达式: WG=-ΔEp=Ep1-Ep2. 3.弹簧的弹力做的功等于弹性势能增量 的负值,表达式:W F=-ΔEp=Ep1-Ep2.弹力做多少正功,弹性势能减少多少;弹力做多少负功,弹性势能增加多少. 4.除系统内的重力和弹簧的弹力外,其他力做的总功等于系统机械能的增量,表达式: W其他=ΔE. (1)除重力或弹簧的弹力以外的其他力做多少正功,物体的机械能就增加多少. (2)除重力或弹簧的弹力以外的其他力做多少负功,物体的机械能就减少多少. (3)除重力或弹簧的弹力以外的其他力不做功, 物体的机械能守恒.

特别提示 1.在应用功能关系解决具体问题的过程中,若只涉及动能的变化用“1”,如果只涉及重力势能的变化用“2”,如果只涉及机械能变化用“4”,只涉及弹性势能的变化用“3”. 2.在应用功能关系时,应首先弄清研究对象,明确力对“谁”做功,就要对应“谁”的位移,从而引起“谁”的能量变化.在应用能量的转化和守恒时,一定要明确存在哪些能量形式,哪种是增加的,哪种是减少的,然后再列式求解. 热点二对能量守恒定律的理解和应用1.对定律的理解 (1)某种形式的能减少,一定存在其他形式的能增加,且减少量和增加量一定相等. (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等. 这也是我们列能量守恒定律方程式的两条基本思路. 2.应用定律解题的步骤 (1)分清有多少形式的能[如动能、势能(包括重力势能、弹性势能、电势能)、内能等]在变化. (2)明确哪种形式的能量增加,哪种形式的能量减少,并且列出减少的能量ΔE减和增加的能量ΔE增的表达式. (3)列出能量守恒关系式:ΔE减=ΔE增. 特别提示 1.应用能量守恒定律解决有关问题,关键是准确分析有多少种形式的能量在变化,求出减少的总能量ΔE减和增加的总能量ΔE增,然后再依据能量守恒定律列式求解. 2.高考考查该类问题,常综合平抛运动、圆周运动以及电磁学知识考查判断、推理及综合分析能力. 热点三摩擦力做功的特点

高中物理常见功能关系

高中物理常见功能关系 功是能量转化的量度。有多少功就有多少能量参与转化。高中阶段常见的做功引起能量转化的基本类型如下: 1、合外力的功等于物体动能的变化量; 这是动能定理的基本类容,表达式为 W=Ek2-Ek1=ΔEk; 2、重力的功等于物体重力势能的减少量; 注意,是重力势能的减少量,不是变化量。变化量是指增量,所以减少量是变化量的相反数。这个用关系式表达为WG=Ep1-Ep2=-ΔEp; 3、重力以外的力做功等于物体机械能的变化量;即 W=E2-E1=ΔE; 4、互为作用力与反作用力的一对滑动摩擦力做功等于系统机械能的减少量; 设两个物体之间存在着大小为f的滑动摩擦力,则对物体1,摩擦力做功为Wf1=fx1,对物体2,摩擦力做功为 Wf2=-fx2,则Wf1+Wf2=f(x1-x2)=fx相,这个x相是指相对路程。fx相等于系统机械能的减少量。 5、弹簧弹力做功等于弹性势能的减少量; 这个与第二点“重力做功等于重力势能的减少量”类似。表达式也是W=Ep1-Ep2=-ΔEp 6、电场力做功等于电势能减少量;

若在电场中带电体从A点移动到B点,则 WAB=EpA-EpB=-ΔEp 7、分子力做功等于分子势能减少量; 8、安培力做多少功就有多少电能转化为其他形式能;克服安培力做多少功就有多少其他形式能转化为电能; 推导如下:W安=-BILx=-I*BLv*t=-EIt=-W电 以上是高中阶段常见功能关系的一点总结。看起来纷繁复杂,其实可以总结为一个表达式:即W=以上是高中阶段常见功能关系的一点总结。看起来纷繁复杂,其实可以总结为一个表达式:即W=ΔE,也就是:力做了多少功,就有多少能量参与转化。所以说:功是能量转化的量度。

最新高考物理直线运动真题汇编(含答案)

最新高考物理直线运动真题汇编(含答案) 一、高中物理精讲专题测试直线运动 1.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g取10m/s2)。求: (1)车在加速过程中木箱运动的加速度的大小 (2)木箱做加速运动的时间和位移的大小 (3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。 【答案】(1)(2)4s;18m(3)1.8m 【解析】试题分析:(1)设木箱的最大加速度为,根据牛顿第二定律 解得 则木箱与平板车存在相对运动,所以车在加速过程中木箱的加速度为 (2)设木箱的加速时间为,加速位移为。 (3)设平板车做匀加速直线运动的时间为,则 达共同速度平板车的位移为则 要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足 考点:牛顿第二定律的综合应用. 2.某汽车在高速公路上行驶的速度为108km/h,司机发现前方有障碍物时,立即采取紧急刹车,其制动过程中的加速度大小为5m/s2,假设司机的反应时间为0.50s,汽车制动过程中做匀变速直线运动。求: (1)汽车制动8s后的速度是多少 (2)汽车至少要前行多远才能停下来? 【答案】(1)0(2)105m

【解析】 【详解】 (1)选取初速度方向为正方向,有:v 0=108km/h=30m/s ,由v t =v 0+at 得汽车的制动时间为:003065t v v t s s a ---= ==,则汽车制动8s 后的速度是0; (2)在反应时间内汽车的位移:x 1=v 0t 0=15m ; 汽车的制动距离为:023******* t v v x t m m ++?= == . 则汽车至少要前行15m+90m=105m 才能停下来. 【点睛】 解决本题的关键掌握匀变速直线运动的运动学公式和推论,并能灵活运用,注意汽车在反应时间内做匀速直线运动. 3.某人驾驶一辆小型客车以v 0=10m/s 的速度在平直道路上行驶,发现前方s =15m 处有减速带,为了让客车平稳通过减速带,他立刻刹车匀减速前进,到达减速带时速度v =5.0 m/s .已知客车的总质量m =2.0×103 kg.求: (1)客车到达减速带时的动能E k ; (2)客车从开始刹车直至到达减速带过程所用的时间t ; (3)客车减速过程中受到的阻力大小f . 【答案】(1)E k =2.5×104J (2)t =2s (3)f =5.0×103N 【解析】 【详解】 (1) 客车到达减速带时的功能E k = 12mv 2,解得E k =2.5×104 J (2) 客车减速运动的位移02 v v s t +=,解得t =2s (3) 设客车减速运动的加速度大小为a ,则v =v 0-at ,f =ma 解得f =5.0×103 N 4.如图,AB 是固定在竖直平面内半径R =1.25m 的1/4光滑圆弧轨道,OA 为其水平半径,圆弧轨道的最低处B 无缝对接足够长的水平轨道,将可视为质点的小球从轨道内表面最高点A 由静止释放.已知小球进入水平轨道后所受阻力为其重力的0.2倍,g 取 10m/s 2.求: (1)小球经过B 点时的速率;

功能关系能量守恒定律

一.几种常见的功能关系及其表达式 二、两种摩擦力做功特点的比较 [深度思考] 一对相互作用的静摩擦力做功能改变系统的机械能吗?

答案 不能,因做功代数和为零. 三、能量守恒定律 1.内容 能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式 ΔE 减=ΔE 增. 3.基本思路 (1)某种形式的能量减少,一定存在其他形式的能量增加,且减少量和增加量一定相等; (2)某个物体的能量减少,一定存在其他物体的能量增加,且减少量和增加量一定相等. 1.上端固定的一根细线下面悬挂一摆球,摆球在空气中摆动,摆动的幅度越来越小,对此现象下列说法是否正确. (1)摆球机械能守恒.( ) (2)总能量守恒,摆球的机械能正在减少,减少的机械能转化为内能.( ) (3)能量正在消失.( ) (4)只有动能和重力势能的相互转化.( ) 2.如图所示,在竖直平面内有一半径为R 的圆弧形轨道,半径OA 水平、OB 竖直,一个质量为m 的小球自A 的正上方P 点由静止开始自由下落,小球沿轨道到达最高点B 时恰好对轨道没有压力.已知AP =2R ,重力加速度为g ,则小球从P 至B 的运动过程中( ) A .重力做功2mgR B .机械能减少mgR C .合外力做功mgR D .克服摩擦力做功1 2 mgR 3.如图所示,质量相等的物体A 、B 通过一轻质弹簧相连,开始时B 放在地面上,A 、B 均处于静止状态.现通过细绳将A 向上缓慢拉起,第一阶段拉力做功为W 1时,弹簧变为原长;第二阶段拉力再做功W 2时,B 刚要离开地面.弹簧一直在弹性限度内,则( ) A .两个阶段拉力做的功相等

高考物理最新模拟题精选训练(功能关系问题)专题03 滑块-滑板中的功能关系(含解析)

专题03 滑块-滑板中的功能关系 1.(2017北京朝阳期中)某滑雪场中游客用手推着坐在滑雪车上的小朋友一起娱乐,当加速到一定速度时游客松开手,使小朋友连同滑雪车一起以速度v0冲上足够长的斜坡滑道。为了研究方便,可以建立图示的简化模型,已知斜坡滑道与水平面夹角为θ,滑雪车与滑道间的动摩擦因数为μ,当地重力加速度为g,小朋友与滑雪车始终无相对运动。 (1)求小朋友与滑雪车沿斜坡滑道上滑的最大距离s; (2)若要小朋友与滑雪车滑至最高点时能够沿滑道返回,请分析说明μ与θ之间应满足的关系(设滑雪车与滑道间的最大静摩擦力与滑动摩擦力相等); (3)假定小朋友与滑雪车以1500J的初动能从斜坡底端O点沿斜坡向上运动,当它第一次经过斜坡上的A点时,动能减少了900J,机械能减少了300J。为了计算小朋友与滑雪车返回斜坡底端时的动能,小明同学推断:在上滑过程中,小朋友与滑雪车动能的减少与机械能的减少成正比。请你分析论证小明的推断是否正确并求出小朋友与滑雪车返回斜坡底端时的动能。 【参考答案】.(1) (2) μ

(2)若要小朋友与滑雪车滑到最高点速度减为0时还能够沿滑道返回,必须使重力的下滑分力大于最大静摩擦力。即:mg sinθ>μmg cosθ 可得:μ

高考物理相互作用练习题及答案

高考物理相互作用练习题及答案 一、高中物理精讲专题测试相互作用 1.如图所示,用三根轻绳将质量均为m的A、B两小球以及水平天花板上的固定点O之间两两连接,然后用一水平方向的力F作用于A球上,此时三根轻绳均处于直线状态,且OB绳恰好处于竖直方向,两球均处于静止状态,轻绳OA与AB垂直且长度之比为3:4.试计算: (1)OA绳拉力及F的大小? (2)保持力F大小方向不变,剪断绳OA,稳定后重新平衡,求此时绳OB及绳AB拉力的大小和方向.(绳OB、AB拉力的方向用它们与竖直方向夹角的正切值表达) (3)欲使绳OB重新竖直,需在球B上施加一个力,求这个力的最小值和方向. 【答案】(1)4 3 mg(2) 1 213 T=,tanθ1= 2 3 ; 2 5 3 T mg =,tanθ2= 4 3 (3)4 3 mg,水平向左 【解析】 【分析】 【详解】 (1)OB竖直,则AB拉力为0,小球A三力平衡,设OB拉力为T,与竖直方向夹角为θ, 则T=mg/cosθ=5 3 mg,F=mgtanθ= 4 3 mg (2)剪断OA绳,保持F不变,最后稳定后,设OB的拉力为T1,与竖直方向夹角为θ1,AB拉力为T2,与竖直方向夹角为θ2,以球A、球B为整体,可得 T1x=F=4 3 mg;T1y=2mg; 解得:T1213 mg;tanθ1= 2 3 ; 单独研究球A,T2x=F=4 3 mg;T2y=mg; 解得:T2=5 3 mg,tanθ2= 4 3 (3)对球B施加一个力F B使OB重新竖直,当F B水平向左且等于力F时是最小值,即 F B=F=4 3 mg,水平向左 【点睛】

高中物理功能关系专题

高中物理功能关系专题 XXXX教育学科教师辅导讲义讲义编号: 学员编号: 年级:高三课时数: 学员姓名: 辅导科目:高中物理学科教师: 学科组长签名及日期家长签名及日期 课题功能关系 授课时间备课时间 1( 功,功率的定义 教学目的 2( 汽车启动问题 3( 动能定理初步 类型1 功和功率的计算 (一)功的相关问题 1. 恒力F做功: WFs,cos, 两种理解: scos, (1)力F与在力F的方向上通过的位移的乘积。 (2)在位移s方向上的力与位移s的乘积。 Fcos, 注:力的作用点和位移要画成共点的,然后来找箭头和箭头之间的夹角 2. 变力F做功的求解方法 FF,12,?cos (1)若变力F是位移s的线性函数,则。 F,WFs,,2 WPT,? (2)变力F的功率恒定。 (3)利用动能定理及功能关系等方法求解。 (4)分段来看是恒力的,分段求功然后加起来。 典型的常见题型:篮球

3. 合外力的功W 合 WFs,cos, (1),在位移s上F恒定。合合合 WWWW,,,,… (2)要注意各功的正负。 12n合 4. 正、负功的物理意义 正功表示该力作为动力对物体做功,把其他物体的能量(或者其他形式的能量)给物体 负功表示该力作为阻力对物体做功,把物体的能量给了其他物体(或者变成其他形式的能量) 5. 摩擦力做功的特点 (1)摩擦力既可以做正功,也可以做负功。 (2)相互摩擦的系统内: 一对静摩擦力的功的代数和总为零,静摩擦力起着传递机械能的作用,而没有机械能转化为其他形式的能。 一对滑动摩擦力的功的代数和与路径有关,其值为负。等于摩擦力与相对位移的乘积。即WFsEQ,,,,。所以摩擦力可能有两个作用:一是物体间的机械能的转移;二是机滑相对损内能 械能转化为内能。 6.重力做功的特点 如右图(d)所示,质量为m的物体经三条不同的路径,从高度是h的位置运动到高度是h的位12置。重力做功有什么特点呢, 小结:重力做的功只跟它的起点和终点位置的高度差有关,而跟物体运动的路径无关

高考物理二轮复习专题一直线运动

专题一直线运动 『经典特训题组』 1.如图所示,一汽车在某一时刻,从A点开始刹车做匀减速直线运动,途经B、C两点,已知AB=3.2 m,BC=1.6 m,汽车从A到B及从B到C所用时间均为t=1.0 s,以下判断正确的是() A.汽车加速度大小为0.8 m/s2 B.汽车恰好停在C点 C.汽车在B点的瞬时速度为2.4 m/s D.汽车在A点的瞬时速度为3.2 m/s 答案C 解析根据Δs=at2,得a=BC-AB t2=-1.6 m/s 2,A错误;由于汽车做匀减速 直线运动,根据匀变速直线运动规律可知,中间时刻的速度等于这段时间内的平 均速度,所以汽车经过B点时的速度为v B=AC 2t=2.4 m/s,C正确;根据v C=v B+ at得,汽车经过C点时的速度为v C=0.8 m/s,B错误;同理得v A=v B-at=4 m/s,D错误。 2.如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置—时间(x-t)图线。由图可知() A.在t1时刻,b车追上a车 B.在t1到t2这段时间内,b车的平均速度比a车的大 C.在t2时刻,a、b两车运动方向相同 D.在t1到t2这段时间内,b车的速率一直比a车的大 答案A

解析在t1时刻之前,a车在b车的前方,在t1时刻,a、b两车的位置坐标相同,两者相遇,说明在t1时刻,b车追上a车,A正确;根据x-t图线纵坐标的变化量表示位移,可知在t1到t2这段时间内两车的位移相等,则两车的平均速度相等,B错误;由x-t图线切线的斜率表示速度可知,在t2时刻,a、b两车运动方向相反,C错误;在t1到t2这段时间内,b车图线斜率不是一直比a车的大,所以b车的速率不是一直比a车的大,D错误。 3.甲、乙两汽车在一平直公路上同向行驶。在t=0到t=t1的时间内,它们的v-t图象如图所示。在这段时间内() A.汽车甲的平均速度比乙的大 B.汽车乙的平均速度等于v1+v2 2 C.甲、乙两汽车的位移相同 D.汽车甲的加速度大小逐渐减小,汽车乙的加速度大小逐渐增大 答案A 解析根据v-t图象中图线与时间轴围成的面积表示位移,可知甲的位移大于乙的位移,而运动时间相同,故甲的平均速度比乙的大,A正确,C错误;匀变速 直线运动的平均速度可以用v1+v2 2来表示,由图象可知乙的位移小于初速度为v2、 末速度为v1的匀变速直线运动的位移,故汽车乙的平均速度小于v1+v2 2,B错误; 图象的斜率的绝对值表示加速度的大小,甲、乙的加速度均逐渐减小,D错误。 4. 如图所示是某物体做直线运动的v2-x图象(其中v为速度,x为位置坐标),下列关于物体从x=0处运动至x=x0处的过程分析,其中正确的是()

高考物理相互作用真题汇编(含答案)及解析

高考物理相互作用真题汇编(含答案)及解析 一、高中物理精讲专题测试相互作用 1.如图所示,质量的木块A套在水平杆上,并用轻绳将木块与质量的小球B相连.今用跟水平方向成角的力,拉着球带动木块一起向右匀速运动,运动中M、m相对位置保持不变,取.求: (1)运动过程中轻绳与水平方向夹角; (2)木块与水平杆间的动摩擦因数为. (3)当为多大时,使球和木块一起向右匀速运动的拉力最小? 【答案】(1)30°(2)μ=(3)α=arctan. 【解析】 【详解】 (1)对小球B进行受力分析,设细绳对N的拉力为T由平衡条件可得: Fcos30°=Tcosθ Fsin30°+Tsinθ=mg 代入数据解得:T=10,tanθ=,即:θ=30° (2)对M进行受力分析,由平衡条件有

F N=Tsinθ+Mg f=Tcosθ f=μF N 解得:μ= (3)对M、N整体进行受力分析,由平衡条件有: F N+Fsinα=(M+m)g f=Fcosα=μF N 联立得:Fcosα=μ(M+m)g-μFsinα 解得:F= 令:sinβ=,cosβ=,即:tanβ= 则: 所以:当α+β=90°时F有最小值.所以:tanα=μ=时F的值最小.即:α=arctan 【点睛】 本题为平衡条件的应用问题,选择好合适的研究对象受力分析后应用平衡条件求解即可,难点在于研究对象的选择和应用数学方法讨论拉力F的最小值,难度不小,需要细细品味.

2.如图所示,A、B都是重物,A被绕过小滑轮P的细线悬挂,B放在粗糙的水平桌面上,滑轮P被一根斜短线系于天花板上的O点,O′是三根细线的结点,细线bO′水平拉着物体B,cO′沿竖直方向拉着弹簧.弹簧、细线、小滑轮的重力不计,细线与滑轮之间的摩擦力可忽略,整个装置处于静止状态.若重物A的质量为2kg,弹簧的伸长量为5cm, ∠cO′a=120°,重力加速度g取10m/s2,求: (1)桌面对物体B的摩擦力为多少? (2)弹簧的劲度系数为多少? (3)悬挂小滑轮的斜线中的拉力F的大小和方向? 【答案】(1)103N(2)200N/m(3)203N,方向在O′a与竖直方向夹角的角平分线上. 【解析】 【分析】 (1)对结点O′受力分析,根据共点力平衡求出弹簧的弹力和bO′绳的拉力,通过B平衡求出桌面对B的摩擦力大小.(2)根据胡克定律求弹簧的劲度系数.(3)悬挂小滑轮的斜线中的拉力F与滑轮两侧绳子拉力的合力等大反向. 【详解】 (1)重物A的质量为2kg,则O′a绳上的拉力为 F O′a=G A=20N 对结点O′受力分析,如图所示,根据平行四边形定则得:水平绳上的力为: F ob=F O′a sin60°=103N 物体B静止,由平衡条件可得,桌面对物体B的摩擦力 f=F ob=103N (2)弹簧的拉力大小为 F弹=F O′a cos60°=10N. 根据胡克定律得 F弹=kx 得 k=F x 弹= 10 0.05 =200N/m (3)悬挂小滑轮的斜线中的拉力F与滑轮两侧绳子拉力的合力等大反向,则悬挂小滑轮的

高考物理知识专题整理大全二:直线运动

二、直线运动 1、质点: ⑴定义:用来代替物体的只有质量、没有形状和大小的点,它是一个理想化的物理模型。 ⑵物体简化为质点的条件:只考虑平动或物体的形状大小在所研究的问题中可以忽略不计这两种情况。 2、位置、位移和路程 ⑴位置:质点在空间所处的确定的点,可用坐标来表示。 ⑵位移:描述质点位置改变的物理量,是矢量。方向由初位置指向末位置。大小则是从初位置到末位置的直线距离 ⑶路程:质点实际运动轨迹的长度,是标量。只有在单方向的直线运动中,位移的大小才等于路程。 3、时间与时刻 ⑴时刻:在时间轴上可用一个确定的点来表示。如“第3秒末”、“第5秒初”等 ⑵时间:指两时刻之间的一段间隔。在时间轴上用一段线段来表示。如:“第2秒内”、“1小时”等 4、速度和速率 ⑴平均速度:①v=Δs/Δt ,对应于某一时间(或某一段位移)的速度。 ②平均速度是矢量,方向与位移Δs 的方向相同。 ③公式2 0t v v v += ,只对匀变速直线运动才适用。 ⑵瞬时速度:①对应于某一时刻(或某一位置)的速度。 ②当Δt 0时,平均速度的极限为瞬时速度。 ③瞬时速度的方向就是质点在那一时刻(或位置)的运动方向。 ④简称速度 ⑶平均速率:①质点在某一段时间内通过的路程和所用的时间的比值叫做这段时间内的平 均速率。 ②平均速率是标量。 一、知识网络 概念

③只有在单方向的直线运动中,平均速度的大小才等于平均速率。 ④平均速率是表示质点平均快慢的物理量 ⑷瞬时速率:①瞬时速度的大小。 ②是标量。 ③简称为速率。 5、加速度 ⑴速度的变化:Δv =v t -v 0,描述速度变化的大小和方向,是矢量。 ⑵加速度:①是描述速度变化快慢的物理量。 ②公式:a =Δv/Δt 。 ③是矢量。 ④在直线运动中,若a 的方向与初速度v 0的方向相同,质点做匀加速运动;若a 的方向与初速度v 0的方向相反,质点做匀减速运动 6、匀速直线运动: ⑴定义:物体在一条直线上运动,如果在任何相等的时间内通过的位移都相等,则称物体 在做匀速直线运动 ⑵匀速直线运动只能是单向运动。定义中的“相等时间”应理解为所要求达到的精度范围内的任意相等时间。 ⑶在匀速直线运动中,位移跟发生这段位移所用时间的比值叫做匀速直线运动的速度。它是描述质点运动快慢和方向的物理量。速度的大小叫做速率。 ⑷匀速直线运动的规律:①t s v = ,速度不随时间变化。 ②s=vt ,位移跟时间成正比关系。 ⑸匀速直线运动的规律还可以用图象直观描述。 ①s-t 图象(位移图象):依据S = vt 不同时间对应不同的位移, 位移S 与时间t 成正比。所以匀速直线运动的位移图象是过原点的一条倾斜的直线, 这条直线是表示正比例函数。而直线的斜率即匀速 直线运动的速度。(有tg α= =S t v )所以由位移图象不仅可以求出速度, 还可直接读出任意时间内的位移(t 1时间内的位移S 1)以及可直接读出发生任一位移S 2所需的时间t 2。 ②v-t 图象,由于匀速直线运动的速度不随时间而改变, 所以它的 速度图象是平行时间轴的直线。直线与横轴所围的面积表示质点的位移。 例题: 关于质点,下述说法中正确的是: (A)只要体积小就可以视为质点 (B)在研究物体运动时,其大小与形状可以不考虑时,可以视为质点 (C)物体各部分运动情况相同,在研究其运动规律时,可以视为质点 (D)上述说法都不正确 解析:用来代替物体的有质量的点叫做质点。用一个有质量的点代表整个物体,以确定物体的位置、研究物体的运动,这是物理学研究问题时采用的理想化模型的方法。 把物体视为质点是有条件的,条件正如选项(B)和(C)所说明的。 答:此题应选(B)、(C)。 例题: 小球从3m 高处落下,被地板弹回,在1m 高处被接住,则小球通过的路程和位移的大小分别是: (A)4m,4m (B)3m,1m (C)3m,2m (D)4m,2m

高中物理相互作用真题汇编(含答案)及解析

高中物理相互作用真题汇编(含答案)及解析 一、高中物理精讲专题测试相互作用 1.将质量0.1m kg =的圆环套在固定的水平直杆上,环的直径略大于杆的截面直径,环与杆的动摩擦因数0.8μ=.对环施加一位于竖直平面内斜向上与杆夹角53θ=o 的恒定拉力F ,使圆环从静止开始运动,第1s 内前进了2.2m (取210/g m s =,sin530.8=o , cos530.6=o ).求: (1)圆环加速度a 的大小; (2)拉力F 的大小. 【答案】(1)24.4m/s (2)1N 或9N 【解析】 (1)小环做匀加速直线运动,由运动学公式可知:21x 2 at = 解得:2a 4.4m /s = (2)令Fsin53mg 0?-=,解得F 1.25N = 当F 1.25N <时,环与杆的上部接触,受力如图: 由牛顿第二定律,Fcos θμN F ma -=,Fsin θN F mg += 联立解得:()F m a g cos sin μθμθ += + 代入数据得:F 1N = 当F 1.25N >时,环与杆的下部接触,受力如图: 由牛顿第二定律,Fcos θμN F ma -=,Fsin θN mg F =+

联立解得: ()F m a g cos sin μθμθ -= - 代入数据得:F 9N = 2.如图所示,两足够长的平行光滑的金属导轨MN 、PQ 相距为1L =m ,导轨平面与水平面夹角30α=?,导轨电阻不计,磁感应强度为12T B =的匀强磁场垂直导轨平面向上,长为1L =m 的金属棒ab 垂直于MN 、PQ 放置在导轨上,且始终与导轨接触良好,金属棒的质量为12m =kg 、电阻为11R =Ω,两金属导轨的上端连接右侧电路,电路中通过导线接一对水平放置的平行金属板,两板间的距离和板长均为0.5d =m ,定值电阻为 23R =Ω,现闭合开关S 并将金属棒由静止释放,取10g =m/s 2,求: (1)金属棒下滑的最大速度为多大? (2)当金属棒下滑达到稳定状态时,整个电路消耗的电功率υ为多少? (3)当金属棒稳定下滑时,在水平放置的平行金属板间加一垂直于纸面向里的匀强磁场 ,在下板的右端且非常靠近下板的位置处有一质量为4 110q -=-?kg 、所带电荷 量为 C 的液滴以初速度υ水平向左射入两板间,该液滴可视为质点,要使带 电粒子能从金属板间射出,初速度υ应满足什么条件? 【答案】(1)10m/s (2)100W (3)v≤0.25m/s 或v≥0.5m/s 【解析】试题分析:(1)当金属棒匀速下滑时速度最大,设最大速度v m ,则有 1sin m g F α=安 F 安=B 1IL 112 m B Lv I R R = + 所以() 112221 sin m m g R R v B L α+= 代入数据解得:v m =10m/s (2)金属棒匀速下滑时,动能不变,重力势能减小,此过程中重力势能转化为电能,重力做功的功率等于整个电路消耗的电功率P=m 1gsinαv m =100W (或) (3)金属棒下滑稳定时,两板间电压U=IR 2=15V 因为液滴在两板间有2U m g q d =所以该液滴在两平行金属板间做匀速圆周运动

高考物理专题复习四 功能关系

高考物理专题复习四功能关系 能量转化和守恒定律是自然界最普遍适用的规律之一。自然界的各种能量间可以相互转化,转化过 程中能量的总和守恒。 右图是功能关系的示意图。 功和能有密切关系,它们的单位也相同,在国际单位制中,单位都是J, 但功并不等于能。功是过程量,它和一段位移(一段时间)相对应;能是状 态量,它与某位置(某时刻)相对应。 功能关系不仅能解决恒力作用下物体的运动问题,也能解决变力作用下物体的运动问题,因此它比 用牛顿运动定律解题更简洁、应用范围更广泛。除非要求匀变速直线运动的加速度a和时间t,一般首 选功能关系。 常用的有关功能关系的结论有: ⑴动能定理。力在一个过程中对物体所做的功(或者各个力对物体做功的代数和)等于物体在这个过程 中动能的变化。 W合=E k2-E k1(动能变化必须是末动能减初动能;研究对象是单个物体;研究过程往往选全过程。)⑵势能定理。重力做的功等于重力势能的减少。 W G=E p1-E p2(重力势能的减少,必须是初势能减末势能;重力做功只与始末状态的高度差有关,与路径无关,与其它力是否做功无关;势能定理适用于电势能、分子势能等各种势能。) 若某种力做的功只跟始末位置有关,而与物体运动的路径无关,就能定义与这种力相应的势能。 ⑶机械能定理。重力(和弹簧弹力)以外的其他力对物体做的功等于物体机械能的增量。 W其=E机2-E机1(机械能变化必须是末状态机械能减初状态机械能;当W其=0,即只有重力做功时,系统的机械能守恒。) ⑷摩擦生热。系统内的摩擦生热Q(内能的增加)用系统内物体间相互作用的一对滑动摩擦力做的总功 来量度。 f d=Q(f为每个摩擦力的大小,d为系统内物体间相对移动的路程。这个结论可以直接使用。) 注意一个摩擦力对某个物体做的功W f=fx(f为这个摩擦力的大小,x为物体对地的位移。) ⑸安培力做功是机械能与电能相互转化的量度。 发电机模型中:克服安培力做功等于回路中电能的增加W克A=E电(如果是纯电阻电路,则电能又全 部转化为回路的焦耳热,W克A=E电=Q); 电动机模型中:安培力做功等于机械能增加W A=E机(安培力做功不等于消耗的电能。该过程只有一部分电能转化为机械能,同时必然有一部分电能转化为焦耳热,E电=E机+Q)。 练习题 1.质量为m的物体在竖直向上的恒力F作用下减速上升了H,在这个过程中,下列说法中正确的有A.物体的重力势能增加了(F-mg)H B.物体的动能减少了FH C.物体的机械能增加了FH D.物体重力势能的增加小于动能的减少

高考物理专题:运动学

直线运动规律及追及问题 一 、 例题 例题1.一物体做匀变速直线运动,某时刻速度大小为4m/s ,1s 后速度的大小变为10m/s ,在这1s 内该物体的 ( ) A.位移的大小可能小于4m B.位移的大小可能大于10m C.加速度的大小可能小于4m/s D.加速度的大小可能大于10m/s 析:同向时2201/6/14 10s m s m t v v a t =-=-= 反向时2202/14/1 4 10s m s m t v v a t -=--=-= 式中负号表示方向跟规定正方向相反 答案:A 、D 例题2:两木块自左向右运动,现用高速摄影机在同一底片上多次曝光,记录下木快每次曝光时的位置,如图所示,连续两次曝光的时间间隔是相等的,由图可知 ( ) A 在时刻t 2以及时刻t 5两木块速度相同 B 在时刻t1两木块速度相同 C 在时刻t 3和时刻t 4之间某瞬间两木块速度相同 D 在时刻t 4和时刻t 5之间某瞬间两木块速度相同 解析:首先由图看出:上边那个物体相邻相等时间内的位移之差为恒量,可以判定其做匀变速直线运动;下边那个物体很明显地是做匀速直线运动。由于t 2及t 3时刻两物体位置相同,说明这段时间内它们的位移相等,因此其中间时刻的即时速度相等,这个中间时刻显然在t 3、t 4之间 答案:C 例题3 一跳水运动员从离水面10m 高的平台上跃起,举双臂直立身体离开台面,此 时中心位于从手到脚全长的中点,跃起后重心升高0.45m 达到最高点,落水时身体竖直,手先入水(在此过程中运动员水平方向的运动忽略不计)从离开跳台到手触水面,他可用于完成空中动作的时间是多少?(g 取10m/s 2 结果保留两位数字) 解析:根据题意计算时,可以把运动员的全部质量集中在重心的一个质点,且忽略其水平方向的运 动,因此运动员做的是竖直上抛运动,由g v h 22 0=可求出刚离开台面时的速度s m gh v /320==, 由题意知整个过程运动员的位移为-10m (以向上为正方向),由202 1 at t v s +=得: -10=3t -5t 2 解得:t ≈1.7s 思考:把整个过程分为上升阶段和下降阶段来解,可以吗? 例题4.如图所示,有若干相同的小钢球,从斜面上的某一位置每隔0.1s 释放一颗,在连续释放若干颗钢球后对斜面上正在滚动的 t 1 t 2 t 3 t 4 t 5 t 6 t 7 t 1 t 2 t 3 t 4 t 5 t 6 t 7

高中物理相互作用练习题及答案

高中物理相互作用练习题及答案 一、高中物理精讲专题测试相互作用 1.如图所示,两个正三棱柱A、B紧靠着静止于水平地面上,三棱柱的中间有一个半径为R的光滑圆柱C,C的质量为2m,A、B的质量均为m.A、B与地面的动摩擦因数为μ.设最大静摩擦力等于滑动摩擦力,重力加速度为g. (1)三者均静止时A对C的支持力为多大? (2)A、B若能保持不动,μ应该满足什么条件? (3)若C受到经过其轴线竖直向下的外力而缓慢下降到地面,求该过程中摩擦力对A做的功 【答案】(1) F N=2mg. (2)μ≥3 . (3)- 3μ - . 【解析】 【分析】 (1)对C进行受力分析,根据平衡求解A对C的支持力; (2)A保持静止,则地面对A的最大静摩擦力要大于等于C对A的压力在水平方向的分力,据此求得动摩擦因数μ应该满足的条件; (3)C缓慢下落同时A、B也缓慢且对称地向左右分开,A受力平衡,根据平衡条件求解滑动摩擦力大小,根据几何关系得到A运动的位移,再根据功的计算公式求解摩擦力做的功. 【详解】 (1) C受力平衡,2F N cos60°=2mg 解得F N=2mg (2) 如图所示,A受力平衡F地=F N cos60°+mg=2mg f=F N sin60°=3mg 因为f≤μF地,所以μ≥ 3 (3) C缓慢下降的同时A、B也缓慢且对称地向左右分开.A的受力依然为4个,如图所图,但除了重力之外的其他力的大小发生改变,f也成了滑动摩擦力. A受力平衡知F′地=F′N cos60°+mg f′=F′N sin60°=μF′地

解得f′= 33mg μμ - 即要求3-μ>0,与本题第(2)问不矛盾. 由几何关系知:当C 下落地地面时,A 向左移动的水平距离为x = 3R 所以摩擦力的功W =-f′x =-3μ - 【点睛】 本题主要是考查了共点力的平衡问题,解答此类问题的一般步骤是:确定研究对象、进行受力分析、利用平行四边形法则进行力的合成或者是正交分解法进行力的分解,然后在坐标轴上建立平衡方程进行解答. 2.轻绳下端悬挂200N 的重物,用水平力拉轻绳上的 点,使轻绳上部分偏离竖直方向 = 角保持静止,如图所示。 (1)求水平力的大小; (2)保持轻绳上部分与竖直方向的夹角= 不变,改变力 的方向,求力 的最小值 及与水平方向的夹角。 【答案】(1) (2) ,与水平方向夹角为 【解析】试题分析:(1)对点受力分析,可得 ,解得 (2)力 有最小值时 ,解得 , 与水平方向夹角为 考点:考查了共点力平衡条件 【名师点睛】在处理共点力平衡问题时,关键是对物体进行受力分析,然后根据正交分解法将各个力分解成两个方向上的力,然后列式求解,如果物体受到三力处于平衡状态,则可根据矢量三角形法,将三个力移动到一个三角形中,然后根据角度列式求解 3.一架质量m 的飞机在水平跑道上运动时会受到机身重力、竖直向上的机翼升力F 升、发动机推力、空气阻力F 阻、地面支持力和跑道的阻力f 的作用。其中机翼升力与空气阻力均与飞机运动的速度平方成正比,即2 2 12,F k v F k v ==阻升,跑道的阻力与飞机对地面的压力成正比,比例系数为0k (012m k k k 、、、均为已知量),重力加速度为g 。

功能关系能量守恒定律

第4课时功能关系能量守恒定律 学习目标: 1.知道功是能量转化的量度,掌握重力的功、弹力的功、合力的功与对应的能量转化关系. 2.知道自然界中的能量转化,理解能量守恒定律,并能用来分析有关问题. 【课前知识梳理】 一、几种常见的功能关系 功能量的变化 合外力做正功动能增加 重力做正功重力势能减少 弹簧弹力做正功弹性势能减少 电场力做正功电势能减少 其他力(除重力、弹力外)做正功机械能增加 二、能量守恒定律 1.容:能量既不会凭空产生,也不会凭空消失,它只能从一种形式转化为另一种形式,或者从一个物体转移到别的物体,在转化或转移的过程中,能量的总量保持不变. 2.表达式:ΔE减=ΔE增. 【预习自测】 1、用恒力F向上拉一物体,使其由地面处开始加速上升到某一高度.若该过程空气阻力不能忽略,则下列说法中正确的是 A.力F做的功和阻力做的功之和等于物体动能的增量 B.重力所做的功等于物体重力势能的增量 C.力F做的功和阻力做的功之和等于物体机械能的增量 D.力F、重力、阻力三者的合力所做的功等于物体机械能的增量 2、如图1所示,美国空军X-37B无人航天飞机于2010年4月首飞,在X-37B由较低轨道飞到较高轨道的过程中 A.X-37B中燃料的化学能转化为X-37B的机械能 B.X-37B的机械能要减少 C.自然界中的总能量要变大 D.如果X-37B在较高轨道绕地球做圆周运动,则在此轨道上其机械能不变 3、如图2所示,ABCD是一个盆式容器,盆侧壁与盆底BC的连接处都是一段与BC相切的圆弧,B、

C在水平线上,其距离d=0.5 m.盆边缘的高度为h=0.3 m.在A处放一个质量为m的小物块并让其由静止下滑.已知盆侧壁是光滑的,而盆底BC面与小物块间的动摩擦因数为μ=0.1.小物块在盆来回滑动,最后停下来,则停下的位置到B的距离为 A.0.5 m B.0.25 m C.0.1 m D.0 【课堂合作探究】 考点一功能关系的应用 【例1】如右上图所示,在升降机固定一光滑的斜面体,一轻弹簧的一端连在位于斜面体上方的固定木板B上,另一端与质量为m的物块A相连,弹簧与斜面平行.整个系统由静止开始加速上升高度h的过程中 A.物块A的重力势能增加量一定等于mgh B.物块A的动能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 C.物块A的机械能增加量等于斜面的支持力和弹簧的拉力对其做功的代数和 D.物块A和弹簧组成的系统的机械能增加量等于斜面对物块的支持力和B对弹簧的拉力做功的代数和 【突破训练1】物块由静止从粗糙斜面上的某点加速下滑到另一点,此过程中重力对物块做的功等于A.物块动能的增加量 B.物块重力势能的减少量 C.物块重力势能的减少量和物块动能的增加量以及物块克服摩擦力做的功之和 D.物块动能的增加量与物块克服摩擦力做的功之和 考点二摩擦力做功的特点及应用 1.静摩擦力做功的特点 (1)静摩擦力可以做正功,也可以做负功,还可以不做功. (2)相互作用的一对静摩擦力做功的代数和总等于零. (3)静摩擦力做功时,只有机械能的相互转移,不会转化为能. 2.滑动摩擦力做功的特点 (1)滑动摩擦力可以做正功,也可以做负功,还可以不做功.

高考物理直线运动真题汇编(含答案)及解析

高考物理直线运动真题汇编(含答案)及解析 一、高中物理精讲专题测试直线运动 1.研究表明,一般人的刹车反应时间(即图甲中“反应过程”所用时间)t 0=0.4s ,但饮酒会导致反应时间延长.在某次试验中,志愿者少量饮酒后驾车以v 0=72km/h 的速度在试验场的水平路面上匀速行驶,从发现情况到汽车停止,行驶距离L=39m .减速过程中汽车位移s 与速度v 的关系曲线如图乙所示,此过程可视为匀变速直线运动.取重力加速度的大小g=10m/s 2.求: (1)减速过程汽车加速度的大小及所用时间; (2)饮酒使志愿者的反应时间比一般人增加了多少; (3)减速过程汽车对志愿者作用力的大小与志愿者重力大小的比值. 【答案】(1)28/m s ,2.5s ;(2)0.3s ;(3)0415 F mg =【解析】 【分析】 【详解】 (1)设减速过程中,汽车加速度的大小为a ,运动时间为t , 由题可知初速度020/v m s =,末速度0t v =,位移2 ()211f x x =-≤ 由运动学公式得:2 02v as =① 2.5v t s a = =② 由①②式代入数据得 28/a m s =③ 2.5t s =④ (2)设志愿者饮酒后反应时间的增加量为t ?,由运动学公式得 0L v t s ='+⑤ 0t t t ?='-⑥ 联立⑤⑥式代入数据得 0.3t s ?=⑦ (3)设志愿者力所受合外力的大小为F ,汽车对志愿者作用力的大小为0F ,志愿者的质量

为m ,由牛顿第二定律得 F ma =⑧ 由平行四边形定则得 2220()F F mg =+⑨ 联立③⑧⑨式,代入数据得 041 5F mg = ⑩ 2.如图所示,一木箱静止在长平板车上,某时刻平板车以a = 2.5m/s 2的加速度由静止开始向前做匀加速直线运动,当速度达到v = 9m/s 时改做匀速直线运动,己知木箱与平板车之间的动摩擦因数μ= 0.225,箱与平板车之间的最大静摩擦力与滑动静擦力相等(g 取10m/s 2)。求: (1)车在加速过程中木箱运动的加速度的大小 (2)木箱做加速运动的时间和位移的大小 (3)要使木箱不从平板车上滑落,木箱开始时距平板车右端的最小距离。 【答案】(1) (2)4s ;18m (3)1.8m 【解析】试题分析:(1)设木箱的最大加速度为,根据牛顿第二定律 解得 则木箱与平板车存在相对运动,所以车在加速过程中木箱的加速度为 (2)设木箱的加速时间为,加速位移为 。 (3)设平板车做匀加速直线运动的时间为,则 达共同速度平板车的位移为 则 要使木箱不从平板车上滑落,木箱距平板车末端的最小距离满足 考点:牛顿第二定律的综合应用.

相关主题