搜档网
当前位置:搜档网 › 晶体学基础(晶向指数与晶面指数)

晶体学基础(晶向指数与晶面指数)

晶体学基础(晶向指数与晶面指数)
晶体学基础(晶向指数与晶面指数)

i.4晶向指数和晶面指数 一■晶向和晶面 i 晶向

晶向:空间点阵中各阵点列的方向(连接点阵中任意结点列的直线方向)。晶体中的某 些方向,涉及到晶体中原子的位置,原子列方向,表示的是一组相互平行、方向一致的直线 的指向。

2晶面

晶面:通过空间点阵中任意一组阵点的平面(在点阵中由结点构成的平面)。晶体中原 子所构成的平面。

不同的晶面和晶向具有不同的原子排列和不同的取向。

材料的许多性质和行为 (如各种 物理性质、力学行为、相变、X 光和电子衍射特性等)都和晶面、

晶向有密切的关系。所以, 为了研究和描述材料的性质和行为,

首先就要设法表征晶面和晶向。 为了便于确定和区别晶 体中不同方位的晶向和晶面,

国际上通用密勒(Miller )指数来统一标定晶向指数与晶面指 数。

二 晶向指数和晶面指数的确定 i 晶向指数的确定方法 三指数表示晶向指数[uvW ]的步骤如图i 所示。 建立以晶轴a ,b , c 为坐标轴的坐标系,各轴上的坐标长度单位分别是晶胞边长 坐标原点在待标

晶向上。 选取该晶向上原点以外的任一点

P (xa ,yb ,zc )。

将xa , yb , zc 化成最小的简单整数比 u , v , w,且u : v : w = xa : yb : zc 。

将u , v , w 三数置于方括号内就得到晶向指数 图2不同的晶向及其指数 当然,在确定晶向指数时, 坐标原点不一定非选取在晶向上不可。 若原点不在待标晶向 上,那就需要选取该晶向上两点的坐标 Rx i, y i, z i )和Q X 2, y 2, z 2),然后将(X i -X 2),(y i - y 2), ⑴

c , ⑵

⑷ [iiD]

[101]

{01

Oi]

b

a ,

b ,

[uvW 。

图1晶向指数的确定方法

[00[] £

\ If *

a _________________

m

(Z 1-Z 2)三个数化成最小的简单整数

u,v,w,并使之满足U : V :

w =(x i -X 2):( y i -y 2):(Z 1-Z 2)。

则[uvw ]为该晶向的指数。 显然,晶向指数表示了所有相互平行、方向一致的晶向。若所指的方向相反,则晶向指

数的数字相同,但符号相反,如图

3中[0 TO]与[010]。 说明:

指数意义:代表相互平行、方向一致的所有晶向。

负值:标于数字上方,表示同一晶向的相反方向。

晶向族:晶体中原子排列情况相同但空间位向不同的一组晶向。 用表示,数字 相同,但排列顺序不同或正负号不同的晶向属于同一晶向族。晶体结构中那些原子密 度相同的等同晶向称为晶向轴,用 表示。

<100> : [100] [010] [001] [ 100] [010] [ 001 ]

<111> : [111] [111] [111] [111] [111] [111] [111] [111]

[UTO]

(1)建立一组以晶轴 a , b , 标长度单位分别是晶胞边长 求出待标晶面在a , b

, 取截距的倒数1/xa , 1/yb , 1/zc 。

将这些倒数化成最小的简单整数比 h , k , l ,使h : k : l = 1/ xa : 1/yb : 1/zc o

如有某一数为负值,则将负号标注在该数字的上方, 将h ,k ,l 置于圆括号内,写成(hkl ), 则(hkl )就是待标晶面的晶面指数。

说明:晶面指数所代表的不仅是某一晶面,而是代表着一组相互平行的晶面。

a 指数意义:代表一组平行的晶面;

tt.O.

OJ 图3正交点阵中的几个晶向指数

2晶面指数的确定

国际上通用的是密勒指数,即用三个数字来表示晶面指数( 面

为待确定的晶面,其确定方法如下。 h k l )。图4中的红色晶

c 为坐标轴的坐标系,令坐标原点不在待标晶面上,各轴上的坐 a , b , c 。

c 轴上的截距xa , yb , zc 。如该晶面与某轴平行,则截距为》 ⑵ ⑶ ⑷ ⑸

MM

6?

晶体学基础与晶体结构习题与答案

晶体学基础与晶体结构习题与答案 1. 由标准的(001)极射赤面投影图指出在立方晶体中属于[110]晶带轴的晶带,除了已在图2-1中标出晶面外,在下列晶面中哪些属于[110]晶带?(1-12),(0-12),(-113),(1-32),(-221)。 图2-1 2. 试证明四方晶系中只有简单立方和体心立方两种点阵类型。 3. 为什么密排六方结构不能称作为一种空间点阵? 4. 标出面心立方晶胞中(111)面上各点的坐标。 5. 标出具有下列密勒指数的晶面和晶向:a)立方晶系(421),(-123),(130),[2-1-1],[311]; b)六方晶系(2-1-11),(1-101),(3-2-12),[2-1-11],[1-213]。 6. 在体心立方晶系中画出{111}晶面族的所有晶面。 7. 在立方晶系中画出以[001]为晶带轴的所有晶面。 8. 已知纯钛有两种同素异构体,密排六方结构的低温稳定的α-Ti和体心立方结构的高温稳定的β-Ti,其同素异构转变温度为882.5℃,使计算纯钛在室温(20℃)和900℃时晶体中(112)和(001)的晶面间距(已知aα20℃=0.29506nm,cα20℃=0.46788nm,aα900℃=0.33065nm)。 9. 试计算面心立方晶体的(100),(110),(111),等晶面的面间距和面致密度,并指出面间距最大的面。 10.平面A在极射赤平面投影图中为通过NS及核电0°N,20°E的大圆,平面B的极点在30°N,50°W处,a)求极射投影图上两极点A、B间的夹角;b)求出A绕B顺时针转过40°的位置。 11. a)说明在fcc的(001)标准极射赤面投影图的外圆上,赤道线上和0°经线上的极点的指数各有何特点,b)在上述极图上标出(-110),(011),(112)极点。 12. 图2-2为α-Fe的x射线衍射谱,所用x光波长λ=0.1542nm,试计算每个峰线所对应晶面间距,并确定其晶格常数。 图2-2 13. 采用Cu kα(λ=0.15418nm)测得Cr的x射线衍射谱为首的三条2θ=44.4°,64.6°和81.8°,若(bcc)Cr的晶格常数a=0.28845nm,试求对应这些谱线的密勒指数。

第一章晶体学基础

第一章晶体学基础引言——晶体 钻石

香港富豪郑裕彤3530万美元购507克拉巨钻(图) 来源:人民网; 2010年02月28日11:37 ;201011:37 香港富豪郑裕彤拥有的周大福集团旗下周大福珠宝金行,26日成功以2亿7500万港元(约3530万美元)购得一颗全球罕有、属顶级IIA型晶莹通透的507 克拉南非裸钻TheCullinanHeritage,为世界至今开采得最高质量的钻石之, ,为世界至今开采得最高质量的钻石之一,亦创造裸钻售价历史最高纪录。 珠宝专家形容该裸钻颜色和净度极高可说世间罕有无与伦比郑裕彤珠宝专家形容该裸钻颜色和净度极高,可说世间罕有无与伦比。郑裕彤在接受访问时表示,拟用一年时间将此裸钻打造成125克拉以上的圆形钻石,缔造世界最大颗超完美圆形美钻。

如今的中国钻石消费现已超越日本, 成为仅次于美国的全球第二大钻石 成为仅次于美国的全球第大钻石 消费国,据国际钻石行业专家预测, 至2020年中国将替代美国成为世界 第一大钻石消费大国。而这一切不 能不说与一句“神级翻译”的广告 语在中国的推广有着某种密切的关 联。 在中国推广始于1990年的“钻石恒 久远,一颗永流传”,流传的不仅 是钻石的价值,更是钻石的永恒品"A Diamond is forever" 质。

新研究发现钻石并非恒久远: 强光照射下蒸发 2011年07月21日09:35:53 据美国物理学家组织网报道,澳大利亚麦考瑞大学的研究人员发现,地球 上最坚硬的天然物质钻石并非人们想象的那样“恒久远”。在强光照射下,上最坚硬的天然物质钻石并非人们想象的那样“恒久远”在强光照射下钻石也会蒸发。研究发现刊登在美国《光学材料快报》杂志上。 麦考瑞大学光子学研究中心副教授理查德-米德伦和同事经研究发现,钻石暴露在光照条件下会蒸发。米德伦说:“一些物质都有光照导致的蒸钻石暴露在光照条件下会蒸发米德伦说“些物质都有光照导致的蒸发现象,观察到钻石也有这种现象还是第一次。”当暴露在强紫外-C线(臭氧层过滤后的强紫外线)条件下,钻石表面的小凹坑会在短短几秒钟内 消失。钻石质量损失的速度随着光线强度的降低快速降低,但蚀刻过程仍然继续,只是速度越来越慢。

第一章 晶体学基础

固态物质 晶 体 非晶体 规则排列不规排列 各向异性各向同性 有确定的熔点无确定的熔点 规则排列不规则排列 突变 不规则排列不规则排列 渐变 1.2 晶体学基础 Fundamentals of crystallogphy 一、晶体与非晶体(Crystals versus non-crystals)

1.晶体的定义 物质的质点(分子、原子或离子)在三维空间作有规律的 周期性重复排列所形成的物质叫晶体。具有各向异性。可分为金属晶体、离子晶体、共价晶体和分子晶体四种。 2. 非晶体 非晶体在整体上是无序的;近程有序。实际为一种过 冷液体。具有各向同性。

图 材料中原子的排列 隋性气体无规则排列表示有些材料包括水蒸气和玻璃的短程有序 表示有些材料包括水蒸气和玻璃的短程有序 金属及其他许多材料的长程有序排列 二氧化硅结构示意图a)晶态 b)非晶态

3. 晶体的特征 (1)周期性(不论沿晶体的哪个方向看去,总是相隔一定的距离就出现相同的原子或原子集团。这个距离称为周期)液体和气体都是非晶体。 (2)有固定的凝固点和熔点. (3)各向异性(沿着晶体的不同方向所测得的性能通常是不同的:晶体的导电性、导热性、热膨胀性、弹性、强度、光学性质)。

4.晶体与非晶体的区别 a.根本区别:质点是否在三维空间作有规则的周期性重复排列 b.晶体熔化时具有固定的熔点,而非晶体无明显熔点,只存在一个软化温度范围 c.晶体具有各向异性,非晶体呈各向同性(多晶体也呈各向同性,称“伪各向同性”)

5.晶体与非晶体的相互转化 玻璃经高温长时间加热后能形成晶态玻璃 通常呈晶体的物质如果将它从液态快速冷却下来也可能得到非晶态 获得非晶态的金属和合金(采用特殊的制备方法)

第3讲 晶体学基础知识

第3讲 教学要求:1. 复习明确晶体和非晶体的概念 2. 明确格子构造的概念以及与实际晶体构造之间的关系 3. 大致了解晶体的分类知识 4. 详细讲解并要求学生掌握记熟空间格子构造,熟练掌握14种布拉维格子 的构造特点及晶格参数的特点 5.熟练掌握晶面指数的标定步骤 教学重点:晶体的概念、布拉维格子构造、晶面指数的标定 教学难点:晶体学基础比较抽象,备课中需多准备形象立体感强的图形,讲解速度控制较慢,尽量引导学生课堂中记忆布拉维格子构造,通过例子联系晶面指数标 定过程 教学拓展:介绍《物相分析》、《材料研究方法》、《材料结构表征及应用》书中相应的部分以便学生课后参看 讨论:课堂上提问学生所掌握的晶体学基础知识的内容,比较选修有关结晶学课程的学生和未选修结晶学课程学生掌握晶体学知识的范围差异,抽10分钟左右的 时间讨论,以便掌握讲课难度和速度。 作业:1. 晶体和非晶体的概念? 2. 熟练写出布7种拉维格子的名称和相应的晶格参数? 晶体学基础知识 一.晶体的定义与特征 晶体的概念:人类对晶体的认识,是从石英开始的。古代人们把外形上具有规则的几何 多面体形态的石英(水晶)称为晶体。后来,人们把凡是天然的具有几何多面体的固体,例 如:石盐、方解石、磁石等都成为晶体。 有缘学习更多+谓ygd3076考证资料或关注桃报:奉献教育(店铺)

本世纪初(1912),X射线衍射分析方法的应用研究了晶体内部结构后,发现:一切晶体不论其外形如何,它的内部质点(原子、离子、、分子)都是有规则排列的,即:晶体内部相同质点在三维空间均呈周期性重复,构成了格子构造。因此,对晶体做出如下定义:晶体是内部质点在三维空间成周期性重复排列的固体。或者:晶体是具有格子构造的固体。 ?晶体是原子或者分子规则排列的固体; ?晶体是微观结构具有周期性和一定对称性的固体; ?晶体是可以抽象出点阵结构的固体; ?在准晶出现以后,国际晶体学联合会在 1992年将晶体的定义改为:“晶体是能够给出明锐衍射的固体。” 非晶质体:晶体内部质点在三维空间不做规律排列,不具格子构造,称为非晶质体或非晶质。例如:玻璃、塑料、沥青等。从内部结构来看,非晶质体中质点的分布无任何规律可循,其内部结构只具有统计均一性,非晶质体的性质在不同方向上是同一的。在外形上非晶质体不能自发地长成规则的几何多面体形态,而是一种无规则形态的无定形体。 晶体与非晶体 非晶体是指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体。它没有一定规则的外形,如玻璃、松香、石蜡等。它的物理性质在各个方向上是相同的,叫“各向同性”。它没有固定的熔点。所以有人把非晶体叫做“过冷液体”或“流动性很小的液体”。 晶体和非非晶质体在一定条件下是可以转换的。列如:使用年久的玻璃,常会出现一些所谓的“霉点”,是因为玻璃向结晶态转变的雏晶,此过程成为:晶化或脱玻化,相反的转化,晶体因内部质点的规律排列受到破坏而向非晶体转变,称为非晶化或玻璃化。例如,某些含放射性元素的矿物晶体,由于放射性元素在蜕变过程中放出核能,破坏了晶体内部的结构,而产生了非晶质化的现象。

晶体学基础知识点小节

第一章晶体与非晶体 ★相当点(两个条件:1、性质相同,2、周围环境相同。) ★空间格子的要素:结点、行列、面网 ★晶体的基本性质: 自限性:晶体能够自发地生长成规则的几何多面体形态。 均一性:同一晶体的不同部分物理化学性质完全相同。晶体是绝对均一性,非晶体是统计的、平均近似 均一性。 异向性:同一晶体不同方向具有不同的物理性质。例如:蓝晶石的不同方向上硬度不同。 对称性:同一晶体中,晶体形态相同的几个部分(或物理性质相同的几个部分)有规律地重复出现。 最小内能性:晶体与同种物质的非晶体相比,内能最小。 稳定性:晶体比非晶体稳定。 ■本章重点总结:本章包括3组重要的基本概念: 1)晶体、格子构造、空间格子、相当点;它们之间的关系。 2)结点、行列、面网、平行六面体;结点间距、面网间距与面网密度的关系. 3)晶体的基本性质:自限性、均一性、异向性、对称性、最小内能、稳定性,并解释为什么。 第二章晶体生长简介 2.1晶体形成的方式 ★液-固结晶过程:⑴溶液结晶:①降温法②蒸发溶剂法③沉淀反应法 ⑵熔融结晶:①熔融提拉②干锅沉降③激光熔铸④区域熔融 ★固-固结晶过程:①同质多相转变②晶界迁移结晶③固相反应结晶④重结晶⑤脱玻化 2.2晶核的形成 ?思考:怎么理解在晶核很小时表面能大于体自由能,而当晶核长大后表面能小于体自由能?因为成核过程有一个势垒:能越过这个势垒的就可以进行晶体生长了,否则不行。 ★均匀成核:在体系内任何部位成核率是相等的。 ★非均匀成核:在体系的某些部位(杂质、容器壁)的成核率高于另一些部位。 ?思考:为什么在杂质、容器壁上容易成核?为什么人工合成晶体要放籽晶? 2.3晶体生长 ★层生长理论模型(科塞尔理论模型) 层生长理论的中心思想是:晶体生长过程是晶面层层外推的过程。 ★螺旋生长理论模型(BCF理论模型) ?思考:这两个模型有什么联系与区别? 联系:都是层层外推生长;区别:生长新的一层的成核机理不同。 ?思考:有什么现象可证明这两个生长模型? 环状构造、砂钟构造、晶面的层状阶梯、螺旋纹 2.4晶面发育规律 ★★布拉维法则(law of Bravais):晶体上的实际晶面往往平行于面网密度大的面网。 为什么?面网密度大一面网间距大一对生长质点吸引力小一生长速度慢一在晶形上保留—生长速度快一尖灭 ★PBC (周期性键链)理论: 晶面分为三类:F面(平坦面,两个Periodic Bond Chain PBC)晶形上易保留。 S面(阶梯面,一个PBC)可保留或不保留。 K面(扭折面,不含PBC),晶形上不易保留。 ★居里-吴里弗原理(最小表面能原理):晶体上所有晶面的表面能之和最小的形态最稳定。

材料科学基础第三章答案

第三章 1. 试述结晶相变的热力学条件、动力学条件、能量及结构条件。 2. 如果纯镍凝固时的最大过冷度与其熔点(tm=1453℃)的比值为0.18,试求其凝固驱动力。(ΔH=-18075J/mol) 3. 已知Cu的熔点tm=1083℃,熔化潜热Lm=1.88×103J/cm3,比表面能σ=1.44×105 J/cm3。(1)试计算Cu在853℃均匀形核时的临界晶核半径。(2)已知Cu的相对原子质量为63.5,密度为8.9g/cm3,求临界晶核中的原子数。 4. 试推导杰克逊(K.A.Jackson)方程 5. 铸件组织有何特点? 6. 液体金属凝固时都需要过冷,那么固态金属熔化时是否会出现过热,为什么? 7. 已知完全结晶的聚乙烯(PE)其密度为1.01g/cm3,低密度乙烯(LDPE)为0.92 g/cm3,而高密度乙烯(HDPE)为0.96 g/cm3,试计算在LDPE及HDPE中“资自由空间”的大小。8欲获得金属玻璃,为什么一般选用液相线很陡从而有较低共晶温度的二元系?9. 比较说明过冷度、临界过冷度、动态过冷度等概念的区别。 10. 分析纯金属生长形态与温度梯度的关系。 11. 什么叫临界晶核?它的物理意义及与过冷度的定量关系如何? 12. 简述纯金属晶体长大的机制。13. 试分析单晶体形成的基本条件。 14. 指出下列概念的错误之处,并改正。(1) 所谓过冷度,是指结晶时,在冷却曲线上出现平台的温度与熔点之差;而动态过冷度是指结晶过程中,实际液相的温度与熔点之差。(2) 金属结晶时,原子从液相无序排列到固相有序排列,使体系熵值减少,因此是一个自发过程。(3) 在任何温度下,液体金属中出现的最大结构起伏都是晶胚。

材料科学和工程基础第三章答案解析

3.8 铁具有BCC晶体结构,原子半径为0.124 nm,原子量为55.85 g/mol。计算其密度并与实验值进行比较。 答:BCC结构,其原子半径与晶胞边长之间的关系为: a = 4R/3= 4?0.124/1.732 nm = 0.286 nm V = a3 = (0.286 nm)3 = 0.02334 nm3 = 2.334?10-23 cm3 BCC结构的晶胞含有2个原子, ∴其质量为:m = 2?55.85g/(6.023?1023) = 1.855?10-22 g 密度为ρ= 1.855?10-22 g/(2.334?10-23 m3) =7.95g/cm3 3.9 计算铱原子的半径,已知Ir具有FCC晶体结构,密度为22.4 g/cm3,原子量为192.2 g/mol。 答:先求出晶胞边长a,再根据FCC晶体结构中a与原子半径R的关系求R。FCC晶体结构中一个晶胞中的原子数为4, ρ= 4?192.2g/(6.023?1023?a3cm3) = 22.4g/cm3,求得a = 0.3848 nm 由a = 22R求得R = 2a/4 = 1.414?0.3848 nm/4 = 0.136 nm 3.10 计算钒原子的半径,已知V 具有BCC晶体结构,密度为5.96 g/cm3,原子量为50.9 g/mol。 答:先求出晶胞边长a,再根据BCC晶体结构中a与原子半径R的关系求R。BCC晶体结构中一个晶胞中的原子数为2, ρ= 2?50.9g/(6.023?1023?a3cm3) = 5.96 g/cm3,求得a = 0.305 nm

由a = 4R/3求得R = 3a/4 = 1.732?0.305 nm/4 = 0.132 nm 3.11 一些假想的金属具有图3.40给出的简单的立方晶体结构。如 果其原子量为70.4 g/mol,原子半径为0.126 nm,计算其密度。 答:根据所给出的晶体结构得知,a = 2R =2?0.126 nm = 0.252 nm 一个晶胞含有1个原子, ∴密度为:ρ= 1?70.4g/(6.023?1023?0.2523?10-21cm3) = 7.304 g/cm3 3.12 Zr 具有HCP晶体结构,密度为6.51 g/cm3。 (a) 晶胞的体积为多少? 用m3表示 (b) 如果c/a之比为1.593,计算c和a值。 答: V c=nM Zr A 对于HCP,每个晶胞有6个原子,M Zr = 91.2g/mol. 因此: V c= 6×91.2 6.51×106×6.02×1023 =1.396×10-28m3/晶胞 (b) V c=3×a×sin60×a×c=3×a2×√3×1.593a=4.1386a3 =4.1386a3=1.396×10-28, 求得a =3.231?10-10 m = 0.323 nm, c=1.593a =0.515 nm

第一章晶体学基础

第一章晶体学基础 注:本教案中相关图片均可点击放大显示。 第一节晶体和点阵的定义 1.1 晶体及其基本性质 晶体的定义 ?晶体是原子或者分子规则排列的固体; ?晶体是微观结构具有周期性和一定对称性的固体; ?晶体是可以抽象出点阵结构的固体; ?在准晶出现以后,国际晶体学联合会在 1992年将晶体的定义改为:“晶体是能够给出明锐衍射的固体。” 下图为晶体的电子衍射花样,其中图a为一般晶体的电子衍射花样,而图b则是一种具有沿[111]p方向具有六倍周期的有序钙钛矿的电子衍射花样,由这些衍射花样可以看出来,无论是无序还是有序晶体,其倒空间都具有平移周期对称的特点(相应的正空间也应该具有平移对称的特点)。事实上在准晶发现以前,平移周期对称被当作晶体在正空间中的一个本质的特点,晶体学中的点群和空间群就是以晶体的平移对称为基础推导出来的。 晶体的分类 从成健角度来看,晶体可以分成: ?离子晶体; ?原子晶体; ?分子晶体; ?金属晶体。

面角守衡定律:(由丹麦的斯丹诺于1669年提出) 在相同的热力学条件下,同一物质的各晶体之间比较,相应晶面的大小、形状和个数可以不同,但相应晶面间的夹角不变,一组特定的夹角构成这种物质所有晶体的共同特征。 下图是自然界存在的具有规则外形的几种常见的晶体,分别是方解石、萤石、食盐和石英,它们的面角关系完全符合面角守衡定律。事实上,自然界中的晶体,当其形成条件比较接近平衡条件时,它们往往倾向于长成与其晶体对称性相应的外形。 非晶体的定义 非晶体是指组成物质的分子(或原子、离子)不呈空间有规则周期性排列的固体。它没有一定规则的外形,如玻璃、松香、石蜡等。它的物理性质在各个方向上是相同的,叫“各向同性”。它没有固定的熔点。所以有人把非晶体叫做“过冷液体”或“流动性很小的液体”。 准晶的定义 准晶是准周期晶体的简称,它是一种无平移周期性但有位置序的晶体;也有人将其定义为具有非公度周期平移对称的晶体。准晶可以具有一般晶体禁止出现的五次、八次、十次和十二次旋转对称,但非公度周期平移对称才是其本质特点。下图中为准晶的电子衍

材料科学基础 第三章

第三章 金属与陶瓷的结构 一、学习目的 材料的结构问题需分层次认识,第一层次是原子核外电子的排布即电子组态和电子构型;第二层次是原子与原子之间的排列位置与相互作用即晶体结构;第三层次是晶相、玻璃相的分布、大小、形状等即显微结构。固态物质按照原子间(或分子)的聚集状态可以分为晶体和非晶体,在金属与陶瓷中,这两种状态都存在,并且以晶体为主。在掌握了原子结构与化学键基础上,学习晶体结构基础知识,掌握固体中原子与原子之间的排列关系,对认识和理解材料性能至关重要。 二、本章主要内容 在结晶性固体中,材料的许多性能依赖于内部原子的排列,因此,必须掌握晶体特征和描述方法。本章从微观层次出发,介绍了金属、陶瓷材料的结构特点,介绍了结晶学的基础知识。主要内容包括: 1、 晶体和晶胞 晶体:是原子、离子或分子按照一定的空间结构排列所组成的固体,其质点在空间的分布具有周期性和对称性。 晶胞:是从晶体结构中取出的能够反映晶体周期性和对程性的重复单元。 2、 金属的晶体结构 金属原子之间靠金属键结合形成的晶体为金属晶体。金属晶体的三种类型和特征为: 面心立方晶体:晶胞中八个角上各有一个原子,六个面中心各有一个原子,角上的原子为临近8个晶胞所共有,每个面中心原子为2个晶胞所共有。晶胞的原子数为4。晶胞长度a (晶胞参数a=b=c )与原子半径R 之间的关系为: 2a =晶胞中原子堆积系数(晶胞中原子体积与晶胞体积的比值)APF=0.74. 体心立方晶体:晶胞中八个角上各有一个原子,晶胞的中心有一个原子,角上的原子为临近8个晶胞所共有,所以,体心立方晶胞中的原子数为2。晶胞长度a (晶胞参数a=b=c )与原子半径R 之间的关系为: a = 晶胞中原子堆积系数APF=0.68. 密排六方晶体:由两个简单六方晶胞穿插而成。形状为八面体,上下两个面为六角形,六个侧面为长方形。密排六方的晶胞参数有两个,a 为正六边形的边长,c 为上下底面的间距(晶胞高度) 。/c a ≈。晶胞中原子堆积系数APF=0.74。 金属晶体密度: C A nA V N ρ=. 3、陶瓷的晶体结构 陶瓷晶体中大量存在的是离子晶体,由于离子键不具有方向性和饱和性,有利于空间的紧密堆积,堆积方式取决于阴阳离子的电荷和离子半径r 的相对大

相关主题