搜档网
当前位置:搜档网 › 浙江职高高二数学空间几何知识点及典型习题

浙江职高高二数学空间几何知识点及典型习题

浙江职高高二数学空间几何知识点及典型习题
浙江职高高二数学空间几何知识点及典型习题

常考知识点及相应习题汇总

一、棱锥

1、正三棱锥

定义:正三棱锥是锥体中底面是正三角形,三个侧面是全等的等腰三角形的三棱锥。 性质:1.底面是等边三角形。

线;

③1AB 与BC 所成的角的余弦为4

2

;④1BC 与C A 1垂直. 其中正确的判断是_______.

5、在正三棱锥P ABC -中,6,5AB PA ==。(1)求此三棱锥的体积V ;(2)求二面角P AB C --的正弦值。

6、正三棱锥V-ABC 的底面边长是a,侧面与底面成60°的二面角。

求(1)棱锥的侧棱长(2)侧棱与底面所成的角的正切值。

2、正四面体

(A )12

π

(B )6

π

(C )4

π

(D )3

π

2、四棱锥成为正棱锥的一个充分但不必要条件是() (A)各侧面是正三角形(C)各侧面三角形的顶角为45度

(B)底面是正方形(D)顶点到底面的射影在底面对角线的交点上

3、如果正四棱锥的侧面积等于底面积的2倍,则侧面与底面所成的角等于()

A .30°

B .45°

C .60°

D .75°

4、在正四棱锥P —ABCD 中,若侧面与底面所成二面角的大小为60°,则异面直线PA 与BC 所成角的正切值为;

5、若正四棱锥所有棱长与底面边长均相等,求①斜高与棱锥高之比②相邻两个侧面所成二面角的大小。

4、棱锥

3、如果一个棱锥被平行于底面的两个平面所截后得到的三部分体积(自上而下)为1:8:27,则这时棱锥的高被分成上、中、下三段之比为()

(A )1:)12(3-:)23(33-(B)1:32:33(C)1:21:3

1

(D)1:1:1

4、已知棱锥被平行于底面的截面分成上、下体积相等的两部分,则截面把棱锥的侧棱分成上、下两线段的比为()

A.2∶1

B.2∶1

C.1∶(2-1)

D.1∶(32-1)

5、三棱锥V-ABC 的三条侧棱两两为300角,在VA 上取两点M 、N ,VM =6,VN =8,用线绳由自M 向N 环绕一周,线绳的最短距离是.

6.在四棱锥P-ABCD 中,底面ABCD 是正方形,侧棱PD ⊥底面ABCD ,PD=DC ,E 为PC 中点.(1)求

证:PA ∥平面EDB .(2)求EB 和底面ABCD 成角正切值.

7.如图,在四棱锥P -ABCD 中,底面ABCD 是平行四边形,PA ⊥底面ABCD ,且PA=AD=2a ,AB=a ,∠在圆

各个

练习6、则则在在Rt 练习练习练习9 设∴x ∴三棱锥的高VO 为2

二、棱柱

A C

D

A 1

B 1

A

D

3、在正三棱柱A 1B 1C 1—ABC 中,AA 1=AB=a ,D 是CC 1的中点,F 是A 1B 的中点.(Ⅰ)求证:DF ‖平面ABC ;(Ⅱ)求证:AF ⊥BD ;

4.已知:如图,直棱柱ABC -A’B’C’的各棱长都相等,D 为BC 中点,CE ⊥C’D 于E

(1)求证:CE ⊥平面ADC’(2)求二面角D -AC’-C 的平面角的大小

5、如图,直三棱柱ABC-A 1B 1C 1的底面ABC 为等腰直角三角形,90ACB ∠=?,AC=1,C 点到AB 1的距离为CE=

2

3

,D 为AB 的中点.(1)求证:AB 1⊥平面CED ; (2)求异面直线AB 1与CD 之间的距离;(3)求二面角B 1—AC —B 的平面角.

6、在直三棱柱ABC —A 1B 1C 1中,BC=A 1C 1,AC 1⊥A 1B ,M ,N 分别是A 1B 1,AB 的中点。 (1)求证:面ABB 1A 1⊥面AC 1M ;(2)求证:A 1B ⊥AM ;(3)求证:面AMC 1∥面NB 1C

1∵面A 由AB=BC ,得BF BF 、∴BE FGC ;∵

AF =∵1EB ∴∠∵1CC 11C CA ∠∵1CC 2(∴O 在∠C 1A 1B 1的平分线上 连结A 1O 并延长交B 1C 1于D 1点 ∵A 1C 1=A 1B 1 ∴A 1D 1⊥B 1C 1 ∴A 1A ⊥B 1C 1 ∴BB 1⊥B 1C 1

∴四边形BB 1C 1C 为矩形 取BC 中点D ,连结ADDD 1 ∵DD 1//BB 1

∴B 1C 1⊥DD 1又B 1C 1⊥A 1D 1 ∴B 1C 1⊥平面A 1D 1DA

∴平面A 1ADD 1⊥平面B 1C 1CB

1

过A 作AN ⊥DD 1,则AN ⊥平面BB 1C 1C ∴AN=AO

∵四边形AA 1D 1D 为□ ∴A 1D 1=DD 1

∴2

31=

DD 4、(2)5

10arcsin

5、(1)略;(2)

2

1

;(3)arctan 2; 6、证明:(1)∵三棱柱ABC

—A 1B 1C 1是直三棱柱∴AA 1⊥面A 1B 1C 1 ∴AA 1⊥C 1M

∵BC 又A 1B 1?(2)1.A .23411211

4.长方体的表面积为222cm ,所有棱的总长度为cm 24,则长方体的对角线的长度是() A.cm 14 B.cm 11 C.cm 12 D.cm 13

5.如图在正方形ABCD —A 1B 1C 1D 1中,M 是棱DD 1的中点,O 为底面ABCD 的中点,P 为棱A 1B 1上任意一点,则直线OP 与直线AM 所成的角的大小

为()

D A .

4π B .3πC .2

π D .与P 点位置有关

6.如图,在长方体1111D C B A ABCD -中,

3,4,61===AA AD AB ,分别过BC 、11D A

的两个平行截面将长方体分成三部分,其体积 分别记为111DFD AEA V V -=,C F C B E B V V 11113==。 若

:1V (A)7.的

A 8底面A 91011

12.在正方体1111ABCD A B C D -中,(1)求证:平面1A BD ⊥平面11ACC A ; (2)求直线1A B 与平面11ACC A 所成的角。

13.如图,在正方体1111D C B A ABCD -中,F E 、分别是1BB 、

CD 的中

点.(1)证明:F D AD 1⊥;(2)求直线AE 与F D 1所成的角;(3)

证明:平面⊥AED 平面11FD A .

14.如图,在长方体1111ABCD A B C D -中,11

2

AB AD AA ==

,点G 为

D 1

C 1

B 1

A 1

D

C

B

A

1CC 上的点,且CG =

11

4

CC 。(1)求证:1CD ⊥平面ADG ;(2)求二面角C AG D --的大小(结果用反余弦表示)。

15.已知在正方体ABCD —A 1B 1C 1D 1中,E 、F 分别是D 1D 、BD 的中点,G 在棱CD 上,且CG =CD 4

1.(1)求证:EF ⊥B 1C ;(2)求EF 与C 1G 所成角的余弦值;

(3)求二面角F —EG —C 1的大小(用反三角函数表示).

是1BB 、16.如图,在正方体1111D C B A ABCD -中,F E 、分别

CD 的中点.(1)证明:F D AD 1⊥(2)求直线AE 与F D 1所

成的角;

(3

∴EP ⊥

FP

=12.13 16F D 1⊥. ②取AB 中点G ,连结G A 1、FG .易证11A GFD 是平行四边形.∴F D G A 11//. 设G A 1与AE 交于点H ,1AHA ∠(或其补角)是AE 与F D 1所成的角. ∵ E 是1BB 的中点,∴ Rt △AG A 1≌Rt △ABE ,GAH A GA ∠=∠1, ∴ =∠1AHA 90°,即AE 与F D 1所成的角为90°.

③由①知F D AD 1⊥,由②得F D AE 1⊥,∵A AE AD =?,∴⊥F D 1面AED . ∵ ?F D 1面11FD A ,∴ 面⊥AED 面11FD A .

四、二面角

1.二面角l αβ--内一点P 到平面βα,和棱l

的距离之比为:2,则这个二面角的平面角是

__________度.

2.已知E 是正方体1AC 的棱BC 的中点,则二面角111C E B D --的正切值是()

A .5

B .

25C .3D .2

3 3.

是()

A.4.A .1B 5A .56.BD ⊥与

CD 7.侧面求证:角D

—PB 8.BC ,(1)求异面直线PA 与CD 所成的角; (2)求证:PC ∥平面EBD ;

(3)求二面角A —BE —D 的大小(用反三角函数表示). 答案:1.900或15002.B 3.B4、B5、B6.43arctan 4

3

3 7.arctan 68.060arctan 5

高中立体几何典型题及解析

高中立体几何典型500题及解析(二)(51~100题) 51. 已知空间四边形ABCD 中,AB=BC=CD=DA=DB=AC,M 、N 分别为BC 、AD 的中点。 求:AM 及CN 所成的角的余弦值; 解析:(1)连接DM,过N 作NE∥AM 交DM 于E ,则∠CNE 为AM 及CN 所成的角。 ∵N 为AD 的中点, NE∥AM 省 ∴NE=2 1AM 且E 为MD 的中点。 设正四面体的棱长为1, 则NC=21·23= 4 3且ME=2 1MD= 4 3 在Rt△MEC 中,CE 2=ME 2+CM 2= 163+41=16 7 ∴cos ∠CNE= 324 3 432167)43()43( 2222 22-=??-+=??-+NE CN CE NE CN , 又∵∠CNE ∈(0, 2 π) ∴异面直线AM 及CN 所成角的余弦值为3 2. 注:1、本题的平移点是N ,按定义作出了异面直线中一条的平行线,然后先在△CEN 外计算CE 、CN 、EN 长,再回到△CEN 中求角。 2、作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角(异面直线所成的角的邻补角)。最后作答时,这个角的余弦值必须为正。

52. .如图所示,在空间四边形ABCD 中,点E 、F 分别是BC 、AD 上的点,已知AB=4,CD=20,EF=7, 3 1 ==EC BE FD AF 。求异面直线AB 及CD 所成的角。 解析:在BD 上取一点G ,使得3 1 =GD BG ,连结EG 、FG 在ΔBCD 中,GD BG EC BE = ,故EG//CD ,并且4 1==BC BE CD EG , 所以,EG=5;类似地,可证FG//AB ,且 4 3 ==AD DF AB FG , 故FG=3,在ΔEFG 中,利用余弦定理可得 cos ∠ FGE= 2 1 5327532222222- =??-+=??-+GF EG EF GF EG ,故∠FGE=120°。 另一方面,由前所得EG//CD ,FG//AB ,所以EG 及FG 所成的锐角等于AB 及CD 所成的角,于是AB 及CD 所成的角等于60°。 53. 在长方体ABCD -A 1B 1C 1D 1中,AA 1=c ,AB=a ,AD=b ,且a >b .求AC 1及BD 所成的角的余弦. A B C D E F G E D 1 C 1 B 1 A 1 A B D C O

高中空间立体几何典型例题

高中空间立体几何典型 例题 -CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

1 如图所示,正方体ABCD —A 1B 1C 1D 1中,侧面对角线AB 1,BC 1上分别有两点E ,F ,且B 1E=C 1F. 求证:EF ∥平面ABCD. 证明 方法一 分别过E ,F 作EM ⊥AB 于M ,FN ⊥BC 于N ,连接MN. ∵BB 1⊥平面ABCD , ∴BB 1⊥AB ,BB 1⊥BC , ∴EM ∥BB 1,FN ∥BB 1, ∴EM ∥FN. 又∵B 1E=C 1F ,∴EM=FN , 故四边形MNFE 是平行四边形,∴EF ∥MN. 又MN ?平面ABCD ,EF ?平面ABCD , 所以EF ∥平面ABCD. 方法二 过E 作EG ∥AB 交BB 1于G , 连接GF ,则B B G B A B E B 1111=, ∵B 1E=C 1F ,B 1A=C 1B , ∴B B G B B C E C 1111=,∴FG ∥B 1C 1∥BC , 又EG ∩FG =G ,AB ∩BC =B , ∴平面EFG ∥平面ABCD ,而EF ?平面EFG , ∴EF ∥平面ABCD . 2 已知P 为△ABC 所在平面外一点,G 1、G 2、G 3分别是△PAB 、△PCB 、△PAC 的重心.

(1)求证:平面G 1G 2G 3∥平面ABC ; (2)求S △3 21G G G ∶S △ABC . (1)证明 如图所示,连接PG 1、PG 2、PG 3并延长分别与边AB 、BC 、AC 交于点D 、E 、F , 连接DE 、EF 、FD ,则有PG 1∶PD =2∶3, PG 2∶PE =2∶3,∴G 1G 2∥DE . 又G 1G 2不在平面ABC 内, ∴G 1G 2∥平面ABC .同理G 2G 3∥平面ABC . 又因为G 1G 2∩G 2G 3=G 2, ∴平面G 1G 2G 3∥平面ABC . (2)解 由(1)知PE PG PD PG 21 =32,∴G 1G 2=32DE . 又DE =21AC ,∴G 1G 2=31 AC . 同理G 2G 3=31AB ,G 1G 3=3 1BC . ∴△G 1G 2G 3∽△CAB ,其相似比为1∶3, ∴S △3 21G G G ∶S △ABC =1∶9. 3如图所示,已知S 是正三角形ABC 所在平面外的一点,且SA =SB =SC ,SG 为△SAB 上的高, D 、 E 、 F 分别是AC 、BC 、SC 的中点,试判断S G 与平面DEF 的位置关系,并给予证明. 解 SG ∥平面DEF ,证明如下: 方法一 连接CG 交DE 于点H , 如图所示.

(完整版)职高数学各章节知识点汇总

第一章 集合 一、集合的概念 1、集合中元素的特性:确定性、互异性、无序性。 2、元素与集合的关系:A a A a ?∈, 二、集合之间的关系 注:1、子集:一个集合中有n 个元素,则这个集合的子集个数为n 2,真子集个数为12-n 。 2、空集是任何集合的子集,是任何非空集合的真子集。 三、集合之间的运算 1、交集:{}B x A x x B A ∈∈=且|I 2、并集:{} B x A x x B A ∈∈=或|Y 3、补集:{}A x U x x A C U ?∈=,|且 四、充要条件: q p ?,p 是q 的充分条件,q 是p 的必要条件。 q p ?,p 是q 的充要条件,q 是p 的充要条件。 第二章 不等式 一、不等式的基本性质: 1、加法法则: 2、乘法法则: 3、传递性: 4、移项: 二、一元二次不等式的解法

注:当0<-<>?>>a x a a a x a x a x a a x )0(||)0(||或 第三章 函数 一、函数的概念: 1、函数的两要素:定义域、对应法则。 函数定义域的条件: (1)分式中的0≠分母; (2)偶次方根的被开方数0≥; (3)对数的真数0>,底数10≠>且; (4)零指数幂的底数0≠。 2、函数的性质: (1)单调性:一设二求三判定 设:21,x x 是给定区间( )上的任意两上不等的实数 函数为减函数函数为增函数00) ()(121 2??-=?-=?x y x y x f x f y x x x (2)奇偶性: 判断方法:先判断函数的定义域是否关于原点对称,再看)(x f 与)(x f -的关系: )()(x f x f =-偶函数 ;)()(x f x f -=-奇函数;)()(x f x f ±≠-非奇非偶 图象特征:偶函数图象关于y 轴对称,奇函数图象关于原点对称。 二、一次函数 1、 )0(≠+=k b kx y

立体几何空间直角坐标系解法典型例题

立体几何坐标解法典型例题 1、如图,正三棱柱111ABC A B C -的所有棱长都为2,D 为1CC 中点. (Ⅰ)求证:1AB ⊥平面1A BD ; (Ⅱ)求二面角1A A D B --的大小; (Ⅲ)求点C 到平面1A BD 的距离. 2、如图,在Rt AOB △中, π6 OAB ∠=,斜边4AB =.Rt AOC △可以通过Rt AOB △以直线AO 为轴旋转得到,且二面角B AO C --的直二面角.D 是AB 的中点. (1)求证:平面COD ⊥平面AOB ; (2)求异面直线AO 与CD 所成角的大小. A B C D

3.(2010·上海松江区模拟)设在直三棱柱ABC -A 1B 1C 1中,AB =AC =AA 1=2,∠BAC =90°,E ,F 依次为C 1C ,BC 的中点. (1)求异面直线A 1B 、EF 所成角θ的正弦值; (2)求点B 1到平面AEF 的距离. 4.四棱锥S ABCD -中,底面ABCD 为平行四边形,侧面SBC ⊥底面ABCD .已知45ABC =o ∠, 2AB = ,BC = SA SB == (Ⅰ)证明SA BC ⊥; (Ⅱ)求直线SD 与平面SAB 所成角的大小. D B C A S

5.如图,点P 是单位正方体ABCD -A 1B 1C 1D 1中异于A 的一个顶点,则AP →·AB → 的值为( ) A .0 B .1 C .0或1 D .任意实数 5.在棱长为1的正方体ABCD -A 1B 1C 1D 1中,M 、N 分别为A 1B 1和BB 1的中点,那么直线AM 与CN 所成角的余弦值等于( ) A.32 B.1010 C.35 D.25 <二>选择题辨析 [注]: ①两条异面直线在同一平面内射影一定是相交的两条直线.(×) ②直线在平面外,指的位置关系:平行或相交 ③若直线a 、b 异面,a 平行于平面,b 与的关系是相交、平行、在平面内. ④两条平行线在同一平面内的射影图形是一条直线或两条平行线或两点. ⑤在平面内射影是直线的图形一定是直线.(×) ⑥在同一平面内的射影长相等,则斜线长相等.(×) ⑦是夹在两平行平面间的线段,若,则的位置关系为相交或平行或异面. [注]: ①直线与平面内一条直线平行,则∥. (×) ②直线与平面内一条直线相交,则与平面相交. (×) ③若直线与平面平行,则内必存在无数条直线与平行. (√) ④两条平行线中一条平行于一个平面,那么另一条也平行于这个平面. (×) ⑤平行于同一直线的两个平面平行.(×) ⑥平行于同一个平面的两直线平行.(×) ⑦直线与平面、所成角相等,则∥.(×) [注]: ①垂直于同一平面....的两个平面平行.(×) ②垂直于同一直线的两个平面平行.(√) ③垂直于同一平面的两条直线平行.(√) αααb a ,b a =b a ,a αa αa αa αa ααa l αβαβ

第八章 空间解析几何与向量代数知识点,题库与答案

第八章:空间解析几何与向量代数 一、重点与难点 1、重点 ①向量的基本概念、向量的线性运算、向量的模、方向角; ②数量积(是个数)、向量积(是个向量); ③几种常见的旋转曲面、柱面、二次曲面; ④平面的几种方程的表示方法(点法式、一般式方程、三点式方程、截距式方程),两平面的夹角; ⑤空间直线的几种表示方法(参数方程、对称式方程、一般方程、两点式方程),两直线的夹角、直线与平面的夹角; 2、难点 ①向量积(方向)、混合积(计算); ②掌握几种常见的旋转曲面、柱面的方程及二次曲面所对应的图形; ③空间曲线在坐标面上的投影; ④特殊位置的平面方程(过原点、平行于坐标轴、垂直于坐标轴等;) ⑤平面方程的几种表示方式之间的转化; ⑥直线方程的几种表示方式之间的转化; 二、基本知识 1、向量及其线性运算 ①向量的基本概念: 向量:既有大小又有方向的量; 向量表示方法:用一条有方向的线段(称为有向线段)来表示向量有向线段的长度表示向量的大小有向线段的方向表示向量的方向.; 向量的符号:以A为起点、B为终点的有向线段所表示的向量记作向量可用粗体字母表示也可用上加箭头书写体字母表示例如a、r、v、F或、、、; 向量的模:向量的大小叫做向量的模向量a、、的模分别记为|a|、、 单位向量: 模等于1的向量叫做单位向量; 向量的平行: 两个非零向量如果它们的方向相同或相反就称这两个向量平行向量a与b平行记作a // b零向量认为是与任何向量都平行;两向量平行又称两向量共线

零向量:模等于0的向量叫做零向量记作0或零向量的起点与终点重合它的方向可以看作是任意的 共面向量:设有k(k3)个向量当把它们的起点放在同一点时如果k个终点和公共起点在一个平面上就称这k个向量共面; 两向量夹角:当把两个非零向量a与b的起点放到同一点时两个向量之间的不超 过的夹角称为向量a与b的夹角记作或如果向量a与b中有一个是零 向量规定它们的夹角可以在0与之间任意取值; ②向量的线性运算 向量的加法(三角形法则):设有两个向量a与b平移向量使b的起点与a的终点重合此时从a的起点到b的终点的向量c称为向量a与b的和记作a+b即ca+b . : 平行四边形法则:向量a与b不平行时平移向量使a与b的起点重合以a、b为邻边作一平行四边形从公共起点到对角的向量等于向量a与b的和ab 向量的加法的运算规律: (1)交换律abba (2)结合律(ab)ca(bc) 负向量: 设a为一向量与a的模相同而方向相反的向量叫做a的负向量记为a 向量的减法:把向量a与b移到同一起点O则从a的终点A向b的终点B所引向 量便是向量b与a的差ba 向量与数的乘法:向量a与实数的乘积记作规定a是一个向量它的模|a||||a| 它的方向当>0时与a相同当<0时与a相反当0时 |a|0 即a为零向量这时它的方向可以是任意的 运算规律: (1)结合律 (a)(a)()a; (2)分配律 ()aaa;(ab)ab 向量的单位化: 设a0则向量是与a同方向的单位向量记为e a,于是a|a|e a 定理1 设向量a0那么向量b平行于a的充分必要条件是: 存在唯一的实数使b a ③空间直角坐标系 在空间中任意取定一点O和三个两两垂直的单位向量i、j、k就确定了三条都以O为原点的两两垂直的数轴依次记为x轴(横轴)、y轴(纵轴)、z轴(竖轴) 统称为坐标轴它们构成一个空间直角坐标系称为Oxyz坐标系 注: (1)通常三个数轴应具有相同的长度单位; (2)通常把x轴和y轴配置在水平面上而z轴则是铅垂线; (3)数轴的的正向通常符合右手规则

空间解析几何(下篇)剖析

空解精要(升华部分) 序 这个部分是空解的精华部分,与高代数分都有联系,关键在于你 能否发现其中的玄机。我相信,当你看完以下的知识点时,一切都会 水落石出。这部分的重点有:柱面,锥面,旋转曲面,二次曲面及其 一般线性理论,还有参数方程。 *注意:这部分的知识点如果不涉及度量问题,那么在仿射坐标系 下也成立。 一.最完美二次曲面--球面 1.定义:在三维线性空间中,我们把到定点的距离等于定长的点 的集合叫做球面,这个定点叫球心。球心到球面的任何 点的距离叫做半径。 2.球面的方程: 以点()000,,z y x 为球心,R 为半径的球面标准方程为 ()()()2202020R z z y y x x =-+-+- 这是一个二次曲面,它的一般形式为 0222=++++++D Cz By Ax z y x 命题1:用一个平面去截取球面,得到的截面是一个圆。 命题2:如果一个平面与球面相切,那么切点与球心的连线垂 直于该平面。

3.切面的求法:根据数学分析里面的求偏导数来做,无需刻意记 住二次曲面一般理论中的公式。 二.柱面的锥面 (一).柱面 1.定义:由平行于某一定方向且与一条空间定曲线相交的一 族平行直线所组成的曲面叫做柱面,定曲线叫做准线,平行 直线中的每条都叫(直)母线,定方向是直母线的方向,也叫 柱面方向。 2.柱面方程的构造 从定义中可以看出,柱面的存在由准线和母线族决定,如果 确定了准线的方程和母线的方向,那么就可以得出柱面的方 程。如果已知准线方程为 ()()? ??==0,,0,,z y x G z y x F 母线方向为(l,m,n )

职高数学知识点的总结

实用标准文案 职高数学概念与公式 初中基础知识: 1.相反数、绝对值、分数的运算; 2.因式分解: 提公因式: xy-3x=(y-3)x 3 252(31)(2) 十字相乘法如: x x x x 配方法如: 2x2x 32( x 1 )225 48 公式法:(x+y)2=x2+2xy+y2(x-y)2=x2-2xy+y 2 x 2-y 2=(x-y)(x+y) 3.一元一次方程、一元二次方程、二元一次方程组的解法: (1)代入法 (2)消元法 6.完全平方和(差)公式:a22ab b2(a b)2a22ab b 2( a b) 2 7.平方差公式:2 b 2()( a ) a a b b 8.立方和(差)公式: a3b3(a b)(a2ab b 2 ) a 3 b 3(a b)( a 2ab b 2 ) 第一章集合 1.构成集合的元素必须满足三要素:确定性、互异性、无序性。 2.集合的三种表示方法:列举法、描述法、图像法(文氏图)。 注: { x |x,x} ;另重点类型如:{y | y x23x1, x( 1,3]}描述法 元素元素性质取值范围 3.常用数集: N (自然数集)、 Z (整数集)、 Q (有理数集)、 R (实数集)、 N *(正 整数集)、 Z (正整数集) 4.元素与集合、集合与集合之间的关系: (1)元素与集合是“”与“ ”的关系。 (2)集合与集合是“” “ ”“ ”“ ”的关系。 注:(1)空集是任何集合的子集,任何非空集合的真子集。(做题时多考虑是否满足题意)( 2)一个集合含有 n 个元素,则它的子集有2n个,真子集有 2n 1 个,非空真子集有 2n2 个。 5.集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) ( 1) A B { x | x A且x B} :A与B的公共元素(相同元素)组成的集合 (2) A B { x | x A或x B} :A与B的所有元素组成的集合(相同元素只写一次)。

职高数学知识点总结

职高数学知识点总结文件编码(008-TTIG-UTITD-GKBTT-PUUTI-WYTUI-8256)

职高数学概念与公 式 初中基础知识: 1. 相反数、绝对值、分数的运算; 2. 因式分解: 提公因式:xy-3x=(y-3)x 十字相乘法 如:)2)(13(2532 -+=--x x x x 配方法 如:8 25)4 1(23222- +=-+x x x 公式法:(x+y )2=x 2+2xy+y 2 (x-y)2=x 2-2xy+y 2 x 2-y 2=(x-y)(x+y) 3. 一元一次方程、一元二次方程、二元一次方程组的解法: (1) 代入法 (2) 消元法 6.完全平方和(差)公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+- 7.平方差公式:))((22b a b a b a -+=- 8.立方和(差)公式:))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 第一章 集合 1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。 2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。 注:?描述法 },| 取值范围 元素性质元素 {?∈?=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、 *N (正整数集)、+Z (正整数集) 4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“?”的关系。 (2) 集合与集合是“?” “”“=”“?/”的关系。

高等数学 向量代数与空间解析几何复习

第五章 向量代数与空间解析几何 5.1向量 既有大小又有方向的量 表示:→ -AB 或a (几何表示)向量的大小称为向量的模,记作||AB 、|a |、||a 1. 方向余弦:??? ? ??=||,||,||)cos ,cos ,(cos r r r z y x γβα r =(x ,y ,z ),| r |=2 22z y x ++ 2. 单位向量 )cos ,cos ,(cos γβα=→ a 模为1的向量。 3. 模 → →→ ?=++=a a z y x a 2 22|| 4. 向量加法(减法) ),,(212121z z y y x x b a ±±±=±→ → 5. a ·b =| a |·| b |cos θ212121z z y y x x ++= a ⊥ b ?a ·b =0(a ·b =b ·a ) 6. 叉积、外积 |a ?b | =| a || b |sin θ= z y x z y x b b b a a a k j i a // b ?a ?b =0.( a ?b= - b ?a ) ? 2 12 12 1z z y y x x == 7. 数乘:),,(kz ky kx ka a k ==→ → 例1 1||,2||==→ → b a ,→ a 与→ b 夹角为 3 π ,求||→ →+b a 。 解 2 2 ||cos ||||2||2)()(||→ →→→ → →→ →→ →→ → → → → → ++= ?+?+?= +?+=+b b a a b b b a a a b a b a b a θ 713 cos 12222 = +???+= π 例2 设2)(=??c b a ,求)()]()[(a c c b b a +?+?+。 解 根据向量的运算法则 )()]()[(a c c b b a +?+?+

高中数学空间向量与立体几何典型例题

空间向量与立体几何典型例题 一、选择题: 1.(2008全国Ⅰ卷理)已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( C ) A . 13 B C D .23 1.解:C .由题意知三棱锥1A ABC -为正四面体,设棱长为a ,则1AB = ,棱柱的高 1 3AO a ===(即点1B 到底面ABC 的距离),故1AB 与底面ABC 所成角的正弦值为113 AO AB =. 另解:设1,,AB AC AA u u u r u u u r u u u r 为空间向量的一组基底,1,,AB AC AA u u u r u u u r u u u r 的两两间的夹角为0 60 长度均为a ,平面ABC 的法向量为111133 OA AA AB AC =--u u u r u u u r u u u r u u u r ,11AB AB AA =+u u u r u u u r u u u r 211112,,33 OA AB a OA AB ?===u u u r u u u r u u u r u u u r 则1AB 与底面ABC 所成角的正弦值为11 1 13OA AB AO AB ?=u u u u r u u u r u u u r u u u r . 二、填空题: 1.(2008全国Ⅰ卷理)等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角 C AB D -- M N ,分别是AC BC ,的中点,则EM AN ,所成角的余弦值等于 6 1 . 1.答案: 1 6 .设2AB =,作CO ABDE ⊥面, OH AB ⊥,则CH AB ⊥,CHO ∠为二面角C AB D -- cos 1CH OH CH CHO ==?∠=,结合等边三角形ABC 与正方形ABDE 可知此四棱锥为正四棱锥,则AN EM ==11(),22AN AC AB EM AC AE =+=-u u u r u u u r u u u r u u u u r u u u r u u u r , 11()()22AN EM AB AC AC AE ?=+?-=u u u r u u u u r u u u r u u u r u u u r 12 故EM AN ,所成角的余弦值1 6 AN EM AN EM ?=u u u r u u u u r u u u r u u u u r 另解:以O 为坐标原点,建立如图所示的直角坐标系, 则点(1,1,0),(1,1,0),(1,1,0),A B E C ----,

最新职高数学第四章复习

第四章 指数函数与对数函数 复习卷 【知识点】 1、指数和幂概念的推广:正整数指数幂:a n =a ·a ·…·a ;零指数幂:x 0= (0≠x ), 负整数指数幂:=-n x (0≠x ,+∈N n );正分数指数幂:=n m x , 负分数指幂数=-n m x (1,,>∈+n N n m ) 2、实数指数幂的运算法则:=?n m a a ,=n m a )( ,=m ab ) ( , =n m a a ,=n b a )( ()0,0,,>>∈+ b a N n m 3、幂函数:(1)形如 (0≠α)叫做幂函数。 (2)图象及性质:当0>α时,图象都通过点 和 , 在区间),0(+∞内,函数是 (增、减)函数;当0<α时,图象都通过点 ,在区间),0(+∞内,函数是 (增、减)函数,在第一象限内,图象向上与y 轴无限靠近,向右与x 轴无限靠近。 4、 对数及对数运算法则: (1)对数定义:若N a b =(10≠>a a 且,0>N ),则称b 为以a 为底,N 的对数,记作 ,并称a 为对数的 ,N 为 。 以10为底的对数叫 ,记作 ;以e 为底的对数叫 ,记作 。 注:指数形式N a b =与对数形式N b a log =实质是同一关系的不同表示方法,即指数式 与对数式可以相互转换。 (2)对数性质: 零和负数没有对数;1的对数为 ,即 ;底的对数为 ,即 ;对数恒等式 、 。 (3)对数运算法则: =)(log MN a ;=N M a log ;

=n a M log ;=n a M log 。 (其中10≠>a a 且,任意0,>N M ,R n ∈) (4)对数换底公式与倒数公式:=N a log 5、指数函数与对数函数: (1)定义:我们把函数 (a 为常数且10≠>a a 且)叫做指数函数。 (2) 函数 (10≠>a a 且)叫做以a 为底的对数函数。 (3)图象与性质: 对数函数与指数函数关系:对数函数是指数函数的逆对应;对数函数x y a log =的图象与指数函数x a y =的图象关于 ;

最新职高数学知识点总结教案资料

数学知识要点总结 初中基础知识: 1. 相反数、绝对值、分数的运算; 2. 因式分解: 提公因式:xy-3x=(y-3)x 十字相乘法 如:)2)(13(2532 -+=--x x x x 配方法 如:8 25 )41(23222-+=-+x x x 公式法:(x+y )2=x 2+2xy+y 2 (x-y)2=x 2-2xy+y 2 x 2-y 2=(x-y)(x+y) 3. 一元一次方程、一元二次方程、二元一次方程组的解法: (1) 代入法 (2) 消元法 6.完全平方和(差)公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+- 7.平方差公式:))((22b a b a b a -+=- 8.立方和(差)公式:))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 第一章 集合 1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。 2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。 注:?描述法 },| 取值范围 元素性质元素 {?∈?=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、*N (正整数集)、+Z (正整数集) 4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“?”的关系。 (2) 集合与集合是“?” “”“=”“?/”的关系。 注:(1)空集是任何集合的子集,任何非空集合的真子集。(做题时多考虑φ是否满足题意) (2)一个集合含有n 个元素,则它的子集有n 2个,真子集有12-n 个,非空真子集有22-n 个。 5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1)}|{B x A x x B A ∈∈=且 :A 与B 的公共元素(相同元素)组成的集合 (2)}|{B x A x x B A ∈∈=或 :A 与B 的所有元素组成的集合(相同元素只写一次)。

高中数学知识点总结之平面向量与空间解析几何(经典必看)

56. 你对向量的有关概念清楚吗? (1)向量——既有大小又有方向的量。 ()向量的模——有向线段的长度,2||a → ()单位向量,3100|||| a a a a →→ → → == ()零向量,4000→ → =|| ()相等的向量长度相等方向相同5???? =→→ a b 在此规定下向量可以在平面(或空间)平行移动而不改变。 (6)并线向量(平行向量)——方向相同或相反的向量。 规定零向量与任意向量平行。 b a b b a → → → → → → ≠?=∥存在唯一实数,使()0λλ (7)向量的加、减法如图: OA OB OC →+→=→ OA OB BA →-→=→ (8)平面向量基本定理(向量的分解定理) e e a → → → 12,是平面内的两个不共线向量,为该平面任一向量,则存在唯一

实数对、,使得,、叫做表示这一平面内所有向量λλλλ12112212a e e e e →→→→→ =+ 的一组基底。 (9)向量的坐标表示 i j x y →→ ,是一对互相垂直的单位向量,则有且只有一对实数,,使得 ()a x i y j x y a a x y → →→→→ =+=,称,为向量的坐标,记作:,,即为向量的坐标() 表示。 ()()设,,,a x y b x y → → ==1122 ()()()则,,,a b x y y y x y x y → →±=±=±±11121122 ()()λλλλa x y x y →==1111,, ()()若,,,A x y B x y 1122 ()则,AB x x y y → =--2121 ()()||AB x x y y A B →= -+-212212,、两点间距离公式 57. 平面向量的数量积 ()··叫做向量与的数量积(或内积)。1a b a b a b →→→→→→ =||||cos θ []θθπ为向量与的夹角,,a b → → ∈0

职高数学知识点总结

职高数学概念及公式 初中基础知识: 1. 相反数、绝对值、分数的运算; 2. 因式分解: 提公因式:3(3)x 十字相乘法 如:)2)(13(2532 -+=--x x x x 配方法 如:8 25)41(23222- +=-+x x x 公式法:()22+22 ()22-22 x 22=()() 3. 一元一次方程、一元二次方程、二元一次方程组的解法: (1) 代入法 (2) 消元法 6.完全平方和(差)公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+- 7.平方差公式:))((22b a b a b a -+=- 8.立方和(差)公式:))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 第一章 集合 1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。 2. 集合的三种表示方法:列举法、描述法、图像法(文氏图)。 注:?描述法 },| 取值范围 元素性质元素 {?∈?=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、* N (正整数集)、+Z (正整数集) 4. 元素及集合、集合及集合之间的关系: (1) 元素及集合是“∈”及“?”的关系。 (2) 集合及集合是“?” “”“=”“?/”的关系。 注:(1)空集是任何集合的子集,任何非空集合的真子集。(做题时多考虑φ是

否满足题意) (2)一个集合含有n 个元素,则它的子集有n 2个,真子集有12-n 个,非空真子集有22-n 个。 5. 集合的基本运算(用描述法表示的集合的运算尽量用画数轴的方法) (1)}|{B x A x x B A ∈∈=且 :A 及B 的公共元素(相同元素)组成的集合 (2)}|{B x A x x B A ∈∈=或 :A 及B 的所有元素组成的集合(相同元素只写一次)。 (3)A C U :U 中元素去掉A 中元素剩下的元素组成的集合。 注:B C A C B A C U U U =)( B C A C B A C U U U =)( 6. 逻辑联结词: 且(∧)、或(∨)非(?)如果……那么……(?) 量词:存在(?) 任意(?) 真值表: q p ∧:其中一个为假则为假,全部为真才为真; q p ∨:其中一个为真则为真,全部为假才为假; p ?:及p 的真假相反。 (同为真时“且”为真,同为假时“或”为假,真的“非”为假,假的“非”为真;真“推”假为假,假“推”真假均为真。) 7. 命题的非 (1)是→不是 都是→不都是(至少有一个不是) (2)?……,使得p 成立→对于?……,都有p ?成立。 对于?……,都有p 成立→?……,使得p ?成立 (3)q p q p ?∨?=∧?)( q p q p ?∧?=∨?)(

高中数学立体几何经典常考题型

高中数学立体几何经典常考题型 题型一:空间点、线、面的位置关系及空间角的计算 空间点、线、面的位置关系通常考查平行、垂直关系的证明,一般出现在解答题的第(1)问,解答题的第(2)问常考查求空间角,求空间角一般都可以建立空间直角坐标系,用空间向量的坐标运算求解. 【例1】如图,在△ABC 中,∠ABC = π4 ,O 为AB 边上一点,且3OB =3OC =2AB ,已知PO ⊥平 面ABC ,2DA =2AO =PO ,且DA ∥PO. (1)求证:平面PBD ⊥平面COD ; (2)求直线PD 与平面BDC 所成角的正弦值. (1)证明 ∵OB =OC ,又∵∠ABC =π 4, ∴∠OCB =π4,∴∠BOC =π 2. ∴CO ⊥AB. 又PO ⊥平面ABC , OC ?平面ABC ,∴PO ⊥OC. 又∵PO ,AB ?平面PAB ,PO ∩AB =O , ∴CO ⊥平面PAB ,即CO ⊥平面PDB. 又CO ?平面COD , ∴平面PDB ⊥平面COD. (2)解 以OC ,OB ,OP 所在射线分别为x ,y ,z 轴,建立空间直角坐标系,如图所示. 设OA =1,则PO =OB =OC =2,DA =1. 则C(2,0,0),B(0,2,0),P(0,0,2),D(0,-1,1), ∴PD →=(0,-1,-1),BC →=(2,-2,0),BD →=(0,-3,1).

设平面BDC 的一个法向量为n =(x ,y ,z ), ∴?????n ·BC →=0,n · BD →=0,∴???2x -2y =0,-3y +z =0, 令y =1,则x =1,z =3,∴n =(1,1,3). 设PD 与平面BDC 所成的角为θ, 则sin θ=????? ? ??PD →·n |PD →||n | =??????1×0+1×(-1)+3×(-1)02+(-1)2+(-1)2×12+12+32=222 11. 即直线PD 与平面BDC 所成角的正弦值为22211. 【类题通法】利用向量求空间角的步骤 第一步:建立空间直角坐标系. 第二步:确定点的坐标. 第三步:求向量(直线的方向向量、平面的法向量)坐标. 第四步:计算向量的夹角(或函数值). 第五步:将向量夹角转化为所求的空间角. 第六步:反思回顾.查看关键点、易错点和答题规范. 【变式训练】 如图所示,在多面体A 1B 1D 1-DCBA 中,四边形AA 1B 1B ,ADD 1A 1,ABCD 均为正方形,E 为B 1D 1的中点,过A 1,D ,E 的平面交CD 1于F . (1)证明:EF ∥B 1C . (2)求二面角E -A 1D -B 1的余弦值. (1)证明 由正方形的性质可知A 1B 1∥AB ∥DC ,且A 1B 1=AB =DC ,所以四边形A 1B 1CD 为平行四边形,从而B 1C ∥A 1D ,又A 1D ?面A 1DE ,B 1C ?面A 1DE ,于是B 1C ∥面A 1DE.又B 1C ?面B 1CD 1,面A 1DE ∩面B 1CD 1=EF ,所以EF ∥B 1C.

-中职数学基础知识汇总.doc

职教单招数学总复习 中职数学基础知识汇总 预备知识: 1.完全平方和(差)公式:(a+b)2=a2+2ab+b2 (a-b)2=a2-2ab+b2 2.平方差公式:a2-b2=(a+b)(a-b) 3.立方和(差)公式:a3+b 3=(a+b)(a2-ab+b2) a3-b3=(a-b)(a 2+ab+b2) 第一章集合 1.构成集合的元素必足三要素:确定性、互异性、无序性。 2.集合的三种表示方法:列法、描述法、像法(文氏)。 3.常用数集: N(自然数集)、 Z (整数集)、 Q(有理数集)、 R(数集)、 N +(正整数集) 4.元素与集合、集合与集合之的关系: (1)元素与集合是“”与“ ”的关系。 (2)集合与集合是“í” “ ”“=”“/í”的关系。 注:( 1)空集是任何集合的子集,任何非空集合的真子集。(做多考Ф是否足意) ( 2)一个集合含有 n 个元素,它的子集有2n个,真子集有 2n-1 个,非空真子集有2n-2 个。 5.集合的基本运算(用描述法表示的集合的运算尽量用画数的方法) (1)A B = { x | x 挝A且x B}:A与B的公共元素成的集合 (2)A B = { x | x 挝A或 x B}:A与B的所有元素成的集合(相同元素只写一次)。 ( 3)C U A:U中元素去掉A中元素剩下的元素成的集合。 注: C U(A B) C U A C U B C U(A B)=C U A C U B 6.会用文氏表示相的集合,会将相的集合画在文氏上。 7. 充分必要条件: p是q的??条件p 是条件, q 是 如果 p q,那么 p 是 q 的充分条件 ;q 是 p 的必要条件 . 如果 p q,那么 p 是 q 的充要条件 第二章不等式1.不等式的基本性:(略) 注:( 1)比两个数的大小一般用比差的方法;另外可以用平方法、倒数法。 (2)不等式两同乘以数要号!! (3)同向的不等式可以相加(不能相减),同正的同向不等式可以相乘。 2.重要的不等式: ( 1)a2b22ab ,当且当 a b ,等号成立。 ( 2)a b ab a b R 2 ( , ) ,当且当 a b ,等号成立。(3) 注:a b (算平均数)ab (几何平均数)2 3.一元一次不等式的解法(略) 4.一元二次不等式的解法 (1)保二次系数正 (2)分解因式(十字相乘法、提取公因式、求根公式法),目的是求根:

必修二立体几何典型例题

必修二立体几何典型例题 【知识要点】 1.空间直线和平面的位置关系: (1)空间两条直线: ①有公共点:相交,记作:a∩b=A,其中特殊位置关系:两直线垂直相交. ②无公共点:平行或异面. 平行,记作:a∥b. 异面中特殊位置关系:异面垂直. (2)空间直线与平面: ①有公共点:直线在平面内或直线与平面相交. 直线在平面内,记作:a?α . 直线与平面相交,记作:a∩α =A,其中特殊位置关系:直线与平面垂直相交. ②无公共点:直线与平面平行,记作:a∥α . (3)空间两个平面: ①有公共点:相交,记作:α ∩β =l,其中特殊位置关系:两平面垂直相交. ②无公共点:平行,记作:α ∥β . 2.空间作为推理依据的公理和定理: (1)四个公理与等角定理: 公理1:如果一条直线上的两点在一个平面内,那么这条直线上所有的点都在此平面内.公理2:过不在一条直线上的三点,有且只有一个平面. 公理3:如果两个不重合的平面有一个公共点,那么它们有且只有一条过该点的公共直线. 公理4:平行于同一条直线的两条直线互相平行. 定理:空间中如果一个角的两边与另一个角的两边分别平行,那么这两个角相等或互补. (2)空间中线面平行、垂直的性质与判定定理: ①判定定理: 如果平面外一条直线与此平面内的一条直线平行,那么该直线与此平面平行. 如果一个平面内的两条相交直线与另一个平面都平行,那么这两个平面平行. 如果一条直线与一个平面内的两条相交直线都垂直,那么该直线与此平面垂直. 如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直. ②性质定理: 如果一条直线与一个平面平行,那么经过该直线的任一个平面与此平面的交线与该直线平行. 如果两个平行平面同时和第三个平面相交,那么它们的交线相互平行.垂直于同一个平面的两条直线平行. 如果两个平面垂直,那么一个平面内垂直于它们交线的直线与另一个平面垂直. (3)我们把上述判定定理与性质定理进行整理,得到下面的位置关系图: 【例题分析】

职高数学知识点的总结

职高数学概念与公式 初中基础知识: 1. 相反数、绝对值、分数的运算; 2. 因式分解: 提公因式:xy-3x=(y-3)x 十字相乘法 如:)2)(13(2532 -+=--x x x x 配法 如:8 25 )41(23222-+=-+x x x 公式法:(x+y )2=x 2+2xy+y 2 (x-y)2=x 2-2xy+y 2 x 2-y 2=(x-y)(x+y) 3. 一元一次程、一元二次程、二元一次程组的解法: (1) 代入法 (2) 消元法 6.完全平和(差)公式:222)(2b a b ab a +=++ 222)(2b a b ab a -=+- 7.平差公式:))((22b a b a b a -+=- 8.立和(差)公式:))((2233b ab a b a b a +-+=+ ))((2233b ab a b a b a ++-=- 第一章 集合 1. 构成集合的元素必须满足三要素:确定性、互异性、无序性。 2. 集合的三种表示法:列举法、描述法、图像法(文氏图)。 注:?描述法{},|3 21321取值范围 元素性质元素 {?∈?=x x x ;另重点类型如:}{]3,1(,13|y 2-∈+-=x x x y 3. 常用数集:N (自然数集)、Z (整数集)、Q (有理数集)、R (实数集)、*N (正整数集)、+Z (正整数集) 4. 元素与集合、集合与集合之间的关系: (1) 元素与集合是“∈”与“?”的关系。 (2) 集合与集合是“?” “”“=”“?/”的关系。 注:(1)空集是任集合的子集,任非空集合的真子集。(做题时多考虑φ是否满足题意)

空间几何体复习知识与经典例题练习

第一章 空间几何体 一、知识点归纳 (一)空间几何体的结构特征 (1)多面体——由若干个平面多边形围成的几何体. 旋转体——把一个平面图形绕它所在平面内的一条定直线旋转形成的封闭几何体。其 中,这条定直线称为旋转体的轴。 (2)柱,锥,台,球的结构特征 1.1棱柱——有两个面互相平行,其余各面都是四边形,并且每相邻两个四边形的公共边都 互相平行,由这些面所围成的几何体叫做棱柱。 1.2圆柱——以矩形的一边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何 体叫圆柱. 2.1棱锥——有一个面是多边形,其余各面是有一个公共顶点的三角形,由这些面所围成的几何体叫做棱锥。 2.2圆锥——以直角三角形的一直角边所在的直线为旋转轴,其余各边旋转而形成的曲面所围成的几何体叫圆锥。 3.1棱台——用一个平行于底面的平面去截棱锥,我们把截面与底面之间的部分称为棱台. 3.2圆台——用平行于圆锥底面的平面去截圆锥,底面与截面之间的部分叫做圆台. 4.1球——以半圆的直径所在直线为旋转轴,半圆旋转一周形成的旋转体叫做球体,简称球. (二)空间几何体的三视图与直观图 1.投影:区分中心投影与平行投影。平行投影分为正投影和斜投影。 2.三视图——正视图;侧视图;俯视图;是观察者从三个不同位置观察同一个空间几何体而画出的图形;画三视图的原则: 长对齐、高对齐、宽相等 3.直观图:直观图通常是在平行投影下画出的空间图形。 4.斜二测法:在坐标系'''x o y 中画直观图时,已知图形中平行于坐标轴的线段保持平行性不变,平行于x 轴(或在x 轴上)的线段保持长度不变,平行于y 轴(或在y 轴上)的线段长度减半。 (三)空间几何体的表面积与体积 1、空间几何体的表面积 ①棱柱、棱锥的表面积: 各个面面积之和 ②圆柱的表面积 ③圆锥的表面积2S rl r ππ=+ ④圆台的表面积 22S rl r Rl R ππππ=+++ ⑤球的表面积24S R π= ⑥扇形的面积公式21 3602 n R S lr π==扇形(其中l 表示弧长,r 表示半径) 2、空间几何体的体积 ①柱体的体积 V S h =?底 ②锥体的体积 13 V S h =?底 ③台体的体积 1 )3 V S S h =+ +?下上( ④球体的体积 343 V R π= 222r rl S ππ+=

相关主题