搜档网
当前位置:搜档网 › 串行通信i2c总线协议简明教程

串行通信i2c总线协议简明教程

一、技术性能:

标准速率100kbit/s,快速模式400kbit/s,高速模式略;

支持多机通讯;

支持多主控模块,但同一时刻只允许有一个主控;

由数据线SDA和时钟SCL构成串行总线;

每个电路和模块都有唯一的地址;

每个器件可以使用独立电源但是必须共地;

--------------------------------------------------------------

二、连接方式:

连接到总线的两个器件端口(SDA和SCL)必须是漏极开路或者集电极开路,这样才能执行线与功能,所以SDA和SCL都还要通过一个上拉电阻接正的电源电压。

--------------------------------------------------------------

三、总线基本状态:

1、总线空闲(A)

数据线和时钟线同时为高电平。

2、启动数据传输(B)

时钟(SCL)为高电平时,SDA 从高电平变为低电平表示起始条件产生。起始条件必须先于所有的命令产生。

3、停止数据传输(C)

时钟(SCL)为高电平时,SDA 从低电平变为高电平表示停止条件产生。所有操作都必须以停止条件结束。

4、数据传送/数据有效(D)

数据线的状态表明数据何时有效。在起始条件之后,数据线在时钟处于高电平期间保持稳定。必须在时钟信号为低电平期间改变数据线。一个数据位对应一个时钟脉冲。数据的每次传输以起始条件开始,以停止条件结束。在起始条件和停止条件之间传输的数据字节数目由主器件决定。

5、确认信号(ACK)

每一个被寻址的接收器在接收到每一字节数据后,应发送一个确认位。主器件必须提供一个额外的时钟以传输确认位。在确认时钟脉冲内,器件确认须拉低SDA 线。在确认时钟的高电平期间,SDA线以这种方式保持稳定的低电平。当然,还必须考虑建立时间和保持时间。

6、无应答信号(NACK)

在时钟的第9个脉冲期间发送器释放数据总线,接收器不拉低数据总线表示一个NACK,NACK有两种用途:a、一般表示接收器未成功接收数据字节;b、当接收器是主控器时,它收到最后一个字节后,应发送一个NACK信号,以通知被控发送器结束数据发送,并释放总线,以便主控接收器发送一个停止信号STOP。

7、其它信号如插入等待、重启动、时钟同步、总线仲裁、总线封锁等不经常使用,请参阅资料。

--------------------------------------------------------------

四、基本工作时序:

以启动信号START来掌管总线,以停止信号STOP来释放总线;

每次通讯以START开始,以STOP结束;

启动信号START后紧接着发送一个控制字节,其中7位为被控器件的地址码,一位为读/写控制位R/W,R./W位为0表示由主控向被控器件写数据,R/W为1表示由主控向被控器件读数据;

当被控器件检测到收到的地址与自己的地址相同时,在第9个时钟期间反馈应答信号;

每个数据字节在传送时都是高位(MSB)在前;

写数据过程:

1、主控在检测到总线空闲的状况下,首先发送一个START信号掌管总线;

2、发送一个控制字节(包括7位器件地址码和一位R/W);(某些器件的地址字节可能带有其他功能)

3、当被控器件检测到主控发送的地址与自己的地址相同时发送一个应答信号(ACK);

4、主控收到ACK后开始发送第一个数据字节;

5、被控器收到数据字节后发送一个ACK表示继续传送数据,发送NACK表示传送数据结束;

6、主控发送完全部数据后,发送一个停止位STOP,结束整个通讯并且释放总线;

写数据时序:

a.单字节写操作

(注:图中控制字节指器件地址码和读写控制位;地址字节指器件内部的储存器地址。下同。)b.多字节连续写操作(被控器件完成一个写字节操作后内部地址计数器自动加一)

读数据过程:

1、主控在检测到总线空闲的状况下,首先发送一个START信号掌管总线;

2、发送一个控制字节(包括7位器件地址码和一位R/W);(某些器件的地址字节可能带有其他功能)

3、当被控器件检测到主控发送的地址与自己的地址相同时发送一个应答信号(ACK);

4、主控收到ACK后释放数据总线,开始接收第一个数据字节;

5、主控收到数据后发送ACK表示继续传送数据,发送NACK表示传送数据结束;

6、主控发送完全部数据后,发送一个停止位STOP,结束整个通讯并且释放总线;

a.当前地址读单字节操作(被控器件内部储存器地址计数器保留最后一次访问的地址)

b.任意地址读单字节操作(主控器件先发写命令,然后发要读的地址,然后发读命令)

c.多字节连续读操作(被控器件完成一个读字节操作后内部地址计数器自动加一)

注:以上操作符合24CXX系列EEPROM器件读写时序。

--------------------------------------------------------------

五、寻址约定

一般器件地址码分为两部分:1、高4位属于固定地址不可改变,由厂家固化的统一地址;2、低三位为引脚设定地址,可以由外部引脚来设定(并非所有器件都可以设定)。

i2c协议以及其相关bug分析总结

i2c协议以及其相关bug分析总结 篇一:I2C协议以及其相关bug分析总结_袁刚20XX1202 一、I2C通信协议 ................................................ ................................................... (2) 1、I2C 协议:............................................... . (2) 2、I2C时序 ................................................ . (3) 3、I2C协议中文版本 ................................................ .. (7) 二、I2C协议中遇到的BUG分析 ................................................ .. (8) 1、项目A72A中时序问题 ................................................ (8)

2、T03 Light sensor 无ACK问题................................................. (8) 3、S26I 电池以及F01电池问题................................................. (9) 4、现象ACK后面的半高的小毛刺分析 ................................................ (10) 5、T05C G-sensor无数据问题 ................................................ .. (11) 三、I2C协议使用注意事项 ................................................ .. (12) 1、I2C level shift 普通MOS以及level shift IC (12) 2、I2C使用注意事项以及bug总结 ................................................ (15) 文档整理人:袁刚 20XX年12月2日 一、I2C通信协议

实验八 IIC通信协议

实验八I2C通信协议 一、实验目的: 1、培养学生阅读资料的能力; 2、加深学生对I2C总线通信协议的理解; 3、加强学生对模块化编程的理解; 二、实验环境: 1、硬件环境:PC机一台、单片机实验板一块、母头串口交叉线、USB电源线; 2、软件环境:keil uVision2集成开发环境; STC-ISP下载上位机软件; 三、实验原理: 要学会I2C通信协议的编程,关键是要看懂并掌握其时序图,理解对I2C通信协议相关子程序的实验编写。I2C通信协议的总线时序图如下所示: I2C总线时序图 I2C相关子程序的详细介绍 1、起始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。 2、结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。 起始信号和结束信号的时序图如下所示: 起始信号和结束信号的时序图 起始信号的流程如下:

1、SCL和SDA拉高,保持时间约为0.6us-4us; 2、拉低SDA,保持时间为约为0.6us-4us; 3、拉低时钟线 结束信号的流程如下: 1、SCL置高电平,SDA置低电平,保持时间约为0.6us-4us 2、SDA拉高,保持时间约为1.2-4us; 应答信号:接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据。CPU向受控单元发出一个信号后,等待受控单元发出一个应答信号,CPU接收到应答信号后,根据实际情况作出是否继续传递信号的判断。 若未收到应答信号,由判断为受控单元出现故障。应答信号的时序图如下所示: 应答时序图 发送时的应答信号 ;**********应答信号********** ACK: SETB SDA ;数据线置高 SETB SCL ;时钟线置高 ACALL DELAY JB SDA,$ ;等待数据线变低 ACALL DELAY CLR SCL ;时钟线置低 RET 注意:这里如果数据线一直为高将进入死循环,所以一般我们都会在这做一个容错的处理。具体的程序如下: ACK: MOV R4,#00H SETB SDA SETB SCL LOP0: JNB SDA,LOP DJNZ R4,LOP0 ;循环255次 LOP: ACALL DEL CLR SCL RET 接收时的应答信号

基于MSP430的I2C模拟总线程序讲解

程序和流程图: IIC.h void Init_IIC(void); void EEPROM_ByteWrite(unsigned char nAddr,unsigned char nVal); unsigned char EEPROM_RandomRead(unsigned char nAddr); unsigned char EEPROM_CurrentAddressRead(void); void EEPROM_AckPolling(void); void Init_CLK(void); void Init_IIC_Port(void); Main.C /******************************************* IIC for AT24c16 OR AT24CXXX 系列 只要控制好IICRM IICSTP IICSTT 其硬件会自动完成 SCL SDA的一系列时序只要注意各个发送与接收的控制标志位. ******************************************/ #include #include "IIC.h" volatile unsigned char Data[6]; void main(void) { //volatile unsigned char Data[6];

//停止看门狗 WDTCTL = WDTPW+WDTHOLD; //初始化端口 Init_IIC_Port(); //初始化时钟 Init_CLK(); //I2C初始化 Init_IIC(); //置传输方式及控制方式 //打开中断 _EINT(); //写入数据 EEPROM_ByteWrite(0x0000,0x12); //等待写操作完成 EEPROM_AckPolling(); //写入数据 EEPROM_ByteWrite(0x0001,0x34); //等待写操作完成 EEPROM_AckPolling(); //写入数据 EEPROM_ByteWrite(0x0002,0x56); //等待写操作完成

I2C总线协议详解

I2C总线协议详解 I2C总线定义 -------------------------------------------------------------------------------- I2C(Inter-Integrated Circuit)总线是一种由PHILIPS公司开发的两线式串行总线,用于连接微控制器及其外围设备。I2C总线产生于在80年代,最初为音频和视频设备开发,如今主要在服务器管理中使用,其中包括单个组件状态的通信。例如管理员可对各个组件进行查询,以管理系统的配置或掌握组件的功能状态,如电源和系统风扇。可随时监控内存、硬盘、网络、系统温度等多个参数,增加了系统的安全性,方便了管理。 I2C总线特点 -------------------------------------------------------------------------------- I2C总线最主要的优点是其简单性和有效性。由于接口直接在组件之上,因此I2C总线占用的空间非常小,减少了电路板的空间和芯片管脚的数量,降低了互联成本。总线的长度可高达25英尺,并且能够以10Kbps的最大传输速率支持40个组件。I2C总线的另一个优点是,它支持多主控(multimastering),其中任何能够进行发送和接收的设备都可以成为主总线。一个主控能够控制信号的传输和时钟频率。当然,在任何时间点上只能有一个主控。 I2C总线工作原理 -------------------------------------------------------------------------------- 总线的构成及信号类型 -------------------------------------------------------------------------------- I2C总线是由数据线SDA和时钟SCL构成的串行总线,可发送和接收数据。在CPU与被控IC之间、IC与IC之间进行双向传送,最高传送速率100kbps。各种被控制电路均并联在这条总线上,但就像电话机一样只有拨通各自的号码才能工作,所以每个电路和模块都有唯一的地址,在信息的传输过程中,I2C总线上并接的每一模块电路既是主控器(或被控器),又是发送器(或接收器),这取决于它所要完成的功能。CPU发出的控制信号分为地址码和控制量两部分,地址码用来选址,即接通需要控制的电路,确定控制的种类;控制量决定该调整的类别(如对比度、亮度等)及需要调整的量。这样,各控制电路虽然挂在同一条总线上,却彼此独立,互不相关。 I2C总线在传送数据过程中共有三种类型信号,它们分别是:开始信号、结束信号和应答信号。 开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。 结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。

简单的I2C协议理解 i2c程序(调试通过)

简单的I2C协议理解 一. 技术性能: 工作速率有100K和400K两种; 支持多机通讯; 支持多主控模块,但同一时刻只允许有一个主控; 由数据线SDA和时钟SCL构成的串行总线; 每个电路和模块都有唯一的地址; 每个器件可以使用独立电源 二. 基本工作原理: 以启动信号START来掌管总线,以停止信号STOP来释放总线; 每次通讯以START开始,以STOP结束; 启动信号START后紧接着发送一个地址字节,其中7位为被控器件的地址码,一位为读/写控制位R/W,R /W位为0表示由主控向被控器件写数据,R/W为1表示由主控向被控器件读数据; 当被控器件检测到收到的地址与自己的地址相同时,在第9个时钟期间反馈应答信号; 每个数据字节在传送时都是高位(MSB)在前; 写通讯过程: 1. 主控在检测到总线空闲的状况下,首先发送一个START信号掌管总线; 2. 发送一个地址字节(包括7位地址码和一位R/W); 3. 当被控器件检测到主控发送的地址与自己的地址相同时发送一个应答信号(ACK); 4. 主控收到ACK后开始发送第一个数据字节; 5. 被控器收到数据字节后发送一个ACK表示继续传送数据,发送NACK表示传送数据结束; 6. 主控发送完全部数据后,发送一个停止位STOP,结束整个通讯并且释放总线; 读通讯过程: 1. 主控在检测到总线空闲的状况下,首先发送一个START信号掌管总线; 2. 发送一个地址字节(包括7位地址码和一位R/W); 3. 当被控器件检测到主控发送的地址与自己的地址相同时发送一个应答信

号(ACK); 4. 主控收到ACK后释放数据总线,开始接收第一个数据字节; 5. 主控收到数据后发送ACK表示继续传送数据,发送NACK表示传送数据结束; 6. 主控发送完全部数据后,发送一个停止位STOP,结束整个通讯并且释放总线; 四. 总线信号时序分析 1. 总线空闲状态 SDA和SCL两条信号线都处于高电平,即总线上所有的器件都释放总线,两条信号线各自的上拉电阻把电平拉高; 2. 启动信号START 时钟信号SCL保持高电平,数据信号SDA的电平被拉低(即负跳变)。启动信号必须是跳变信号,而且在建立该信号前必修保证总线处于空闲状态; 3. 停止信号STOP 时钟信号SCL保持高电平,数据线被释放,使得SDA返回高电平(即正跳变),停止信号也必须是跳变信号。 4. 数据传送 SCL线呈现高电平期间,SDA线上的电平必须保持稳定,低电平表示0(此时的线电压为地电压),高电平表示1(此时的电压由元器件的VDD决定)。只有在SCL线为低电平期间,SDA上的电平允许变化。 5. 应答信号ACK I2C总线的数据都是以字节(8位)的方式传送的,发送器件每发送一个字节之后,在时钟的第9个脉冲期间释放数据总线,由接收器发送一个ACK(把数据总线的电平拉低)来表示数据成功接收。 6. 无应答信号NACK 在时钟的第9个脉冲期间发送器释放数据总线,接收器不拉低数据总线表示一个NACK,NACK有两种用途: a. 一般表示接收器未成功接收数据字节; b. 当接收器是主控器时,它收到最后一个字节后,应发送一个NACK信号,以通知被控发送器结束数据发送,并释放总线,以便主控接收器发送一个停止信号STOP。 五. 寻址约定

I2C总线协议规范 v2.1

THE I2C-BUS SPECIFICATION VERSION 2.1 JANUARY 2000

CONTENTS 1PREFACE. . . . . . . . . . . . . . . . . . . . . . . . . . .3 1.1Version 1.0 - 1992. . . . . . . . . . . . . . . . . . . . 3 1.2Version 2.0 - 198. . . . . . . . . . . . . . . . . . . . . 3 1.3Version 2.1 - 1999. . . . . . . . . . . . . . . . . . . . 3 1.4Purchase of Philips I2C-bus components . . 3 2THE I2C-BUS BENEFITS DESIGNERS AND MANUFACTURERS. . . . . . . . . . . . . . .4 2.1Designer benefits . . . . . . . . . . . . . . . . . . . . 4 2.2Manufacturer benefits. . . . . . . . . . . . . . . . . 6 3INTRODUCTION TO THE I2C-BUS SPECIFICATION . . . . . . . . . . . . . . . . . . . . .6 4THE I2C-BUS CONCEPT . . . . . . . . . . . . . . .6 5GENERAL CHARACTERISTICS . . . . . . . . .8 6BIT TRANSFER . . . . . . . . . . . . . . . . . . . . . .8 6.1Data validity . . . . . . . . . . . . . . . . . . . . . . . . 8 6.2START and STOP conditions. . . . . . . . . . . 9 7TRANSFERRING DATA. . . . . . . . . . . . . . .10 7.1Byte format . . . . . . . . . . . . . . . . . . . . . . . . 10 7.2Acknowledge. . . . . . . . . . . . . . . . . . . . . . . 10 8ARBITRATION AND CLOCK GENERATION . . . . . . . . . . . . . . . . . . . . . .11 8.1Synchronization . . . . . . . . . . . . . . . . . . . . 11 8.2Arbitration . . . . . . . . . . . . . . . . . . . . . . . . . 12 8.3Use of the clock synchronizing mechanism as a handshake. . . . . . . . . . . 13 9FORMATS WITH 7-BIT ADDRESSES. . . .13 107-BIT ADDRESSING . . . . . . . . . . . . . . . . .15 10.1Definition of bits in the first byte . . . . . . . . 15 10.1.1General call address. . . . . . . . . . . . . . . . . 16 10.1.2START byte . . . . . . . . . . . . . . . . . . . . . . . 17 10.1.3CBUS compatibility. . . . . . . . . . . . . . . . . . 18 11EXTENSIONS TO THE STANDARD- MODE I2C-BUS SPECIFICATION . . . . . . .19 12FAST-MODE. . . . . . . . . . . . . . . . . . . . . . . .19 13Hs-MODE . . . . . . . . . . . . . . . . . . . . . . . . . .20 13.1High speed transfer. . . . . . . . . . . . . . . . . . 20 13.2Serial data transfer format in Hs-mode. . . 21 13.3Switching from F/S- to Hs-mode and back . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2313.4Hs-mode devices at lower speed modes. . 24 13.5Mixed speed modes on one serial bus system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 13.5.1F/S-mode transfer in a mixed-speed bus system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 13.5.2Hs-mode transfer in a mixed-speed bus system. . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 13.5.3Timing requirements for the bridge in a mixed-speed bus system. . . . . . . . . . . . . . 27 1410-BIT ADDRESSING. . . . . . . . . . . . . . . . 27 14.1Definition of bits in the first two bytes. . . . . 27 14.2Formats with 10-bit addresses. . . . . . . . . . 27 14.3General call address and start byte with 10-bit addressing. . . . . . . . . . . . . . . . . . . . 30 15ELECTRICAL SPECIFICATIONS AND TIMING FOR I/O STAGES AND BUS LINES. . . . . . . . . . . . . . . . . . . . 30 15.1Standard- and Fast-mode devices. . . . . . . 30 15.2Hs-mode devices. . . . . . . . . . . . . . . . . . . . 34 16ELECTRICAL CONNECTIONS OF I2C-BUS DEVICES TO THE BUS LINES . 37 16.1Maximum and minimum values of resistors R p and R s for Standard-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 39 17APPLICATION INFORMATION. . . . . . . . . 41 17.1Slope-controlled output stages of Fast-mode I2C-bus devices. . . . . . . . . . . . 41 17.2Switched pull-up circuit for Fast-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 41 17.3Wiring pattern of the bus lines. . . . . . . . . . 42 17.4Maximum and minimum values of resistors R p and R s for Fast-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 42 17.5Maximum and minimum values of resistors R p and R s for Hs-mode I2C-bus devices . . . . . . . . . . . . . . . . . . . . . 42 18BI-DIRECTIONAL LEVEL SHIFTER FOR F/S-MODE I2C-BUS SYSTEMS . . . . 42 18.1Connecting devices with different logic levels. . . . . . . . . . . . . . . . . . . . . . . . . 43 18.1.1Operation of the level shifter . . . . . . . . . . . 44 19DEVELOPMENT TOOLS AVAILABLE FROM PHILIPS. . . . . . . . . . . . . . . . . . . . . 45 20SUPPORT LITERATURE . . . . . . . . . . . . . 46

关于IIC的通信协议程序

#define uchar unsigned char #define uint unsigned int #define ulong unsigned long #define _BV(bit) (1 << (bit)) #ifndef cbi #define cbi(reg,bit) reg &= ~_BV(bit) #endif #ifndef sbi #define sbi(reg,bit) reg |= _BV(bit) #endif extern uchar dog; /* void delay_1ms(uchar xtal) { uchar i; for(i=0;i<(uint)(143*xtal-2);i++) {;} } //2 延时nms void delay_ms(uchar m, uchar fosc) { uchar i; i=0; while(i

AT24C02数据存储I2C协议-串口通讯

/****************************************** 绿盾电子 X-13 多传感器开发板 功能:实现读写AT24C02型号的EEPROM存储。该类型存储器具有掉电数据保护功能,是单片 机项目开发中常用的芯片。AT24C02使用 I2C总线与的单片机通信,只需两根线即 可完成读写功能。 串口输出数据,串口是单片机程序调试种 最常用最重要的工具。在使用前需要主要 开发板当前晶振频率是否为11.0592MHz,如 不是,请更换晶振,或者自行计算定时器 数值。 时间:2011-8-23 ******************************************/ //头文件 #include "reg51.h" #include //宏定义 #define uchar unsigned char #define uint unsigned int

//引脚定义 sbit Scl= P3^6; //AT24C0x串行时钟sbit Sda= P3^7; //AT24C0x串行数据 //全局变量 uchar EEPROM_WriteBuffer[] = {"https://www.sodocs.net/doc/0f4799310.html,"}; uchar EEPROM_ReadBuffer[20]; //函数声明 /******************************************/ //延时子函时, //参数 d_time 控制延时的时间 //作用,灯亮和熄灭必须持续一定时间,人眼才能看到 void delay(unsigned int time); /******************************************/ //延时子函数 //参数范围 0-65536 void delay(unsigned int time) //参数 time 大小 { //决定延时时间长短 while(time--); }

I2C总线读写程序通用

//==========================头文件加载=============================== #include //加载52系列单片机头文件 //===========================端口声明================================ sbit CLK=P3^6; //74hc574时钟信号线 sbit G=P2^4; //74hc574使能 sbit IIC_SDA=P2^6; //声明IIC总线的数据线接在单片机的P2.5端口。 sbit IIC_SCL=P2^5; //声明IIC总线的时钟线接在单片机的P2.7端口。 unsigned char tabl[]={0xc0,0xf9,0xa4,0xb0,0x99,0x92,0x82,0xf8,0x80,0x90,0x0BF,0x8C}; //0,1,2,3,4,5,6,7,8,9,-,P //===========================函数声明================================ void display(unsigned char aa); void delay(unsigned int t); void delay_IIC(void); void IIC_Init(void); void IIC_start(void); void IIC_stop(void); bit IIC_Tack(void); void IIC_single_byte_write(unsigned char Daddr,unsigned char Waddr,unsigned char Data); unsigned char IIC_single_byte_read(unsigned char Daddr,unsigned char Waddr); void IIC_write_byte(unsigned char Data); unsigned char IIC_read_byte(void); //============================主函数================================= void main() //主函数 { unsigned char Data=2,addr=0x01; //---------------------------系统初始化-------------------------- IIC_Init();//初始化IIC总线。 //P1=0x7f;//LED8先亮。 while(1) //死循环 { IIC_single_byte_write(0xa0,0x02,Data);//保存LED的状态 delay(50000);//延时约0.5S Data=IIC_single_byte_read(0xa0,0x02);//读出LED的状态 if(Data<10) Data++; else

i2c通讯协议及程序

I2C通信协议简介 (2013-01-17 10:48:03) 转载▼ 分类:通讯协议 标签: 杂谈 ACK是acknowledge的意思,确认. 摒弃复杂的情况,这里只对I2C做简单的介绍。 一、I2C 总线的一些特征: ? 只要求两条总线线路一条串行数据线SDA一条串行时钟线SCL ? 每个连接到总线的器件都可以通过唯一的地址和一直存在的简单的主机从机关系软件设定地址主机可以作为主机发送器或主机接收器? 它是一个真正的多主机总线如果两个或更多主机同时初始化数据传输可以通过冲突检测和仲裁防止数据被破坏 ? 串行的8 位双向数据传输位速率在标准模式下可达100kbit/s 快速模式下可达400kbit/s 高速模式下可达3.4Mbit/s ? 片上的滤波器可以滤去总线数据线上的毛刺波保证数据完整 ? 连接到相同总线的IC 数量只受到总线的最大电容400pF 限制 二、I2C总线在传送数据过程中共有三种类型信号:开始信号、结束信号和应答信号。 开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。 结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。 应答信号:接收数据的IC在接收到8bit数据后,向发送数据的IC发出特定的低电平脉冲,表示已收到数据 起始和结束:

bool I2C_Start(void) { SDA_H; SCL_H; I2C_delay(); if(!SDA_read)return FALSE; // SDA线为低电平则总线忙,退出 SDA_L; // 拉低SDA线(当SCL为高电平时,SDA由高电平向低电平跳变表示开始信号) I2C_delay(); if(SDA_read) return FALSE; // SDA线为高电平则总线出错,退出 SDA_L; //数据为准备好时,拉低SCL线 I2C_delay(); return TRUE; } 发出开始信号之后,设备在数据未准备好时,拉低SCL线,这样主设备可知从设备未发送数据,从设备在数据准备好,可以发送的时候,停止拉低SCL线,这时候才开始真正的数据传输 void I2C_Stop(void) { SCL_L; I2C_delay(); SDA_L; I2C_delay(); SCL_H; // SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据 I2C_delay(); SDA_H; I2C_delay(); }

I2C总线协议程序

C程序代码]I2C总线协议程序 程序代码 2009-10-11 14:05 阅读48 评论0 /**************************************************************** I2C总线协议程序 ****************************************************************/ #define NOP {_nop_();_nop_();_nop_();_nop_();} sbit SDA=P1^2; /*模拟I2C数据传送位*/ sbit SCL=P1^3; /*模拟I2C时钟控制位*/ bit ack; /*应答标志位*/ void Start_I2c() { SDA=1; NOP; SCL=1; NOP; SDA=0; NOP; SCL=0; NOP; } void Stop_I2c() { SDA=0; NOP;

SCL=1; NOP; SDA=1; NOP; } void Senduchar(uchar c) { uchar i; for(i=0;i<8;i++) { c<<=1; SDA=CY; NOP; SCL=1; NOP; SCL=0; NOP; } SDA=1; NOP; SCL=1; NOP; if(SDA==1) ack=0; else ack=1; SCL=0; NOP; } uchar Rcvuchar() {

uchar i,x=0; SDA=1; for(i=0;i<8;i++) { SCL=0; NOP; SCL=1; NOP; x=x<<1; if(SDA) x=x+1; NOP; } SCL=0; NOP; return(x); } void Ack_I2c(bit a) { SDA=a; NOP; SCL=1; NOP; SCL=0; NOP; } bit ISendStr(uchar sla,uchar suba,uchar *s,uchar no) { uchar i;

i方c总线协议

竭诚为您提供优质文档/双击可除 i方c总线协议 篇一:i2c总线协议 1.i2c协议 2条双向串行线,一条数据线sda,一条时钟线scl。 sda传输数据是大端传输,每次传输8bit,即一字节。 支持多主控(multimastering),任何时间点只能有一个主控。 总线上每个设备都有自己的一个addr,共7个bit,广播地址全0. 系统中可能有多个同种芯片,为此addr分为固定部分和可编程部份,细节视芯片而定,看datasheet。 1.1i2c位传输 数据传输:scl为高电平时,sda线若保持稳定,那么sda上是在传输数据bit; 若sda发生跳变,则用来表示一个会话的开始或结束(后面讲)数据改变:scl为低电平时,sda线才能改变传输的bit 1.2i2c开始和结束信号

开始信号:scl为高电平时,sda由高电平向低电平跳变,开始传送数据。结束信号:scl为高电平时,sda由低电平向高电平跳变,结束传送数据。 1.3i2c应答信号 master每发送完8bit数据后等待slave的ack。 即在第9个clock,若从ic发ack,sda会被拉低。 若没有ack,sda会被置高,这会引起master发生RestaRt或stop流程,如下所示: 1.4i2c写流程 写寄存器的标准流程为: 1.master发起staRt 2.master发送i2caddr(7bit)和w操作0(1bit),等待ack 3.slave发送ack 4.master发送regaddr(8bit),等待ack 5.slave发送ack 6.master发送data(8bit),即要写入寄存器中的数据,等待ack 7.slave发送ack 8.第6步和第7步可以重复多次,即顺序写多个寄存器 9.master发起stop 写一个寄存器

DSP28335 I2C接口应用

DSP I2C 应用说明 1.示例程序中几种状态 第一次看i2c_eeprom示例程序,对程序中的MsgStatus信息状态切换非常懵懂,为什么要有这几个状态?状态切换顺序如何安排?一大堆的状态,让人有些摸不着头脑。先把程 序中的头文件涉及的7种状态分析一下。 // I2C Message Commands for I2CMSG struct #define I2C_MSGSTAT_INACTIVE 0x0000//未激活状态:一般成功发送数据或者//接受数据后可以设置信息状态为此状态,告诉用户可进行下一次的写数据或读数据。 #define I2C_MSGSTAT_SEND_WITHSTOP 0x0010 //发送带停止位数据:这是为写数据而设///的状态,写入地址和数据之后发个停止位告诉存储器数据写入完毕。 #define I2C_MSGSTAT_WRITE_BUSY 0x0011 //写数据忙状态:在将待写的数据放入//缓存后,就可以使能IIC传输数据了,然后把信息状态设为该状态,意在告诉用户:数据//已经在传送过程中。当然是否传送完毕,还需要通过查询SCD位来判断。 #define I2C_MSGSTAT_SEND_NOSTOP 0x0020//发送无停止位数据:这个状态是为了读//取数据而设的,有查阅过AT24C1024EEPROM存储器使用手册的读者知道,在读数据之前//要发送数据的地址,发完地址不能产生停止位,这是存储器硬件设计决定的。设为这个状//态意在告诉读者,可以发送要读取的数据的地址了。 #define I2C_MSGSTAT_SEND_NOSTOP_BUSY 0x0021//发送无停止位数据忙状态:这个状态是//为了读取数据而设的,似于I2C_MSGSTAT_WRITE_BUSY,说明地址数据已经在传送过程中。//传送是否成功,还要看ARDY的状态。 #define I2C_MSGSTAT_RESTART 0x0022//重发开始位状态:这个状态也是为读取////数据而设。我们知道,读取存储器数据主要分两个步骤:第一,发送START位+设备地址//+数据地址+无停止位。第二,再发START位+设备地址,紧接着存储器发送数据到IIC接收//缓存器(I2CDRR),接收到设定好的数据数量(I2CCNT值)时输出停止位STOP. //值得注意的是:理论上写完数据就能马上读取数据,但事实上EEPROM存储器仍需要一////定延时来存储数据,约有2ms左右。通过示波器可以观察到,写完数据后,并不能马上//成功读取数据,也就是说读数据的第一步骤要重复好几次(总线为50K时,大约要重复//8次)才能成功。 #define I2C_MSGSTAT_READ_BUSY 0x0023//读取数据忙状态:这个状态是为读取数//据而设。在读数据的第二步骤中,发完START位+设备地址后,就设为这一状态。意在说//明IIC开始等待接收固定数量(I2CCNT值)的数据。可以通过查询ARDY位判断。 //头文件中的其他定义应该没什么大问题了! 2.AT24C1024 EEPROM读写数据格式 1 0 1 0 0 A1 P0 R/W

I2c总线协议

1.I2C协议 2条双向串行线,一条数据线SDA,一条时钟线SCL。 SDA传输数据是大端传输,每次传输8bit,即一字节。 支持多主控(multimastering),任何时间点只能有一个主控。 总线上每个设备都有自己的一个addr,共7个bit,广播地址全0. 系统中可能有多个同种芯片,为此addr分为固定部分和可编程部份,细节视芯片而定,看datasheet。 1.1 I2C位传输 数据传输:SCL为高电平时,SDA线若保持稳定,那么SDA上是在传输数据bit; 若SDA发生跳变,则用来表示一个会话的开始或结束(后面讲) 数据改变:SCL为低电平时,SDA线才能改变传输的bit 1.2 I2C开始和结束信号 开始信号:SCL为高电平时,SDA由高电平向低电平跳变,开始传送数据。结束信号:SCL为高电平时,SDA由低电平向高电平跳变,结束传送数据。

1.3 I2C应答信号 Master每发送完8bit数据后等待Slave的ACK。 即在第9个clock,若从IC发ACK,SDA会被拉低。 若没有ACK,SDA会被置高,这会引起Master发生RESTART或STOP流程,如下所示: 1.4 I2C写流程 写寄存器的标准流程为: 1. Master发起START 2. Master发送I2C addr(7bit)和w操作0(1bit),等待ACK 3. Slave发送ACK 4. Master发送regaddr(8bit),等待ACK 5. Slave发送ACK 6. Master发送data(8bit),即要写入寄存器中的数据,等待ACK 7. Slave发送ACK 8. 第6步和第7步可以重复多次,即顺序写多个寄存器

I2C协议代码

此模块包括发送数据及接收数据,应答位发送,并提供了几个直接面对器件的操作函数,能很 方便的与用户程序进行连接并扩展。 需要注意的是,函数是采用延时方法产生SCL 脉冲,对高晶振频率要做一定的修改!! 说明: 1us机器周期,晶振频率要小于12MHz 返回1 则操作成功,返回0 则操作失败。 sla 为器件从地址,suba 为器件子地址。 ************************************************************************* ************/ #include "AT89X52.h" #include #define _Nop() _nop_() //定义空指令 sbit SDA = P1^3; //模拟I2C数据传输位 sbit SCL = P1^2; //模拟I2C时钟控制位 bit bdata I2C_Ack; //应答标志位 /************************************ I2C_Start ************************************ 函数名:void I2C_Start() 入口: 出口: 功能描述:启动I2C总线,即发送I2C初始条件 调用函数: 全局变量: 创建者:陈曦日期:2005-6-15 修改者:日期: ************************************************************************* *********/

void I2C_Start() { SDA = 1; //发送起始条件的数据信号 _Nop(); SCL = 1; _Nop(); //起始条件建立时间大于4.7us,延时 _Nop(); _Nop(); _Nop(); _Nop(); SDA = 0; //发送起始信号 _Nop(); //起始条件建立时间大于4us,延时 _Nop(); _Nop(); _Nop(); _Nop(); SCL = 0; //钳住I2C总线准备发送或接收数据 _Nop(); _Nop(); } /************************************ I2C_Stop ************************************ 函数名:void I2C_Stop() 入口: 出口: 功能描述:结束I2C总线,即发送I2C结束条件 调用函数: 全局变量: 创建者:陈曦日期:2005-6-15 修改者:日期: ************************************************************************* *********/

相关主题