搜档网
当前位置:搜档网 › 电池保护板工作原理

电池保护板工作原理

电池保护板工作原理
电池保护板工作原理

锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,常用的保护IC有8261,DW01+,CS213,GEM5018等,其中精工的8261系列精度更好,当然价钱也更贵。后面几种都是台湾出的,国内次级市场基本都用DW01+和CS213了,下面以DW01+ 配MOS管8205A (8pin)进行讲解:

锂电池保护板其正常工作过程为:

当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。

2.保护板过放电保护控制原理:

当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新

接上,电芯经充电器直接充电。

3.保护板过充电保护控制原理:

当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。保护板处于过充电状态并一直保持。等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电.

4.保护板短路保护控制原理:

如图所示,在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30m\U 03a9共约为60m\U 03a9,加在G极上的电压实际上是直接控制每个开关管的导通电阻的大小当G极电压大于1V时,开关管的导通内阻很小(几十毫欧),相当于开关闭合,当G极电压小于0.7V以下时,开关管的导通内阻很大(几MΩ),相当于开关断开。电压UA就是8205A的导通内阻与放电电流产生的电压,负载电流增大则UA必然增大,因UA0.006L×

IUA又称为8205A的管压降,UA可以简接表明放电电流的大小。上升到0.2V时便认为负载电流到达了极限值,于是停止第1脚的输出电压,使第1脚电压变为0V、8205A内的放电控制管关闭,切断电芯的放电回路,将关断放电控制管。换言之DW01 允许输出的最大电流是3.3A,实现了过电流保护。

5. 短路保护控制过程:

短路保护是过电流保护的一种极限形式,其控制过程及原理与过电流保护一样,短路只是在相当于在P P-间加上一个阻值小的电阻(约为0Ω)使保护板的负载电流瞬时达到10A以上,保护板立即进行过电流保护。

保护板

由于近几年的动力锂电池的飞速发展,无论是生产工艺还是材料技术改进上,或价格的优势,都有相当大的突破,因此它也为多并多串打下坚实的基础。替代铅酸电池的时代越来越近。无论电动自行车还是后备电源,它的市场占有率自然也开始疯狂扩大,这是不可否认的事实。那么,为了电池的安全与寿命,锂电池的有效保护自然也少不了,此时保护板在电池包内也是一个非常核心的部件之一。

理论上来讲,动力多串电池保护板已经没有太多的电子技术含量了,比如电路与软件处理,有太多的选择。其主要是把保护部分如何做到稳定,可靠,更安全,更实用,当然价格也是其中之一。想要真正的想把它做好,那是一件非常复杂细心而又漫长的轮回工作。如果要按经验与技术值的占比比值的话,技术只占20% 。经验要占到80% 。做

好动力电池保护板没有个三五年的经验,还是有困难的。当然做好与能做是两回事。为什么会有这样的结论呢?这是有依据的。说实话,保护板的方案电路并不复杂,只要在电池电子行业工作了一两年,设计个电路与抄袭人家一个电路不是什么难事。比如:多串动力电池他主要是高电压,大电流,高内阻工作(微电流),电池包工作环境的考量等等,这都牵扯到多年的电子专业综合经验。大到要对整个PACK 的了解,小到一个电阻,电容或晶体管的选型,或是布板时的注意细节。总的一句话,保护板主要是稳定,可靠,安全的保护电池组,保证电池组的正常安全使用或使用得更久,其它添加的特有技术与功能,都是浮云。下面我们来讨论一下。

动力电池保护板,顾名思义,它是用来保护电池不让损坏与延长电池的使用寿命。而且它只在电池出现极端问题的情况下作出最稳定最有效的保护防止出现意外。平时不应该动作,当然,监视工作是必须要的,就像我们的家用电器中的保险丝或保险开关一样。这是本文讨论分析的宗旨。

注意事项

1.电压保护:过充,过放,这要根据电池的材料不同而有所改变,这点看似简单,但要细节上来看,还是有经验学问的。

过充保护,在我们以往的单节电池保护电压都会高出电池充饱电压50~150mV。但是动力电池不一样,如果你要想延长电池寿命,你的保护电压就选择电池的充饱电压,甚至还要比此电压还低些。比如锰锂电池,可以选择4.18V~4.2V。因为它是多串数的,整个电池组的寿

命容量主要是以容量最低的那颗电池以准,小容量的总是在大电流高电压工作,所以衰减加快。而大容量每次都是轻充轻放,自然衰减要慢得多了。为了让小容量的电池也是轻充轻放,所以过充保护电压点不要选择太高。这个保护延时可以做到1S,防止脉冲的影响从而保护。过放保护,也是与电池的材料有关,如锰锂电池一般选择在2.8V~3.0V。尽量要比它单颗电池过放的电压稍高点。因为,在国内生产的电池,电池电压低于3.3V后,各颗电池的放电特性完全不一,因此是提前保护电池,这样对电池的寿命是一个很好的保护。

总的一点就是尽量让每一颗电池都工作在轻充轻放下工作,一定是对电池的寿命是一个帮助。

过放保护延滞时间,它要根据负载的不同而有所改变,比如电动工具类的,他的启动电流一般都在10C以上,因此会在短时间内把电池的电压拉到过放电压点从而保护。此时无法让电池工作。这是值得注意的地方。

2.电流保护:它主要体现在工作电流与过电流使开关MOS断开从而保护电池组或负载。

MOS管的损坏主要是温度急剧升高,它的发热也是电流的大小及本身的内阻来决定的,当然小电流,对MOS没什么影响,但是大电流呢,这个就要好好做些处理了,在通过额定电流时,小电流10A以下,我们可以直接用电压来驱动MOS管。大电流,一定是要加驱动,给MOS 足够大的驱动电流。以下在MOS管驱动有讲到

工作电流,在设计的时候,MOS管上不能存在超过0.3W的功率。计

M OS 算工式:I2*R/N。R为MOS的内阻,N为MOS的数量。如果功率超过,会产生25度以上的温升,又因它们都是密封的,就算有散热片,长时间工作时,温度还是会上去,因为他没地方可散热。当然MOS管是没任何问题,问题是他产生热量会影响到电池,毕竟保护板是与电池放在一起的。

过流保护(最大电流),此项是保护板必不可少的,非常关键的一个保护参数。保护电流的大小与MOS的功率息息相关,因此在设计时,要尽量给出MOS能力的余量。在布板的时候,电流检测点一定要选好位置,不能只接通就行,这需要经验值。一般建议接在检测电阻的中间端。还要注意电流检测端的干扰问题,因为它的信号很容易受到干扰。过流保护延时,它也是要根不同的产品做相应的调整。在此不多说了。

3.短路保护:严格来讲,他是一个电压比较型的保护,也就是讲是用电压的比较直接关断或驱动的,不要经过多余的处理。

短路延时的设置也很关键,因为在我们的产品中,输入滤波电容都是很大的,在接触时第一时间给电容充电,此时就相当于电池短路来给电容充电。

4.温度保护:一般在智能电池上都会用到,也是不可少的。但往往它的完美总会带来另一方面的不足。我们主要是检测电池的温度来断开总开关来保护电池本身或负载。如果是在一个恒定的环境条件下,当然不会有什么问题。由于电池的工作环境是我们不可控的,太多太复杂的变化,因此不好选择。如在北方的冬天,我们定在多少合适?又如夏天的南方地区,又定多少合适?显然范围太宽不可控的因素太多,

仁者见仁,智者见智的去选择了。

5.MOS保护:主要是MOS的电压,电流与温度。当然就是牵扯到MOS 管的选型了。MOS的耐压当然要超过电池组的电压,这是必须的。电流讲的是在通过额定电流时MOS管体上的温升了一般不超过25度的温升,个人经验值,只供参考。

MOS的驱动,也许会有的人会讲,我有用低内阻大电流的MOS管,但为何还有蛮高的温度?这是MOS管的驱动部分没有做好,驱动MOS要有足够大的电流,具体多大的驱动电流,要根据功率MOS管的输入电容来定。因此,一般的过流与短路驱动都不能用芯片直接驱动,一定要外加。在大电流(超过50A)工作时,一定要做到多级多路驱动,才能保证MOS的同一时间同一电流正常打开与关闭。因为MOS管有一个输入电容, MOS管功率,电流越大,输入电容也就越大,如果没有足够的电流,不会在短时间做出完整的控制。尤其是电流超过50A时,电流设计上更要细化,一定要做到多级多路驱动控制。这样才能保证MOS的正常过流与短路保护。

MOS电流平衡,主要讲的是多颗MOS并起来用时,要让每一颗MOS管通过的电流,打开与关闭时间都是一致的。这就要在画板方面入手了,它们的输入输出一定要对称,一定要保证每一个管子通过的电流是一致这才是目的。

6.自耗电量, 这个参数是越小越好,最理想的状态是为零,但不可能做到这一点。就是因为人人都想把这个参数做小,有很多人的要求更低,甚至离谱,我们想想,保护板上有芯片,它们是要工作的,可以

做到很低,但是可靠性呢?应该是在性能可靠完全OK的情况下再来考量自耗电的问题。有些朋友也许进入了误区,自耗电分为整体的自耗电和每一串的自耗电。

整体自耗电,如果在100~500uA都是没什么问题的,因为动力电池的容量本身就很大。当然电动工具的另外分析。如5AH的电池,放电500uA,要放多久,因此对整个电池组来讲是很微弱的。

每串自耗电才最关键的,这个也不可能为零,当然也是在性能完全可行情况下进行,但有一点,每一串的自耗电量一定要一致,一般每一串的差别不能超过5uA。这点大家应该知道,如果每一串的自耗电不一时,那么在长时间搁置下,电池的容量一定会产生变化的。

7.均衡:均衡这一块是此文章的论述的重点。目前最通用的均衡方式分为两种,一种就是耗能式的,另一种就是转能式的。

A耗能式均衡,主要是把多串电池中某节电池的电量或电压高的用电阻把多余的电能损耗掉。它也分如下三种。

一,充电时时均衡,它主要是在充电时任何一颗电池的电压高出所有电池平均电压时,它就启动均衡,无论电池的电压在什么范围,它主要是应用在智能软件方案上。当然如何定义可以由软件任意调整。此方案的优点它能有更多的时间去做电池的电压均衡。

二,电压定点均衡,就是把均衡启动定在一个电压点上,如锰锂电池,很多就定在4.2V开始均衡。这种方式只是在电池充电的末端进行,所以均衡时间较短,用处可想而知。

三,静态自动均衡,它也可以在充电的过程中进行,也可以在放电时

进行,更有特点的是,电池在静态搁置时,如果电压不一致时,它也在均衡着,直到电池的电压达到一致。但有人认为,电池都没工作了,为什么保护板还是在发热呢?

以上三种方式都以是参考电压来实现均衡的。但是,电池电压高不一定代表容量就高,也许截然相反。以下论述。

其优点就是成本低,设计简单,在电池电压不一致时能起到一定的作用,主要体现在电池长时间搁置自耗引起的电压不一致。理论上是有微弱的可行性。

缺点,电路复杂,元件多,温度高,防静电差,故障率高。

具体探讨如下。

当新单体电池分容分压分内阻过后组成PACK,总会有各别的单体容量偏低,而往往容量最低的那颗单体,在充电的过程中电压一定是上升最快的,也是它最先到达启动均衡电压的,此时,大容量的单体还没达到电压点而没有启动均衡,小容量的确开始均衡了,这样每一次的循环工作,这颗小容量的单体一直处于饱充饱放的状态下工作,而它也是衰老最快的,同时内阻自然也会慢慢的比其它的单体增高,从而形成一个恶性循环。这是一个极大的弊端。

元件越多,故障率自然就高了。

温度,可想而知,耗能式的,是想把所谓多余的电量用电阻以发热的形式来耗掉多余的电能,它确成了名副其实发热源。而高温对电芯本身来讲是非常致命的一个相当因素,它可能会让电池燃烧,也可能会引起电池爆炸。本来我们是在想尽一切办法去减少整个电池包的温度

产生,而耗能均衡呢?同时它的温度高得惊人,大家可以去测试一下,当然是在全封闭的环境下。总的来说,它是一个发热体,热是电池的致命天敌。

静电,我个人设计保护板时,从来不用小功率的MOS管,哪怕一颗都不用。因为本人在这一块吃过太多的亏了。就是MOS管的静电问题。先不说小MOS在工作的环境,就说在生产加工PCBA贴片时,如果车间的湿度低于60%,小MOS生产出来的不良率都会超过10%以上,然后再湿度调到80%。小MOS的不良率为零。可以试试。这要表明一个什么问题呢?如果我们的产品在北方的冬天,小MOS是否能通过,这需要时间来验证的。再有,MOS管的损坏只有短路,如果短路那可想而知,就意味着这组电池马上要损坏。更何况我们的均衡上的小MOS 用得还不少呢。这时有人会恍然,难怪退回来的货,都是因为均衡坏掉而引起单体电池损坏,而且都是MOS坏掉了。这时电芯厂与保护板厂开始扯皮了。是谁的错呢?

B能量转移式均衡,它是让大容量的电池以储能的方式转移到小容量的电池,听起来感觉很智能很实用。它也分容量时时均衡与容量定点均衡。它是以检测电池的容量来做均衡的,但是好像没考虑到电池的电压。可以想想,以10AH的电池组为例,假如电池组中有一颗容量在10.1AH,一颗容量小点的在9.8AH,充电电流为2A,能量均衡电流为0.5A。这时10.1AH的要给小容量9.8AH的转能充电,而9.8AH 的电池充电电流就是2A+0.5A=2.5A,这时9.8AH电池的充电电流就是2.5A,这时9.8AH的容量是补进去了,可是9.8AH电池的电压会

是多少呢?显然会比其它电池的上升得更快,如果到了充电末端,9.8AH的一定会大大提前过充保护,在每一次的充放电循环,小容量电池一直处在深充深放的状态。而其它电池是否有充饱,不确定因素太多。微弱直观的就小分析到这,分析太多怕不知所云。

均衡总结

本人有这么一个定论:如果坚持要用到均衡功能的人,我可以断定此人没有大批量生产动力电池保护板或PACK的经验。如果有大批量生产过,他一定会在均衡上吃不少的亏。个人认为,均衡利用保护板来实现,有点滑稽。因为保护板就是保护的,它只做电池在最极端的时候起到有效的保护作用,它没有能力去把电池的性能提高,保护板只是一个被动部分,难道家里的保护丝或保护开关能提高家里的电量?当然不可能。它只起到保护作用。

电芯才是主动器件,我们要提高的是电芯上的性能与技术,主要是一致性。再说均衡做在保护板上,不管是从理论上还是实际应用中,它有弊有利,但在理论上,均衡有一定的作用,但用处多大,显然可见。为何?因为充电一般都是在2~10A的电流,而均衡我们最多只能做到200mA。这个差别太多,同时有些均衡方案是在充电电压的末端启动,更显得于事无补啊。而它有弊端的一面,太多太多。

锂离子电池的工作原理

锂离子电池的工作原理 锂离子电池的结构如图2.1和图2.2 所示,一般由正极、负极和高分子隔膜构成。 锂离子电池的正极材料必须有能够接纳锂离子的位置和扩散路径,目前应用性能较好的正极材料是具有高插入电位的层状结构的过渡金属氧化物和锂的化合物,如Li x CoO2,Li x NiO2以及尖晶石结构的LiMn2O4等,这些正极材料的插锂电位都可以达到4V以上。负极材料一般用锂碳层间化合物Li x C6,其电解质一般采用溶解有锂盐LiPF6、LiAsF6的有机溶液。典型的锂离子蓄电池体系由碳负极(焦炭、石墨)、正极氧化钴锂(Li x CoO2)和有机电解液三部分组成。 锂离子电池的电化学表达式: 正极反应: 负极反应: 电池反应: 式中:M=Co、Ni、Fe、W等。 图2.1 锂离子电池结构示意图图2.2 圆柱形锂离子电池结构图锂离子电池实际上是一个锂离子浓差电池,正负电极由两种不同的锂离子嵌入化合物构。充电时,Li+从正极脱嵌经过电解质嵌入负极,此时负极处于富锂态,正极处于贫锂态;放电时则相反,Li+从负极脱嵌,经过电解质嵌入正极,正极处于富锂态,负极处于贫锂态。锂离子电池的工作电压与构成电极的锂离子嵌入化合物本身及锂离子的浓度有关。因此,在充放电循环时,Li+分别在正负极上发生“嵌入-脱嵌”反应,Li+便在正负极之间来回移动,所以,人们又形象地把锂离子电池称为“摇椅电池”或“摇摆电池”。 锂离子蓄电池是在锂蓄电池的基础上发展起来的先进蓄电池,它基本解决了

困扰锂蓄电池发展的两个技术难题,即安全性差和充放电寿命短的问题。锂离子电池与锂电池在原理上的相同之处是:在两种电池中都采用了一种能使锂离子嵌入和脱嵌的金属氧化物或硫化物作为正极,采用一种有机溶剂—无机盐体系作为电解质。不同之处是:在锂离子电池中采用使锂离子嵌入和脱嵌的碳材料代替纯锂作负极。因此,这种电池的工作原理更加简单,在电池工作过程中,仅仅是锂离子从一个电极(脱嵌)后进入另一个电极(嵌入)的过程。具体来说,当电池充电时锂离子是从正极中脱嵌,在碳负极中嵌入,放电时反之。在充放电过程中没有晶形变化,故具有较好的安全性和较长的充放电寿命。 锂离子电池的主要性能 锂离子电池的额定电压为3.6V(少数的是3.7V)。充满电时的终止充电电压与电池阳极材料有关:石墨的4.2V;焦炭的4.1V。充电时要求终止充电电压的精度在±1%之内。锂离子电池的终止放电电压为2.4~2.7V(电池厂家给出工作电压范围或终止放电电压的参数略有不同)。高于终止充电电压及低于终止放电时会对电池有损害。 其使用有一定要求:充电温度:0℃~45℃;保存温度:-20℃~+60℃。锂离子电池不适合大电流充放电。一般充电电流不大于1C,放电电流不大于2C(C 是电池的容量,如C=950mAh,1C的充电率即充电电流为950mA)。充电、放电在20℃左右效果较好,在负温下不能充电,并且放电效果差[4],(在-20℃放电效果最差,不仅放电电压低,放电时间比20℃放电时的一半还少)。 锂离子电池的充放电特性 锂离子电池的标称电压为3.6V,充满电压为4.2V,对过充电和过放电都比较敏感。为了最大限度减少锂离子电池易受到的过充电、深放电以及短路的损害,单体锂离子电池的充电电压必须严格限制。其充放电特性如图2-3 锂离子电池的充电特性 锂电池在充电中具有如下的特性: 1.在充电前半段,电压是逐渐上升的; 2.在电压达到4.2V后,内阻变化,电压维持不变; 3.整个过程中,电量不断增加; 4.在接近充满时,充电电流会达到很小的值。 经过多年的研究,已经找到了较好的充电控制方法: 1.涓流充电达到放电终止电压 2. 7V ; 2.使用恒流进行充电,使电压基本达到4.2V。安全电流为小于0.8C; 3.恒流阶段基本能达到电量的80% ;

铅酸蓄电池的结构和工作原理

铅酸蓄电池的结构和工作原理 (一)铅酸蓄电池的结构 铅酸蓄电池主要由正极板组?负极板组?隔板?容器和电解液等构成,其结构如下图所示: 1.极板 铅酸蓄电池的正?负极极板由纯铅制成,上面直接形成有效物质,有些极板用铅镍合金制成栅架,上面涂以有效物质?正极(阳极)的有效物质为褐色的二氧化铅,这层二氧化铅由结合氧化的铅细粒构成,在这些细粒之间能够自由地通过电解液,将正极材料磨成细粒的原因是可以增大其与电解液的接触面积,这样可以增加反应面积,从而减小蓄电池的内阻?负极(阴极)的有效物质为深灰色的海绵状铅?在同一个电池内,同极性的极板片数超过两片者,用金属条连接起来,称为极板组

或极板群?至于极板组内的极板数的多少,随其容量(蓄电能力)的大小而异?为了获得较大的蓄电池容量,常将多片正?负极板分别并联,组成正?负极板组,如下图所示: 安装时,将正?负极板组相互嵌合,中间插入隔板,就形成了单格电池?在每个单格电池中,负极板的片数总要比正极板的片数多一片,从而使每片正极板都处于两片负极板之间,使正极板两侧放电均匀,避免因放电不均匀造成极板拱曲? 2.隔板 在各种类型的铅酸蓄电池中,除少数特殊组合的极板间留有宽大的空隙外,在两极板间均需插入隔板,以防止正?负极板相互接触而发生短路?这种隔板上密布着细小的孔,既可以保证电解液的通过,又可

以阻隔正?负极板之间的接触,控制反应速度,保护电池?隔板有木质?橡胶?微孔橡胶?微孔塑料?玻璃等数种,可根据蓄电池的类型适当选定?吸附式密封蓄电池的隔板是由超细玻璃丝绵制作的,这种隔板可以把电解液吸附在隔板内,吸附式密封蓄电池的名称也是由此而来的? 3.容器 容器是用来盛装电解液和支撑极板的,通常有玻璃容器?衬铅木质容器?硬橡胶容器和塑料容器四种?容器用于盛放电解液和极板组,应该耐酸?耐热?耐震?容器多采用硬橡胶或聚丙烯塑料制成,为整体式结构,底部有凸起的肋条以搁置极板组?壳内由间壁分成3个或6个互不相通的单格,各单格之间用铅质联条串联起来?容器上部使用相同材料的电池盖密封,电池盖上设有对应于每个单格电池的加液孔,用于添加电解液和蒸馏水以及测量电解液密度?温度和液面高度? 4.电解液 铅酸蓄电池的电解液是用蒸馏水稀释高纯浓硫酸而成的?它的密度高低视铅蓄电池类型和所用极板而定,一般在15℃时为1.200~1.300g/cm3?蓄电池用的电解液(稀硫酸)必须保持纯净,不能含有危害铅酸蓄电池的任何杂质?电解液的作用是给正?负电极之间流动的离子创造一个液体环境,或者说充当离子流动的介质?电解液的相对密度对蓄电池的工作有重要影响,相对密度大,可减少结冰的危险并提

电池保护板工作原理

锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,常用的保护IC有8261,DW01+,CS213,GEM5018等,其中精工的8261系列精度更好,当然价钱也更贵。后面几种都是台湾出的,国内次级市场基本都用DW01+和CS213了,下面以DW01+ 配MOS管8205A (8pin)进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新

接上,电芯经充电器直接充电。 3.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。保护板处于过充电状态并一直保持。等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电. 4.保护板短路保护控制原理: 如图所示,在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30m\U 03a9共约为60m\U 03a9,加在G极上的电压实际上是直接控制每个开关管的导通电阻的大小当G极电压大于1V时,开关管的导通内阻很小(几十毫欧),相当于开关闭合,当G极电压小于0.7V以下时,开关管的导通内阻很大(几MΩ),相当于开关断开。电压UA就是8205A的导通内阻与放电电流产生的电压,负载电流增大则UA必然增大,因UA0.006L×

电池保护板原理详解

锂电池电路保护板详解 1.锂电池电路保护板典型电路 2.保护板的核心器件:U1 和 U2A/U2B。U1是保护IC,它由精确的比较器来获得可靠的保护参数。U2A和U2B是MOS管,串在主充放电回路,担当高速开关,执行保护动作。 3.B1的正负极接电芯的正负极;P+,P-分别接电池输出接口的正负极。 4.R3是NTC电阻,配合用电器件的MCU产生保护动作(检测电池温度)。R4是固定阻值电阻,做电池识别。 5.放电路径:B1+ ----- P+ ------ P- ------B1- 6.充电路径:P+ ------- B1+ ------ B1- ------ P- 7.DO是放电保护执行端,CO 是充电保护执行端。

8.充电保护:当电池被充电,电压超过设定值VC(4.25V- 4.35V,具体过充保护电压取决于保护IC)时,CO变为低电平,U2B截止(箭头向内是N-MOS,VG大于VS导通),充电截止。当电池电压回落到VCR(3.8V-4V,具体由IC决定),CO变为高电平,U2B导通,充电继续。VCR必须小于VC一个定值, 以防止频繁跳变。 9.过充保护的时候,即电池充满电的时候,U2B MOS截止了, 手机是不是就关机了呢?答案是肯定没有,不然的话手机开机 插着充电器充电,充满电就会自动关机了。 现在的MOS管生产工艺决定了,生产的时候都会形成一个寄生二极管(也叫体二极管,不用担心体二极管的耐流值,电池厂 都替你考虑了,放电是没问题的)MOS管标准的画法如上图。 充电保护的时候,B-到P-处于断开状态,停止充电。但U2B的 体二极管的方向与放电回路的电流方向相同,所以仍可对外负 载放电。当电芯两端电压低于4.3V时,U2B将退出充电保护状态,U2B重新导通,即B-与P-又重新接上,电芯又能进行正常 的充放电。 10.过放保护:当电池因放电而降低至设定值VD(2.3-2.5V),DO变为低电平,U2A截止,放电停止。P-到B-处于断开状态。当电池置于充电时,B-与P-通过U2A的体二极管接通,恢复到 一定电压后,D0重新置高,U2A重新导通。

电池保护板工作原来

锂电池保护板的主要参数 锂电池保护板主要由保护IC和MOS管构成 (1)保护IC主要参数 1) 封装 2) 过充电压 3) 过充释放电压 4) 过放电压 5) 过放释放电压 6) 耐压 (2) MOSFET主要参数 1) N沟、P沟 2) 内阻 3) 封装(TSSOP8 <简称薄片> 、SOP8<简称厚片>、SOT23-6等) 4) 耐电流 5) 耐电压 6) 内部是否连通 锂电池保护板的工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。下面以D W01 配MOS管8205A进行讲解: 激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。 1.锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使

铅酸蓄电池的工作原理与维护方法

铅酸蓄电池的工作原理与维护方法 摘要:铅酸蓄电池是农用车和拖拉机电气系统的重要组成部分。主要是给用电 设备供电,它的性能好坏将直接影响农机设备的正常工作。铅酸蓄电池常以硫酸 作为电解液。蓄电池维护与保管的好坏,不仅直接影响蓄电池的质量和寿命,还 影响起动设备安全用电和工作任务的完成。因此,蓄电池的维护、保养是蓄电池 使用的一项重要工作。 关键词:铅酸蓄电池;容量;寿命;维护 铅酸蓄电池工作的基本原理 铅酸蓄电池的工作原理为双极硫酸化理论,其运用Pb/ / :的电化学体系。铅酸蓄电池充放电过程是可逆的,放电状态时其正极为二氧化铅,负极为海绵状铅,电解液为硫酸溶液,三者反应将化学能转化为电能释放出来,反应产物为和; 充电时其正、负极上的均同电解液发生反应,分别形成:和海绵状Pb,这一过 程中将电能转化为化学能并储存起来。铅酸蓄电池化学方程式表达如下:铅酸蓄电池放电过程的电化反应 ①如果铅酸蓄电池发生放电作用,一般会受到蓄电池电位差的影响,负极板 上的电子就会由负载进入正极板,并且还会形成电流 I,最后在电池内发生化学 反应。 ②负极板上的各个铅原子都放出 2 个电子(2e)以后,一般会形成铅离子(Pb2+),然后就会与电解液中包含的硫酸根离子(SO 2+)发生一定的化学作用,最后在极板上形成一种无法溶解的硫酸铅(PbSO 2+)。 ③通过正极板上存在的铅离子(Pb4+),可得到两个来自负极的电子 (2e),当其形成二价铅离子(Pb2+)之后,往往会与电解液中包含的硫酸根离 子(SO 2-)产生一定的反应与作用,然后就会在极板上形成一种几乎无法溶解的 硫酸铅(PbSO4)。此外,在正极板上,以水解反应形成的氧离子(O2-)与电解液中包含的氢离子(H+)发生作用之后,往往会形成一种稳定的物质水。 ④如果受到电力厂的影响与作用,电解液中包含的硫酸根离子与氢离子通常 会分别转移至电池的正极与负极,并且还会在电池内形成电流 I,从而形成整个 回路,蓄电池向外持续放电。 ⑤当电池放电时,浓度会不断下降,但正负极上存在的硫酸铅(Pb- SO4)持续增加,导致出现电池内阻增加、电解液浓度下降的现象,使得电池电动势大 幅下降。 铅酸蓄电池充电过程的电化反应 ①当铅酸蓄电池充电时,应在其外部接入一个直流电源,以确保负极板放电 之后形成的物质能够恢复为之前的活性物质,并将外界电能转化为化学能存储。 ②对于正极板上的硫酸铅,由于其会受到外界电流的影响,一般会出现离解现象,并形成二价铅离子(Pb2+)、硫酸根负离子(SO 2-),但外界的电源会 不断吸收正极板上存在的电子,此种情况下,正极板附近游离的二价铅离子 (Pb2+)就需要持续放出个电子补充,就会形成四价铅离子(Pb4+),与水发生 持续反应之后,会在正极板上形成一种二氧化铅(PbO2)。 ③由于会受到外界电流作用,负极板上的硫酸铅一般会发生离解作用,进而

锂电池保护板工作原理资料

锂电池保护板工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,下面以DW01 配MOS管8205A进行讲解: 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01 的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理:

当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关

手机锂电池保护板相关知识1【最新】

保护板初步知识 1、保护板的由来 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现 . 2、主要保护能能 过充电保护功能过放电保护功能 过电流保护电流包括过流1 过流2 短路保护 3、保护板的组成和元件: 保护板通常包括控制IC、开关MOS、储存电容、识别电阻及辅助器件NTC/PTC等组成。其中控制IC在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关断开,保护电芯的安全。 PTC是正温度系数热敏电阻,NTC是负温度系数热敏电阻.PTC与NTC在应用上有不同的地方是:PTC在电路中可以做过电流保护,NTC主要是开关浪涌电流的抑制.他们也有共同的作用就是温度感测和侦测试 4、原理图及元件介绍 IC 它由精确的比较器来获得保护可靠的保护参数,主要参数: -过充电压 -过充恢复电压 -过放电压 -过放恢复电压 -过流检测电压 -短路保护电压 -耗电 MOSFET 串在主充放电回路中,担当高速开关,执行保护动作。我司所用的都是串在B- P-间。MOSFET包含三个电极:漏极(D)源极(S)栅极(G);当G极为高电平时,D 极与S极导通,当G极为低电平时,D极与S极断开。主要参数: -内阻 -耐电流 -耐电压 -内部是否连通 -封装 FUSE PTC :二次保护器件。 原理图:

正极:B+ FUSE P+ 负极:B- MOS(2、3)脚 MOS(1)脚接 MOS(8)脚 MOS(5、6)脚夫 P- 5、功能介绍: 通常状态:当电芯电压在2。5V---4。2V之间,IC的充电控制脚(第1脚)和放电管控制脚(第3脚)同时处于高电平,充电MOS、放电MOS同时打开,B-与P-连通,保护板有输出电压,能正常允放电. -过放状态:当电池接上手机等负载后,电芯电压渐渐降低,同时IC同部通过R1电阻实时监测电芯电压,当电芯电压降到IC的过放保护电压时,IC放电控制脚(第1脚)输出电压为0V,即低电平,放电MOS关闭,无输出电压。 - 过充状态:当电池通过充电器充电时,随着充电时间的增加,电芯电压越来越高,当电芯电压升高到过充保护电压时,IC将认为电芯处于过充电电压状态,IC的充电控制脚(第3脚)输出为低电平,即0V;此时充电MOS管关闭,B-与P-处于断开状态,充电回路切断,充电停止。保护板处于过充状态并一直保持。等到P+ P-之间接上负载后,因此时虽然充电管处于关闭状态,但其内部的二极管的正方向与放电回路的方向相同,故放电回路可以放电,当电芯电压被放低至过充电恢复电压以下时,充电管又导通,电芯的B-与保护板的P-又重新接上,电芯又能正常的充放电。 -过流及短路保护:当电池的负载电流超过IC的过流保护值时,IC的放电控制脚(第1脚)输出低电平,MOS管关闭。 3、 常见的问题点: -内阻大:决定电池内阻的器件有 PCB的线阻,MOS管的导通内阻, FUSE的内阻,电芯内阻及镍片的电阻。 解决方法:首先判断电芯内阻(一般要求小于60mΩ)是否超过标准,其次是测试保护板内阻(一般要求小于60mΩ)、FUSE内阻(一般要求小于15mΩ),最后检查镍片及接触电阻(一般要求小于15mΩ) -无电压无内阻(不能充放电等):无电压无内阻通常是充电MOSFET关闭或放电MOSFET关闭或充放电MOS同时关闭,导致MOS管关闭的原因有 IC 不能正常工作或MOS管自身损坏或MOS连锡,虚焊。解决方法:先检查IC第5脚电压电否正常(电压与电芯电压相同),第6脚与B-是否连好,电芯电压是否正常,R1电阻是阻值是否正确,R1是否虚焊。其次检查IC的充电控制脚(3脚)和放电控制脚(5脚)电压是否正确(在通常的状态,IC的1、3脚都是高电平,等于电芯电压)。再次检查MOS是否短路,虚焊。 无ID(热敏):ID电阻一端连接保护板的P-端子,一端连接保接保护板的ID端子,若有此类问题时,可首先确认线路是否导通,其次可确认电阻本身是否不良或是否连锡。 短路保护、过流保护不良:可先检查R2是否虚焊,IC的过流检测端子(IC的第2脚)是否虚焊,若无以上两种不良,那么应是IC本身损坏。

锂电池保护芯片原理

锂电池保护原理 锂电池保护板就是对串联锂电池组得充放电保护;在充满电时能保证各单体电池之间得电压差异小于设定值(一般±20mV),实现电池组各单体电池得均充,有效地改善了串联充电方式下得充电效果;同时检测电池组中各个单体电池得过压、欠压、过流、短路、过温状态,保护并延长电池使用寿命;欠压保护使每一单节电池在放电使用时避免电池因过放电而损坏。 成品锂电池组成主要有两大部分,锂电池芯与保护板,锂电池芯主要由正极板、隔膜、负极板、电解液组成;正极板、隔膜、负极板缠绕或层叠,包装,灌注电解液,封装后即制成电芯,锂电池保护板得作用很多人都不知道,锂电池保护板,顾名思义就就是保护锂电池用得,锂电池保护板得作用就是保护电池不过放、不过充、不过流,还有就就是输出短路保护。 01锂电池保护板组成

1、控制ic, 2、开关管,另外还加一些微容与微阻而组成。控制ic作用就是对电池得保护,如达到保护条件就控制mos进行断开或闭合(如电池达到过充、过放、短路、过流、等保护条件),其中mos管得作用就就是开关作用,由控制ic开控制。锂电池(可充型)之所以需要保护,就是由它本身特性决定得。由于锂电池本身得材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致得保护板与一片电流保险器出现。锂电池得保护功能通常由保护电路板与PTC协同完成,保护板就是由电子电路组成,在-40℃至+85℃得环境下时刻准确得监视电芯得电压与充放回路得电流。 02保护板得工作原理 1、过充保护及过充保护恢复 当电池被充电使电压超过设定值VC(4、25-4、35V,具体过充保护电压取决于IC)后,VD1翻转使Cout变为低电平,T1截止,充电停止、当电池电压回落至VCR(3、8-4、1V,具体过充保护恢复电压取决于IC)时,Cout变为高电平,T1导通充电继续, VCR必须小于VC一个定值,以防止频繁跳变。 2、过放保护及过放保护恢复 当电池电压因放电而降低至设定值VD(2、3-2、5V,具体过充保护电压取决于IC)时, VD2翻转,以短时间延时后,使Dout变为低电平,T2截止,放电停止,当电池被置于充电时,内部或门被翻转而使T2再次导通为下次放电作好准备。 3、过流、短路保护 当电路充放回路电流超过设定值或被短路时,短路检测电路动作,使MOS管关断,电流截止。

工程机械蓄电池工作原理、注意事项以及常见故障处理

工程机械蓄电池工作原理、注意事项以及常见故障处理 工程机械蓄电池一直是工程机械设备中必不可少的组成部分,通过蓄电池可以为车载用电设备供电;驱动启动马达,带动发动机启动等重要作用。接下来为你详解蓄电池的工作原理、使用时的注意事项以及常见故障处理。 蓄电池种类 电瓶,学名:蓄电池,它是储存电能的一种设备。蓄电池的使用范围很广,除了在机动车辆上比较常见外,在电力、通信等领域,我们也常常能见到他们的身影。蓄电池通过充电过程,能够把电能转化成化学能储存起来,当需要使用电力时,蓄电池可以把储存的化学能转化为电能,向外进行输出,而这一转换过程是对于蓄电池来说是可逆的。 蓄电池工作的基本原理 蓄电池根据电解液的性质可以分为酸性蓄电池和碱性蓄电池。酸性蓄电池是比较常见的,它的电解液为稀硫酸溶液,而碱性蓄电池的电解液为氢氧化钾水溶液。机动车辆常用的蓄电池是铅酸蓄电池,它的优点是价格低,启动性能好,缺点是使用寿命短、体积重量较大。主要对铅酸蓄电池来进行详细的介绍。

蓄电池按用途可以分为以下几类: 1、启动型蓄电池:主要用于汽车、摩托车、柴油机等。 2、固定型蓄电池:主要用于通讯、发电厂、电脑等。 3、牵引型蓄电池:主要用于电瓶车,如电动自行车、电动汽车等。 其它还有铁路用蓄电池及储能蓄电池等。 常见的车用蓄电池又分为三类,一类是普通铅酸蓄电池,它的极板是由铅和铅的氧化物构成,电解液是硫酸的水溶液。这种蓄电池的优点是价格便宜、电压稳定。一类是干荷蓄电池,这种蓄电池的优点是负极板有较高的储电能力,如果环境完全干燥,这种蓄电池可以在两年内保存所得到的电量,在使用时,只需加入电解液,等待20~30 分钟后,便能直接使用了。另外一类是免维护蓄电池,这种蓄电池的优点是在使用寿命内基本不需要补充蒸馏水,除此之外,它还具有耐震、耐高温、体积小、自放电小等一系列优点。并且免维护蓄电池的使用寿命是一般普通蓄电池的两倍,大大高于普通的铅酸蓄电池的使用寿命。 而现在部分工程机械厂家旗下的产品开始使用免维护蓄电池,但大部分品牌还都在继续使用传统的非免维护蓄电池(铅酸蓄电池为主)。由于免维护蓄电池的维护成本非常低,只需要定期查看蓄电池上的状态指示孔的颜色,来对蓄电池的使用状况进行判断,如果显示为绿色,则表示蓄电池使用状态为良好;如果显示为黑色,则表示蓄电池处于馈电状态,需要进行充电,来保证工作效果;如果显示为白

S 和DW A主流锂电池保护板原理图说明

S8261和DW01-8205A主流锂电池保护板原理图说明 锂电池保护板的主要参数 锂电池保护板主要由保护IC和MOS管构成 (1)保护IC主要参数 1)?封装 2)?过充电压 3)?过充释放电压 4)?过放电压 5)?过放释放电压 6)?耐压 (2) MOSFET主要参数 1) N沟、P沟 2)?内阻 3)?封装(TSSOP8 <简称薄片>?、SOP8<简称厚片>、SOT23-6等) 4)?耐电流 5)?耐电压 6)?内部是否连通 锂电池保护板的工作原理 锂电池保护板根据使用IC,电压等不同而电路及参数有所不同,保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFET串在主充放电回路中担当高速开关,执行保护动作。下面以DW01?配MOS管8205A进行讲解: 激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS开关。 1.锂电池保护板其正常工作过程为: 当电芯电压在至之间时,DW01?的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01?的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01?的电压,故均处于导通状态,即两个

电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01?内部将 通过R1电阻实时监测电芯电压,当电芯电压下降到约时DW01?将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P?与P-间接上充电电压后,DW01?经B-检测到充电电压后便立即停止过放电状态,重新在第1 脚输出高电压,使8205A内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。 3.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到时,DW01?将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。保护板处于过充电状态并一直保持。等到保护板的P?与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于时,DW01?停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电. 4.保护板短路保护控制原理: 在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30m\U 03a9共约为60m\U 03a9,加在G极上的电压实际上是直接控制每个开关管的导通电阻的大小当G极电压大于1V时,开关管的导通内阻很小(几十毫欧),相当于开关闭合,当G极电压小于以下时,开关管的导通内阻很大(几MΩ),相当于开关断开。电压UA就是8205A的导通内阻与放电电流产生的电压,负载电流增大则UA必然增大,因UA0.006L×IUA又称为8205A的管压降,UA可以简接表明放电电流的大小。上升到时便认为负载电流到达了极限值,于是停止第1脚的输出电压,使第1脚电压变为0V、

蓄电池的结构型号及工作原理附件

教案正页序号 1 课程_汽车电器2014/2015学年第一学期教师佳

学习活动一:蓄电池的结构与型号 一、蓄电池的功用与分类 1.蓄电池的功用 蓄电池是汽车上的两个电源之一,它是一种可逆直流电源,在汽车上与发电机并联,共同向用电设备供电。在发电机正常工作时,用电设备所需要的电能主要由发电机供给,而蓄电池的作用是: ①发动机启动时,向起动机和点火系统、仪表系统及发电机磁场供电。 ②发电机不发电或电压较低的情况下向用电设备供电。 ③当用电设备同时接入较多,发电机超载时,协助发电机供电。 ④蓄电池存电不足,而发电机负载又较少时,它可将发电机的电能转变为化学能储存起来(即充电)。 另外,蓄电池还相当于一个容量很大的电容器,在发电机转速和用电设备负载发生较大变化时,可保持汽车电网电压的相对稳定,吸收电网中随时出现的瞬间过电压,以保护用电设备尤其是电子元器件不被损坏;这一点对装有大量电子设备的现代汽车是非常重要的。发动机工作时绝不允许将发电机与蓄电池脱开,因为这样会引起极高的浪涌电压,将发电机电压调节器和电子装备烧毁。 2.蓄电池的分类 蓄电池的种类很多,按使用的电解液的成分划分有酸性蓄电池和碱性蓄电池;按电极材料可分铅蓄电池和铁镍、铬镍蓄电池;按用途不同可分汽车用蓄电

池、电瓶车用蓄电池、电讯、航标用蓄电池等。目前,汽车上广泛用的是铅酸蓄电池,汽车上所使用的蓄电池必须能满足启动发动机的需要,即短时间(5~10s)可供给起动机较大的电流(一般为200~600A)这种蓄电池通常称为启动型蓄电池。本单元我们主要探讨的是铅酸启动型蓄电池。 二、蓄电池的结构与型号 1.蓄电池的结构 启动型铅酸蓄电池外形与构造如图1—1,从图中我们可以看出,蓄电池一般由六个单个电池串联而成。主要由极板、隔板、电解夜、外壳、联条、极桩等 组成。

锂电池保护板工作原理及构成

锂离子电池保护板工作原理及其构成 锂离子电池保护板工作原理及其构成 MOS 锂在元素周期表上第3位,外层电子1个,容易失去形成稳定结构,所以是非常活泼的一种金属。而锂离子电池具有放电电流大、内阻低、寿命长、无记忆效应等被人们广泛使用,锂离子电池在使用中严禁过充电、过放电、短路,否则将会使电池起火、爆炸等致命缺点,所以,在使用可充锂电池都会带有一块保护板来保护电芯的安全。

保护板有两个核心部件:一块保护IC,它是由精确的比较器来获得可靠的保护参数;另外是MOSFE T串在主充放电回路中担当高速开关,执行保护动作。电路原理图如下: 1、下面介绍保护IC个引脚功能:VDD是IC电源正极,VSS是电源负极,V-是过流/短路检测端,Do ut是放电保护执行端,Cout是充电保护执行端。 2、保护板端口说明:B+、B-分别是接电芯正极、负极;P+、P-分别是保护板输出的正极、负极;T 为温度电阻(NTC)端口,一般需要与用电器的MCU配合产生保护动作,后面会介绍,这个端口有时也标为ID,意即身份识别端口,这时,图上的R3一般为固定阻值的电阻,让用电器的CPU辨别是否为指定的电池。 保护板工作过程:

1、激活保护板的方法:当保护板P+、P-没有输出处于保护状态,可以短路B-、P-来激活保护板,这时,Dout、Cout均会处于低电平(保护IC此两端口是高电平保护,低电平常态)状态打开两个MOS 开关。 2、充电:P+、P-分别接充电器的正负极,充电电流经过两个MOS对电芯进行充电。这时,IC的VD D、VSS既是电源端,也是电芯电压检测端(经R1)。随着充电的进行,电芯电压逐渐升高,当升高到保护IC门限电压(一般是4.30V,通常称为过充保护电压)时,Cout随即输出高电平将对应那个M OS关断,充电回路也被断开。过充保护后,电芯电压会下降,当下降到IC门限电压(一般为4.10V,通常称为过充保护恢复电压)时,Cout恢复低电平状态打开MOS开关。 3、放电:同样,在电池放电时,IC的VDD、VSS也会对电芯电压检测,当电芯电压下降到IC门限电压(一般是2.40V,通常称为过放保护电压)时,Dout随即输出高电平将对应那个MOS关断,放电

8205s锂电池保护板工作原理

8205S锂电池保护板工作原理 产品描述:锂电保护场效应管(MOSFET) 8205A (GM8205A)规格书(PDF) 8205A 厂商:台湾进口Gem-mirco 8205A 封装:TSSOP-8 8205A 内阻:19mΩ8205A 电 压:20V 电流:6A 锂电池保护板其正常工作过程为: 当电芯电压在2.5V至4.3V之间时,DW01 的第1脚、第3脚均输出高电平(等于供电电压),第二脚电压为0V。此时DW01的第1脚、第3脚电压将分别加到8205A的第5、4脚,8205A内的两个电子开关因其G极接到来自DW01 的电压,故均处于导通状态,即两个电子开关均处于开状态。此时电芯的负极与保护板的P-端相当于直接连通,保护板有电压输出。 2.保护板过放电保护控制原理: 当电芯通过外接的负载进行放电时,电芯的电压将慢慢降低,同时DW01 内部将通过R1电阻实时监测电芯电压,当电芯电压下降到约2.3V时DW01 将认为电芯电压已处于过放电电压状态,便立即断开第1脚的输出电压,使第1脚电压变为0V,8205A内的开关管因第5脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的放电回路被切断,电芯将停止放电。保护板处于过放电状态并一直保持。等到保护板的P 与P-间接上充电电压后,DW01 经B-检测到充电电压后便立即停止过放电状态,重新在第1脚输出高电压,使8205A 内的过放电控制管导通,即电芯的B-与保护板的P-又重新接上,电芯经充电器直接充电。

4.保护板过充电保护控制原理: 当电池通过充电器正常充电时,随着充电时间的增加,电芯的电压将越来越高,当电芯电压升高到4.4V时,DW01 将认为电芯电压已处于过充电电压状态,便立即断开第3脚的输出电压,使第3脚电压变为0V,8205A内的开关管因第4脚无电压而关闭。此时电芯的B-与保护板的P-之间处于断开状态。即电芯的充电回路被切断,电芯将停止充电。保护板处于过充电状态并一直保持。等到保护板的P 与P-间接上放电负载后,因此时虽然过充电控制开关管关闭,但其内部的二极管正方向与放电回路的方向相同,故放电回路可以进行放电,当电芯的电压被放到低于4.3V时,DW01 停止过充电保护状态重新在第3脚输出高电压,使8205A内的过充电控制管导通,即电芯的B-与保护板P-又重新接上,电芯又能进行正常的充放电. 5.保护板短路保护控制原理: 如图所示,在保护板对外放电的过程中,8205A内的两个电子开关并不完全等效于两个机械开关,而是等效于两个电阻很小的电阻,并称为8205A的导通内阻,每个开关的导通内阻约为30mU 03a9共约为 60mU 03a9,加在G极上的电 压实际上是直接控制每个开关 管的导通电阻的大小当G极电 压大于1V时,开关管的导通内 阻很小(几十毫欧),相当于开关 闭合,当G极电压小于0.7V以 下时,开关管的导通内阻很大 (几MΩ),相当于开关断开。电 压UA就是8205A的导通内阻 与放电电流产生的电压,负载电 流增大则UA必然增大,因 UA0.006L×IUA又称为8205A 的管压降,UA可以简接表明放 电电流的大小。上升到0.2V时 便认为负载电流到达了极限值, 于是停止第1脚的输出电压,使第1脚电压变为0V、8205A内的放电控制管关闭,切断电芯的放电回路,将关断放电控制管。换言之DW01 允许输出的最大电流是3.3A,实现了过电流保护。 6. 短路保护控制过程: 短路保护是过电流保护的一种极限形式,其控制过程及原理与过电流保护一样,短路只是在相当于在P P-间加上一个阻值小的电阻(约为0Ω)使保护板的负载电流瞬时达到10A以上,保护板立即进行过电流保护。

3蓄电池的工作原理及工作特性1

教案首页 编号 3 课题蓄电池的工作原理及工作特性授 课 日 期 09年 2月 16 日 课时 2 编写日期09年 2月 14日第 2 周星期1 授课班级汽修1、2班 教学 目的与要求1.掌握蓄电池的工作原理 2.熟悉蓄电池的工作特性 本课 重点 蓄电池的工作原理 本课 难点 蓄电池工作原理 教学类型讲授 运用 教具 教材 课内作业见教案 课外 作业 见教案 教研 组长 (主任) 签字 签名年月日教师 后记 蓄电池的充、放电过程比较难以理解,讲授过程中可结 合充、放电终了的现象说明。

一、导入新课 想一想:充足电的蓄电池为什么能使起动机转动?使用一段时间后还能使起动机转动 吗? 二、蓄电池的工作原理 1.电动势的建立 正极板上附着有正四价铅离子,使正极板具有2.0V的正电位;负极板上为正二价铅离 子,使负极板具有-0.1的负电位正、负极板间有2.1V的电位差。 质疑:正、负极板上的铅离子是如何产生的? 2.放电过程 在电位差的作用下,电流从正极流出,经过灯泡流回负极,使灯泡发光。 结论:放电过程中,正极板上的正四价铅离子逐渐变成正二价铅离子,其电位逐渐降。 低;负极板上电子不断流出,其电位逐渐升高,放电过程结束,两极板间的电位差减小为 “0”,外接电路中的灯泡“熄灭”。电解液中的水不断增多,使得电解液的密度下降。 3. 充电过程 外接直流电源的正极接蓄电池的正极板,电源的负极接蓄电池的负极板。当直流电源 的电动势高于蓄电池的电动势时,电流将以放电电流相反的方向流过蓄电池。 结论:充电过程中,正极板上的正二价铅离子失电子成为正四价铅离子,电位上升; 负极板上的正二价铅离子得到电子成为铅分子,电位降低。正、负极板间的电位差加大。 电解液的密度不断升高。 质疑:充、放电过程中,极板上活性物质是否有所减少? 三、蓄电池的工作特性 蓄电池的工作特性包括:静止电动势、内阻、充电特性和放电特性。 1.静止电动势 定义:蓄电池在静止状态下(充电或放电后静止2~3小时),正负极板间的电位差 (Ej)表示. 称静止电动势,用E 测量方法: (1)用直流电压表或万用表的直流电压档直接测得; (2)测出电解液密度,然后用经验公式求得。 2.内电阻 铅蓄电池的内电阻包括:电解液电阻、极板电阻、隔板电阻、联条电阻。

锂电池保护板原理定稿版

锂电池保护板原理精编 W O R D版 IBM system office room 【A0816H-A0912AAAHH-GX8Q8-GNTHHJ8】

锂电池保护板原理 锂电池(可充型)之所以需要保护,是由它本身特性决定的。由于锂电池本身的材料决定了它不能被过充、过放、过流、短路及超高温充放电,因此锂电池锂电组件总会跟着一块精致的保护板和一片电流保险器出现。 锂电池的保护功能通常由保护电路板和PTC等电流器件协同完成,保护板是由电子电路组成,在-40℃至+85℃的环境下时刻准确的监视电芯的电压和充放回路的电流,及时控制电流回路的通断;PTC在高温环境下防止电池发生恶劣的损坏。 普通锂电池保护板通常包括控制IC、MOS开关、电阻、电容及辅助器件FUSE、PTC、NTC、ID、存储器等。其中控制IC,在一切正常的情况下控制MOS开关导通,使电芯与外电路导通,而当电芯电压或回路电流超过规定值时,它立刻控制MOS开关关断,保护电芯的安全。 在保护板正常的情况下,Vdd为高电平,Vss,VM为低电平,DO、CO为高电平,当 Vdd,Vss,VM任何一项参数变换时,DO或CO端的电平将发生变化。 1、过充电检出电压:在通常状态下,Vdd逐渐提升至CO端由高电平变为低电平时VDD-VSS间电压。 2、过充电解除电压:在充电状态下,Vdd逐渐降低至CO端由低电平变为高电平时VDD-VSS间电压。 3、过放电检出电压:通常状态下,Vdd逐渐降低至D O端由高电平变为低电平时VDD- VSS间电压。 4、过放电解除电压:在过放电状态下,Vdd逐渐上升到DO端由低电平变为高电平时VDD-VSS间电压。 5、过电流1检出电压:在通常状态下,VM逐渐升至DO由高电平变为低电平时VM-VSS 间电压。

相关主题