搜档网
当前位置:搜档网 › 高考平面向量及其应用专题及答案百度文库

高考平面向量及其应用专题及答案百度文库

高考平面向量及其应用专题及答案百度文库
高考平面向量及其应用专题及答案百度文库

一、多选题

1.正方形ABCD 的边长为1,记AB a =,BC b =,AC c =,则下列结论正确的是

( )

A .()

0a b c -?= B .()

0a b c a +-?= C .()0a c b a --?=

D .2a b c ++=

2.已知,,a b c 是同一平面内的三个向量,下列命题中正确的是( )

A .||||||a b a b ?≤

B .若a b c b ?=?且0b ≠,则a c =

C .两个非零向量a ,b ,若||||||a b a b -=+,则a 与b 共线且反向

D .已知(1,2)a =,(1,1)b =,且a 与a b λ+的夹角为锐角,则实数λ的取值范围是

5,3??-+∞ ???

3.在ABC 中,a ,b ,c 分别是内角A ,B ,C 2sin c A =,且

02

C <<

π

,4b =,则以下说法正确的是( )

A .3

C π

=

B .若72

c =

,则1

cos 7B =

C .若sin 2cos sin A B C =,则ABC 是等边三角形

D .若ABC 的面积是4 4.在ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知

cos cos 2B b

C a c

=-,

ABC S =

△b = )

A .1cos 2

B =

B .cos 2

B =

C .a c +=

D .a c +=5.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,ABC 的面积为S .下列

ABC 有关的结论,正确的是( ) A .cos cos 0A B +>

B .若a b >,则cos2cos2A B <

C .24sin sin sin S R A B C =,其中R 为ABC 外接圆的半径

D .若ABC 为非直角三角形,则tan tan tan tan tan tan A B C A B C ++=

6.已知ABC 的面积为3,在ABC 所在的平面内有两点P ,Q ,满足20PA PC +=,

2QA QB =,记APQ 的面积为S ,则下列说法正确的是( )

A .//P

B CQ B .2133

BP BA BC =

+ C .0PA PC ?<

D .2S =

7.在△ABC 中,a ,b ,c 是角A ,B ,C 的对边,已知A =3

π

,a =7,则以下判断正确的是( )

A .△ABC 的外接圆面积是493

π

; B .b cos C +c cos B =7;

C .b +c 可能等于16;

D .作A 关于BC 的对称点A ′,则|AA ′|的最大

值是

8.在ABC ?中,内角,,A B C 的对边分别为,,,a b c 若,2,6

A a c π

===则角C 的大小

是( ) A .

6

π B .

3

π C .

56

π D .

23

π 9.在△ABC 中,点E ,F 分别是边BC 和AC 上的中点,P 是AE 与BF 的交点,则有( )

A .1122AE A

B A

C →

→→

=+

B .2AB EF →→

=

C .1133

CP CA CB →

→→

=+

D .2233

CP CA CB →

→→

=+

10.下列结论正确的是( )

A .在ABC 中,若A

B >,则sin sin A B >

B .在锐角三角形AB

C 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则ABC 为等腰三角形

D .在ABC 中,若3b =,60A =?,三角形面积S = 11.下列各式中,结果为零向量的是( ) A .AB MB BO OM +++ B .AB BC CA ++ C .OA OC BO CO +++

D .AB AC BD CD -+-

12.在ABC 中,15a =,20b =,30A =,则cos B =( )

A .

B .

23

C .23

-

D 13.下列命题中,正确的是( ) A .在ABC ?中,A B >,sin sin A B ∴> B .在锐角ABC ?中,不等式sin cos A B >恒成立

C .在ABC ?中,若cos cos a A b B =,则ABC ?必是等腰直角三角形

D .在ABC ?中,若060B =,2b ac =,则ABC ?必是等边三角形 14.给出下面四个命题,其中是真命题的是( ) A .0AB

BA B .AB BC AC C .AB AC BC += D .00AB +=

15.如果12,e e 是平面α内两个不共线的向量,那么下列说法中正确的是( ) A .12(,),e e λμλμ+∈R 可以表示平面α内的所有向量

B .对于平面α内任一向量a ,使12,a e e λμ=+的实数对(,)λμ有无穷多个

C .若向量1112e e λμ+与2122e e λμ+共线,则有且只有一个实数λ,使得

()11122122e e e e λμλλμ+=+

D .若存在实数,λμ使得120e e λμ+=,则0λμ==

二、平面向量及其应用选择题

16.已知M (3,-2),N (-5,-1),且1

2

MP MN =,则P 点的坐标为( ) A .(-8,1) B .31,2?

?-- ??

?

C .31,2?? ???

D .(8,-1)

17.下列命题中正确的是( ) A .若a b ,则a 在b 上的投影为a B .若(0)a c b c c ?=?≠,则a b =

C .若,,,A B C

D 是不共线的四点,则AB DC =是四边形ABCD 是平行四边形的充要条件 D .若0a b ?>,则a 与b 的夹角为锐角;若0a b ?<,则a 与b 的夹角为钝角 18.已知ABC 所在平面内的一点P 满足20PA PB PC ++=,则

::PAB PAC PBC S S S =△△△( )

A .1∶2∶3

B .1∶2∶1

C .2∶1∶1

D .1∶1∶2

19.若O 为ABC 所在平面内任意一点,且满足()

20BC OB OC OA ?+-=,则

ABC 一定为( )

A .锐角三角形

B .直角三角形

C .等腰三角形

D .钝角三角形

20.ABC 中,内角A ,B ,C 所对的边分别为a b c ,

,.①若A B >,则sin sin A B >;②若sin 2sin 2A B =,则ABC 一定为等腰三角形;③若cos cos a B b A c -=,则

ABC 一定为直角三角形;④若3

B π

=

,2a =,且该三角形有两解,则b 的范围是

)

+∞.以上结论中正确的有( )

A .1个

B .2个

C .3个

D .4个

21.在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,且cos sin a B b A c +=.若

2a =,ABC 的面积为1),则b c +=( )

A .5

B .

C .4

D .16

22.在ABC ?中,a 、b 、c 分别是角A 、B 、C 的对边,若

sin cos sin a b c

A B B

===ABC ?的面积为( )

A .2

B .4

C

D .23.在ABC 中,A ∠,B ,C ∠所对的边分别为a ,b ,c ,过C 作直线CD 与边

AB 相交于点D ,90C ∠=?,1CD =.当直线CD AB ⊥时,+a b 值为M ;当D 为边

AB 的中点时,+a b 值为N .当a ,b 变化时,记{}max ,m M N =(即M 、N 中较大

的数),则m 的最小值为( )

A .M

B .N

C .

D .1

24.在ABC ?中,E ,F 分别为AB ,AC 的中点,P 为EF 上的任一点,实数x ,y 满足0PA xPB yPC ++=,设ABC ?、PBC ?、PCA ?、PAB ?的面积分别为S 、1S 、2S 、3S ,记

i

i S S

λ=(1,2,3i =),则23λλ?取到最大值时,2x y +的值为( ) A .-1

B .1

C .32

-

D .

32

25.已知ABC 的面积为30,且12

cos 13

A =,则A

B A

C ?等于( ) A .72 B .144

C .150

D .30026.题目文件丢失!

27.在锐角三角形ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,若

()()(2a b c a c b ac +++-=+,则cos sin A C +的取值范围为

A .3)2

B .(

2

C .3(2

D .3

(2

28.在ABC 中,()

2

BC BA AC AC +?=,则ABC 的形状一定是( ) A .等边三角形

B .等腰三角形

C .等腰直角三角形

D .直角三角形

29.如图,在ABC 中,点D 在线段BC 上,且满足1

2

BD DC =

,过点D 的直线分别交直线AB ,AC 于不同的两点M ,N 若AM mAB =,AN nAC =,则( )

A .m n +是定值,定值为2

B .2m n +是定值,定值为3

C .

11

m n +是定值,定值为2 D .

21

m n

+是定值,定值为3 30.设(),1A a ,()2,1B -,()4,5C 为坐标平面上三点,O 为坐标原点,若OA 与OB 在

OC 方向上的投影相同,则a =( )

A .12

-

B .

12

C .-2

D .2

31.若两个非零向量a ,b 满足2a b a b b +=-=,则向量a b +与a 的夹角为( ) A .

3

π B .

23

π C .

56

π D .

6

π 32.已知D ,E ,F 分别是△ABC 的边BC ,CA ,AB 的中点,且BC a CA b ==,,AB c =,

则①AD =-b -

12a ;②BE =a +12b ;③CF =-12a +1

2

b ;④AD +BE +CF =0.其中正确的等式的个数为( ) A .1 B .2 C .3 D .4

33.如图所示,矩形ABCD 的对角线相交于点O ,E 为AO 的中点,若

(),DE AB AD R λμλμ=+∈,则λμ?等于( )

A .3

16

- B .

316 C .

12

D .12

-

34.如图所示,在ABC 中,点D 是边BC 上任意一点,M 是线段AD 的中点,若存在实数λ和μ,使得BM AB AC λμ=+,则λμ+=( )

A .1-

B .12

-

C .2-

D .32

-

35.已知20a b =≠,且关于x 的方程2

0x a x a b ++?=有实根,则a 与b 的夹角的

取值范围是( ) A .06

,π??????

B .,3ππ??

?

???

C .2,33ππ??

?

???

D .,6ππ??

?

???

【参考答案】***试卷处理标记,请不要删除

一、多选题 1.ABC 【分析】

作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解 解析:ABC 【分析】

作出图形,利用平面向量加、减法法则与正方形的性质可判断A 、B 选项的正误;利用平面向量的减法法则与向量的数乘运算可判断C 选项的正误;利用平面向量的加法法则可判断D 选项的正误. 【详解】 如下图所示:

对于A 选项,四边形ABCD 为正方形,则BD AC ⊥,

a b AB BC AB AD DB -=-=-=,()

0a b c DB AC ∴-?=?=,A 选项正确;

对于B 选项,0a b c AB BC AC AC AC +-=+-=-=,则()

00a b c a a +-?=?=,B 选项正确;

对于C 选项,a c AB AC CB -=-=,则0a c b CB BC --=-=,则

()0a c b a --?=,C 选项正确;

对于D 选项,2a b c c ++=,222a b c c ∴++==,D 选项错误. 故选:ABC. 【点睛】

本题考查平面向量相关命题正误的判断,同时也考查了平面向量加、减法法则以及平面向量数量积的应用,考查计算能力,属于中等题.

2.AC 【分析】

根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】

对于A ,由平面向量数量积定义可知

解析:AC 【分析】

根据平面向量数量积定义可判断A ;由向量垂直时乘积为0,可判断B ;利用向量数量积的运算律,化简可判断C ;根据向量数量积的坐标关系,可判断D. 【详解】

对于A ,由平面向量数量积定义可知cos ,a b a b a b ?=,则||||||a b a b ?≤,所以A 正确,

对于B ,当a 与c 都和b 垂直时,a 与c 的方向不一定相同,大小不一定相等,所以B 错误,

对于C ,两个非零向量a ,b ,若||||||a b a b -=+,可得22()(||||)a b a b -=+,即

22||||a b a b -?=,cos 1θ=-,

则两个向量的夹角为π,则a 与b 共线且反向,故C 正确; 对于D ,已知(1,2)a =,(1,1)b =且a 与a b λ+的夹角为锐角, 可得()0a a b λ?+>即2||0a a b λ+?>可得530λ+>,解得53

λ>-

, 当a 与a b λ+的夹角为0时,(1,2)a b λλλ+=++,所以2220λλλ+=+?=

所以a 与a b λ+的夹角为锐角时5

3

λ>-且0λ≠,故D 错误; 故选:AC. 【点睛】

本题考查了平面向量数量积定义的应用,向量共线及向量数量积的坐标表示,属于中档题.

3.AC 【分析】

对于,利用正弦定理可将条件转化得到,即可求出; 对于,利用正弦定理可求得,进而可得;

对于,利用正弦定理条件可转化为,结合原题干条件可得,进而求得; 对于,根据三角形面积公式求得,利

解析:AC 【分析】

对于A

2sin sin A C A =,即可求出C ; 对于B ,利用正弦定理可求得sin B ,进而可得cos B ;

对于C ,利用正弦定理条件可转化为2cos a c B =,结合原题干条件可得B ,进而求得

A B C ==;

对于D ,根据三角形面积公式求得a ,利用余弦定理求得c ,进而由正弦定理求得R . 【详解】

2sin c A =

2sin sin A C A =, 因为sin 0A ≠

,故sin C =, 因为(0,

)2

C π

∈,则3

C π

=

,故A 正确;

若72

c =,则由正弦定理可知sin sin c b C B =

,则4sin sin 72

b B C

c == 因为(0,)B π∈

,则1

cos 7

B =±,故B 错误; 若sin 2cos sin A B

C =,根据正弦定理可得2cos a c B =,

2sin c A =

,即sin a A =

sin 2cos A c B =

,所以sin A B =,

因为23A B C ππ+=-=,则23

A B π=

-

,故2sin()3B B π

-=,

1

sin 2B B B +=

,即1sin 2B B =,

解得tan B =3

B π

=,则3

A π

=

即3

A B C π

===

,所以ABC 是等边三角形,故C 正确; 若ABC

的面积是

1

sin 2

ab C =2a =, 由余弦定理可得2

2

2

1

2cos 416224122

c a b ab C =+-=+-???=

,即c = 设三角形的外接圆半径是R ,

由正弦定理可得24

sin c R C =

==,则该三角形外接圆半径为2,故D 错误, 故选:AC . 【点睛】

本题考查正余弦定理的应用及同角三角函数的基本关系和两角和与差的三角公式,转化思想,计算能力,属于中档题.

4.AD 【分析】

利用正弦定理,两角和的正弦函数公式化简,结合,可求,结合范围,可求,进而根据三角形的面积公式和余弦定理可得. 【详解】 ∵,

整理可得:, 可得,

∵A 为三角形内角,, ∴,故A 正确

解析:AD 【分析】

利用正弦定理,两角和的正弦函数公式化简

cos cos 2B b

C a c

=-,结合sin 0A ≠,可求1cos 2

B =

,结合范围()0,B π∈,可求3B π

=,进而根据三角形的面积公式和余弦定理

可得a c += 【详解】 ∵

cos sin cos 22sin sin B b B

C a c A C

==--, 整理可得:sin cos 2sin cos sin cos B C A B C B =-,

可得()sin cos sin cos sin sin 2sin cos B C C B B C A A B +=+==, ∵A 为三角形内角,sin 0A ≠, ∴1

cos 2

B =

,故A 正确,B 错误, ∵()0,B π∈, ∴3

B π

=

∵4

ABC S =△,且3b =,

11sin 22ac B a c ==??=, 解得3ac =,

由余弦定理得()()2

2

22939a c ac a c ac a c =+-=+-=+-,

解得a c +=C 错误,D 正确. 故选:AD. 【点睛】

本题主要考查正弦定理,余弦定理以及两角和与差的三角函数的应用,还考查了运算求解的能力,属于中档题.

5.ABD 【分析】

对于A ,利用及余弦函数单调性,即可判断;对于B ,由,可得,根据二倍角的余弦公式,即可判断;对于C ,利用和正弦定理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【

解析:ABD 【分析】

对于A ,利用A B π+<及余弦函数单调性,即可判断;对于B ,由a b >,可得

sin sin A B >,根据二倍角的余弦公式,即可判断;对于C ,利用in 1

2

s S ab C =和正弦定

理化简,即可判断;对于D ,利用两角和的正切公式进行运算,即可判断. 【详解】

对于A ,∵A B π+<,∴0A B ππ<<-<,根据余弦函数单调性,可得

()cos cos cos A B B π>-=-,∴cos cos 0A B +>,故A 正确;

对于B ,若sin sin a b A B >?>,则22sin sin A B >,则2212sin 12sin A B -<-,即

cos2cos2A B <,故B 正确;

对于C ,211

sin 2sin 2sin sin 2sin sin sin 22

S ab C R A R B C R A B C ==???=,故C 错误;

对于D ,在ABC 为非直角三角形,()tan tan tan tan 1tan tan B C

A B C B C

+=-+=-

-?,则

tan tan tan tan tan tan A B C A B C ++=,故D 正确. 故选:ABD. 【点睛】

本题主要考查了正弦定理在解三角形中的应用,三角函数基本性质.考查了推理和归纳的能力.

6.BCD 【分析】

本题先确定B 是的中点,P 是的一个三等分点,判断选项A 错误,选项C 正确;

再通过向量的线性运算判断选项B 正确;最后求出,故选项D 正确. 【详解】 解:因为,,

所以B 是的中点,P 是的

解析:BCD 【分析】

本题先确定B 是AQ 的中点,P 是AC 的一个三等分点,判断选项A 错误,选项C 正确; 再通过向量的线性运算判断选项B 正确;最后求出2APQ S =△,故选项D 正确. 【详解】

解:因为20PA PC +=,2QA QB =,

所以B 是AQ 的中点,P 是AC 的一个三等分点,如图:故选项A 错误,选项C 正确;

因为()

121

333

BP BA AP BA BC BA BA BC =+=+

-=+,故选项B 正确;

因为

112223132

APQ ABC

AB h

S S AB h ??==?△△,所以,2APQ S =△,故选项D 正确. 故选:BCD 【点睛】

本题考查平面向量的线性运算、向量的数量积、三角形的面积公式,是基础题.

7.ABD 【分析】

根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】

对于A ,设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故A 正确;

对于B ,根据正弦定

解析:ABD 【分析】

根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个选项的正误. 【详解】

对于A ,设ABC 的外接圆半径为R ,根据正弦定理

2sin a R A =

,可得R =ABC 的外接圆面积是249

3

S R ππ==

,故A 正确; 对于B ,根据正弦定理,利用边化角的方法,结合A B C π++=,可将原式化为

2sin cos 2sin cos 2sin()2sin R B C R C B R B C R A a +=+==,故B 正确.

对于C ,22(sin sin )2[sin sin(

)]3

b c R B C R B B π

+=+=+-

114(cos )14sin()223

B B B π=+=+

14b c ∴+≤,故C 错误.

对于D ,设A 到直线BC 的距离为d ,根据面积公式可得

11

sin 22

ad bc A =,即sin bc A

d a

=

,再根据①

中的结论,可得d =D 正确. 故选:ABD. 【点睛】 本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.

8.BD 【分析】

由正弦定理可得,所以,而,可得,即可求得答案. 【详解】 由正弦定理可得, ,而, , , 故或. 故选:BD. 【点睛】

本题考查了根据正弦定理求解三角形内角,解题关键是掌握

解析:BD 【分析】

由正弦定理可得sin sin a c A C =,所以sin sin 2

c C A a ==,而a c <,可得A C <,即可求得答案. 【详解】 由正弦定理可得

sin sin a c

A C

=,

∴ sin sin c C A a ==而a c <,

∴ A C <, ∴

566

C π

π<<, 故3C π

=

23

π. 故选:BD. 【点睛】

本题考查了根据正弦定理求解三角形内角,解题关键是掌握正弦定理和使用正弦定理多解的判断,考查了分析能力和计算能力,属于中等题.

9.AC 【分析】

由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:

根据三角形中线性质和平行四边形法则知, , A 是正确的;

因为EF 是中位线,所以B 是正确的; 根据三角形重心

解析:AC 【分析】

由已知结合平面知识及向量共线定理分别检验各选项即可. 【详解】 如图:

根据三角形中线性质和平行四边形法则知,

111()()222

AE AB BE AB BC AB AC AB AC AB →

→→→→→

→=+=+=+-=+, A 是正确的;

因为EF 是中位线,所以B 是正确的; 根据三角形重心性质知,CP =2PG ,所以22113323CP CG CA CB CA CB →

→→→→→????

==?+=+ ? ?????

所以C 是正确的,D 错误. 故选:AC 【点睛】

本题主要考查了平面向量基本定理的简单应用,熟记一些基本结论是求解问题的关键,属于中档题.

10.AB 【分析】

由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D . 【详解】

中,,由得,A 正确; 锐角三角形中,,∴,B 正确; 中,

解析:AB 【分析】

由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,由三角形面积公式,余弦定理及正弦定理判断D .

ABC 中,A B a b >?>,由

sin sin a b A B

=得sin sin A B >,A 正确; 锐角三角形ABC 中,222

cos 02b c a A bc

+-=>,∴2220b c a +->,B 正确;

ABC 中,若sin 2sin 2A B =,则22A B =或22180A B +=?,即A B =或90A B +=?,ABC 为等腰三角形或直角三角形,C 错;

ABC 中,若3b =,60A =?,三角形面积S =11

sin 3sin 6022

S bc A c ==??=4c =,∴2222cos 13a b c bc A =+-=,

a =,

∴2sin sin 603a R A =

==

?,3

R =,D 错. 故选:AB . 【点睛】

本题考查正弦定理,余弦定理,正弦函数的性质,三角形面积公式等,考查学生的逻辑推理能力,分析问题解决问题的能力.

11.BD 【分析】

根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案. 【详解】

对于选项:,选项不正确; 对于选项: ,选项正确; 对于选项:,选项不正确; 对于选项: 选项正确. 故选:

解析:BD 【分析】

根据向量的加法和减法运算,对四个选项逐一计算,即可得正确答案. 【详解】

对于选项A :AB MB BO OM AB +++=,选项A 不正确; 对于选项B : 0AB BC CA AC CA ++=+=,选项B 正确; 对于选项C :OA OC BO CO BA +++=,选项C 不正确;

对于选项D :()()

0AB AC BD CD AB BD AC CD AD AD -+-=+-+=-= 选项D 正确.

【点睛】

本题主要考查了向量的线性运算,属于基础题.

12.AD 【分析】

利用正弦定理可求得的值,再利用同角三角函数的平方关系可求得的值. 【详解】

由正弦定理,可得, ,则,所以,为锐角或钝角. 因此,. 故选:AD. 【点睛】

本题考查利用正弦定理与同

解析:AD 【分析】

利用正弦定理可求得sin B 的值,再利用同角三角函数的平方关系可求得cos B 的值. 【详解】

由正弦定理sin sin b a B A

=,可得1

20sin 22sin 153

b A B a ?

===, b a >,则30B A >=,所以,B 为锐角或钝角.

因此,cos B ==. 故选:AD. 【点睛】

本题考查利用正弦定理与同角三角函数的基本关系求值,考查计算能力,属于基础题.

13.ABD 【分析】

对于选项在中,由正弦定理可得,即可判断出正误;对于选项在锐角中,由,可得,即可判断出正误;对于选项在中,由,利用正弦定理可得:,得到或即可判断出正误;对于选项在中,利用余弦定理可得

解析:ABD 【分析】

对于选项A 在ABC ?中,由正弦定理可得sin sin A B a b A B >?>?>,即可判断出正误;对于选项B 在锐角ABC ?中,由

02

2

A B π

π

>>

->,可得

sin sin()cos 2

A B B π

>-=,即可判断出正误;对于选项C 在ABC ?中,由

cos cos a A b B =,利用正弦定理可得:sin 2sin 2A B =,得到22A B =或222A B π=-即可判断出正误;对于选项D 在ABC ?中,利用余弦定理可得:

2222cos b a c ac B =+-,代入已知可得a c =,又60B =?,即可得到ABC ?的形状,即

可判断出正误. 【详解】

对于A ,由A B >,可得:a b >,利用正弦定理可得:sin sin A B >,正确; 对于B ,在锐角ABC ?中,A ,(0,

)2

B π

∈,

2

A B π

+>

,∴

02

2

A B π

π

>>

->,

sin sin()cos 2

A B B π

∴>-=,因此不等式sin cos A B >恒成立,正确;

对于C ,在ABC ?中,由cos cos a A b B =,利用正弦定理可得:

sin cos sin cos A A B B =, sin 2sin 2A B ∴=, A ,(0,)B π∈,

22A B ∴=或222A B π=-,

A B

∴=或2

A B π

+=, ABC ?∴是等腰三角形或直角三角形,因此是假命题,C 错误.

对于D ,由于060B =,2b ac =,由余弦定理可得:222b ac a c ac ==+-,

可得2

()0a c -=,解得a c =,可得60A C B ===?,故正确.

故选:ABD . 【点睛】

本题考查正弦定理与余弦定理及三角形边角关系,主要涉及的考点是三角形内角的诱导公式的应用,同时考查正弦定理进行边角转化,属于中等题.

14.AB 【解析】 【分析】

根据向量加法化简即可判断真假. 【详解】 因为,正确;

,由向量加法知正确; ,不满足加法运算法则,错误; ,所以错误. 故选:A B. 【点睛】

本题主要考查了向量加法的

解析:AB 【解析】 【分析】

根据向量加法化简即可判断真假. 【详解】 因为0AB

BA AB AB

,正确;

AB BC

AC ,由向量加法知正确;

AB AC BC +=,不满足加法运算法则,错误;

0,AB AB +=,所以00AB +=错误.

故选:A B . 【点睛】

本题主要考查了向量加法的运算,属于容易题.

15.AD 【分析】

根据平面向量基本定理可知,A ?D 是正确的,选项B 不正确;对于选项C ,当两个向量均为时,有无数个,故不正确. 【详解】

由平面向量基本定理可知,A ?D 是正确的. 对于B,由平面向量基本

解析:AD 【分析】

根据平面向量基本定理可知,A ?D 是正确的,选项B 不正确;对于选项C ,当两个向量均为

0时,λ有无数个,故不正确. 【详解】

由平面向量基本定理可知,A ?D 是正确的.

对于B ,由平面向量基本定理可知,如果一个平面的基底确定, 那么任意一个向量在此基底下的实数对是唯一的,所以不正确; 对于C ,当两向量的系数均为零,即12120λλμμ====时, 这样的λ有无数个,所以不正确. 故选:AD . 【点睛】

本题考查平面向量基本定理的辨析,熟记并理解定理内容是关键,解题中要注意特殊值的应用,属于基础题.

二、平面向量及其应用选择题

16.B

由向量相等的坐标表示,列方程组求解即可. 【详解】

解:设P(x ,y ),则MP = (x -3,y +2),而

12MN =1

2(-8,1)=14,2??- ??

?,

所以34122x y -=-???+=??,解得1

32x y =-???=-??

,即31,2P ?

?-- ???,

故选B. 【点睛】

本题考查了平面向量的坐标运算,属基础题. 17.C 【分析】

根据平面向量的定义与性质,逐项判断,即可得到本题答案. 【详解】

因为a b //,所以,a b 的夹角为0或者π,则a 在b 上的投影为||cos ||a a θ=±,故A 不正确;设(1,0),(0,0),(0,2)c b a ===,则有(0)a c b c c ?=?≠,但a b ≠,故B 不正确;

,||||AB DC AB DC =∴=且//AB DC ,又,,,A B C D 是不共线的四点,所以四边形

ABCD 为平行四边形;反之,若四边形ABCD 为平行四边形,则//AB DC 且

||||AB DC =,所以AB DC =,故C 正确;0a b ?>时,,a b 的夹角可能为0,故D 不正

确. 故选:C 【点睛】

本题主要考查平面向量的定义、相关性质以及数量积. 18.B 【分析】

延长PB 至D ,可得出点P 是ADC 的重心,再根据重心的性质可得出结论。 【详解】

延长PB 至D ,使得2PD PB =,于是有0PA PD PC ++=,即点P 是ADC 的重心,依据重心的性质,有PAD PAC PDC S S S ==△△△.由B 是PD 的中点,得

::1:2:1PAB PAC PBC S S S =△△△.

故选:B 【点睛】

本题考查了三角形重心和向量的关系,主要是用向量表达重心的数量关系。另外本题是奔驰定理直接推导得出。 19.C

由向量的线性运算可知2OB OC OA AB AC +-=+,所以()

0BC AB AC ?+=,作出图形,结合向量加法的平行四边形法则,可得BC AD ⊥,进而可得AB AC =,即可得出答案. 【详解】

由题意,()()

2OB OC OA OB OA OC OA AB AC +-=-+-=+, 所以()

0BC AB AC ?+=,

取BC 的中点D ,连结AD ,并延长AD 到E ,使得AD DE =,连结BE ,EC ,则四边形ABEC 为平行四边形,所以AB AC AE +=. 所以0BC AE ?=,即BC AD ⊥, 故AB AC =,ABC 是等腰三角形. 故选:C.

【点睛】

本题考查三角形形状的判断,考查平面向量的性质,考查学生的计算求解能力,属于基础题. 20.B 【分析】

由大边对大角可判断①的正误,用三角函数的知识将式子进行化简变形可判断②③的正误,用正弦定理结合三角形有两解可判断④的正误. 【详解】

①由正弦定理及大边对大角可知①正确; ②可得A B =或2

A B π

+=

,ABC 是等腰三角形或直角三角形,所以②错误;

③由正弦定理可得sin cos sin cos sin A B B A C -=,

相关主题