搜档网
当前位置:搜档网 › 中考数学二轮 锐角三角函数 专项培优及详细答案

中考数学二轮 锐角三角函数 专项培优及详细答案

中考数学二轮 锐角三角函数 专项培优及详细答案
中考数学二轮 锐角三角函数 专项培优及详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题)

1.如图,△ABC 内接于⊙O ,2,BC AB AC ==,点D 为AC 上的动点,且10

cos B =. (1)求AB 的长度;

(2)在点D 运动的过程中,弦AD 的延长线交BC 的延长线于点E ,问AD?AE 的值是否变化?若不变,请求出AD?AE 的值;若变化,请说明理由.

(3)在点D 的运动过程中,过A 点作AH ⊥BD ,求证:BH CD DH =+.

【答案】(1) 10AB ;(2) 10AD AE ?=;(3)证明见解析.

【解析】

【分析】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,由垂径定理可得BF=1,再根据已知结合RtΔAFB 即可求得AB 长;

(2)连接DG ,则可得AG 为⊙O 的直径,继而可证明△DAG ∽△FAE ,根据相似三角形的性质可得AD?AE=AF?AG ,连接BG ,求得AF=3,FG=

1

3

,继而即可求得AD?AE 的值; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,通过证明△ADC ≌△ADN ,可得AC=AN ,继而可得AB=AN ,再根据AH ⊥BN ,即可证得BH=HD+CD. 【详解】(1)过A 作AF ⊥BC ,垂足为F ,交⊙O 于G ,

∵AB=AC ,AF ⊥BC ,∴BF=CF=1

2BC=1, 在RtΔAFB 中,BF=1,∴AB=10

cos 10

BF B == (2)连接DG ,

∵AF ⊥BC ,BF=CF ,∴AG 为⊙O 的直径,∴∠ADG=∠AFE=90°, 又∵∠DAG=∠FAE ,∴△DAG ∽△FAE , ∴AD :AF=AG :AE , ∴AD?AE=AF?AG ,

连接BG ,则∠ABG=90°,∵BF ⊥AG ,∴BF 2=AF?FG , ∵22AB BF -=3,

∴FG=

13

∴AD?AE=AF?AG=AF?(AF+FG )=3×

10

3

=10; (3)连接CD ,延长BD 至点N ,使DN=CD ,连接AN ,

∵∠ADB=∠ACB=∠ABC ,∠ADC+∠ABC=180°,∠ADN+∠ADB=180°, ∴∠ADC=∠ADN , ∵AD=AD ,CD=ND , ∴△ADC ≌△ADN , ∴AC=AN ,

∵AB=AC ,∴AB=AN , ∵AH ⊥BN , ∴BH=HN=HD+CD.

【点睛】本题考查了垂径定理、三角函数、相似三角形的判定与性质、全等三角形的判定与性质等,综合性较强,正确添加辅助线是解题的关键.

2.如图(9)所示(左图为实景侧视图,右图为安装示意图),在屋顶的斜坡面上安装太阳能热水器:先安装支架AB 和CD (均与水平面垂直),再将集热板安装在AD 上.为使集热板吸热率更高,公司规定:AD 与水平面夹角为1θ,且在水平线上的射影AF 为

1.4m .现已测量出屋顶斜面与水平面夹角为2θ,并已知1tan 1.082θ=,

2tan 0.412θ=.如果安装工人确定支架AB 高为25cm ,求支架CD 的高(结果精确到

1cm )?

【答案】

【解析】

过A作AF CD

于F,根据锐角三角函数的定义用θ1、θ2表示出DF、EF的值,又可证四边形ABCE为平行四边形,故有EC=AB=25cm,再再根据DC=DE+EC进行解答即可.3.如图,平台AB高为12m,在B处测得楼房CD顶部点D的仰角为45°,底部点C的俯角为30°,求楼房CD的高度(3=1.7).

【答案】32.4米.

【解析】

试题分析:首先分析图形,根据题意构造直角三角形.本题涉及多个直角三角形,应利用其公共边构造关系式求解.

试题解析:如图,过点B作BE⊥CD于点E,

根据题意,∠DBE=45°,∠CBE=30°.

∵AB⊥AC,CD⊥AC,

∴四边形ABEC为矩形,

∴CE=AB=12m,

在Rt△CBE中,cot∠CBE=BE CE

∴33在Rt△BDE中,由∠DBE=45°,得3

∴CD=CE+DE=123)≈32.4.

答:楼房CD的高度约为32.4m.

考点:解直角三角形的应用——仰角俯角问题.

4.已知Rt△ABC中,AB是⊙O的弦,斜边AC交⊙O于点D,且AD=DC,延长CB交⊙O 于点E.

(1)图1的A、B、C、D、E五个点中,是否存在某两点间的距离等于线段CE的长?请说明理由;

(2)如图2,过点E作⊙O的切线,交AC的延长线于点F.

①若CF=CD时,求sin∠CAB的值;

②若CF=aCD(a>0)时,试猜想sin∠CAB的值.(用含a的代数式表示,直接写出结果)

【答案】(1)AE=CE;(2)①;②.

【解析】

试题分析:(1)连接AE、DE,如图1,根据圆周角定理可得∠ADE=∠ABE=90°,由于

AD=DC,根据垂直平分线的性质可得AE=CE;

(2)连接AE、ED,如图2,由∠ABE=90°可得AE是⊙O的直径,根据切线的性质可得

∠AEF=90°,从而可证到△ADE∽△AEF,然后运用相似三角形的性质可得=AD?AF.①当CF=CD时,可得,从而有EC=AE=CD,在Rt△DEC中运用三角函数可得

sin∠CED=,根据圆周角定理可得∠CAB=∠DEC,即可求出sin∠CAB的值;②当CF=aCD(a>0)时,同①即可解决问题.

试题解析:(1)AE=CE.理由:

连接AE、DE,如图1,∵∠ABC=90°,∴∠ABE=90,∴∠ADE=∠ABE=90°,∵AD=DC,∴AE=CE;

(2)连接AE、ED,如图2,∵∠ABE=90°,∴AE是⊙O的直径,∵EF是⊙OO的切线,

∴∠AEF=90°,∴∠ADE=∠AEF=90°,又∵∠DAE=∠EAF,∴△ADE∽△AEF,∴,∴=AD?AF.

①当CF=CD时,AD=DC=CF,AF=3DC,∴=DC?3DC=,∴AE=DC,∵EC=AE,∴EC=DC,∴sin∠CAB=sin∠CED===;

②当CF=aCD(a>0)时,sin∠CAB=.

∵CF=aCD,AD=DC,∴AF=AD+DC+CF=(a+2)CD,∴=D C?(a+2)DC=(a+2),∴AE=DC,∵EC=AE,∴EC=DC,

∴sin∠CAB=sin∠CED==.

考点:1.圆的综合题;2.探究型;3.存在型.

5.问题背景:

如图(a),点A、B在直线l的同侧,要在直线l上找一点C,使AC与BC的距离之和最小,我们可以作出点B关于l的对称点B′,连接A B′与直线l交于点C,则点C即为所求.

(1)实践运用:

如图(b),已知,⊙O的直径CD为4,点A 在⊙O 上,∠ACD=30°,B 为弧AD 的中点,P为直径CD上一动点,则BP+AP的最小值为.

(2)知识拓展:

如图(c),在Rt△ABC中,AB=10,∠BAC=45°,∠BAC的平分线交BC于点D,E、F分别是线段AD和AB上的动点,求BE+EF的最小值,并写出解答过程.

【答案】解:(1)22.

(2)如图,在斜边AC上截取AB′=AB,连接BB′.

∵AD平分∠BAC,∴点B与点B′关于直线AD对称.

过点B′作B′F⊥AB,垂足为F,交AD于E,连接BE.

则线段B′F的长即为所求 (点到直线的距离最短) .

在Rt△AFB/中,∵∠BAC=450, AB/="AB=" 10,

∴.

∴BE+EF的最小值为

【解析】

试题分析:(1)找点A或点B关于CD的对称点,再连接其中一点的对称点和另一点,和MN的交点P就是所求作的位置,根据题意先求出∠C′AE,再根据勾股定理求出AE,即可得出PA+PB的最小值:

如图作点B关于CD的对称点E,连接AE交CD于点P,此时PA+PB最小,且等于A.作直径AC′,连接C′E,

根据垂径定理得弧BD=弧DE.

∵∠ACD=30°,∴∠AOD=60°,∠DOE=30°.∴∠AOE=90°. ∴∠C′AE=45°.

又AC 为圆的直径,∴∠AEC′=90°. ∴∠C′=∠C′AE=45°.∴C′E=AE=AC′=22.

∴AP+BP 的最小值是22.

(2)首先在斜边AC 上截取AB′=AB ,连接BB′,再过点B′作B′F ⊥AB ,垂足为F ,交AD 于E ,连接BE ,则线段B′F 的长即为所求.

6.如图,在平面直角坐标系中,点O 为坐标原点,直线4y kx =+交x 轴、y 轴分别于点

A 、点

B ,且ABO ?的面积为8. (1)求k 的值;

(2)如图,点P 是第一象限直线AB 上的一个动点,连接PO ,将线段OP 绕点O 顺时针旋转90°至线段OC ,设点P 的横坐标为t ,点C 的横坐标为m ,求m 与t 之间的函数关系式(不要求写出自变量t 的取值范围);

(3)在(2)的条件下,过点B 作直线BM OP ⊥,交x 轴于点M ,垂足为点N ,点K 在线段MB 的延长线上,连接PK ,且0PK KB P +=,2PMB KPB ∠=∠,连接MC ,求四边形BOCM 的面积.

【答案】(1)1k =;(2)4m t =+;(3)32BOCM

S =.

【解析】

【分析】

(1)先求出A 的坐标,然后利用待定系数法求出k 的值;

(2) 过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,证

POD OCE ???可得OE PD =,进一步得出m 与t 的函数关系式;

(3)过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,先证出

QTB PTO ???;再证出KPB BPN ∠=∠;设KPB x ∠=?,通过计算证出PO PM =;

再过点P 作PD x ⊥轴,垂足为点D ,根据tan tan OPD BMO ∠=∠得到

OD BO

PD MO

=,列式可求得t=4;所以OM=8进一步得出四边形BOCM 是平行四边形,最后可得其面积为32. 【详解】

解:(1)把0x =代入4y kx =+,4y =, ∴4BO =, 又∵4ABO S ?=,

1

42

AO BO ?=,4AO =, ∴(4,0)A -,

把4x =-,0y =代入4y kx =+, 得044k =-+, 解得1k =. 故答案为1;

(2)解:把x t =代入4y x =+,4y t =+, ∴(,4)P t t +

如图,过点P 作PD x ⊥轴,垂足为D ,过点C 作CE x ⊥轴,垂足为E ,

∴90PDO CEO ∠=∠=?, ∴90POD OPD ∠+∠=?,

∵线段OP 绕点O 顺时针旋转90°至线段OC , ∴90POC ∠=?,OP OC =, ∴90POD EOC ∠+∠=?, ∴OPD EOC ∠=∠,

∴POD OCE ???, ∴OE PD =,

4m t =+.

故答案为4m t =+.

(3)解:如图,过点O 作直线OT AB ⊥,交直线BM 于点Q ,垂足为点T ,连接QP ,

由(1)知,4AO BO ==,90BOA ∠=?, ∴ABO ?为等腰直角三角形,

∴45ABO BAO ∠=∠=?,9045BOT ABO ABO ∠=?-∠=?=∠, ∴BT TO =, ∵90BTO ∠=?, ∴90TPO TOP ∠+∠=?, ∵PO BM ⊥, ∴90BNO ∠=?, ∴BQT TPO ∠=∠, ∴QTB PTO ???, ∴QT TP =,PO BQ =, ∴PQT QPT ∠=∠, ∵PO PK KB =+,

∴QB PK KB =+,QK KP =, ∴KQP KPQ ∠=∠,

∴PQT KQP QPT KPQ ∠-∠=∠-∠,TQB TPK ∠=∠, ∴KPB BPN ∠=∠, 设KPB x ∠=?, ∴BPN x ∠=?, ∵2PMB KPB ∠=∠, ∴2PMB x ∠=?,

45POM PAO APO x ∠=∠+∠=?+?,9045NMO POM x ∠=?-∠=?-?,

∴45PMO PMB NMO x POM ∠=∠+∠=?+?=∠, ∴PO PM =,

过点P 作PD x ⊥轴,垂足为点D , ∴22OM OD t ==,

9045OPD POD x BMO ∠=?-∠=?-?=∠, tan tan OPD BMO ∠=∠, OD BO PD MO =,

4

42t t t =+, 14t =,22t =-(舍)

∴8OM =,由(2)知,48m t OM =+==, ∴CM y 轴, ∵90PNM POC ∠=∠=?, ∴BM OC ,

∴四边形BOCM 是平行四边形,

∴4832BOCM

S

BO OM =?=?=.

故答案为32. 【点睛】

本题考查了一次函数和几何的综合题,全等三角形的判定和性质,解直角三角形,添加适当的辅助线构造全等三角形是本题的关键.

7.

如图,△ABC 中,AC =BC =10,cosC =

3

5

,点P 是AC 边上一动点(不与点A 、C 重合),以PA 长为半径的⊙P 与边AB 的另一个交点为D ,过点D 作DE ⊥CB 于点E . (1)当⊙P 与边BC 相切时,求⊙P 的半径.

(2)连接BP 交DE 于点F ,设AP 的长为x ,PF 的长为y ,求y 关于x 的函数解析式,并直接写出x 的取值范围.

(3)在(2)的条件下,当以PE 长为直径的⊙Q 与⊙P 相交于AC 边上的点G 时,求相交所得的公共弦的长.

【答案】(1)

40

9

R=;(2)2

5

880

320

x

y x x

x

=-+

+

;(3)50105

-.

【解析】【分析】

(1)设⊙P与边BC相切的切点为H,圆的半径为R,连接HP,则HP⊥BC,cosC=3

5

,则

sinC=4

5

,sinC=

HP

CP

10

R

R

-

4

5

,即可求解;

(2)首先证明PD∥BE,则EB BF

PD PF

=,即:20

2

4

588

x y

x

x

x

y

-+

--

=,即可求解;

(3)证明四边形PDBE为平行四边形,则AG=EP=BD,即:AB=DB+AD=AG+AD=45,即可求解.

【详解】

(1)设⊙P与边BC相切的切点为H,圆的半径为R,

连接HP,则HP⊥BC,cosC=3

5

,则sinC=

4

5

sinC=HP

CP

10

R

R

-

4

5

,解得:R=

40

9

(2)在△ABC中,AC=BC=10,cosC=3

5

设AP=PD=x,∠A=∠ABC=β,过点B作BH⊥AC,

则BH =ACsinC =8,

同理可得:CH =6,HA =4,AB =45,则:tan ∠CAB =2, BP =228+(4)x -=2880x x -+,

DA =

25x ,则BD =45﹣25

x , 如下图所示,PA =PD ,∴∠PAD =∠CAB =∠CBA =β,

tanβ=2,则cos β5

,sinβ5

, EB =BDcosβ=(525

x )5=4﹣25

x ,

∴PD ∥BE ,

∴EB BF

PD PF

=,即:202

4588x y x x

x -+--=,

整理得:y 25x

x 8x 803x 20

-++

(3)以EP 为直径作圆Q 如下图所示,

两个圆交于点G,则PG=PQ,即两个圆的半径相等,则两圆另外一个交点为D,GD为相交所得的公共弦,

∵点Q是弧GD的中点,

∴DG⊥EP,

∵AG是圆P的直径,

∴∠GDA=90°,

∴EP∥BD,

由(2)知,PD∥BC,∴四边形PDBE为平行四边形,

∴AG=EP=BD,

∴AB=DB+AD=AG+AD=5

设圆的半径为r,在△ADG中,

AD=2rcosβ

5DG

5

AG=2r,

5=52r

51

则:DG

5

50﹣5

相交所得的公共弦的长为50﹣5

【点睛】

本题考查的是圆知识的综合运用,涉及到解直角三角形、勾股定理等知识,其中(3),要关键是根据题意正确画图,此题用大量的解直角三角形的内容,综合难度很大.

8.如图,在平面直角坐标系xOy中,抛物线y=﹣1

4

x2+bx+c与直线y=

1

2

x﹣3分别交x

轴、y轴上的B、C两点,设该抛物线与x轴的另一个交点为点A,顶点为点D,连接CD 交x轴于点E.

(1)求该抛物线的表达式及点D的坐标;

(2)求∠DCB的正切值;

(3)如果点F在y轴上,且∠FBC=∠DBA+∠DCB,求点F的坐标.

【答案】(1)21y 234x x =-+-,D (4,1);(2)1

3

;(3)点F 坐标为(0,1)或(0,﹣18). 【解析】 【分析】 (1)y =

1

2

x ﹣3,令y =0,则x =6,令x =0,则y =﹣3,求出点B 、C 的坐标,将点B 、C 坐标代入抛物线y =﹣

14

x 2

+bx+c ,即可求解; (2)求出则点E (3,0),EH =EB?sin ∠OBC =5,CE =32,则CH =5

,即可求

解;

(3)分点F 在y 轴负半轴和在y 轴正半轴两种情况,分别求解即可. 【详解】 (1)y =

1

2

x ﹣3,令y =0,则x =6,令x =0,则y =﹣3, 则点B 、C 的坐标分别为(6,0)、(0,﹣3),则c =﹣3, 将点B 坐标代入抛物线y =﹣14x 2+bx ﹣3得:0=﹣1

4

×36+6b ﹣3,解得:b =2, 故抛物线的表达式为:y =﹣

14

x 2

+2x ﹣3,令y =0,则x =6或2, 即点A (2,0),则点D (4,1); (2)过点E 作EH ⊥BC 交于点H ,

C 、

D 的坐标分别为:(0,﹣3)、(4,1), 直线CD 的表达式为:y =x ﹣3,则点

E (3,0), tan ∠OBC =

31

62

OC OB ==,则sin ∠OBC 5,

则EH =EB?sin ∠OBC 5

CE=32,则CH=

5

则tan∠DCB=

1

3 EH

CH

=;

(3)点A、B、C、D、E的坐标分别为(2,0)、(6,0)、(0,﹣3)、(4,1)、(3,0),

则BC=35,

∵OE=OC,∴∠AEC=45°,

tan∠DBE=

1

64

-

1

2

故:∠DBE=∠OBC,

则∠FBC=∠DBA+∠DCB=∠AEC=45°,

①当点F在y轴负半轴时,

过点F作FG⊥BG交BC的延长线与点G,

则∠GFC=∠OBC=α,

设:GF=2m,则CG=GFtanα=m,

∵∠CBF=45°,∴BG=GF,

即:5=2m,解得:m=5

CF22

GF CG

+5=15,

故点F(0,﹣18);

②当点F在y轴正半轴时,

同理可得:点F(0,1);

故:点F坐标为(0,1)或(0,﹣18).

【点睛】

本题考查的是二次函数综合运用,涉及到一次函数、解直角三角形等相关知识,其中

(3),确定∠FBC=∠DBA+∠DCB=∠AEC=45°,是本题的突破口.

9.如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,3≈1.7)

【答案】潜艇C离开海平面的下潜深度约为308米

【解析】试题分析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,用锐角三角函数分别在Rt△ACD中表示出CD和在Rt△BCD中表示出BD,利用

BD=AD+AB二者之间的关系列出方程求解.

试题解析:过点C作CD⊥AB,交BA的延长线于点D,则AD即为潜艇C的下潜深度,根据题意得:∠ACD=30°,∠BCD=68°,

设AD=x,则BD=BA+AD=1000+x,

在Rt△ACD中,CD=

tan AD ACD

=

tan30

x

= 3x

在Rt△BCD中,BD=CD?tan68°,

∴325+x=3x?tan68°

解得:x≈100米,

∴潜艇C离开海平面的下潜深度为100米.

点睛:本题考查了解直角三角形的应用,解题的关键是作出辅助线,从题目中找出直角三角形并选择合适的边角关系求解.

视频

10.如图,AB是圆O的直径,O为圆心,AD、BD是半圆的弦,且∠PDA=∠PBD.延长PD 交圆的切线BE于点E

(1)判断直线PD是否为⊙O的切线,并说明理由;

(2)如果∠BED=60°,PD=3,求PA的长;

(3)将线段PD以直线AD为对称轴作对称线段DF,点F正好在圆O上,如图2,求证:四边形DFBE为菱形.

【答案】(1)证明见解析;(2)1;(3)证明见解析.

【解析】

【分析】

(1)连接OD,由AB是圆O的直径可得∠ADB=90°,进而求得∠ADO+∠PDA=90°,即可得出直线PD为⊙O的切线;

(2)根据BE是⊙O的切线,则∠EBA=90°,即可求得∠P=30°,再由PD为⊙O的切线,得∠PDO=90°,根据三角函数的定义求得OD,由勾股定理得OP,即可得出PA;

(3)根据题意可证得∠ADF=∠PDA=∠PBD=∠ABF,由AB是圆O的直径,得∠ADB=90°,设∠PBD=x°,则可表示出∠DAF=∠PAD=90°+x°,∠DBF=2x°,由圆内接四边形的性质得出x 的值,可得出△BDE是等边三角形.进而证出四边形DFBE为菱形.

【详解】

(1)直线PD为⊙O的切线,

理由如下:

如图1,连接OD,

∵AB是圆O的直径,

∴∠ADB=90°,

∴∠ADO+∠BDO=90°,

又∵DO=BO,

∴∠BDO=∠PBD,

∵∠PDA=∠PBD,

∴∠BDO=∠PDA,

∴∠ADO+∠PDA=90°,即PD⊥OD,∵点D在⊙O上,

∴直线PD为⊙O的切线;

(2)∵BE是⊙O的切线,

∴∠EBA=90°,

∵∠BED=60°,

∴∠P=30°,

∵PD为⊙O的切线,

∴∠PDO=90°,

在Rt△PDO中,∠P=30°,

∴0 tan30

OD

PD

=,解得OD=1,

∴PO,

∴PA=PO﹣AO=2﹣1=1;

(3)如图2,

依题意得:∠ADF=∠PDA,∠PAD=∠DAF,

∵∠PDA=∠PBD∠ADF=∠ABF,

∴∠ADF=∠PDA=∠PBD=∠ABF,

∵AB是圆O的直径,

∴∠ADB=90°,

设∠PBD=x°,则∠DAF=∠PAD=90°+x°,∠DBF=2x°,

∵四边形AFBD内接于⊙O,

∴∠DAF+∠DBF=180°,

即90°+x+2x=180°,解得x=30°,

∴∠ADF=∠PDA=∠PBD=∠ABF=30°,

∵BE、ED是⊙O的切线,

∴DE=BE,∠EBA=90°,

∴∠DBE=60°,∴△BDE是等边三角形,

∴BD=DE=BE,

又∵∠FDB=∠ADB﹣∠ADF=90°﹣30°=60°∠DBF=2x°=60°,∴△BDF是等边三角形,

∴BD=DF=BF,

∴DE=BE=DF=BF,

∴四边形DFBE为菱形.

【点睛】

本题是一道综合性的题目,考查了切线的判定和性质,圆周角定理和菱形的性质,是中档题,难度较大.

培优锐角三角函数辅导专题训练含详细答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

培优锐角三角函数之欧阳光明创编

锐角三角函数 欧阳光明(2021.03.07) 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>cos α;(3)若 cos α>21,则α<60°;(4)ααsin 1)1(sin 2-=-。正确的有()A.(1)(2)(3)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3) 变式: 1、下列各式中,不正确的是() A.160cos 60sin 0202=+ B .130cos 30sin 00=+ C.0055cos 35sin = D.tan45°>sin45° 2、已知∠A 满足等式A A cos sin 12=-,那么∠A 的取值范围是() A.0°<∠A ≤90° B.90°<∠A<180° C.0°≤∠A<90° D.0°≤∠A ≤90° 3.α是锐角,若sin α=cos150,则α= 4。若sin53018\=0.8018,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知 sin α·cos α=81,且45°<α<90°,则COS α-sin α的值为() A.23B.2 3- C.43D.23± 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确的是()

A.sinA+cosB=sinC B.sinA+sinB=sinC C.2cos 2sin C B A += D.2tan 2tan C B A += 2、已知sin α+cos α=m,sin α×cos α=n ,则m,n 的关系式() A.m=n B.m=2n+1 C.122+=n m D.n m 212 -= 题型:求三角函数值 例:如图,菱形的边长为5,AC 、BD 相交于点O , AC=6,若a ABD =∠,则下列式子正确的是() A.sin α=54 B.cos α=53 C.tan α=34 D.cot α=34 变式:1、设0°<α<45°,sin αcos α=167 3,则sin α= 2、已知sin α-cos α=5 1,0°<α<180°,则tan α的值是( )43B.43- C.34D.34- 3、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。 4、如图,在矩形ABCD 中,E 是BC 边上的点,AE BC =,DF AE ⊥,垂足为F ,连接DE 。 (1)求证:ABE △DFA ≌△;(2)如果10AD AB =,=6,求sin EDF ∠的值。 题型:三角函数值的计算(1) 例:计算:000020246tan 45tan 44tan 42sin 48sin ??-+= 变式:1、计算: 2002020010)60cot 4()60tan 25.0(?= 2、计算:0 000002000027tan 63tan 60cot 360sin 60cot 45cos )45sin 30)(cos 45cos 60(sin -++- 题型:三角函数值的计算(2)

培优锐角三角函数

锐角三角函数 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>cos α;(3)若cos α> 2 1 ,则α<60°;(4)ααsin 1)1(sin 2-=-。正确的有( )A.(1) (2)(3)(4) B.(2)(3)(4) C.(1)(3)(4) D.(1)(2)(3) 变式: 1、下列各式中,不正确的是( ) A.160cos 60sin 0 2 2 =+ B .130cos 30sin 0 =+ C.0 55cos 35sin = °>sin45° 2、已知∠A 满足等式A A cos sin 12=-,那么∠A 的取值范围是( ) °<∠A ≤90° °<∠A<180° °≤∠A<90° °≤∠A ≤90° 3.α是锐角,若sin α=cos150,则α= 4。若sin53018\=,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知sin α·cos α= 8 1 ,且45°<α<90°,则COS α-sin α的值为( ) A. 23 B.23- C.4 3 D.23± 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确的是( ) A.sinA+cosB=sinC +sinB=sinC C.2cos 2sin C B A += D.2 tan 2tan C B A += 2、已知sin α+cos α=m,sin α×cos α=n ,则m,n 的关系式( ) A.m=n =2n+1 C.122 +=n m D.n m 212 -= 题型:求三角函数值 例:如图,菱形的边长为5,AC 、BD 相交于点O ,AC=6,若a ABD =∠,则 下列式子正确的是( ) A.sin α= 54 α=53 α=34 α=3 4 变式:1、设0°<α<45°,sin αcos α= 16 7 3,则sin α= 2、已知sin α-cos α= 51,0°<α<180°,则tan α的值是( )43 B.43- C.34 D.3 4- 3、如图,在正方形ABCD 中,M 为AD 的中点,E 为AB 上一点,且BE=3AE ,求sin ∠ECM 。

人教【数学】数学锐角三角函数的专项培优易错试卷练习题附答案

一、锐角三角函数真题与模拟题分类汇编(难题易错题) 1.已知:如图,在四边形 ABCD 中, AB ∥CD , ∠ACB =90°, AB=10cm , BC=8cm , OD 垂直平分 A C .点 P 从点 B 出发,沿 BA 方向匀速运动,速度为 1cm/s ;同时,点 Q 从点 D 出发,沿 DC 方向匀速运动,速度为 1cm/s ;当一个点停止运动,另一个点也停止运动.过点 P 作 PE ⊥AB ,交 BC 于点 E ,过点 Q 作 QF ∥AC ,分别交 AD , OD 于点 F , G .连接 OP ,EG .设运动时间为 t ( s )(0<t <5) ,解答下列问题: (1)当 t 为何值时,点 E 在 BAC 的平分线上? (2)设四边形 PEGO 的面积为 S(cm 2) ,求 S 与 t 的函数关系式; (3)在运动过程中,是否存在某一时刻 t ,使四边形 PEGO 的面积最大?若存在,求出t 的值;若不存在,请说明理由; (4)连接 OE , OQ ,在运动过程中,是否存在某一时刻 t ,使 OE ⊥OQ ?若存在,求出t 的值;若不存在,请说明理由. 【答案】(1)4s t =;(2)PEGO S 四边形2 31568 8 t t =-+ + ,(05)t <<;(3)5 2t =时, PEGO S 四边形取得最大值;(4)16 5 t = 时,OE OQ ⊥. 【解析】 【分析】 (1)当点E 在∠BAC 的平分线上时,因为EP ⊥AB ,EC ⊥AC ,可得PE=EC ,由此构建方程即可解决问题. (2)根据S 四边形OPEG =S △OEG +S △OPE =S △OEG +(S △OPC +S △PCE -S △OEC )构建函数关系式即可. (3)利用二次函数的性质解决问题即可. (4)证明∠EOC=∠QOG ,可得tan ∠EOC=tan ∠QOG ,推出EC GQ OC OG =,由此构建方程即可解决问题. 【详解】 (1)在Rt △ABC 中,∵∠ACB=90°,AB=10cm ,BC=8cm , ∴22108-=6(cm ), ∵OD 垂直平分线段AC , ∴OC=OA=3(cm ),∠DOC=90°, ∵CD ∥AB ,

锐角三角函数(培优)

知识要点 1、 锐角三角函数定义? 斜边的对边αα∠= sin 斜边的邻边αα∠=cos 的邻边的对边 ααα∠∠= t a n 的对边的邻边ααα∠∠=cot 2、 特殊角的三角函数值300 、450 、600 、的记忆规律: 3、 角度变化与锐角三角函数的关系 当锐角α在00∽900 之间变化时,正弦(切)值随着角度的增大而增大;余弦(切)值随着角度的增大而减少。 4、 同角三角函数之间有哪些关系式 平方关系:sin 2A +cos 2 A =1; 商数关系:sinA/cosA =tanA ; 倒数关系:tanA ·tan B =1; 5、 互为余角的三角函数有哪些关系式? Sin (900-A )=cosA ; cos (900-A )=sin A ; tan (900 -A )=ctan A ; 一、选择题 1.在Rt △ABC 中,∠C =900 ,∠A =∠B ,则sinA 的值是( ).A . 2 1 B .22 C .23 D .1 2.在△ABC 中,∠A =105°,∠B =45°,tanC 的值是( ). A . 2 1 B .33 C .1 D .3 3.在Rt △ABC 中,如果各边的长度都缩小至原来的 5 1 ,那么锐角A 的各个三角函数值( ). A .都缩小 5 1 B .都不变 C .都扩大5倍 D .仅tan A 不变 4.如图,菱形ABCD 对角线AC =6,BD =8,∠ABD =α.则下列结论正确的是( ). A .sin α= 54 B .cos α= 53 C .tan α= 34 D .tan α= 4 3 5.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin = A B .3 1 cos =B C .42tan =A D .tan 4B = 6.已知ΔABC 中,∠C =90?,CD 是AB 边上的高,则CD :CB 等于( ). A .sinA B .cosA C .tanA D . 1 tan A 7.等腰三角形底边长为10㎝,周长为36cm ,那么底角的余弦等于( ).A. 513 B. 1213 C.10 13 D.512 8.如图,在△EFG 中,∠EFG =90°,FH ⊥EG ,下面等式中,错误..的是( ). A. sin EF G EG = B. sin EH G EF = C. sin GH G FG = D. sin FH G FG = 9.身高相同的三个小朋友甲、乙、丙风筝,他们放出的线长分别为300米、250米、200米,线与地面所成的角为30°、45°、60°(风筝线是拉直的),则三人所放的风筝( ).

锐角三角函数培优题目

锐角三角函数培优题目 三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质: 1.单调性; 2.互余三角函数间的关系; 3.同角三角函数间的关系. 平方关系:sin 2α+cos 2α=1; 商数关系:tgα=ααcos sin ,ctgα=α αsin cos ; 倒数关系:tgαctgα=1. 【例题求解】 【例1】 已知在△ABC 中,∠A 、∠B 是锐角,且sinA = 135,tanB=2,AB=29cm , 则S △ABC = . 思路点拨 过C 作CD ⊥AB 于D ,这样由三角函数定义得到线段的比,sinA= 135=AC CD ,tanB=2=BD CD ,设CD=5m ,AC =13m ,CD =2n ,BD =n ,解题的关键是求出m 、n 的值. 注:设△ABC 中,a 、b 、c 为∠A 、∠B 、∠C 的对边,R 为△ABC 外接圆的半径,不 难证明:与锐角三角函数相关的几个重要结论: (1) S △ABC =C ab B ac A bc sin 21sin 21sin 21== ; (2)R C c B b A a 2sin sin sin ===. 【例2】 在△ABC 中.∠ACB =90°,∠ABC =15°,BC=1,则AC=( ) A .32+ B .32- C .0.3 D .23- 思路点拨 由15°构造特殊角,用特殊角的三角函数促使边角转化. 注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形. (2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换.

锐角三角函数-基础+培优

A B C D α A (第7题) 1l 3l 2l 4l A D E B 图 C 一、锐角三角函数定义:sin αα∠= 的() ( ) cos αα∠=的()() tan α= () () 例1.在△ABC 中,∠C =90°,sinA =3 2 ,求cosA 、tanB . 例2.△ABC 中,已知∠ACB =90°,CD ⊥AB 于D ,AC =63,BD =3. (1)求cosA (2)求BC 的长及△ABC 的面积. 例3.如图,在△ABC 中,∠C =90°,∠B =30°,AD 是∠BAC 的角平分线,与BC 相交于点D ,且AB =43,求AD 的长. 例4.如图1,已知AD 是等腰△ABC 底边上的高,且tan ∠B=43 ,AC 上有一点E ,满足AE:CE=2:3则tan ∠ADE 的值是 练习.1.在7,35,90==∠=AB B 中,则BC 的长为( ) (A ) 35sin 7 (B ) 35 cos 7(C ) 35cos 7 (D ). 35tan 7 2.在Rt △ABC 中,斜边AB 是直角边AC 的3倍,下列式子正确的是( ). A .423sin = A B .3 1 cos =B C .42tan =A D .2tan B = 3.已知ΔABC 中,∠C =90 ,CD 是AB 边上的高,则CD :CB 等于( ). A .sinA B .cosA C .tanA D . 1 tan A 4. Rt△ABC 中,∠C =90°,a 、b 、c 分别是∠A 、∠B 、∠C 的对边,那么c 等于( ) A.cos sin a A b B + B.sin sin a A b B + C sin sin a b A B +. D.cos sin a b A B + 5. 如图,在Rt△ABC 中,∠ACB=90°,CD⊥AB,垂足为D .若AC=5,BC=2,则sin∠ACD 的值为 6. 在Rt △ABC 中,∠C =90°,把∠A 的邻边与对边的比叫做∠A 的余切,记作cot A = a b .则下列关系式中不成立...的是( )(A )tan A ·cot A =1 (B )sin A =tan A ·cos A (C )cos A =cot A ·sin A (D )tan 2A +cot 2A =1 7.如图,已知直线1l ∥2l ∥3l ∥4l ,相邻两条平行直线间的距离都是1,如果正方形ABCD 的四个顶点分别在四条直线上,则sin α= . 8.如图,已知矩形ABCD 的两边AB 与BC 的比为4:5,E 是AB 上的一点,沿CE 将ΔEBC 向上翻折,若B 点恰好落在边AD 上的F 点,则tan ∠DCF 等于 C B A E F D 第8题 C M B A 第7题 D B C A C B 第2题

中考数学锐角三角函数(大题培优 易错 难题)附详细答案

中考数学锐角三角函数(大题培优易错难题)附详细答案 一、锐角三角函数 1.图1是一种折叠式晾衣架.晾衣时,该晾衣架左右晾衣臂张开后示意图如图2所示,两支脚OC=OD=10分米,展开角∠COD=60°,晾衣臂OA=OB=10分米,晾衣臂支架HG =FE=6分米,且HO=FO=4分米.当∠AOC=90°时,点A离地面的距离AM为_______分米;当OB从水平状态旋转到OB′(在CO延长线上)时,点E绕点F随之旋转至OB′上的点E′处,则B′E′﹣BE为_________分米. 【答案】553 【解析】 【分析】 如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J.解直角三角形求出MQ,AQ即可求出AM,再分别求出BE,B′E′即可. 【详解】 解:如图,作OP⊥CD于P,OQ⊥AM于Q,FK⊥OB于K,FJ⊥OC于J. ∵AM⊥CD, ∴∠QMP=∠MPO=∠OQM=90°, ∴四边形OQMP是矩形, ∴QM=OP, ∵OC=OD=10,∠COD=60°, ∴△COD是等边三角形, ∵OP⊥CD, ∠COD=30°, ∴∠COP=1 2 ∴QM=OP=OC?cos30°=3 ∵∠AOC=∠QOP=90°, ∴∠AOQ=∠COP=30°, ∴AQ=1 OA=5(分米), 2 ∴AM=AQ+MQ=5+3 ∵OB∥CD, ∴∠BOD=∠ODC=60°

在Rt△OFK中,KO=OF?cos60°=2(分米),FK=OF?sin60°=23(分米), 在Rt△PKE中,EK=22 -=26(分米), EF FK ∴BE=10?2?26=(8?26)(分米), 在Rt△OFJ中,OJ=OF?cos60°=2(分米),FJ=23(分米), 在Rt△FJE′中,E′J=22 -(2)=26, 63 ∴B′E′=10?(26?2)=12?26, ∴B′E′?BE=4. 故答案为:5+53,4. 【点睛】 本题考查解直角三角形的应用,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,属于中考常考题型. 2.在△ABC中,AB=BC,点O是AC的中点,点P是AC上的一个动点(点P不与点A,O,C重合).过点A,点C作直线BP的垂线,垂足分别为点E和点F,连接OE,OF.(1)如图1,请直接写出线段OE与OF的数量关系; (2)如图2,当∠ABC=90°时,请判断线段OE与OF之间的数量关系和位置关系,并说明理由 (3)若|CF﹣AE|=2,EF=23,当△POF为等腰三角形时,请直接写出线段OP的长. 【答案】(1)OF =OE;(2)OF⊥EK,OF=OE,理由见解析;(3)OP62 23 . 【解析】 【分析】(1)如图1中,延长EO交CF于K,证明△AOE≌△COK,从而可得OE=OK,再

中考数学锐角三角函数(大题培优)及答案

中考数学锐角三角函数(大题培优)及答案 一、锐角三角函数 1.如图,山坡上有一棵树AB ,树底部B 点到山脚C 点的距离BC 为63米,山坡的坡角为30°.小宁在山脚的平地F 处测量这棵树的高,点C 到测角仪EF 的水平距离CF=1米,从E 处测得树顶部A 的仰角为45°,树底部B 的仰角为20°,求树AB 的高度.(参考数 值:sin20°≈0.34,cos20°≈0.94,tan20°≈0.36) 【答案】6.4米 【解析】 解:∵底部B 点到山脚C 点的距离BC 为6 3 米,山坡的坡角为30°. ∴DC=BC?cos30°=3 639=?=米, ∵CF=1米, ∴DC=9+1=10米, ∴GE=10米, ∵∠AEG=45°, ∴AG=EG=10米, 在直角三角形BGF 中, BG=GF?tan20°=10×0.36=3.6米, ∴AB=AG-BG=10-3.6=6.4米, 答:树高约为6.4米 首先在直角三角形BDC 中求得DC 的长,然后求得DF 的长,进而求得GF 的长,然后在直角三角形BGF 中即可求得BG 的长,从而求得树高 2.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值.

【答案】(1)120米;(2)23 5 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3,在Rt △ABC 中,求得DC= 3 3 AC=203,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ? =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3, 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=3AC=203 ∴DE=503 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE =503= 2 35 答:从无人机'A 上看目标D 的俯角的正切值是 2 35 . 【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 3.如图,在△ABC 中,AB=7.5,AC=9,S △ABC = 81 4 .动点P 从A 点出发,沿AB 方向以每秒5个单位长度的速度向B 点匀速运动,动点Q 从C 点同时出发,以相同的速度沿CA 方向向A 点匀速运动,当点P 运动到B 点时,P 、Q 两点同时停止运动,以PQ 为边作正△PQM

锐角三角函数学而思培优

第九讲 锐角三角函数 板块一 锐角三角函数 【例1】⑴(2010年人大附统练)如图,在ABC △中,AB AC =,45A =?∠,AC 的垂直平分线分别交AB 、 AC 于D 、E 两点,连接CD ,如果1AD =,那么tan BCD =∠ 。 ⑵(2007海淀二模)如图,四边形ABCD 、A 1B 1BA 、…、A 5B 5B 4A 4都是边长为1的小正方形。已知 ∠ACB =α,∠A 1CB 1=α1,…,∠A 5CB 5=α5。则tanα·tanα1+tanα1·tanα2+…+tanα4·tanα5的值 为( ) A .1 B .5 C .45 D .56 ⑶(2010年济宁市)如图,是一张宽m 的矩形台球桌ABCD ,一 球从点M (点M 在长边CD 上)出发沿虚线MN 射向边BC ,然后反弹到边AB 上的P 点。如果MC n =,CMN α∠=。那么P 点与B 点的距离为 。 【例2】⑴(2010年人大附统练)已知ABC △,90C =?∠,设sin A m =,当A ∠是最小的内角时,m 的 取值范围是( ) A .1 02 m << B .02m << C .0m < D .0m << B 5 B 4 B 3 B 2B 1 A 5A 4A 3A 2A 1B A C D E D C B A B N

12?5? D C B A ⑵(十一学校2009年初三数学学习能力测试)已知1 sin cos 8 αα?=,且4590α<<°°,则 cos sin αα-的值是( ) A B . C . 34 D . ⑶(北京二中分校2009学年度第一学期初三质量检测)因为1sin 302= °,1 sin 2102 =-°,所以 ()sin 210sin 18030sin 30=+=-°°°° ;因为sin 452= ° ,sin 2252 =°,所以 ()sin 225sin 18045sin 45=+=-°°°°;由此猜想并推理知:一般地,当α为锐角时,有()sin 180sin αα+=-°。由此可知sin 240=°( ) A .1 2 - B . C . D . 板块二 解直角三角形及应用 【例3】(2009浙江台州)如图,有一段斜坡BC 长为10米,坡角 12CBD ∠=?,为方便残疾人的轮椅车通行,现准备把 坡角降为5?。 ⑴求坡高CD ; ⑵求斜坡新起点A 与原起点B 的距离(精确到0.1米) (参考数据:sin120.21cos120.98tan50.09?≈?≈?≈,,) 【例4】面积专题: 题源:(2010年人大附统练)如图,两条宽度都为1的纸条,交叉重叠放在一起,且它们的交角为 α,则它们重叠部分(图中阴影部分)的面积为( ) A . 1sin α B .1 cos α C .sin α D .1

锐角三角函数培优题型分类(答案版)

锐角三角函数培优-题型分类 【考点】待定系数法求一次函数解析式;锐角三角函数的定义.1.(2009?牡丹江二模)直线y=kx﹣4与y轴相交所成锐角的正切值为,则k 的值为() A.B.2 C.±2 D. 【分析】首先确定直线y=kx﹣4与y轴和x轴的交点,然后利用直线y=kx﹣4与y轴相交所成锐角的正切值为这一条件求出k的值. 【解答】解:由直线的解析式可知直线与y轴的交点为(0,﹣4),即直线y=kx ﹣4与y轴相交所成锐角的邻边为|﹣4|=4,与x轴的交点为y=0时,x=, ∵直线y=kx﹣4与y轴相交所成锐角的正切值为, 即||=4×,k=±2. 故选C. 【考点】锐角三角函数的定义;三角形中位线定理. 2.(1998?台州)如图,延长Rt△ABC斜边AB到D点,使BD=AB,连接CD,若cot∠BCD=3,则tanA=() A.B.1 C.D. 【分析】若想利用cot∠BCD的值,应把∠BCD放在直角三角形中,也就得到了Rt△ABC的中位线,可分别得到所求的角的正切值相关的线段的比. 【解答】解:过B作BE∥AC交CD于E. ∵AB=BD, ∴E是CD中点, ∴AC=2BE, ∵AC⊥BC,

∴BE⊥BC,∠CBE=90°. ∴BE∥AC. 又∵cot∠BCD=3,设BE=x,则BC=3x,AC=2x, ∴tanA===,故选A. 【考点3】锐角三角函数的定义. 3.将一副直角三角板中的两块按如图摆放,连接AC,则tan∠DAC的值为() A.B.C.D. 【分析】欲求∠DAC的正切值,需将此角构造到一个直角三角形中. 过C作CE⊥AD于E,设CD=BD=1,然后分别表示出AD、CE、DE的值,进而可在Rt△ACE中,求得∠DAC的正切值. 【解答】解:如图,过C作CE⊥AD于E. ∵∠BDC=90°,∠DBC=∠DCB=45°, ∴BD=DC, 设CD=BD=1, 在Rt△ABD中,∠BAD=30°,则AD=2. 在Rt△EDC中,∠CDE=∠BAD=30°,CD=1, 则CE=,DE=. ∴tan∠DAC===.

锐角三角函数培优讲义

讲义编号:组长签字:签字日期:

2、如图,在△ABC 中,∠A=60°,∠B=45°,AB=8,求△ABC 面积(结果可保留根号)。 3、如图(1),∠α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一个点P (3,4),则sin α=______ 4、如图(2)所示,在正方形网格中,sin ∠AOB 等于( ) A 、 5 5 B 、 25 5 C 、12 D 、2 5、如图(3),在ABC △中,90ACB ∠=,CD AB ⊥于D ,若23AC =, 32AB =,则tan BCD ∠的值为( ) A 、2 B 、 2 2 C 、 63 D 、33 6、如图(5),A 、B 、C 三点在正方形网格线的交点处,若将△ACB 绕着点A 逆时针旋转得到△AC’B’,则tanB’的值为( ) A 、1 2 B 、13 C 、14 D 、 24

7、如图(6),菱形ABCD的边长为10cm,DE⊥AB,3 A ,则这个菱 sin 5 形的面积= cm2。 8、如图,在Rt△ABC中,∠C=90°,sinB=3 ,点D在BC边上,且 5 ∠ADC=45°,DC=6,求∠BAD的正切值。 9、如图,在正方形ABCD中,M为AD的中点,E为AB上一点,且BE=3AE,求sin∠ECM。 10、如图,在梯形ABCD中,AB∥DC,∠BCD=90°,AB=1,BC=2, tan∠ADC=2。 (1)求证:DC=BC (2)E是梯形ABCD内一点,F是梯形ABCD外一点,且∠EDC=∠FBC,DE=BF,是判断△ECF的形状,并证明你的结论;

(3)在(2)的条件下,当BE:CE=1:2,∠BEC=135°时,求sin∠BFE 的值。 考点三:利用特殊角的三角函数值进行计算 1、计算: (1)019(π4)sin 302 --+-- (2)201()(32)2sin 3032 ---+?+- (3)1 0182sin 45(2)3-?? -+-π- ??? (4)2sin45°+3cos30°-2 3 2、∠B 是Rt△ABC 中的一个内角,且sinB=23,则cos 2 B =( ) A 、2 1 B 、 23 C 、22 D 、2 1 3、在△ABC 中,a =3,b =4,∠C=60°,则△ABC 的面积为________。 4、Rt△ABC 中,∠C=90°,c =12,tanB=3 3 ,则△ABC 的面积为( ) A 、363 B 、183 C 、16 D 、18

培优锐角三角函数

锐角三角函数 题型:锐角三角函数基本概念(1) 例:已知α为锐角,下列结论: (1)sin α+cos α=1;(2)若α>45°,则sin α>co sα;(3)若co sα>,则α<60°;(4)。正确得有( )A 、(1) (2) (3)(4) B 、(2)(3)(4) C 、(1)(3)(4) D 、(1)(2)(3) 变式: 1、下列各式中,不正确得就就是( ) A. B 、 C 、 D 、tan 45°>sin 45° 2、已知∠A满足等式,那么∠A 得取值范围就就是( ) A 、0°<∠A ≤90° B 、90°<∠A<180° C 、0°≤∠A <90° D、0°≤∠A ≤90° 3、α就就是锐角,若sin α=cos150,则α= 4。若sin53018\=0、8018,则cos36042\= 题型:锐角三角函数基本概念(2) 例:已知sin α·cos α=,且45°<α<90°,则COS α-si nα得值为( ) A 、 B、 C、 D、 变式: 1、已知△ABC 中,∠C=90°,下列各式中正确得就就是( ) A.sinA +c osB=s inC B 、si nA +sinB=sinC C 、 D 、 2、已知si nα+cos α=m ,sin α×cos α=n,则m ,n 得关系式( ) A.m=n B、m=2n+1 C 、 D 、 题型:求三角函数值 例:如图,菱形得边长为5,AC 、BD 相交于点O,AC=6,若,则下列式子正确得就就是( ) A.sin α= B 、cos α= C 、t an α= D 、cot α= 变式:1、设0°<α<45°,sin αco sα=,则s in α= 2、已知si nα-co sα=,0°<α<180°,则tan α得值就就是( ) B 、 C 、 D、 3、如图,在正方形ABCD 中,M为AD 得中点,E 为AB 上一点,且BE=3A E,求sin ∠ECM 。 4、如图,在矩形中,就就是边上得点,,,垂足为,连接。 (1)求证:;(2)如果,求得值。 题型:三角函数值得计算(1) 例:计算:= 变式:1、计算:= 2、计算:0000002000027tan 63tan 60cot 360 sin 60cot 45cos )45sin 30)(cos 45cos 60(sin -++- 题型:三角函数值得计算(2) 例:化简根式:= 变式:1、若,化简下式: αααααα αsin )90sin()90cos(21tan tan 21sin cos 21002+----+--= 2、已知tanA=3,且∠A 为锐角,则cotA -= 3、已知为锐角,,求得值。 题型:三角函数与一元二次方程得综合题(1) 例:在Rt △ABC 中,∠C=90°,斜边=5,两直角边得长a,b 就就是关于x 得一元二次方程得两个实数根,求Rt △ABC 中较小锐角得正弦值。 变式:1、若就就是得三边,,且方程有两个相等得实数根,求得值。 2、已知a,b,c 为△A BC 中三个内角∠A,∠B,∠C 得对边。当m >0时,关于x 得方程有两个相等得实数根,且。试判断△ABC 得形状、

锐角三角函数培优题目

1锐角三角函数培优题目 三角函数揭示了直角三角形中边与锐角之间的关系,是数形结合的桥梁之一,有以下丰富的性质: 1.单调性; 2.互余三角函数间的关系; 3.同角三角函数间的关系. 平方关系:sin2α+cos2α=1; 商数关系:tgα=??cossin,ctgα=??sincos; 倒数关系:tgαctgα=1. 【例题求解】 【例1】已知在△ABC中,∠A、∠B是锐角,且sinA=135,tanB=2,AB=29cm,则S△ABC = 思路点拨过C作CD⊥AB于D,这样由三角函数定义得到线段的比, sinA=135?ACCD,tanB=2?BDCD,设CD=5m,AC=13m,CD=2n,BD=n,解题的关键是求出m、n的值. 注:设△ABC中,a、b、c为∠A、∠B、∠C的对边,R为△ABC外接圆的半径, 不难证明:与锐角三角函数相关的几个重要结论: (1) S△ABC=CabBacAbcsin21sin21sin21??; (2)RCcBbAa2sinsinsin???.

【例2】在△ABC中.∠ACB=90°,∠ABC=15°,BC=1,则AC=( ) A 32? B32? C.0.3 D23? 思路点拨由15°构造特殊角,用特殊角的三角函数促使边角转化. 注:(1)求(已知)非特角三角函数值的关是构造出含特殊角直角三角形. (2)求(已知)锐角角函数值常根据定转化为求对应线段比,有时需通过等的比来转换. 2【例3】如图,已知△ABC是等腰直角三角形,∠ACB=90°,过BC的中点D 作DE⊥AB于E,连结CE,求sin∠ACE的值. 思路点拨作垂线把∠ACE变成直角三角形的一个锐角,将问题转化成求线段的比.

初三数学锐角三角函数的专项培优练习题及答案

初三数学锐角三角函数的专项培优练习题及答案 一、锐角三角函数 1.如图,某无人机于空中A 处探测到目标B D 、的俯角分别是30、60??,此时无人机的飞行高度AC 为60m ,随后无人机从A 处继续水平飞行303m 到达'A 处. (1)求之间的距离 (2)求从无人机'A 上看目标的俯角的正切值. 【答案】(1)120米;(2)3 5 . 【解析】 【分析】 (1)解直角三角形即可得到结论; (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D ,于是得到'60A E AC ==, '30CE AA ==3Rt △ABC 中,求得DC= 3 3 3,然后根据三角函数的定义即可得到结论. 【详解】 解:(1)由题意得:∠ABD=30°,∠ADC=60°, 在Rt △ABC 中,AC=60m , ∴AB=sin 30AC ? =6012 =120(m ) (2)过'A 作'A E BC ⊥交BC 的延长线于E ,连接'A D , 则'60A E AC ==, '30CE AA ==3 在Rt △ABC 中, AC=60m ,∠ADC=60°, ∴DC=333∴3 ∴tan ∠A 'A D= tan ∠'A DC= 'A E DE 5032 35 答:从无人机'A 上看目标D 2 35

【点睛】 本题考查了解直角三角形的应用,添加辅助线建立直角三角形是解题的关键. 2.小红将笔记本电脑水平放置在桌子上,显示屏OB与底板OA所在水平线的夹角为120°时,感觉最舒适(如图1),侧面示意图为图2;使用时为了散热,她在底板下面垫入散热架ACO'后,电脑转到AO'B'位置(如图3),侧面示意图为图4.已知OA=OB=24cm,O'C⊥OA于点C,O'C=12cm. (1)求∠CAO'的度数. (2)显示屏的顶部B'比原来升高了多少? (3)如图4,垫入散热架后,要使显示屏O'B'与水平线的夹角仍保持120°,则显示屏O'B'应绕点O'按顺时针方向旋转多少度? 【答案】(1)∠CAO′=30°;(2)(36﹣12)cm;(3)显示屏O′B′应绕点O′按顺时针方向旋转30°. 【解析】 试题分析:(1)通过解直角三角形即可得到结果; (2)过点B作BD⊥AO交AO的延长线于D,通过解直角三角形求得 BD=OBsin∠BOD=24×=12,由C、O′、B′三点共线可得结果; (3)显示屏O′B′应绕点O′按顺时针方向旋转30°,求得∠EO′B′=∠FO′A=30°,既是显示屏O′B′应绕点O′按顺时针方向旋转30°. 试题解析:(1)∵O′C⊥OA于C,OA=OB=24cm, ∴sin∠CAO′=, ∴∠CAO′=30°; (2)过点B作BD⊥AO交AO的延长线于D,∵sin∠BOD=,∴BD=OBsin∠BOD,

相关主题