搜档网
当前位置:搜档网 › 一体式反硝化BAF处理工艺运行效果分析

一体式反硝化BAF处理工艺运行效果分析

一体式反硝化BAF处理工艺运行效果分析
一体式反硝化BAF处理工艺运行效果分析

一体式反硝化BAF处理工艺运行效果分析

城市污水处理工艺选择的主要原则

城市污水处理工艺选择的主要原则 【格林大讲堂】 城市污水处理厂的设计和建设包括污水处理程度和规模的确定、厂址选择、污水及污泥处理工艺选择、总平面布置、工艺流程确定、处理构筑物等方面内容。 也就是说,在保证处理效果、运行稳定,满足处理要求(排放水体或回用)的前提下,使基建造价和运行费用最为经济节省,运行管理简单,控制调节方便,占地和能耗最小,污泥量少。城市污水处理工艺方案的选择一般应体现以下总体要求:满足要求,因地制宜,技术可行,经济合理。 武汉格林环保有完善的服务体系和配套的专业环境工程团队,秉着崇高的环保责任和义务长期维护提供免费的污水处理解决方案,是湖北省工业废水运营管理行业中的品牌。18年来公司设计并施工了上百个交钥匙式的污水处理工程。 同时要求具有良好的安全、卫生、景观和其它环境条件。在处理程度或允许的出水排放总量确定以后,就可以据此列出所有能够满足要求的工艺流程(方案)。选择可行的几种处理工艺方案,通过全面技术经济比较后确定处理工艺流程和设计参数。 满足处理功能与效率要求 而排放标准的确定主要取决于处理出水的最终处置方式,如果排入水体,则取决于接纳水体的功能质量要求和水体的环境容量,如果回用,则取决于回用水用户对水质的要求。 对城市污水处理设施出水水质有特殊要求的,须进行深度处理。这是污水处理最重要的目标,也是污水处理厂产品的基本质量要求。城市污水处理厂工艺方案应确保高效稳定的处理效果,城市污水处理设施出水应达到国家或地方规定的水污染物排放控制的要求。 规模与工艺标准因地制宜 污水处理厂工艺方案的确定必须充分考虑当地的社会经济和资源环境条件。污水处理厂的实际设计规模应根据污水收集量和分期建设、水质目标确定,污水收集量取决于管网完善程度和汇水区内的生活、工业污水产生与允许纳入量,以及管网入渗或渗漏水量等因素。 要实事求是的确定城市污水处理工程的规模、水质标准、技术标准、工艺流程以及管网系统布局等问题;处理规模大小对处理工艺的影响很大,城市污水处理设施建设应按照远期规划确定最终规模,以现状水量为主要依据确定近期规模。 在决定处理工艺方案时,要因地制宜,结合当地条件和特点,有所侧重,尤其是排放与利用的相结合,不同处理工艺的组合。要根据当地财力情况,充分考虑处理工艺的分期、分级实施。比如说,可以先采用一级处理或强化一级处理,

短程硝化反硝化的研究详解

短程硝化反硝化的研究进展 摘要短程硝化反硝化技术主要用于处理高氨氮质量浓度和低C/N比的污水。成功实现短程硝化反硝化技术的关键是将硝化反应控制并维持在亚硝酸盐阶段,不进行亚硝酸盐至硝酸盐的转化。本文探讨了短程硝化反硝化的机理并对氨氧化菌的分子生物学研究进行了分析,同时探讨了A/SBR工艺的应用。 关键词短程硝化反硝化氨氧化菌A/SBR 1 引言 近年来,随着工业化和城市化进程的不断提高,大量氮、磷等营养物质进入水体,水体富营养化的现象日益严重,由于常规的活性污泥工艺硝化作用不完全,反硝化作用则几乎不发生,总氮的去除率仅在10%~30%之间,出水中还含有大量的氮和磷[1]。因此,只有对常规的活性污泥法进行改进,加强其生物脱氮功能,才能解决日益突出的受纳水体“富营养化”问题。目前,各城市污水处理厂均应用新的运行方法和控制策略进行脱氮除磷。随着新的微生物处理技术的介入,污水处理设施的功效得到显著提高。短程硝化反硝化技术对于处理这种污水在经济和技术上均具有较高的可行性。 短程硝化反硝化技术已成为脱氮领域研究的热点。其研究内容主要集中在实现氨氧化菌在反应器的优势积累、构造适于氨氧化菌长期稳定生长并抑制亚硝酸氧化菌的最佳环境因素、优化过程控制模式实现持续稳定的短程硝化等。 2 短程硝化反硝化的机理 生物脱氮包括硝化和反硝化两个反应过程。第一步是由氨氧化菌( ammonium oxidition bacteria,AOB) 将NH4-N氧化NO-2-N的亚硝化过程;第二步是由亚硝酸氧化菌( nitrite oxidition bacteria,NOB) 将NO-2-N氧化为NO-3-N的过程。然后通过反硝化作用将产生的NO-3-N经由NO-2-N、NO或N2O转化为N2,NO-2-N 是硝化和反硝化两个过程的中间产物。V oets等(1975)在处理高浓度氨氮废水的研究中,发现了硝化过程NO-2-N积累的现象,首次提出了短程硝化反硝化生物

污水处理各种工艺大全及优缺点对比

污水处理各种工艺大全及优缺点对比 一、A/O工艺 1.基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH 3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(N H4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O 在生态中的循环,实现污水无害化处理。 2.A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点:

(1)效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2)流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3)缺氧反硝化过程对污染物具有较高的降解效率。如COD、BO D5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4)容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的容积负荷。 (5)缺氧/好氧工艺的耐负荷冲击能力强。当进水水质波动较大或污染物浓度较高时,本工艺均能维持正常运行,故操作管理也很简单。通过以上流程的比较,不难看出,生物脱氮工艺本身就是脱氮的同时,也降解酚、氰、COD等有机物。结合水量、水质特点,我们推荐采用缺氧/好氧(A/O)的生物脱氮(内循环) 工艺流程,使污水处理装置不但能达到脱氮的要求,而且其它指标也达到排放标准。

硝化反硝化资料

硝化与硝化反应 4.1生物脱氮的过程和条件 A、废水当中的氮分为有机氮和氨氮即硝酸及亚硝酸盐氮,氮的脱除经过以下三步反应 (1)氨化反应。在氨化菌的作用下,有机氮化合物分解,转化为氨氮。 (2)硝化反应。在亚硝化及硝化菌的作用下,氨氮进一步分解氧化为亚硝酸及硝酸盐氮。 (3)反硝化反应。在反硝化菌的作用下,少部分亚硝酸及硝酸盐氮同化为有机氮化物,成为菌体,大部分异化为气态(70~75%)。 B、硝化菌对环境的变化很敏感,它所需要的环境条件主要包括以下几方面: (1)好氧条件,DO≥1mg/l,并保持一定碱度,适宜的PH 值为8.0~8.4。 (2)有机物含量不宜过高,污泥负荷≤0.15kgBOD/kgMLVSS·d,因为硝化菌是自养菌,有机基质浓度高,将使异氧菌快速增殖而成为优势。 (3)适宜温度20~30℃。 (4)硝化菌在反应器中的停留时间必须大于最小世代时间。 (5)抑制浓度尽可能的低,除重金属外,抑制硝化菌的物质还有高浓度有机基质,高浓度氨氮、NOx-N 以及络合阳离子。 (6)硝化过程NH3-N 耗于异化氧化和同化的经典公式 NH4++1.83O2 +1.98HCO3- 0.98NO3-+0.021C5 H7NO2+1.88H2CO3+1.04H2 O 因此表明,去除1gNH3-N 约: 耗去4.33gO2; 生成0.15g 细胞干物质; 减少7.14g 碱度; 耗去0.08g 无机碳。 C、反硝化反应的适宜条件: (1)最适宜的PH 值为6.5~7.5。PH 高于8 或低于6,反硝化速率将大为降低。 (2)反硝化菌需要缺氧、好氧(合成酶系统)条件交替存在,系统DO≤0.5mg/l (3)最适宜温度为20~40℃,低于15℃,反硝化反应速率降低。

污水处理工艺的选择

污水处理工艺的选择 我国南方城市污水处理率较低,大量未经处理的城市污水排入水体,使南方城市水体受到不同程度的污染。可以预料,随着我国经济实力的增强,南方城市污水处理将以超常规的建设速度发展。因此,剖析现已运行的南方城市污水处理厂存在的问题,结合南方城市污水特点,探讨高效低耗适合南方城市污水处理工艺,这对加快发展南方城市污水处理事业,具有重要的意义。 1.城市污水处理工艺现状及存在的问题 城市污水处理工艺现状我国南方城市污水处理所采取的工艺具有明显的时代特征。1979 年前,南方城市污水处理处于初始阶段,所采取的处理工艺通常为普通活性污泥法。采取的曝气方法,既有鼓风曝气,又有表面曝气。上海北郊污水厂(鼓风曝气) 和桂林市北区污水厂(表面曝气) 就代表了那一时期的处理工艺。80年代,南方城市污水处理工艺仍然以普通活性污泥法为主。但改良的活性污泥法开始逐步取代投资大、运行费用高的普通活性污泥法。这时期,工艺流程简单、运行稳定、管理方便、出水水质好的氧化沟处理工艺得到推广应用。 90年代以来,南方城市污水处理事业快速发展。普通活性污泥法被淘汰,不同类型的氧化沟相继投入运行。随着城市水体富营养化程度加剧,各种具有除磷脱氮的新工艺开始应用,AB法、A/O、A2/O、SBR污水处理工艺继氧化沟后,成为当今污水处理工艺的主流。 2.城市污水处理工艺选择 决定城市污水处理厂投资和运行成本的很重要因素是污水处理工艺的选择。目前,在城市污水处理领域,南方城市普遍存在着追求“新工艺”的倾向,而且在工艺选择上似乎还有“一窝蜂”的现象。例如80年代,南方城市污水处理工艺多选择氧化沟,到了90 年代末,SBR工艺几乎要“一统天下”了。一座城市污水厂处理工艺的选择,虽然应由污水水质、水量、排放标准来确定,但是,忽略污水处理厂投资和运行成本,过分强调污水处理工艺的先进是不足取的。实际上,有些南方城市

常温下AO工艺的短程硝化反硝化

常温下A/O工艺的短程硝化反硝化 1 试验装置与设备 1.1 试验流程及设备 A/O工艺模型主要由合建式缺氧—好氧反应器和竖流沉淀池组成,如图1所示。 合建式反应器分为3个廊道,总有效容积为85L;沿池长方向设置若干成对的竖向插槽,配以相应大小的插板,可以将整个反应器沿池长方向分成若干个小格,在每个插板上开一个25mm的圆孔,安放时使相邻圆孔上下交错以防止发生短流;在反应器顶部布置环状曝气干管,并设置若干个小阀门,由橡胶管连接烧结砂头作为微孔曝气器,气量由转子流量计测量;根据缺氧段所占比例,选择安放若干搅拌器用于保持泥水混合均匀;在距池底20cm的高度上设置若干取样口。进水、污泥回流和内循环流量分别用3台蠕动泵控制。沉淀池的沉淀区呈圆柱形,直径为30cm;污泥斗为截头倒锥体,倾角为60°;采用中心管进水、周边三角堰出水方式。 1.2 原水 采用由黄豆粉、葡萄糖、NH4Cl、KH2PO4和NaHCO3与自来水配制的模拟生活污水。 1.3 分析项目与方法 COD:重铬酸钾法;MLSS:滤纸称重法;DO、温度:WTWDO测定仪及探头;pH值:WTWi nolab pH level2和NTC30电极;NO2--N,:N-(1-萘基)-乙二胺光度法;NO3--N,:麝香草酚分光光度法;NH3-N:纳氏试剂分光光度法。 2 结果及分析 2.1 对NH3-N的去除率和NO2--N的积累率 试验期间测得进水平均NH3-N浓度为40.21mg/L,对NH3-N的平均去除率为90.78%,出水中NO2--N,占TN的比例平均为75.29%。 在前51天,出水中NO2--N,含量占TN的50%以上(平均为87.36%),维持了稳定的NO2--N积累。第50~53天配制原水时以Na2CO3代替NaHCO3来提供碱度,使硝化类型发生显著变化,转化为全程硝化反硝化。从第54天开始配制原水时仍然以NaHCO3提供碱度,又出现了NO2--N,积累现象,但是在其后的试验中NO2--N,

一体化污水处理核心处理工艺比较选择

一体化污水处理核心处理工艺比较选择 污水处理工艺的选择是污水处理厂设计的主体和关键,污水处理工艺是否合理,直接关系到污水处理厂的出水水质、处理效果、运转的稳定性、运转成本和操作管理的水平。因此必须结合实际,在满足处理效果的前提下,选择成熟、可靠、经济、高效且操作管理方便、先进的污水处理工艺,以取得最佳的效益。 由设计水质和处理要求可以看出,污水处理厂主要污染为有机污染,参考我国《室外排水设计规范》(GB50014-2006)对污水处理厂的处理效率的规定,一级处理方法,对于SS处理效率为40~55%,对于BOD5处理效率为20~30%;二级处理方法,对于SS处理效率为60~90%,对于BOD5处理效率为65~95%。结合本工程设计,应采用二级处理方法。 普通活性污泥法具有运行稳定、管理方便的优点,前人在设计和运行方面积累了大量的工程经验,但普通活性污泥法也存在着在运行不当时或进水水质异常时易发生污泥膨胀导致出水恶化的问题,同时由于污泥泥龄较短和没有缺氧工况;对氮、磷的去除率不理想,随着社会经济发展,进入水体的污染负荷已严重超过水体自然净化能力,特别是氮、磷在自然水体中积累,造成水体的富营养化已成为人们普遍关注的问题。所以城市生活污水的脱氮除磷显得越来越重要。 现就目前国内外城市污水脱氮除磷二级生物处理采用较多的工艺作一分析比较。 生物除磷脱氮污水处理工艺比较 目前,用于城市污水处理具有一定脱氮除磷效果的污水处理工艺大致分为两大类:第一类为按空间进行分割的连续流活性污泥法;第二类为按时间进行分割的间歇性活性污泥法。另外还有一类就是以BAF工艺为代表的生物膜法。

按空间分割的连续流活性污泥法 按空间分割的连续流活性污泥法是指各种处理功能(如进水、曝气、沉淀、出水)在不同的空间(不同的池子)内完成。目前,较成熟的工艺有:传统A2/O 工艺、A2/O氧化沟工艺等。 传统A2O工艺及UCT、倒置A2/O工艺 传统A2O工艺于70年代由美国专家在厌氧—好氧除磷工艺(AO工艺)的基础上开发出来的。该工艺是在AO工艺中增加一个缺氧段,将好氧段流出的一部分混合液回流至缺氧段,以达到脱氮的目的。 传统A2O工艺可以完成有机污染物的去除、硝化反硝化脱氮、磷的过量摄取而被去除等功能。其流程简图如下: 进水出水 回流污泥剩余污泥 传统A2O工艺流程简图 传统A2O工艺的特点: 在去除有机污染物的同时可达到除磷脱氮目的; 工艺简单、水力停留时间较短; 在厌氧—缺氧—好氧条件下交替运行,丝状菌不会过度繁殖,从而不会引发污泥膨胀。 传统A2O工艺的缺点是回流污泥中过多的硝酸盐破坏厌氧环境,影响厌氧放磷效果,为此产生了UCT工艺。与传统A2O工艺比较,UCT工艺不同之处在于污泥先回流至缺氧段,再将缺氧段部分混合液回流至厌氧段,从而减少了回流污泥中硝酸盐对厌氧放磷的影响。但UCT工艺增加了一次回流,即多一次提

硝化、反硝化的计算

分段进水A/O脱氮工艺反硝化速率的测定 王卿卿1,王社平1、2,惠灵灵1,金尚勇1 (1 西安建筑科技大学环境与市政工程学院,陕西西安,710055; 2. 西安市市政设计研究院,陕西西安,710068) 摘要: 采用间歇式反应器对分段进水A/O脱氮工艺中试装置中活性污泥的反硝化速率进行了测定,结果表明:反硝化过程存在三个速率明显不同的阶段,且随着反应时间的延长,反硝化速率逐渐降低。根据实验结果提出了城市污水厂缺氧选择池和生化反应池缺氧区设计计算时反硝化速率、水力停留时间的参考值。 关键词:城市污水;反硝化速率;分段进水A/O脱氮工艺 The Determination of Denitrification Rate of Step-feed A/O Nitrogen Removal Process Wang Qingqing1, Wang Sheping1,2, Hui Lingling1,Jin Shangyong1 (1.School of Environmental and municipal Engineering,Xi,an University of Architecture & Technology , Shanxi Xi,an ,710055 2. Xi,an Municipal Engineering Design and Research Institution , Shanxi Xi,an ,710068) Abstract: The denitrification rate is determined in batch reactor, the results indicated that there are three obvious different denitrification rates stages in the denitrification process, and with the reaction time prolonging, the denitrification rate declined gradually. According to the experimental results, the reference value of the denitrification rate and hydraulic retention time (HRT) are suggested, which is used in designing and calculating the anoxic selecting tank and the bio-reactor anoxic zone of the municipal wastewater treatment plant (MWTP) . Key Words: municipal wastewater, the specific denitrification rate, Step-feed Nitrogen Removal Process. 反硝化速率的测定对于城市污水处理厂生化反应池缺氧区及缺氧选择池的设计具有十分重要的意义。利用测定的反硝化速率,可更加合理的确定生物反应池的水力停留时间,使其既

常见污水处理工艺介绍

常见污水处理工艺介绍 一.物理法: 1.沉淀法:首要去除废水中无机颗粒及SS 2.过滤法:首要去除废水中SS和油类物质等 3.隔油:去除可浮油和涣散油 4.气浮法:油水别离、有用物质的收回及相对密度接近于1(水的密度近似1)的悬浮固体 5.离心别离:细小SS的去除 6.磁力别离:去除沉淀法难以去除的SS和胶体等 二.化学法: 1.混凝沉淀法:去除胶体及纤细SS 2.中和法:酸碱废水的处理 3.氧化还原法:有毒物质、难生物降解物质的去除 4.化学沉淀法:重金属离子、硫离子、硫酸根离子、磷酸根、铵根等的去除 三.生物法 1.活性污泥法:废水生物处理中微生物(micro-organism)悬浮在水中的各种办法的总称。 (1)SBR法 序列间歇式活性污泥法(Sequencing Batch Reactor Activated Sludge Process)的简称,是一种按间歇曝气办法来运转的活性污泥

污水处理技能,又称序批式活性污泥法。 工艺流程图: SBR技能的核心,该池集均化、初沉、生物降解、二沉等功能于一池,无污泥回流体系。 长处: 1)工艺简略,节约费用 2)抱负的推流进程使生化反响推力大、效率高 3)运转办法灵敏,脱氮除磷效果好 4)防治污泥胀大的最好工艺 5)耐冲击负荷、处理才能强 (2)CASS法

CASS法法的改进型,特色是占地小、运转费用低、技能成熟、工艺安稳。 CASS法是在CASS反响池前部设置生物挑选区,后部设置可升降的主动滗水设备。 工艺流程图: (3)AO法 AO工艺法也叫厌氧好氧工艺法,A(Anacrobic)是厌氧段,用与脱氮除磷;O(Oxic)是好氧段,用于除水中的有机物。 工艺流程图:

硝化反硝化

硝化反硝化 一、硝化反应 在好氧条件下,通过自养型微生物亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 硝化反应包括亚硝化和硝化两个步骤: 二、反硝化反应 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化菌为异养型微生物,在缺氧状态时,反硝化菌利用硝酸盐中的氧作为电子受体,以有机物作为电子供体提供能量并被氧化稳定。 反硝化反应方程式为: NO2-+3H(电子供给体-有机物) →0.5 N2+H2O+OH- NO3-+5H(电子供给体-有机物) →0.5 N2+2H2O+OH- 三、短程硝化反硝化 短程硝化是指NH3生成亚硝酸根,不再生产硝酸根;而由亚硝酸根直接生成N2,称为短程反硝化。短程硝化反硝化是指NH3---NO2----N2,即可以从水中氨氮去除的一种工艺。 影响因素: 1、pH 硝化反应的适宜的pH值为7.0~8.0之间,其中亚硝化菌7.0~7.8时,活性最好;硝化菌在7.7~8.1时活性最好。当pH降到5.5以下,硝化反应几乎停止。反硝化细菌最适宜的pH值为7.0~7.5之间。考虑到硝化和反硝化两过程中碱度消耗与产生的相互性,同步硝化与反硝化的最适的pH值应为7.5左右。 2、溶解氧(DO) 硝化过程的DO应保持在2~3mg/L,反硝化过程的DO应保持0.2~0.5mg/L。 反应池内溶解氧的高低,必将影响硝化反应的进程,溶解氧质量浓度一般维持在2~3mg/L,不得低于1mg/L,当溶解氧质量浓度低于0.5~0.7mg/L时,氨的硝态反应将受到抑制。反硝化通常需在缺氧条件下进行,溶解氧对反硝化有抑制作用,主要是由于氧会与硝酸盐竞争电子供体,同时分子态氧也会抑制硝酸盐还原酶的合成及其活性。 3、温度 生物硝化反应适宜的温度在20~30℃,反硝化适宜温度在30℃左右。 亚硝酸菌最佳生长温度为35℃,硝酸菌的适宜温度为20~40℃。15℃以下时,硝化反应速度急剧下降。温度对反硝化速率的影响很大,低于5℃或高于40℃,反硝化的作用几乎停止。 4、碱度 一般污水处理厂碱度应维持在200mg/L左右。 NH4++1.83O2+1.98HCO3-→0.021C5H7O2N+0.98NO3-+1.04H2O+1.884H2CO3

污水处理厂工艺流程

污水处理厂工艺流程 污水进入厂区先通过1.截流井(让厂能处理的污水进入厂区进行处理)进入2.粗格栅(打捞较大的渣滓)到3.污水泵(提升污水的高度)到4.细格栅(打捞较小的渣滓)到5.沉沙池(以重力分离为基础,将污水的比重较大的无机颗粒沉淀并排除)到6.生化池(采用活性污泥法去除污水里的BOD5、SS和以各种形式的氮或磷)进入7.终沉池(排除剩余污泥和回流污泥)进入8.D型滤池(进一步减少SS,使出水达到国家一级标准)进入紫外线9.消毒(杀灭水中的大肠杆菌)然后10.出水 生化池、终沉池出的污泥一部分作为生化池的回流污泥,剩下的送入污泥脱水间脱水外运主要有物理处理法,生化处理法和化学处理法,生化处理法经常被使用,主流处理方法主要看被处理水质和受纳水体情况,一般城市生活污水的主流处理方法为生化处理法,如活性污泥法,mbr 等方法。 污水处理sewage treatment.wastewater treatment 为使污水经过一定方法处理后.达到设定的某些标准.排入水体.排入某一水体或再次使用等的采取的某些措施或者方法等. 现代污水处理技术.按处理程度划分.可分为一级.二级和三级处理. 一级处理.主要去除污水中呈悬浮状态的固体污染物质.物理处理法大部分只能完成一级处理的要求.经过一级处理的污水.BOD一般可去除30%左右.达不到排放标准.一级处理属于二级处理的预处理. 二级处理.主要去除污水中呈胶体和溶解状态的有机污染物质(BOD.COD物质).去除率可达90%以上.使有机污染物达到排放标准. 三级处理.进一步处理难降解的有机物.氮和磷等能够导致水体富营养化的可溶性无机物等.主要方法有生物脱氮除磷法.混凝沉淀法.砂率法.活性炭吸附法.离子交换法和电渗分析法等. 整个过程为通过粗格删的原污水经过污水提升泵提升后.经过格删或者筛率器.之后进入沉砂池.经过砂水分离的污水进入初次沉淀池.以上为一级处理(即物理处理).初沉池的出水进入生物处理设备.有活性污泥法和生物膜法.(其中活性污泥法的反应器有曝气池.氧化沟等.生物膜法包括生物滤池.生物转盘.生物接触氧化法和生物流化床).生物处理设备的出水进入二次沉淀池.二沉池的出水经过消毒排放或者进入三级处理.一级处理结束到此为二级处理. 三级处理包括生物脱氮除磷法.混凝沉淀法.砂滤法.活性炭吸附法.离子交换法和电渗析法.二沉池的污泥一部分回流至初次沉淀池或者生物处理设备.一部分进入污泥浓缩池.之后进入污泥消化池.经过脱水和干燥设备后.污泥被最后利用. 各个处理构筑物的能耗分析 1.污水提升泵房 进入污水处理厂的污水经过粗格删进入污水提升泵房.之后被污水泵提升至沉砂池的前池.水泵运行要消耗大量的能量.占污水厂运行总能耗相当大的比例.这与污水流量和要提升的扬程有关. 2.沉砂池 沉砂池的功能是去除比重较大的无机颗粒.沉砂池一般设于泵站前.倒虹管前.以便减轻无机颗粒对水泵.管道的磨损,也可设于初沉池前.以减轻沉淀池负荷及改善污泥处理构筑物的处理条件.常用的沉砂池有平流沉砂池.曝气沉砂池.多尔沉砂池和钟式沉砂池. 沉砂池中需要能量供应的主要是砂水分离器和吸砂机.以及曝气沉砂池的曝气系统.多尔沉砂池和钟式沉砂池的动力系统. 3.初次沉淀池 初次沉淀池是一级污水处理厂的主题处理构筑物.或作为二级污水处理厂的预处理构筑

中水处理工艺及选择

一、中水处理的工艺及选择。 1、中水回用工艺流程为了将污水处理成符合中水水质标准的水,一般要进行三个阶段的处理: (1)预处理该阶段主要有格栅和调节池两个处理单元,主要作用是去除污水中的固体杂质和均匀水质。 (2)主处理该阶段是中水回用处理的关键,主要作用是去除污水的溶解性有机物。 (3)后处理该阶段主要以消毒处理为主,对出水进行深度处理。保证出水达到中水水标准。 2、主处理的方法按目前已被采用的方法大致可分为三类: (1)生物处理法利用水中微生物的吸附、氧化分解污水中的有机物,包括好氧和厌氧微生物处理,一般以好氧处理较多。 (2)物理化学处理法以混凝沉淀(气浮)技术及活性炭吸附相结合为基本方式,与传统的二级处理相比,提高了水质,但运行费用较高。 (3)膜处理采用超滤(微滤)或反渗透膜处理,其优点是S S去除率很高,占地面积与传统的二级处理相比,减少了很多。但目前对此工艺在实际应用上还存有一定争议。 3、工艺流程的选择 工艺流程的选择需确定工艺流程时必须掌握中水原水的水量、水质和中水的使用要求,应根据上述条件选择经济合理、运行可靠的处理工艺;在选择工艺流程时,应考虑装置所占的面积和周围环境的限制以及噪声和臭气对周围环境带来的影响;中水水源的主要污染物是有机物,目前大多数以生物处理为主处理方法;在工艺流程中消毒灭菌工艺必不可少,一般采用含氯消毒剂进行消毒。 中水处理的工艺流程主要取决于中水水源和中水的用途,中水水源不仅影响处理工艺的选择,而且影响处理成本,因此,中水水源的选择十分关键;目前,我国主要以小区生活污水作为中水水源,所处理的中水主要用于浇花、冲厕、洗车等。当以城市污水处理厂二级处理出水为中水水源时,可采用物化+消毒工艺,具体如下: 源水--->调节池--->过滤池--->消毒池--->储水池 --->排放当以小区生活污水作为中水水源时,可采用生化+消毒工艺,具体如下: 源水--->水力筛--->调节池--->生化池--->过滤池 --->消毒池--->储水池--->排放上述工艺设施可根据现场具体情况,设计成地上式或地埋式结构。 一体化中水回用设备是将中水回用处理的几个单元集中在一台设备内进行,其特点是结构紧凑、占地面积小、自动化程度高,一般的处理量小于1500

污水处理方式的比较

污水处理基本知识 第一部分:基本概念 1、污染物的生物化学转化技术: 1、活性污泥法:SBR、A/O、A/A/O、氧化沟等 2、生物膜法:生物滤池、生物转盘、生物接触氧化池等 3、厌氧生物处理法:厌氧消化、水解酸化池、UASB等 4、自然条件下的生物处理法:稳定塘、生态系统塘、土地处理法 2、根据常见污水处理方法分类 物理法:物理或机械的分离过程。过滤,沉淀,离心分离,上浮等 化学法:加入化学物质与污水中有害物质发生化学反应的转化过程。中和,氧化,还原,分解,混凝,化学沉淀等 物理化学法:物理化学的分离过程。气提,吹脱,吸附,萃取,离子交换,电解电渗析,反渗透等 生物法:微生物在污水中对有机物进行氧化,分解的新陈代谢过程。活性污泥,生物滤池,生物转盘,氧化塘,厌气消化等 3、废水的化学方法分类 混凝 向胶状浑浊液中投加电解质,凝聚水中胶状物质,使之和水分开 混凝剂有硫酸铝,明矾,聚合氯化铝,硫酸亚铁,三氯化铁等 含油废水,染色废水,煤气站废水,洗毛废水等 中和 酸碱中和,pH达中性 石灰,石灰石,白云石等中和酸性废水,CO2中和碱性废水 硫酸厂废水用石灰中和,印染废水等 氧化还原 投加氧化(或还原)剂,将废水中物质氧化(或还原)为无害物质 氧化剂有空气(O2),漂白粉,氯气,臭氧等 含酚,氰化物,硫铬,汞废水,印染,医院废水等 电解 在废水中插入电极板,通电后,废水中带电离子变为中性原子 电源,电极板等 含铬含氰(电镀)废水,毛纺废水

萃取 将不溶于水的溶剂投入废水中,使废水中的溶质溶于此溶剂中,然后利用溶剂与水的相对密度差,将溶剂分离出来 萃取剂:醋酸丁酯,苯,N—503等设备有脉冲筛板塔,离心萃取机等 含酚废水等 吸附(包含离子交换) 将废水通过固体吸附剂,使废水中溶解的有机或无机物吸附在吸附剂上,通过的废水得到处理 吸附剂有活性炭,煤渣,土壤等 吸附塔,再生装置 染色,颜料废水,还可吸附酚,汞,铬,氰以及除色,臭,味等用于深度处理。 4、现代污水处理工艺流程 现代污水处理技术,按处理程度划分,可分为一级、二级和三级处理。 一级处理,主要去除污水中呈悬浮状态的固体污染物质,物理处理法大部分只能完成一级处理的要求。经过一级处理的污水,BOD一般可去除30%左右,达不到排放标准。一级处理属于二级处理的预处理。 二级处理,主要去除污水中呈胶体和溶解状态的有机污染物质(BOD,COD物质),去除率可达90%以上,使有机污染物达到排放标准。 三级处理,进一步处理难降解的有机物、氮和磷等能够导致水体富营养化的可溶性无机物等。主要方法有生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗分析法等。 整个过程为通过粗格栅的原污水经过污水提升泵提升后,经过格栅或者砂滤器,之后进入沉砂池,经过砂水分离的污水进入初次沉淀池,以上为一级处理(即物理处理),初沉池的出水进入生物处理设备,有活性污泥法和生物膜法,(其中活性污泥法的反应器有曝气池,氧化沟等,生物膜法包括生物滤池、生物转盘、生物接触氧化法和生物流化床),生物处理设备的出水进入二次沉淀池,二沉池的出水经过消毒排放或者进入三级处理,一级处理结束到此为二级处理,三级处理包括生物脱氮除磷法,混凝沉淀法,砂滤法,活性炭吸附法,离子交换法和电渗析法。二沉池的污泥一部分回流至初次沉淀池或者生物处理设备,一部分进入污泥浓缩池,之后进入污泥消化池,经过脱水和干燥设备后,污泥被最后利用。

硝化反应和反硝化反应

硝化反应和反硝化反应 Prepared on 22 November 2020

一、硝化反应 在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 硝化反应包括亚硝化和硝化两个步骤: NH4+++H 2 O+2H+ NO 2 -+ 硝化反应总方程式: NH 3 ++若不考虑硝化过程硝化菌的增殖,其反应式可简化为 NH4++2O 2NO 3 -+H 2 O+2H+ 从以上反应可知: 1)1gNH 4+-N氧化为NO 3 -需要消耗2*50/14=碱(以CaCO 3 计) 2)将1gNH 4+-N氧化为NO 2 --N需要,氧化1gNO 2 --N需要,所以氧化1gNH 4 +-N需 要。 硝化细菌所需的环境条件主要包括以下几方面: a.DO:DO应保持在2-3mg/L。当溶解氧的浓度低于L时,硝化反应过程将受 到限制。 b.PH和碱度:,其中亚硝化菌,硝化菌。最适合PH为。碱度维持在70mg/L 以上。碱度不够时,应补充碱 c.温度:亚硝酸菌最佳生长温度为35℃,硝酸菌的最佳生长温度为35~ 42℃。15℃以下时,硝化反应速度急剧下降;5℃时完全停止。 d.污泥龄:硝化菌的增殖速度很小,其最大比生长速率为~(温度20℃,~。 为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。对于实际应用中,活性污泥法脱氮,污泥龄一般11~23d。 e.污泥负荷:负荷不应过高,负荷宜。因为硝化菌是自养菌,有机物浓度 高,将使异养菌成为优势菌种。总氮负荷应≤(m3硝化段·d),当负荷>(m3硝化段·d)时,硝化效率急剧下降。 f.C/N:BOD/TKN应<3,比值越小,硝化菌所占比例越大。 g.抑制物浓度:NH 4+-N≤200mg/L,NO 2 --N10-150mg/L,L。 h.ORP:好氧段ORP值一般在+180mV左右。 二、反硝化反应 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO 2--N和NO 3 --N还 原成N 2 的过程,称为反硝化。 反硝化反应方程式为: NO 2-+3H(电子供给体-有机物)+H 2 O+OH- NO 3-+5H(电子供给体-有机物)+2H 2 O+OH- 由以上反应可知: 1)还原1gNO 2--N或NO 3 --N,分别需要有机物(其O/H=16/2=8)3*8/14=和 5*8/14=,同时还产生50/14=碱(以CaCO 3 计) 2)如果废水中含有DO,它会使部分有机物用于好氧分解,则完成反硝化反应 所需要的有机物总量Cm=[NO 3--N]+[NO 3 --N]+DO 反硝化细菌所需的环境条件主要包括以下几方面: a.DO:DO应保持低于L(活性污泥法)或1mg/L(生物膜法)。

水处理工艺流程

1污水的分类及其来源 根据废水来源可分为城镇污水和农业废水。城市废水又分为:生活污水工业污水雨水 A生活污水 *主要包括粪便水、洗浴水、洗涤水和冲洗水。 *来源:除家庭生活排的废水外还有集体单位和公共事业单位排出的废水。 生活污水以有机物污染为主、可生化性好、但随着饮食结构的改变尤其是治病的新药层出不穷,部分排泄物与生活污水混为一体使污水结构趋于复杂并使处理效果的难度增加。 B工业污水 *是工业生产过程排放的废水,由工业生产车间与厂矿排出的绝大部分工业废水是用于冷却、洗涤及地面冲洗,因此,里面会含有工业生产所用的原料、产品、副产品、和中间产物。 *工业废水的排放特点:1具有排放量大、方式多、范围广。2种类繁多,浓度波动范围大。3迁移变化规律差异大。4毒性强、危害大。5 不宜治理,恢复困难 C雨水 *雨雪降至地面形成地表径流,工业废渣和垃圾堆放厂冲刷排水随着

时间季节环境的变化其成分复杂 D农业废水 *农业废水包括农田灌溉,畜牧业养殖,食品生产加工等过程中废液的排放,分散面积广,不易集中,治理困难。农药化肥,有机富营养物的含量较高 污水污染程度表示指标: 1) BOD -定义:水中有机污染物被好氧微生物分解至无机物时所消 耗的溶解氧的量。 ?指标:在20 C水温下,5d的BOD约占总BOD的70%—80%, 常用BOD20作为总生化需氧量La,工程上常用BOD5作为可生 物降解有机物的综合浓度指标。BOD意义: 直接反应水体中的有机污染情况 能表征易生物降解的有机物 BOD/COD>0.3才认为可采用生物处理 定义:在一定的严格的条件下,水中还原性物质与外 加的强氧化K2Cr2O7,KMnO4等)作用时所消耗的氧量,用 氧(O2)的mg/L表示。COD综合反映有机物质相对含量。

大中小型污水处理工艺选择

中、小型城市污水处理厂的优选工艺 中、小型城市污水处理厂的优选工艺 1 城市污水处理厂的规模划分 根据我国的实际情况,大体上可分为大型、中型和小型污水处理厂。 43/d的是大型污水厂,一般建在大城市,规模>10×10基建投资以亿元计,m 年运营费用以千万元计,目前全国已建成十多座,最大的是北京高碑店污水处理43/d。厂,规模达100×10 m43/d,10~10)×一般建于中、小城市和大城市m中型污水处理厂的规模为(1的郊县,基建投资几千万至上亿元,年运营费用几百万到上千万元,目前全国已建成几十座,正建的有上百座,今后一段时间还将大量增加。 43/d的是小型污水处理厂,一般建于小城镇,规模<1×10基建投资几百万m 到上千万,年运营费用几十万到上百万;由于经济条件的限制,目前这类污水厂刚刚在沿海地区经济发达的小城镇出现,今后会越来越多,最终小型污水厂的数量将超过大中型污水厂。 2 城市污水处理厂的主要工艺 城市污水的主要污染物是有机物,因此目前国内外大多采用生物法。也有采用化学法的,比如四川遂宁市的污水就采用化学强化一级处理,但这种工艺的去除率不高,出水达不到国家规定的标准,只适用于某些特定的对出水水质要求不高的地方。 在生物法中,有活性污泥法和生物滤池两大类,生物滤池的处理效率不高,而活性污泥法占绝我国只有少数几座生物滤池城市污水处理厂,卫生条件较差,大多数。 活性污泥法有很多种型式,使用最广泛的主要有三类:①传统活性污泥法和它的改进型A/O、A2/O工艺,②氧化沟,③SBR工艺。 传统活性污泥法是应用最早的工艺,它去除有机物的效率很高,在处理过程中产生的污泥采用厌氧消化方式进行稳定处理,对消除污水和污泥的污染很有效,而且能耗和运行费用都比较低,因而得到广泛应用。近20年来,水体富营养化的危害越来越严重,去除氮、磷列入了污水处理的目标,于是出现了活性污泥法的改进型A/O法和A2/O法。A/O法有两种,一种是用于除磷的厌氧—好氧工艺,一种是用于脱氮的缺氧—好氧工艺;A2/O法则是既脱氮又除磷的工艺。 氧化沟是活性污泥法的一种变型,在水力流态上不同于传统活性污泥法,是一种首尾相接的循环流,通常采用延时曝气,在污水净化的同时污泥得到稳定。它不设初沉池和污泥消化池,处理设施大大简化。氧化沟具有传统活性污泥法的优点,去除有机物的效率很高,也具有脱氮的功能。如果在沟前增设厌氧池,还可同时

常见污水处理工艺对比

常见污水处理工艺对比 一、A/O工艺 1、基本原理 A/O是Anoxic/Oxic的缩写,它的优越性是除了使有机污染物得到降解之外,还具有一定的脱氮除磷功能,是将厌氧水解技术用为活性污泥的前处理,所以A/O法是改进的活性污泥法。 A/O工艺将前段缺氧段和后段好氧段串联在一起,A段DO不大于0.2mg/L,O段DO=2~4mg/L。在缺氧段异养菌将污水中的淀粉、纤维、碳水化合物等悬浮污染物和可溶性有机物水解为有机酸,使大分子有机物分解为小分子有机物,不溶性的有机物转化成可溶性有机物,当这些经缺氧水解的产物进入好氧池进行好氧处理时,可提高污水的可生化性及氧的效率;在缺氧段,异养菌将蛋白质、脂肪等污染物进行氨化(有机链上的N或氨基酸中的氨基)游离出氨(NH3、NH4+),在充足供氧条件下,自养菌的硝化作用将NH3-N(NH4+)氧化为NO3-,通过回流控制返回至A池,在缺氧条件下,异氧菌的反硝化作用将NO3-还原为分子态氮(N2)完成C、N、O在生态中的循环,实现污水无害化处理。 2、A/O内循环生物脱氮工艺特点 根据以上对生物脱氮基本流程的叙述,结合多年的焦化废水脱氮的经验,我们总结出(A/O)生物脱氮流程具有以下优点: (1) 效率高。该工艺对废水中的有机物,氨氮等均有较高的去除效果。当总停留时间大于54h,经生物脱氮后的出水再经过混凝沉淀,可将COD值降至100mg/L以下,其他指标也达到排放标准,总氮去除率在70%以上。 (2) 流程简单,投资省,操作费用低。该工艺是以废水中的有机物作为反硝化的碳源,故不需要再另加甲醇等昂贵的碳源。尤其,在蒸氨塔设置有脱固定氨的装置后,碳氮比有所提高,在反硝化过程中产生的碱度相应地降低了硝化过程需要的碱耗。 (3) 缺氧反硝化过程对污染物具有较高的降解效率。如COD、BOD5和SCN-在缺氧段中去除率在67%、38%、59%,酚和有机物的去除率分别为62%和36%,故反硝化反应是最为经济的节能型降解过程。 (4) 容积负荷高。由于硝化阶段采用了强化生化,反硝化阶段又采用了高浓度污泥的膜技术,有效地提高了硝化及反硝化的污泥浓度,与国外同类工艺相比,具有较高的

硝化与反硝化

3.7 硝化与反硝化 废水中的氮常以合氮有机物、氨、硝酸盐及亚硝酸盐等形式存在。生物处理把大多数有机氮转化为氨,然后可进一步转化为硝酸盐。一、硝化与反硝化 (一) 硝化 在好氧条件下,通过亚硝酸盐菌和硝酸盐菌的作用,将氨氮氧化成亚硝酸盐氮和硝酸盐氮的过程,称为生物硝化作用。 反应过程如下: 亚硝酸盐菌 NH4++3/2O2 NO2-+2H++H O-△E △E=278.42KJ 第二步亚硝酸盐转化为硝酸盐: 硝酸盐菌 NO-+1/2O2 NO3--△E △E=278.42KJ 这两个反应式都是释放能量的过程,氨氮转化为硝态氮并不是去除氮而是减少它的需氧量。上诉两式合起来写成: NH4++2O2 NO3-+2H++H2O-△E △E=351KJ 综合氨氧化和细胞体合成反应方程式如下: NH4+1.83O2+1.98HCO3- 0.02C5H7O2N+0.98 NO3-+1.04 H2O+1.88H2CO3 由上式可知:(1)在硝化过程中,1g氨氮转化为硝酸盐氮时需氧4.57g;(2)硝化过程中释放出H+,将消耗废水中的碱度,每氧化lg 氨氮,将消耗碱度(以CaCO3计) 7.lg。 影响硝化过程的主要因素有: (1)pH值当pH值为8.0~8.4时(20℃),硝化作用速度最快。

由于硝化过程中pH将下降,当废水碱度不足时,即需投加石灰,维持pH值在7.5以上; (2)温度温度高时,硝化速度快。亚硝酸盐菌的最适宜水温为35℃,在15℃以下其活性急剧降低,故水温以不低于15℃为宜; (3)污泥停留时间硝化菌的增殖速度很小,其最大比生长速率为=0.3~0.5d-1(温度20℃,pH8.0~8.4)。为了维持池内一定量的硝化菌群,污泥停留时间必须大于硝化菌的最小世代时间。在实际运行中,一般应取>2 ; (4)溶解氧氧是生物硝化作用中的电子受体,其浓度太低将不利于硝化反应的进行。一般,在活性污泥法曝气池中进行硝化,溶解氧应保持在2~3mg/L以上; (5)BOD负荷硝化菌是一类自养型菌,而BOD氧化菌是异养型菌。若BOD5负荷过高,会使生长速率较高的异养型菌迅速繁殖,从而佼白养型的硝化菌得不到优势,结果降低了硝化速率。所以为要充分进行硝化,BOD5负荷应维持在0.3kg(BOD5)/kg(SS).d以下。 (二) 反硝化 在缺氧条件下,由于兼性脱氮菌(反硝化菌)的作用,将NO2--N和NO3--N还原成N2的过程,称为反硝化。反硝化过程中的电子供体(氢供体)是各种各样的有机底物(碳源)。以甲醇作碳源为例,其反应式为: 6NO3-十2CH3OH→6NO2-十2CO2十4H2O 6NO2-十3CH3OH→3N2十3CO2十3H2O十60H-

相关主题