搜档网
当前位置:搜档网 › g3.1047三角函数的性质(1)

g3.1047三角函数的性质(1)

g3.1047三角函数的性质(1)
g3.1047三角函数的性质(1)

g3.1047三角函数的性质(1)

一、知识回顾

1、三角函数的定义域

2、三角函数的值域

3、函数的周期

4、函数)sin(?ω+=x A y 、)cos(?ω+=x A y 的最小正周期

函数)tan(?ω+=x A y 、)cot(?ω+=x A y 的最小正周期

二、基本训练

1、已知36ππ<≤-x ,1

1cos +-=m m x ,则m 的取值范围是 A 、m <-1 B 、3473+≤

C 、m >3

D 、3473+<

2、若函数)0(cos sin )(>+=a ax a ax a x f 的最大值是22,则函数)(x f 的最小正周期是

A 、4π

B 、2

π C 、π D 、2π 3、已知函数3

sin )(x x f π=,则=++++)2003()3()2()1(f f f f A 、2003 B 、3 C 、0 D 、3-

4、(05全国卷Ⅱ)函数f (x ) = | sin x +cos x |的最小正周期是

(A) 4π (B)2

π (C )π (D )2π 5、(05浙江卷)函数y =sin(2x +6

π)的最小正周期是 (A) 2

π (B) π (C) 2π (D)4π 6、(05上海卷)函数x x x y cos sin 2cos +=的最小正周期T=__________.

7、函数1

sin 23sin 4-+=

x x y 的值域是________。 8、已知函数)0)(63sin(>+-=b x b a y π的最大值为23,最小值为2

1-,则=a __,=b ___。

三、例题分析:

例1、(1)求函数x x y tan log 22

1++=的定义域; (2)求函数)sin(cos x y =的定义域。

例2、已知函数x x x x x f 44sin cos sin 2cos )(--=。

(1)求)(x f 的最小正周期;

(2)若]2

,0[π∈x ,求)(x f 的值域。

例3、已知函数)0(23sin cos )(2≠++--=a b a x a x a x f 的定义域为]2

,2[ππ-,值域为[-4, 5],求a ,b 的值。

例4、已知函数a x x x f ++-=sin sin )(2。

(1)当0)(=x f 有实数解时,求实数a 的取值范围;

(2)若4

17)(1≤≤x f 对一切实数x 恒成立,求实数a 的取值范围。

例5、(05广东卷)

化简),,)(23

sin(32)2316cos()2316cos()(Z k R x x x k x k x f ∈∈++--+++=πππ并求函数)(x f 的值域和最小正周期.

四、作业 同步练习g3.1047三角函数的性质(1)

1、当]2

,2[ππ-∈x 时,函数x x x f cos 3sin )(+=的值域是 ( ) A 、[-1, 1] B 、2

1[-,1] C 、[-2, 2] D 、[-1, 2] 2、若πβα=+2,则αβsin 6cos -=y 的最大值和最小值分别是 ( )

A 、7, 5

B 、7,211-

C 、5,2

11- D 、7,-5 3、设函数)5

2sin(2)(ππ+=x x f ,若对任意R x ∈都有)()()(21x f x f x f ≤≤成立,则||21x x -的最小值为 ( )

A 、4

B 、2

C 、1

D 、2

1

4、(05全国卷Ⅲ)设02x π≤≤,sin cos x x =-,则

(A) 0x π≤≤ (B) 744x π

π≤≤ (C) 544x ππ≤≤ (D) 322

x ππ≤≤ 5、(05江西卷)设函数)(|,3sin |3sin )(x f x x x f 则+=为

( ) A .周期函数,最小正周期为3

2π B .周期函数,最小正周期为3

π C .周期函数,数小正周期为π2 D .非周期函数

6、(05湖北卷)函数1cos |sin |-=x x y 的最小正周期与最大值的和为 .

7、若34ππ≤≤x ,则函数x

x y cos )6sin(2π

+=的值域是_____。 8、函数)3sin 2lg(cos 21+++=x x y 的定义域是_________。

9、、已知函数x x x x x x f cos sin sin 3)3

sin(cos 2)(2+-+=π。 (1)求)(x f 的最小正周期;

(2)求)(x f 的最小值及取得最小值时相应的x 值;

(3)若]12

7,12[ππ∈x ,求满足1)(=x f 的x 值。 10、若αβαcos 2sin 2sin 22=+,求βα22sin sin +=y 的最大、最小值。

11、求函数),20(1sin 2cos )(2R a x x a x x f ∈<≤-+=π的最值。

12、若022sin 2cos 2<--+m m θθ对任意实数θ恒成立,试求实数m 的取值范围。

参考答案:

基本训练:1、C 2、C 3、C 4、C 5、B

6、π .

7、[)∞+??? ??∞-,731, .

8、21;1. 例题分析:例1(1)]4,[)2,0(ππ

(2)},2222|{Z k k x k x ∈+≤≤-π

ππ

π

例2(1)π (2)]1,2[-

例3、6,4=-=b a 或5,4-==b a

例4(1)]2,4

1[- (2)[3, 4] 作业:1—5、DDBC A

6、2

12-π. 7、431≤≤+x 8、)(32232Z k k x k ∈+≤<-ππππ 9、(1)π (2)2;()12x k k Z ππ=+∈ (3)4

x π= 10、1max =y ,222min -=y

11、当1-a 时,a

y 21max +-=,a y 21min --= 12、()1+∞

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A )513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB 5,则tan A 的值为 ( ) A . 5 B 25 C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A =5 12,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A=5 3,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ ABC 中, ο 90=∠C ,3cosB=2, AC=5 2 ,则 AB= . 3.已知Rt △ABC 中,,12,4 3 tan ,90==?=∠BC A C 求AC 、AB 和cos B .

4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长. 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则cos ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径, 若O ⊙的半径为32,2AC =,则sin B 的值是( )A .2 3

三角函数的图像与性质练习题

. 三角函数的图像与性质练习题 正弦函数、余弦函数的图象 A组 1.下列函数图象相同的是() A. y= sin x 与 y=sin(x+ π) B.y= cos x 与 y= sin - C.y= sin x 与 y=sin( -x) D.y=- sin(2π+x )与 y= sin x 解析 :由诱导公式易知 y= sin- = cos x,故选 B . 答案 :B 2.y= 1+ sin x,x∈[0,2π]的图象与直线y= 2 交点的个数是 () A.0 B.1 C.2 D.3 解析 :作出 y= 1+ sin x 在 [0,2 π]上的图象 ,可知只有一个交点. 答案 :B 3.函数y= sin(-x),x∈[0,2π]的简图是() 解析 :y=sin( -x)=- sin x,x∈ [0,2 π]的图象可看作是由y= sin x,x∈ [0,2 π]的图象关于 x 轴对称得到的 ,故选B. 答案 :B 4.已知cos x=- ,且x∈[0,2π],则角x等于() A. 或 B.或 C.或 D.或 解析 :如图 :

由图象可知 ,x=或. 答案 :A 5.当x∈[0,2π]时,满足sin-≥ -的x的取值范围是() A. B. C. D. 解析 :由 sin -≥ - ,得cos x≥ - . 画出 y=cos x,x∈ [0,2 π],y=- 的图象 ,如图所示 . ∵cos = cos =- ,∴当 x∈ [0,2 π]时 ,由 cos x≥- ,可得 x∈. 答案 :C 6.函数y= 2sin x与函数y=x图象的交点有个. 解析 :在同一坐标系中作出函数 y= 2sin x与 y=x 的图象可见有3个交点. 答案 :3 7.利用余弦曲线,写出满足cos x>0,x∈ [0,2 π]的 x 的区间是. 解析 :画出 y= cos x,x∈ [0,2 π]上的图象如图所示 . cos x>0 的区间为 答案 : 8.下列函数的图象:①y= sin x-1;② y=| sin x|;③y=- cos x;④ y=;⑤y=-.其中与函数y= sin x 图象形状完全相同的是.(填序号 )

锐角三角函数经典总结

锐角三角函数与特殊角专题训练 【基础知识精讲】 一、 正弦与余弦: 1、 在ABC ?中,C ∠为直角,我们把锐角A 的对边与斜边的比叫做A ∠的正弦,记 作A sin , 锐角A 的邻边与斜边的比叫做A ∠的余弦,记作A cos . 斜边 的邻边 斜边 的对边 A A A A ∠= ? ∠= cos sin . 若把A ∠的对边BC 记作a ,邻边AC 记作b ,斜边AB 记作c , 则c a A = sin ,c b A =cos 。 2、当A ∠为锐角时, 1sin 0<

反三角函数及性质

y=arcs inx. 函数y=sinx , x€ [- n /2 , n /2]的反函数叫做反正弦函数,记作x=arcsiny. 习惯上用x表示自变量,用y表示函数,所以反正弦函数写成y=arcsinx.的形式 请注意正弦函数y=sinx,x € R因为在整个定义域上没有一一对应关系,所以不存在反函数。 反正弦函数只对这样一个函数y=sinx , x€ [- n /2 , n /2]成立,这里截取的是正弦函数靠近原点的一个单调区间,叫做正弦函数的主值区间。 理解函数y=arcsinx中,y表示的是一个弧度制的角,自变量x是一个正弦值。这点必须牢记 性质 根据反函数的性质,易得函数y=arcsinx的,定义域[-1 , 1],值域[-n /2 , n /2],是单调递增函数 图像关于原点对称,是奇函数 所以有arcsin(-x)=-arcsinx ,注意x的取值范围:x € [-1 , 1] 导函数: arcsinx = (土匚(-1,1)) vl-x2,导函数不能取|x|=1 * / fim (arcsinx) =-oo lim {arcsinx) = +oo - . ,:T 1 反正弦恒等式 sin(arcsinx)=x , x € [-1 , 1] (arcsinx)'=1/ V (1-x A2) arcsin x=-arcs in(-x) arcs in ( sin x)=x , x 属于[0, n /2]

arccosx 反三角函数中的反余弦。意思为:余弦的反函数,函数为y=arccosx,函数图像如右下图。 就是已知余弦数值,反求角度,如cos(a) = b,贝U arccos(b) = a ; 它的值是以弧度表达的角度。定义域:【-1 , 1】。 由于是多值函数,往往取它的单值支,值域为【0, n ],记作y=arccosx,我们称它叫 做反三角函数中的反余弦函数的主值, arcta n x 反三角函数中的反正切。意思为:tan(a) = b;等价于arctan(b) = a fflil 定义域:{x lx € R},值域:y € (- n/2,冗/2) 计算性质: tan( arcta na)=a arcta n(-x)=-arcta nx arctan A + arctan B=arcta n(A+B)/(1-AB) arctan A - arctan B=arcta n(A-B)/(1+AB) 反三角函数在无穷小替换公式中的应用:当x T 0时,arctanx~x

必修4三角函数的图像和性质专题练习

三角函数图像及性质练习题 1.已知4k <-,则函数cos 2(cos 1)y x k x =+-的最小值是( ) A.1 B.1- C.21k + D.21k -+ 2.已知f (x )的图象关于y 轴对称,且它在[0,+∞)上是减函数,若f (lg x )>f (1),则x 的取值范围是( ) A.( 10 1 ,1) B.(0, 101)∪(1,+∞) C.( 10 1,10) D.(0,1)∪(10,+∞) 3.定义在R 上的函数f (x )既是偶函数又是周期函数.若f (x )的最小正周期是π,且当x ∈[0,2π ] 时,f (x )=sin x ,则f ( 3 π 5)的值为( ) A.- 21 B.2 1 C.-23 D.23 4.定义在R 上的函数f (x )满足f (x )=f (x +2),当x ∈[3,5]时,f (x )=2-|x -4|,则( ) A.f (sin 6π)<f (cos 6π ) B.f (sin1)>f (cos1) C.f (cos 3π2)<f (sin 3 π2) D.f (cos2)>f (sin2) 5.关于函数f (x )=sin 2x -( 32)|x |+21 ,有下面四个结论,其中正确结论的个数为 ( ) . ①()f x 是奇函数 ②当x >2003时,1 ()2 f x > 恒成立 ③()f x 的最大值是23 ④f (x )的最小值是12- A.1 B.2 C.3 D.4 6.使)tan lg(cos θθ?有意义的角θ是( ) A.第一象限的角 B.第二象限的角 C.第一、二象限的角 D.第一、二象限或y 轴的非负半轴上的角 7 函数lg(2cos y x =的单调递增区间为 ( ) . A .(2,22)()k k k Z ππππ++∈ B .11 (2,2)()6 k k k Z ππππ++ ∈ C .(2,2)()6 k k k Z π ππ- ∈ D .(2,2)()6 k k k Z π ππ+∈ 8.已知函数()sin()(0,)f x x x R ωφω=+>∈,对定义域内任意的x ,都满足条件(6)()f x f x +=,若 sin(3),sin(3)A x B x ωφωωφω=++=+-,则有 ( ) . A. A>B B. A=B C.A

三角函数图像和性质练习题

三角函数图像和性质练习题 三角函数的图像与性质练习题一、选择题 ,,1.已知函数f(x)=2sinx(>0)在区间[,]上的最小值是,2,则的最小值等于,,,,34 23A. B. C.2 D.3 32 ,,2.若函数的图象相邻两条对称轴间距离为,则等于 ( yx,,cos(),,(0),,23 1A( B( C(2 D(4 122 ,,3.将函数的图象上所有的点向左平行移动个单位长度,再把图象上各点的横坐标扩大到原来yxxR,,,sin()()46 的2倍(纵坐标不变),则所得到的图象的解析式为 5,x5,,,,A( B(,,, yxRsin()()yxxRsin(2)()21212 x,x5,C(yxR,,,sin()() D(,,, yxRsin()()212224 ,//y,cos(2x,),24.函数的图像F按向量a平移到F,F的解析式y=f(x),当 y=f(x)为奇函数时,向量a可以等于 6 ,,,,(,,2)(,2)(,,,2)(,,2)A. B. C. D. 6666 ,yx,,sin()5.将函数的图象向左平移个单位后,得到函数的图象,则等于( ) ,yx,sin,,,(02),,6 7,11,5,,A. B. C. D. 6666 ,,(,,x,)6.函数的值域为y,sin2x,3cos2x66 A. B. C. D. ,,,,,,,2,2,2,00,2[,3,0] ,,yx,,sin()7.将函数的图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再将所得的图象向左平移个33 单位,得到的图象对应的解析式是 ( )

111,,,yx,sinyxsin()A( B( 222 111,,,,,,yxsin(2)yxsin()C. D. 626 , ,1sin8.函数f(, ) = 的最大值和最小值分别是 ( ) cos, ,2 43 (A) 最大值和最小值0 (B) 最大值不存在和最小值 34 43(C) 最大值 , 和最小值0 (D) 最大值不存在和最小值, 34 33t,sin,,cos,sin,,cos,9.且,0,则的取值范围是( ) t A. B. C. D. ,,,,,,,,,,,,,2,0,2,2,1,0:1,2,3,0:3,,,complementary, and regulation freely of river lake water connected system, let library library connected, and River River communicates, ensure water resources left have live, and save of Xia, and long water, Increase the 10.把函数的图象沿着直线的方向向右下方平移个单位,得到函数的图象,则 22y,f(x)x,y,0y,sin3x ( ) A、 B、 y,sin(3x,2),2y,sin(3x,6),2 C、 D、 y,sin(3x,2),2y,sin(3x,6),2二、填空题 ,11.设函数若是奇函数,则= . ,f(x),f(x)f(x),cos(3x,,)(0,,,,). ,12.方程在区间内的解是 ( 2cos()1x,,(0,),4 ,13.函数为增函数的区间 y,2sin(,2x)(x,[0,,])6 sincosxx,,,xR,14.已知,则函数的最大值与最小值的和等于。 fxxx()maxsin,cos,,,,2,, 三、解答题 B,CcosA,2cos15.?ABC的三个内角为A、B、C,求当A为何值时,取得最大值,并求出这个最大值. 2

三角函数和反三角函数图像性质知识点总结

三角函数 1. 特殊锐角(0°,30°,45°,60°,90°)的三角函数值 2. 角度制与弧度制 设扇形的弧长为l ,圆心角为a (rad ),半径为R ,面积为S 角a 的弧度数公式 2π×(a /360°) 角度与弧度的换算 ①360°=2π rad ②1°=π/180rad ③1 rad=180°/π=57° 18′≈57.3° 弧长公式 l a R = 扇形的面积公式 12 s lR = 3. 诱导公式:(奇变偶不变,符号看象限) 所谓奇偶指是整数k 的奇偶性(k ·π/2+a ) 所谓符号看象限是看原函数的象限(将a 看做锐角,k ·π/2+a 之和所在象限) 注: ①:诱导公式应用原则:负化正、大化小,化到锐角为终了

4. 三角函数的图像和性质:(其中z k ∈) ①: 三角函数 x y sin = x y cos = x y tan = cot y x = 函 数 图 象 定义域 R R 2 x k π π≠+ x k π ≠ 值域 [-1,1] [-1,1] R R 周期 2π 2π π π 奇偶性 奇 偶 奇 非奇非偶 单 调 性 2,222k k ππππ? ?-+↑????2,222k k ππππ??-+↑???? []2,2k k πππ-↑ []2,2k k πππ+↓ ,22k k ππππ? ?-+↑???? [],k k πππ+↓ 对 称 性 :2 x k π π=+ 对称轴 对称中心:(,0)k π :x k π =对称轴 : 对称中心(+ ,0) 2k π π : 对称中心( ,0)2 k π 零值点 πk x = 2 π π+ =k x πk x = 2 π π+ =k x 最 值 点 2 π π+ =k x ,1max =y 2 π π- =k x ,1min -=y πk x 2=,1max =y ; 2y k ππ=+,1min -=y

三角函数的图象与性质练习题及答案

三角函数的图象与性质练习题 一、选择题 1.函数f (x )=sin x cos x 的最小值是 ( ) A .-1 B .-12 C.12 D .1 2.如果函数y =3cos(2x +φ)的图象关于点? ?? ?? 4π3,0中心对称,那么|φ|的最小值为 ( ) A.π6 B.π4 C.π3 D.π2 3.已知函数y =sin πx 3在区间[0,t ]上至少取得2次最大值,则正整数t 的最小值是 ( ) A .6 B .7 C .8 D .9 4.已知在函数f (x )=3sin πx R 图象上,相邻的一个最大值点与一个最小值点恰好在x 2+y 2=R 2上,则f (x ) 的最小正周期为 ( ) A .1 B .2 C .3 D .4 5.已知a 是实数,则函数f (x )=1+a sin ax 的图象不可能是 `( D ) 6.给出下列命题: ①函数y =cos ? ???? 23x +π2是奇函数; ②存在实数α,使得sin α+cos α=32; ③若α、β是第一象限角且α<β,则tan α

π4) D.y=cos 2x =2cos2x B.y=2sin2x C.y=1+sin(2x+

三角函数计算公式大全

三角函数计算公式大全-CAL-FENGHAI.-(YICAI)-Company One1

三角函数公式 三角函数是数学中属于初等函数中的超越函数的函数。它们的本质是任何角的集合与一个比值的集合的变量之间的映射。通常的三角函数是在平面直角坐标系中定义的。其定义域为整个实数域。另一种定义是在直角三角形中,但并不完全。现代数学把它们描述成无穷数列的极限和微分方程的解,将其定义扩展到复数系。 三角函数公式看似很多、很复杂,但只要掌握了三角函数的本质及内部规律,就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在。 定义式 锐角三角函数任意角三角函数 图形 直角三角形 任意角三角函数 正弦(sin) 余弦(cos) 正切(tan或t g) 余切(cot或ct g) 正割(sec) 余割(csc) 表格参考资料来源:现代汉语词典[1]. 函数关系 倒数关系:①;②;③ 商数关系:①;②. 平方关系:①;②;③.

诱导公式 公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限[2].即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号;(2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

反三角函数的概念和性质

反三角函数的概念和性质 一.基本知识: 1.正确理解反三角函数的定义,把握三角函数与反三角函数的之间的反函数关系; 2.掌握反三角函数的定义域和值域,y=arcsin x, x∈[-1, 1], y∈[-,], y=arccos x, x∈[-1, 1], y∈[0, π], 在反三角函数中,定义域和值域的作用更为明显,在研究问题时,一定要先看清楚变量的取值范围; 3.符号arcsin x可以理解为[-,]上的一个角或弧,也可以理解为区间[-,] 上的一个实数;同样符号arccos x可以理解为[0,π]上的一个角或弧,也可以理解为区间[0,π]上的一个实数; 4.y=arcsin x等价于sin y=x, y∈[-,], y=arccos x等价于cos y=x, x∈[0, π], 这两个等价关系是解反三角函数问题的主要依据; 5.注意恒等式sin(arcsin x)=x, x∈[-1, 1] , cos(arccos x)=x, x∈[-1, 1], arcsin(sin x)=x, x∈[-,], arccos(cos x)=x, x∈[0, π]的运用的条件; 6.掌握反三角函数的奇偶性、增减性的判断,大多数情况下,可以与相应的三角函数的图象及性质结合起来理解和应用; 7.注意恒等式arcsin x+arccos x=, arctg x+arcctg x=的应用。 例一.下列各式中成立的是(C)。 (A)arcctg(-1)=-(B)arccos(-)=- C)sin[arcsin(-)]=-(D)arctg(tgπ)=π

解:(A)(B)中都是值域出现了问题,即arcctg(-1)∈(0, π), arccos(-)∈[0, π], (D)中,arctg(tgπ)∈[-, ], 而π[-,], ∴ (A)(B)(D)都不正确。 例二.下列函数中,存在反函数的是(D)。 (A)y=sin x, x∈[-π, 0] (B)y=sin x, x∈[, ] (C)y=sin x, x∈[,] (D)y=sin x, x∈[,] 解:本题是判断函数y=sin x在哪个区间上是单调函数,由于y=sin x在区间[,]上是单调递减函数,所以选D。 例三. arcsin(sin10)等于(C)。 (A)2π-10 (B)10-2π(C)3π-10 (D)10-3π 解:本题是判断哪个角度的正弦值与sin10相等,且该角度在[-, ]上。 由于sin(3π-10)=sin(π-10)=sin10, 且3π-10∈[-, ], 所以选C。( 例四.求出下列函数的反函数,并求其定义域和值域。 (1)f (x)=2sin2x, x∈[, ];(2)f (x)=+arccos2x. 解:(1) x∈[, ], 2x∈[, ], 2x-π∈[-, ], -2≤y≤2

三角函数的图像与性质练习题(基础)

三角函数的图像与性质练习题(基础) 1、函数2 1 cos -=x y 的定义域是( ) A. ???? ??-3,3ππ B.Z k k k ∈??????+-,3,3ππππ C.Z k k k ∈????? ? +-,32,32ππππ D.R 2、函数?? ? ? ? - =4sin πx y 的图像的一个对称中心是( ) A. ()0,π- B.??? ??-0,43π C. ??? ??0,23π D.?? ? ??0,2π 3、函数?? ? ? ?-=4sin )(πx x f 的图像的一条对称轴是( ) A. 4 π = x B.2 π = x C.4 π - =x D.2 π - =x 4、把函数?? ? ? ?- =25sin πx y 的图像向右平移4π 个单位,再把所得函数图像上各点的 横坐标缩短到原来的 2 1 ,所得到的函数解析式为( ) A.??? ? ?- =4310sin πx y B.?? ? ?? -=2710sin πx y C. ??? ??-=2310sin πx y D.??? ? ? -=4710sin πx y 5、函数x x y sin 2|sin |-=的值域是( ) A. []1,3-- B.[]3,1-- C. []3,0 D.[]0,3- 6、函数()0tan )(>=ωωx x f 图像的相邻两支截直线4π = y 所得线段长为 4 π, 则)4 (π f =( ) A. 0 B. 1 C. -1 D. 4 π 7、下列关系式正确的是( ) A. 168sin 10cos 11sin << B. 10cos 11sin 168sin << C. 10cos 168sin 11sin << D. 11sin 10cos 168sin << 8、已知函数x x y 2cos 4sin 22 -?? ? ? ?+=π,则它的周期和图像的一条对称轴是( ) A.8 ,2π π= =x T B.83,2ππ= =x T C.8,ππ==x T D.8 3,ππ==x T 9、函数)2 5sin( 2cos )(x x x f ++=π 是( ) A. 非奇非偶函数 B. 仅有最小值的奇函数 C. 仅有最大值的偶函数 D. 有最大值又有最小值的偶函数 10、函数?? ? ??-=x y 24tan π的定义域是_________ 11、若动直线a x =与函数x x f sin )(=和x x g cos )(=的图像分别交于M 、N 两点,则||MN 的最大值为__________ 12、设函数2 cos x y π=的图像位于y 轴右侧所有的对称中心从左到右依次为, ,,,,21 n A A A 则10A 的坐标为_________ 13、设函数()()0cos 2cos sin )(22 >++=ωωωωx x x x f 的最小正周期为3 2π . (1)求ω的值 (2)若函数)(x g y =的图像向右平移2 π 个单位长度得到,求)(x g y =的单调增区间.

三角函数公式大全与立方公式

【立方计算公式,不是体积计算公式】 完全立方和公式 (a+b)^3 =(a+b)(a+b)(a+b) = (a^2+2ab+b^2)(a+b)=a^3 + 3(a^2)b + 3a(b^2)+ b^3 完全立方差公式 (a-b)^3 = (a-b)(a-b)(a-b)= (a^2-2ab+b^2)(a-b) = a^3 - 3(a^2)b + 3a(b^2)-b^3 立方和公式: a^3+b^3 = (a+b) (a^2-ab+b^2) 立方差公式: a^3-b^3=(a-b) (a^2+ab+b^2) 3项立方和公式: a^3+b^3+c^3-3abc=(a+b+c)(a^2+b^2+c^2-ab-bc-ac) 三角函数公式 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) =tanAtanB -1tanB tanA + tan(A-B) =tanAtanB 1tanB tanA +- cot(A+B) =cotA cotB 1-cotAcotB + cot(A-B) =cotA cotB 1cotAcotB -+ 倍角公式 tan2A =A tan 12tanA 2- Sin2A=2SinA?CosA Cos2A = Cos 2A-Sin 2A=2Cos 2A-1=1-2sin 2A 三倍角公式 sin3A = 3sinA-4(sinA)3 cos3A = 4(cosA)3-3cosA tan3a = tana ·tan(3π+a)·tan(3 π-a) 半角公式 sin(2A )=2cos 1A - cos(2A )=2 cos 1A + tan(2A )=A A cos 1cos 1+- cot(2A )=A A cos 1cos 1-+ tan(2 A )=A A sin cos 1-=A A cos 1sin + 和差化积 sina+sinb=2sin 2b a +cos 2b a - sina-sinb=2cos 2b a +sin 2 b a - cosa+cosb = 2cos 2b a +cos 2b a - cosa-cosb = -2sin 2b a +sin 2 b a - tana+tanb=b a b a cos cos )sin(+ 积化和差

三角函数 正切、余切图象及其性质

正切、余切函数图象和性质反三角函数[知识要点] 1.正切函数、余切函数的图象与性质 2.反三角函数的图象与性质 3.已知三角函数值求角 [目的要求] 1.类比正、余弦函数的研究,讨论正切函数与余切函数的图象和性质,关注其不同点. 2.从反函数概念入手,引入反三角函数定义,并定性讨论其图象和性质. 3.能熟练运用正、余弦函数性质解决问题. 4.能用反三角函数值表示不同范围内的角. [重点难点] 1.正切函数图象与性质2.已知三角函数值求角 [内容回顾] 一、正切函数与余切函数图象 由前面我们正、余弦函数图象和性质的过程知,在中学阶段,对一个函数的认识,多是“由图识性”.因此,可以先作出正、余切函数的图象. 作三角函数图象的一般方法,有描点法和平移三角函数线法. 与正、余弦函数的五点法作图相类似,我们可以选择正切函数在一个周期内的图象上三点及两条重要的辅导线——渐近线,来作正切函数在区间上的简图,不妨称之为“三点两线法”. 若想迅速作出余切函数y=cotx的图象,如何选择“三点”及“两线”呢?请大家看余切函数的图象,不难得到答案. 二、正、余切函数的性质 由图象可得: y=tanx y=cotx 定义域值域R R 单调性在上单增(k∈Z) 在上单减(k∈Z) 周期性T=π T=π 对称性10 对称中心,奇函数(k∈Z) 20 对称轴;无10 对称中心,奇函数(k∈Z) 20 对称轴;无 注: 1、由定义域知,y=tanx与y=cotx图象都存在无数多个间断点(不连续点). 2、每个单调区间一定是连续的.

3、由单调性可解决比较大小问题,但要务必使两个自变量在同一单调区间内. 三、反三角函数的概念和图象 四种三角函数都是由x到y的多值对应,要使其有反函数,必须缩小自变量x的范围,使之成为由x到y的对应.从方便的角度而言,这个x的范围应该(1)离原点较近;(2)包含所有的锐角;(3)能取到所有的函数值;(4)最好是连续区间.从这个原则出发,我们给出如下定义: 1.y=sinx, x∈的反函数记作y=arcsinx, x∈[-1,1],称为反正弦函数. y=cosx, x∈[0, π]的反函数记作y=arccosx, x∈[-1,1],称为反余弦函数. y=tanx,x∈的反函数记作y=arctanx, x∈R,称为反正切函数. y=cotx,x∈(0, π)的反函数记作y=arccotx, x∈R,称为反余切函数. 2.反三角函数的图象 由互为反函数的两个函数图象间的关系,可作出其图象. 注:(1)y=arcsinx, x∈[-1,1]图象的两个端点是 (2)y=arccosx, x∈[-1,1]图象的两个端点是(1,0)和(-1,π). (3)y=arctanx, x∈R图象的两条渐近线是和. (4)y=arccotx, x∈R图象的两条渐近线是y=0和y=π. 四、反三角函数的性质由图象,有 y=arcsinx y=arccosx y=arctanx y=arccotx 定义域[-1,1] [-1,1] R R 值域[0, π] (0, π) 单调性在[-1,1]上单增在[-1,1]上单减在R上单增在R上单减对称性10对称中心(0,0)奇函数 20对称轴;无10对称中心非奇非偶 20对称轴;无10对称中心 (0,0)奇函数 20对称轴;无10对称中心非奇非偶 20对称轴;无周期性无无无无 另外: 1.三角的反三角运算 arcsin(sinx)=x(x∈)arccos(cosx)=x (x∈[0, π]) arctan(tanx)=x(x∈)arccot(cotx)=x(x∈(0, π)) 2.反三角的三角运算 sin(arcsinx)=x (x∈[-1,1])cos(arccosx)=x (x∈[-1,1])

1.4三角函数的图像与性质测试题

1.4 三角函数的图像与性质 A 卷 基础训练 一、选择题 1、以下对正弦函数y =sin x 的图象描述不正确的是( ) A .在x ∈[2k π,2k π+2π](k ∈Z )上的图象形状相同,只是位置不同 B .介于直线y =1与直线y =-1之间 C .关于x 轴对称 D .与y 轴仅有一个交点 解析:选C.由正弦函数y =sin x 的图象可知,它不关于x 轴对称. 2、函数y =3cos(25x -π6 )的最小正周期是( ) A.2π5 B.5π2 C .2π D .5π 解析:选D.∵3cos[25(x +5π)-π6]=3cos(25x -π6+2π)=3cos(25x -π6 ), ∴y =3cos(25x -π6 )的最小正周期为5π. 3、下列命题中正确的是( ) A .y =-sin x 为奇函数 B .y =|sin x |既不是奇函数也不是偶函数 C . y =3sin x +1为偶函数 D .y =sin x -1为奇函数 解析:选A.y =|sin x |是偶函数,y =3sin x +1与y =sin x -1都是非奇非偶函数. 4.若函数y =sin(x +φ)(0≤φ≤π)是R 上的偶函数,则φ等于( ) A .0 B.π4 C.π2 D .π 解析:选C.由于y =sin(x +π2)=cos x ,而y =cos x 是R 上的偶函数,所以φ=π2 . 5、函数y =-sin x ,x ∈??? ?-π2,3π2的简图是( ) 解析:选D.用特殊点来验证.x =0时,y =-sin 0=0,排除选项A 、C ;又x =-π2 时,y =-sin ??? ?-π2=1,排除选项B. 6、函数y =1+sin x ,x ∈[0,2π]的图象与直线y =32 的交点个数为( ) A .1 B .2 C .3 D .0 解析:选B.作出两个函数的图象如下图所示,可知交点的个数为2. 7、若函数y =cos 2x 与函数y =sin(x +φ)在区间[0,π2 ]上的单调性相同,则φ的一个值是( ) A.π6 B.π4

三角函数计算练习(含详细答案)

三角函数计算练习 1.已知x €( A r 24 冗 :, 0), B . cosx=-贝U tan2x=() 5 D. _ 24 7 _ 7 24 C . ■ 7 2.COS240 ° = =() A B . _ 1 C.— D. 2 ~2 2 2 3.已知COS a =k , k € R, a €( TT 2, n ),贝9 sin ( n + a ) =( ) A -_ 7" B . Vi - C ?士钟.k D. -k 4. 已知角a 的终边经过点(-4, 3),贝U COS a = 5. COS480 °的值为 6. 已知.* ■ ,那么COS a = £ o 7. 已知 sin ( + a )=,贝V cos2 a 等于( 2 3 9. 已知 sin a =贝U COS2 a = 3 10. 若 COS ( a + )=—,贝V COS (2 a + )= 6 5 3 11. 已知 0 €( 0, n ),且 Sin ( 0 8.已知a 是第二象限角,P (X , F 为其终边上一点,且 V2 COS a = X , 4 则x= :)=|「则 tan2

试卷答案 1. D 考点:二倍角的正切. 专题:计算题. 分析:由cosx的值及x的范围,利用同角三角函数间的基本关系求出sinx的值,进而求 出tanx的值,然后把所求的式子利用二倍角的正切函数公式变形后,将tanx的值代入即 可求出值. 解答:解:由cosx= = , x€ (—一, 0), 5 2 得至U sinx=—',所以tanx=—丄 5 4 2X 则tan2x= 八亠二= 1 - tan X 1一 故选D 点评:此题考查了同角三角函数间的基本关系,以及二倍角的正切函数公式?学生求sinx 和tanx时注意利用x的范围判定其符合. 2. B 考点:运用诱导公式化简求值. 专题:计算题;三角函数的求值. 分析:运用诱导公式及特殊角的三角函数值即可化简求值. 解答: 解:cos240° =cos (180° +60°) = —cos60° =—, 2 故选: B. 点评:本题主要考查了诱导公式及特殊角的三角函数值在化简求值中的应用,属于基本知 识的考查. 3. A 考点:同角三角函数基本关系的运用;运用诱导公式化简求值. 专题:三角函数的求值. 分析:由已知及同角三角函数基本关系的运用可求sin a,从而由诱导公式即可得解. K 解答:解:T cos a =k, k€ R, a €(—, n ),

求锐角三角函数值的经典题型+方法归纳(超级经典好用)

求锐角三角函数值的几种常用方法 一、定义法 当已知直角三角形的两条边,可直接运用锐角三角函数的定义求锐角三角函数的值. 例1 如图1,在△ABC 中,∠C =90°,AB =13,BC =5,则sin A 的值是( ) (A ) 513 (B )1213 (C )512 (D )13 5 对应训练: 1.在Rt △ABC 中,∠ C =90°,若BC =1,AB tan A 的值为( ) A B C .1 2 D .2 二、参数(方程思想)法 锐角三角函数值实质是直角三角形两边的比值,所以解题中有时需将三角函数转化为线 段比,通过设定一个参数,并用含该参数的代数式表示出直角三角形各边的长,然后结合相关条件解决问题. 例2 在△ABC 中,∠C =90°,如果tan A = 5 12 ,那么sin B 的值是 . 对应训练: 1.在△ABC 中,∠C =90°,sin A= 5 3 ,那么tan A 的值等于( ). A .35 B . 45 C . 34 D . 43 2.已知△ABC 中, 90=∠C ,3cosB=2, AC=52 ,则AB= . 3.已知Rt △ABC 中,,12,4 3tan ,90==?=∠BC A C 求AC 、AB 和cos B . 4.已知:如图,⊙O 的半径OA =16cm ,OC ⊥AB 于C 点,?=∠4 3sin AOC 求:AB 及OC 的长.

第8题图 A D E C B F 三、等角代换法 当一个锐角的三角函数不能直接求解或锐角不在直角三角形中时,可将此角通过等 角转换到能够求出三角函数值的直角三角形中,利用“两锐角相等,则三角函数值也相等” 来解决. 例3 在Rt △ABC 中,∠BCA =90°,CD 是AB 边上的中线,BC =5,CD =4,则c o s ∠ACD 的值为 . 对应训练 1.如图,O ⊙是ABC △的外接圆,AD 是O ⊙的直径,若O ⊙的半径为 3 2 ,2AC =,则s in B 的值是( )A .23 B .32 C .34 D .4 3 2. 如图4,沿AE 折叠矩形纸片ABCD ,使点D 落在BC 边的点F 处.已知8AB =,10BC =, AB=8,则tan EFC ∠的值为 ( )A.34 B.43 C.35 D.45 3. 如图6,在等腰直角三角形ABC ?中,90C ∠=?,6AC =,D 为AC 上一点,若 1tan 5 DBA ∠ = ,则AD 的长为( ) A .2 C .1 D .4. 如图,直径为10的⊙A 经过点(05)C ,和点(00)O ,,与x 轴的正半轴交于点D ,B 是y 轴右侧 圆弧上一点,则cos ∠OBC 的值为( )A . 12 B .2 C .35 D .45 5.如图,角α的顶点为O ,它的一边在x 轴的正半轴上,另一边OA 上有一点P (3,4),则 sin α= . 6.(庆阳中考)如图,菱形ABCD 的边长为10cm ,DE ⊥AB ,3sin 5 A =,则这个菱形的面积= cm 2 . 7. 如图6,在Rt △ABC 中,∠C =90°,AC =8,∠A AD = 3 3 16求 ∠B 的度数及边BC 、AB 的长. D A B C

人教新课标A版高中必修4数学1.4 三角函数的图象与性质同步检测B卷

人教新课标A版必修4数学1.4 三角函数的图象与性质同步检测B卷姓名:________ 班级:________ 成绩:________ 一、选择题 (共14题;共28分) 1. (2分)在等比数列{an}中,a4a1= ,则tan(a2a3)=() A . ﹣ B . C . D . 2. (2分)函数y=tan(x﹣)的定义域是() A . {x∈R|x≠kπ+,k∈Z} B . {x∈R|x≠kπ﹣,k∈Z} C . {x∈R|x≠2kπ+,k∈Z} D . {x∈R|x≠2kπ﹣,k∈Z} 3. (2分)函数y=tanα的对称中心坐标为() A . (kπ,0) B . C . (, 0) D . (2kπ,0)

4. (2分)已知正切函数y=tanx的图象关于点(θ,0)对称,则sinθ=() A . ﹣1或0 B . 1或0 C . ﹣1或0或1 D . 1或﹣1 5. (2分) (2018高一下·宁夏期末) 下列关于函数的结论正确的是() A . 是偶函数 B . 关于直线对称 C . 最小正周期为 D . 6. (2分)已知函数y=tanωx在(-,)内是减函数,则() A . 0<ω≤1 B . ω≤﹣1 C . ω≥1 D . ﹣1≤ω<0 7. (2分)下列四个函数中,在(0,1)上为增函数的是() A . y=﹣log2x B . y=sinx C . D . y=arccosx

8. (2分)的值属于区间() A . B . C . D . 9. (2分)若函数是奇函数,则() A . 1 B . 0 C . 2 D . -1 10. (2分)(2020·贵州模拟) 设函数,则下列结论错误的是() A . 的一个周期为 B . 的图象关于直线对称 C . 的一个零点为 D . 在单调递减 11. (2分)(2017·泉州模拟) 已知曲线C:y=sin(2x+φ)(|φ|<)的一条对称轴方程为x= ,曲线C向左平移θ(θ>0)个单位长度,得到的曲线E的一个对称中心为(,0),则|φ﹣θ|的最小值是() A . B .

相关主题