搜档网
当前位置:搜档网 › 高中不等式的常用证明方法归纳总结

高中不等式的常用证明方法归纳总结

高中不等式的常用证明方法归纳总结
高中不等式的常用证明方法归纳总结

不等式的证明方法

不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。

注意ab b a 22

2

≥+的变式应用。常用2

222b

a b a +≥

+ (其中+∈R b a ,)来解决有关根式不等式的问题。 一、比较法

比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证:

a

c c b b a c b a +++++≥++111212121 证明:∵a,b 均为正数, ∴

0)

(4)(44)()(14141)(2

≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理

0)(41

4141)(2

≥+=

+-+-c b bc c b c b c b ,0)

(414141)(2

≥+=+-+-c a ac a c a c a c 三式相加,可得

01

11212121≥+-+-+-++a

c c b b a c b a ∴a

c c b b a c b a +++++≥++111212121 二、综合法

综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证:

31222≥

++c b a

证:2

222)(1)(3c b a c b a ++=≥++?∴

2222)()(3c b a c b a ++-++0

)()()(222222222222≥-+-+-=---++=a c c b b a ca

bc ab c b a

3、设a 、b 、c 是互不相等的正数,求证:)(4

4

4

c b a abc c b a ++>++

2

2442b a b a >+

2

2442c b c b >+

2

2442a c a c >+∴

222222444a c c b b a c b a ++>++

∵ c ab c b b a c b b a 2

2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+

)(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证:

)(22

2

2

2

2

2

c b a a c

c b

b a

++≥++

++

+

证明:∵

)

(2

2

2

2

2

2

2

2)(22b a b a b a b a

ab ab +≥++≥+∴≥+

2

)

(2

2

2

b a b a

+≥

+,两边开平方得

)(2

2222

2

b a b a b a

+≥+≥

+ 同理可得

)(2

2

2

2

c b c b

+≥

+)(2

2

2

2

a c a c

+≥

+三式相加,得 )(22

2

2

2

2

2

c b a a c

c b

b a

++≥+++++

5、),0(∞+∈y x 、且1=+y x ,证:9

)1

1)(11(≥++y x 。

证:

)1)(1()11)(11(y y x x y x y x ++++=++)

(25)2)(2(y x

x y y x x y ++=++=9225=?+≥ 6、已知.9

111111,,≥??? ??+??? ??

+

=+∈+

b a b a R b a 求证: 策略:由于的背后隐含说明1,,4121

,,2

=+∈≤???

??????

??+≤=+∈++b a R b a ab b a ab b a R b a .41 ≤ab 着一个不等式 证

4

1

1,,≤

∴=+∈+ab b a R b a 。

.91111.

981211111111111 ≥??

? ??+??? ??+∴=+≥+=+++=+++=??

?

??+??? ??+b a ab ab ab b a ab b a b a 而

三、分析法

分析法的思路是“执果索因”:从求证的不等式出发,探索使结论成立的充分条件,直至已成立的不等式。

7、已知a 、b 、c 为正数,求证:

)3(3)2(

23

abc c b a ab b a -++≤-+

证:要证:

)3(3)2(

23

abc c b a ab b a -++≤-+只需证:

3

32abc c ab -≤- 即:3

32abc ab c ≥+∵ 3333abc ab ab c ab ab c =≥++

成立∴ 原不等式成立

8、),0(∞+∈c b a 、、且1=++c b a ,求证3≤++c b a 。

证:3≤++c b a 3)(2

≤++?c b a 即:2222≤++ac bc ab

∵b a ab +≤2 c b bc +≤2 c a ac +≤2即2)()()(222=+++++≤++c a c b b a ac bc ab ∴原命题成立 四、换元法

换元法实质上就是变量代换法,即对所证不等式的题设和结论中的字母作适当的变换,以达到化难为易的目的。

9、

1

1

)1)(1(22≤--+b a ab 。

证明:令αsin =a 2π

πα+

≠k Z ∈k βsin =b

πβ+

≠k Z ∈k

β

αβαβαβαcos cos sin sin cos cos sin sin ±=?+=

1

)cos(≤±=βα∴

1

)1)(1(22≤--+b a ab

10、

122=+y x ,求证:22≤+≤-y x 证:由12

2=+y x 设αcos =x ,αsin =y ∴ ]

2,2[)4

sin(2sin cos -∈+

=+=+π

αααy x

∴ 22≤+≤-y x

11、已知a>b>c,求证:

.4

11c

a c

b b a -≥-+- 证明:∵a -b>0, b -c>0, a -c>0 ∴可设a -b=x, b -c=y (x, y>0) 则a -c= x + y, 原不等式

转化为证明

y x y x +≥+411即证4)11)((≥++y x y x ,即证42≥++x y y x ∵2≥+x

y y x ∴原不等式成立(当仅x=y 当“=”成立)

12、已知1≤x 2

+y 2

≤2,求证:

2

1≤x 2-xy +y 2

≤3. 证明:∵1≤x 2

+y 2

≤2,∴可设x = rcos θ,y = rsin θ,其中1≤r 2

≤2,0≤θ<π2.

∴x 2

-xy +y 2

= r 2

-r 2

sin θ2= r 2

(1-

21sin θ2),∵21≤1-21sin θ2≤2

3,∴21r 2≤r 2

(1-21sin θ2)≤2

3r 2,而21r 2≥21,23r 2≤3∴ 21≤x 2-xy +y 2

≤3. 13、已知x 2-2xy +y 2

≤2,求证:| x +y |≤10.

证明:∵x 2

-2xy +y 2

= (x -y)2

+y 2

,∴可设x -y = rcos θ,y = rsin θ,其中0≤r ≤2,0≤θ<π2. ∴| x +y | =| x -y +2y | = | rcos θ+2rsin θ| = r|5sin(θ+ractan 2

1

)|≤r 5≤10. 14、解不等式15+-

-x x >2

1

解:因为22)1()5(++-x x =6,故可令 x -5 =6 sin θ,1+x =6 cos θ,θ∈[0,2

π] 则原不等式化为 6 sin θ-6 cos θ >21所以6 sin θ >2

1

+6 cos θ 由θ∈[0,

2

π]知21+6 cos θ>0,将上式两边平方并整理,得48 cos 2

θ+46 cos θ-23<0

解得0≤cos θ<

246282-所以x =6cos 2

θ-1<12

4724-,且x ≥-1,故原不等式的解集是{x|-1≤x <

12

47

24-} .

15、-1≤2

1x --x ≤2.

证明:∵1-x 2

≥0,∴-1≤x ≤1,故可设x = cos θ,其中0≤θ≤π.

则21x --x =θ2

cos 1--cos θ= sin θ-cos θ=2sin(θ-

4π),∵-4π≤θ-4

π≤43π,

∴-1≤2sin(θ-

4

π)≤2,即-1≤2

1x --x ≤2. 五、增量代换法

在对称式(任意互换两个字母,代数式不变)和给定字母顺序(如a >b >c)的不等式,常用增量进行代换,代换的目的是减少变量的个数,使要证的结论更清晰,思路更直观,这样可以使问题化难为易,化繁为简. 16、已知a ,b ∈R ,且a +b = 1,求证:(a +2)2

+(b +2)2

2

25. 证明:∵a ,b ∈R ,且a +b = 1,∴设a =

2

1

+t ,b=21-t , (t ∈R)

则(a +2)2+(b +2)2= (21+t +2)2+(21-t +2)2= (t +25)2+(t -2

5)2= 2t 2

+225≥225.

∴(a +2)2+(b +2)2

≥2

25.

六、利用“1”的代换型

17、.

91

11 ,1 ,,,≥++=++∈+c b a c b a R c b a 求证:且已知策略:做“1”的代换。

证明: c c b a b c b a a c b a c b a +++

+++++=++1119

22233=+++≥??? ??++??? ??++??? ??++=c b b c c a a c b a a b .

七、反证法

反证法的思路是“假设→矛盾→肯定”,采用反证法时,应从与结论相反的假设出发,推出矛盾的过程中,每一步推理必须是正确的。

18、若p >0,q >0,p 3

+q 3

= 2,求证:p +q ≤2.证明:反证法

假设p +q >2,则(p +q)3

>8,即p 3

+q 3

+3pq (p +q)>8,∵p 3

+q 3

= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3

+q 3

= (p +q)( p 2

-pq +q 2

),又p >0,q >0 ? p +q >0, ∴pq >p 2

-pq +q 2

,即(p -q)2

<0,矛盾.故假设p +q >2不成立,∴p +q ≤2.

19、已知a 、b 、∈c (0,1),求证:b a )1(-,c b )1(-,a c )1(-,不能均大于41

证明:假设b a ?-)1(,c b ?-)1(,a c ?-)1(均大于41

∵ )1(a -,b 均为正 ∴

21

41)1(2)1(=>?-≥+-b a b a

同理2141)1(2)1(=>?-≥+-c b c b

21

2)1(>+-a c ∴ 2121212)1(2)1(2)1(++>+-++-++-a c c b b a

∴ 23

23>

不正确 ∴ 假设不成立 ∴ 原命题正确

20、已知a,b,c ∈(0,1),求证:(1-a )b, (1-b )c, (1-c )a 不能同时大于

4

1

。 证明:假设三式同时大于

41∵0<a <1 ∴1-a >0 ∴ 2

1

41)1(2

)1(=>

-≥+-b a b a 21、a 、b 、R c ∈,0>++c b a ,0>++ca bc ab ,0>??c b a ,求证:a 、b 、c 均为正数。

证明:反证法:假设a 、b 、c 不均为正数 又 ∵ 0>??c b a a 、b 、c 两负一正 不妨设0c 又 ∵ 0>++c b a ∴ 0)(>+->b a c 同乘以)(b a + ∴

2)()(b a b a c +-<+即0)(22<++-<++b ab a ab bc ac ,与已知0>++ca bc ab 矛盾

∴ 假设不成立 ∴ a 、b 、c 均为正数

八、放缩法

放缩时常用的方法有:1去或加上一些项2分子或分母放大(或缩小)3用函数单调性放缩4用已知不等式放缩 22、已知a 、b 、c 、d 都是正数,求证:1<

c b a b +++

d c b c

+++a d c d +++b

a d a ++<2.

证明:∵

d

c b a b +++<c b a b ++<b a b +,

d c b a c +++<d c b c ++<d c c +, d c b a d +++<a d c d ++<d c d +,d c b a a +++<b a d a ++<b

a a

+,

将上述四个同向不等式两边分别相加,得:1<

c b a b +++

d c b c

+++a d c d +++b

a d a ++<2.

23、

*

N n ∈,求证:

1

213

12

11)11(2-<+

++

+

<-+n n

n 。

证明:∵ )

1(21

2

21

--=-+<

+=k k k k k

k k

)

1(21

221k k k k k

k k

-+=++>

+=

)

1(2)23(2)12(2112

11--++-+-+<+

++

n n n

12-=n

)

1(2)23(2)12(21211n n n

-+++-+->+

++

)11(2-+=n

判别式法

24、A 、B 、C 为ABC ?的内角,x 、y 、z 为任意实数,求证:A yz z y x cos 2222≥++C xy B xz cos 2cos 2++。

证明:构造函数,判别式法令)cos 2cos 2cos 2()(2

22C xy B xz A yz z y x x f ++-++=

)cos 2()cos cos (22

22A yz z y C y B z x x -+++?-=为开口向上的抛物线 )cos 2(4)cos cos (4222A yz z y C y B z -+-+=? )cos 2cos cos 2sin sin (42222A yz C B yz C y B z ++--=

)]sin sin cos (cos 2cos cos 2sin sin [42

222C B C B yz C B yz C y B z -+-+-= ]sin sin 2sin sin [42222C B yz C y B z -+-= 0)cos sin (42≤--=C y B z

无论y 、z 为何值,0≤? ∴ R x ∈ 0)(≥x f ∴ 命题真 九、构造函数法

构造函数法证明不等式24 设0≤a 、b 、c ≤2,求证:4a +b 2

+c 2

+abc ≥2ab +2bc +2ca .

证明:视a 为自变量,构造一次函数)(a f = 4a +b 2

+c 2

+abc -2ab -2bc -2ca = (bc -2b -2c +4)a +(b

2

+c 2

-2bc),由0≤a ≤2,知)(a f 表示一条线段.又)0(f = b 2

+c 2

-2bc = (b -c)2

≥0,)2(f = b 2

+c 2

-4b -4c +8 = (b -2)2+(c -2)2

≥0,

可见上述线段在横轴及其上方,∴)(a f ≥0,即4a +b 2+c 2

+abc ≥2ab +2bc +2ca .

构造向量法证明不等式 根据已知条件与欲证不等式结构,将其转化为向量形式,利用向量数量积及不等式关系→

m ·→

n ≤|→

m |·|→

n |,就能避免复杂的凑配技巧,使解题过程简化.应用这一方法证明一些具有和积结构的代数不等式,思路清晰,易于掌握.

25、 设a 、b ∈R +,且a +b =1,求证:(a +2)2+(b +2)2

2

25

. 证明:构造向量→

m = (a +2,b +2),→

n = (1,1).设→

m 和→

n 的夹角为α,其中0≤α≤π.

∵|→

m | =2

2)2()2(+++b a ,|→

n | =2,∴→m ·→

n = |→

m |·|→

n |cos α=2

2)2()2(+++b a ·

2·cos α;

另一方面,→

m ·→

n = (a +2)·1+(b +2)·1 = a +b +4 = 5,而0≤|cos α|≤1,

所以2

2

)

2()2(+++b a ·

2≥5,从而(a +2)2

+(b +2)2

≥2

25

构造解析几何模型证明不等式

如果不等式两边可以通过某种方式与图形建立联系,则可根据已知式的结构挖掘出它的几何背景,通过构造解析几何模型,化数为形,利用数学模型的直观性,将不等式表达的抽象数量关系转化为图形加以解决.

26、设a >0,b >0,a +b = 1,求证:12+a +12+b ≤22.

证明:所证不等式变形为:2

1

212+++b a ≤2.这可认为是点A(12+a 12+b )到直线 x +y = 0

的距离.

但因(12+a )2+(12+b )2

= 4,故点A 在圆x 2+y 2

= 4 (x >0,y >0)上.如图所示,AD ⊥BC ,半径AO

>AD ,即有:

2

1

212+++b a ≤2,所以12+a +12+b ≤22.

1.实数绝对值的定义:

|a|= 这是去掉绝对值符号的依据,是解含绝对值符号的不等式的基础。

2.最简单的含绝对值符号的不等式的解。

若a>0时,则 |x|a x<-a 或x>a 。

注:这里利用实数绝对值的几何意义是很容易理解上式的,即|x|可看作是数轴上的动点P(x)到原点的距离。 3.常用的同解变形 |f(x)|g(x) f(x)<-g(x)或f(x)>g(x); |f(x)|<|g(x)| f 2(x)

4.三角形不等式: ||a|-|b||≤|a±b|≤|a|+|b|。

高中数学复习专题讲座

关于不等式证明的常用方法

高考要求

不等式的证明,方法灵活多样,它可以和很多内容结合 高考解答题中,常渗透不等式证明的内容,纯不等式的证明,历来是高中数学中的一个难点,本节着重培养考生数学式的变形能力,逻辑思维能力以及分析问题和解决问题的能力 重难点归纳

1 不等式证明常用的方法有 比较法、综合法和分析法,它们是证明不等式的最基本的方法

(1)比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述 如果作差以后的式子可以整理为关于某一个变量的二次式,则考虑用判别式法证

(2)综合法是由因导果,而分析法是执果索因,两法相互转换,互相渗透,互为前提,充分运用这一辩证关系,可以增加解题思路,开扩视野

2 不等式证明还有一些常用的方法

在应用换元法时,

要注意代换的等价性 式证明中最重要的变形方法之一,放缩要有的放矢,目标可以从要证的结论中考查

有些不等式,从正面证

如果不易说清楚,可以考虑反证法 证明不等式时,要依据题设、题目的特点和内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤、技巧和语言特点 典型题例示范讲解

例1证明不等式n n

2131211<++++ (n ∈N *) 命题意图 本题是一道考查数学归纳法、不等式证明的综合性题目,考查学生观察能力、构造能力以及逻辑分析能力

知识依托 本题是一个与自然数n 有关的命题,首先想到应用数学归纳法,另外还涉及不等式证明中的放缩法、构造法等

错解分析 此题易出现下列放缩错误

1n n n n n

n n

+

++

<+++

==个

这样只注重形式的统一,而忽略大小关系的错误也是经常发生的

技巧与方法 本题证法一采用数学归纳法从n =k 到n =k +1的过渡采用了放缩法 证法二先放缩,后裂项,有的放矢,直达目标 而证法三运用函数思想,借助单调性,独具匠心,发人深省

证法一 (1)当n 等于1时,不等式左端等于1,右端等于2,所以不等式成立

(2)假设n =k (k ≥1)时,不等式成立,即1+k

13121+++ <2k , ,

121

1

)1(1

1

)1(21

12113

12

11+=++++<

+++=

++

<++++

+k k k k k k k k k k 则

∴当n =k +1时,不等式成立

综合(1)、(2)

得 当n ∈N *时,都有1+

n

13

12

1+

++

另从k 到k +1时的证明还有下列证法

,

1

11

1212212:.121

12,01),1(21)1(2,0)1()1()1(2)1(21)1(22+=

+++>

++=-++<++

∴>++<++∴>+-=+++-=+--+k k k k

k k k k k k k k k k k k k k k k k k k 又如

.121

12+<++

∴k k k

证法二 对任意k ∈N *,都有

.

2)1(2)23(2)12(221

31211),

1(21

2

2

1

n n n n k k k k k k k

=--++-+-+<++++--=-+<

+=

因此 证法三

f (n )=),1

31

21

1(2n

n +

++

+

-

那么对任意k ∈N * 都有

1

)1(])1(2)1[(1

1]1)1(2)1(2[111

1)1(2)()1(2

>+-+=

++-+?+=

-+-++=+--+=-+k k k k k k k k k k k k k k k k f k f

∴f (k +1)>f (k )

因此,对任意n ∈N * 都有f (n )>f (n -1)>…>f (1)=1>0,

∴.2131211n n <++++ 例2求使y x +≤a y x +(x >0,y >0)恒成立的a 的最小值

命题意图 本题考查不等式证明、求最值函数思想、以及学生逻辑分析能力

知识依托 该题实质是给定条件求最值的题目,所求a 的最值蕴含于恒成立的不等式中,因此需利用不等式的有关性质把a 呈现出来,等价转化的思想是解决题目的突破口,然后再利用函数思想和重要不等式等求得最值

错解分析 本题解法三利用三角换元后确定a 的取值范围,此时我们习惯是将x 、y 与cos θ、sin θ来对应

进行换元,即令x =cos θ,y =sin θ(0<θ<

2

π

),这样也得a ≥sin θ+cos θ,但是这种换元是错误的 其原

因是 (1)缩小了x 、y 的范围 (2)这样换元相当于本题又增加了“x 、y =1”这样一个条件,显然这是不对的

技巧与方法 除了解法一经常用的重要不等式外,解法二的方法也很典型,即若参数a 满足不等关系,a ≥f (x ),则a min =f (x )max 若 a ≤f (x ),则a max =f (x )min ,利用这一基本事实,可以较轻松地解决这一类不等式中所含参数的值域问题 还有三角换元法求最值用的恰当好处,可以把原问题转化

解法一 由于a 的值为正数,将已知不等式两边平方,得

x +y +2xy ≤a 2(x +y ),即2xy ≤(a 2-1)(x +y ), ①

∴x ,y >0,∴x +y ≥2xy ,

当且仅当x =y 时,②中有等号成立 比较①、②得a 的最小值满足a 2-1=1,

∴a 2=2,a =2 (因a >0),∴a

解法二 设

y x xy y x y x y x y

x y

x u =+++=++=++=

2)(2 ∵x >0,y >0,∴x +y ≥2xy (当x =y 时“=”成立),

y x xy +2≤1,y

x xy

+2的最大值是1 从而可知,u 的最大值为211=+,

又由已知,得a ≥u ,∴a 的最小值为

解法三 ∵y >0,

∴原不等式可化为

y x

+1≤a 1+y

x

, 设

y x =tan θ,θ∈(0,2

π)

∴tan θ+1≤ 即tan θ+1≤a se c θ

∴a ≥sin θ+cos θ=2sin(θ+4

π

), ③

又∵sin(θ+

4

π

)的最大值为1(此时θ=

4

π

)

由③式可知a 的最小值为

例3已知a >0,b >0,且a +b =1 求证 (a +

a 1)(

b +b 1)4

25 证法一 (分析综合法)

欲证原式,即证4(ab )2+4(a 2+b 2)-25ab +4≥0,

即证4(ab )2-33(ab )+8≥0,即证ab ≤

4

1

或ab ≥8 ∵a >0,b >0,a +b =1,∴ab ≥8不可能成立 ∵1=a +b ≥2ab ,∴ab ≤4

1

,从而得证 证法二 (均值代换法)

设a =

21+t 1,b =2

1

+t 2 ∵a +b =1,a >0,b >0,∴t 1+t 2=0,|t 1|<

21,|t 2|<2

1

.

425

4

11625412316254

1)45(41)141)(141()21)(21()

141)(14

1(211)21(211)21(11)1)(1(224

2

222222

22222222211212

2221122212122=≥-++=--+=-++++++=++++++++=+++?+++=+?

+=++∴t t t t t t t t t t t t t t t t t t t t t b b a a b b a a 显然当且仅当t =0,即a =b =2

1

时,等号成立 证法三 (比较法)

∵a +b =1,a >0,b >0,∴a +b ≥2ab ,∴ab ≤

4

1 425)1)(1(0

4)8)(41(4833442511425)1)(1(2222≥

++∴≥--=++=-+?+=-++b b a a ab ab ab ab ab b a b b a a b b a a 证法四 (综合法)

∵a +b =1, a >0,b >0,∴a +b ≥2ab ,∴ab 4

1

2

2

2

25(1)1139(1)1251611(1)144164

4ab ab ab ab ab ab

?-+≥?-+?∴-≥-=?-≥??≥??≥?? 425)1)(1(≥++b b a a 即

证法五 (三角代换法)

∵ a >0,b >0,a +b =1,故令a =sin 2α,b =cos 2α,α∈(0,

2

π

)

.

4

25

)1)(1(425

2sin 4)2sin 4(412sin 125162sin 24.3142sin 4,12sin 2sin 416)sin 4(2sin 42cos sin 2cos sin )cos 1)(cos sin 1(sin )1)(1(2

222

2222222

22442

2

22≥++≥-???

???

≥≥+-=-≥-∴≤+-=+-+=++=++b b a a b b a a 即得ααααααα

ααααααα

ααα 2

不等式的证明

高考要求

1.通过复习不等式的性质及常用的证明方法(比较法、分析法、综合法、数学归纳法等),使学生较灵活的运用常规方法(即通性通法)证明不等式的有关问题;

2.掌握用“分析法”证明不等式;理解反证法、换元法、判别式法、放缩法证明不等式的步骤及应用范围 3.搞清分析法证题的理论依据,掌握分析法的证题格式和要求搞清各种证明方法的理论依据和具体证明方法和步骤

4 通过证明不等式的过程,培养自觉运用数形结合、函数等基本数学思想方法证明不等式的能力;能较灵活的应用不等式的基本知识、基本方法,解决有关不等式的问题 知识点归纳

不等式的证明方法

(1)比较法:作差比较:B A B A ≤?≤-0 作差比较的步骤:

①作差:对要比较大小的两个数(或式)作差

②变形:对差进行因式分解或配方成几个数(或式)的完全平方和 ③判断差的符号:结合变形的结果及题设条件判断差的符号

注意:若两个正数作差比较有困难,可以通过它们的平方差来比较大小 (2)综合法:由因导果

(3)分析法:执果索因基本步骤:要证……只需证……,只需证……

①“分析法”证题的理论依据:寻找结论成立的充分条件或者是充要条件

②“分析法”证题是一个非常好的方法,但是书写不是太方便,所以我们可以利用分析法寻找证题的途径,然后用“综合法”进行表达 (4)反证法:正难则反

(5)放缩法:将不等式一侧适当的放大或缩小以达证题目的 放缩法的方法有:

①添加或舍去一些项,如:a a >+12

;n n n >+)1(; ②将分子或分母放大(或缩小) ③利用基本不等式, 如:4lg 16lg 15lg )2

5lg 3lg (

5lg 3log 2

=<=+

)

1()1(++<+n n n n

④利用常用结论: Ⅰ、k

k

k k k 21111<

++=

-+;

Ⅱ、

k k k k k 111)1(112--=-< ; 111)1(112+-=+>k k k k k (程度大) Ⅲ、

)1

111(21)1)(1(111122+--=+-=-

已知2

22a y x =+,可设θθsin ,cos a y a x ==; 已知12

2≤+y x ,可设θθsin ,cos r y r x ==(10≤≤r );

已知122

22=+b y a x ,可设θθsin ,cos b y a x ==;

已知122

22=-b

y a x ,可设θθtan ,sec b y a x ==;

(7)构造法:通过构造函数、方程、数列、向量或不等式来证明不等式;

证明不等式的方法灵活多样,但比较法、综合法、分析法和数学归纳法仍是证明不等式的最基本方法.要依据题设、题断的结构特点、内在联系,选择适当的证明方法,要熟悉各种证法中的推理思维,并掌握相应的步骤,技巧和语言特点.

数学归纳法法证明不等式将在数学归纳法中专门研究 题型讲解

例1 若水杯中的b 克糖水里含有a 克糖,假如再添上m 克糖,糖水会变得更甜,试将这一事实用数学关系式反映出来,并证明之

分析:本例反映的事实质上是化学问题,由浓度概念(糖水加糖甜更甜)可知 )0,0(>>>++

b m a b a 解:由题意得

)0,0(>>>++

b m a b a 证法一:(比较法)

)

()

()()()(m b b a b m m b b m b a m a b b a m b m a +-=++-+=-++ 0,0>>>m a b ,0,0>+>-∴m b a b , b

a

m b m a m b b a b m >++>+-∴

即0)()(

证法二:(放缩法)

00>>>m a b 且 ,

m

b m b m

b a a m b b m b a b a +<++

=++=∴)()( 证法三:(数形结合法)如图,在Rt ?ABC 及Rt ?ADF 中,

AB=a ,AC=b ,BD=m ,作CE ∥BD ADF ABC ??∽ ,

m

b m a CE b m a CF b m a b a ++=++<++=∴

例2 已知a ,b ∈R ,且a+b=1

求证:()()2

25

222

2

+++b a 证法一:(比较法)

a b b a R b a -=∴=+∈1,1,,

()()2

2

22259

224()22a b a b a b ∴+++-

=+++- 2222911

(1)4222()0222

a a a a a =+-+-=-+=-≥

A

即()()225222

2≥+++b a (当且仅当2

1==b a 时,取等号)

证法二:(分析法) ()()2

25

8)(422522222

2

≥++++?≥

+++b a b a B a ??

???≥-?≥++-+-=?0)21(22584)1(122

2a a a a

b 因为显然成立,所以原不等式成立

点评:分析法是基本的数学方法,使用时,要保证“后一步”是“前一步”的充分条件 证法三:(综合法)由上分析法逆推获证(略)

证法四:(反证法)假设2

25

)2()2(2

2<+++b a , 则 2

258)(42

2

<

++++b a b a 由a+b=1,得a b -=1,于是有2

2512)1(2

2<

+-+a a 所以0)2

1(2

<-

a , 这与0212

≥??? ?

?

-a 矛盾

所以()()2

25222

2

+++b a 证法五:(放缩法)∵1a b += ∴左边=()()

()()2

2

2

222222a b a b +++??

+++≥????

()2125

422

a b =

++=????=右边 点评:根据欲证不等式左边是平方和及a+b=1这个特点,选用基本不等式2

2

222??

? ??+≥+b a b a 证法六:(均值换元法)∵1a b +=,

所以可设t a +=

21,t b -=2

1

, ∴左边=()()2222

1122(2)(2)22

a b t t +++=+++-+

22

255252522222t t t ????

=++-=+≥ ? ?????

=右边

当且仅当t=0时,等号成立

点评:形如a+b=1结构式的条件,一般可以采用均值换元 证法七:(利用一元二次方程根的判别式法) 设y=(a+2)2+(b+2)2,

由a+b=1,有1322)3()2(222+-=-++=a a a a y , 所以013222=-+-y a a ,

因为R a ∈,所以0)13(244≥-??-=?y ,即2

25≥y 故()()2

25222

2

+++b a 例3设实数x ,y 满足y+x 2=0,0

12log )(log +

≤+a y

x a a a 证明:(分析法)要证8

1

2log )(log +

≤+a y

x a a a , 10<

12a a a y

x ≥+,

又2

22y x y

x

y

x

a

a

a a a +=+≥+ ,

∴只需证:4

1a a

y

x ≥+ ∴只需证41

≤+y x ,

即证04

12

≥+-x x ,此式显然成立

∴原不等式成立

例4 设m 等于a ,b 和1中最大的一个,当m x >时,求证:22

<+

x b

x a 分析:本题的关键是将题设条件中的文字语言“m 等于a ,b 和1中最大的一个”翻译为符号语言“a m ≥,b m ≥,1≥m ”

,从而知a m x ≥> 证明:(综合法)a m x ≥> ,,1x m b x m >≥>≥

2

2222 1.2a b x x a b a b

x x x x x x x x

∴+≤

+=+<+= 例5 已知).1(1

)(-≠+=

x x x

x f )()1(x f 求的单调区间;

(2)求证:).()()(,0y f x f y x f y x +<+>>有

(3)若2

1

0,,()a b c a b b

>>=

-求证:24()().5f a f c +>

解: (1) 对 已 知 函 数 进 行 降 次 分 项 变 形 , 得 1

11)(+-

=x x f ,

.),1()1,()(上分别单调递增和在区间+∞---∞∴x f

(2)∵).1(1

)(-≠+=

x x x

x f ∴()()111

x y xy xy x y

f x f y x y xy x y ++++=

+=

+++++ ()1

xy x y

f xy x y xy x y ++>

=+++++

而 ()),()1(,

y x f y x xy f y x y x xy +>+++>++知由

()()()f x f y f x y ∴+>+

⑶ 2

1

,,()a b c a b b

>>=-

∴,04

)

2

(1)(122>=+-≥-=

a b b a b b a c

.44222≥+≥+∴a

a c a 54)4()()()(2

2=≥+>+∴f c a f c f a f

点评:函 数 与 不 等 式 证 明 的 综 合 题 在 高 考 中 常 考 常 新 , 是 既 考 知 识 又 考 能 力 的 好 题 型 , 在 高 考 备 考 中 有 较 高 的 训 练 价 值 小结:

1.掌握好不等式的证明,不等式的证明内容甚广,证明不但用到不等式的性质,不等式证明的技能、技巧,还要注意到横向结合内容的方方面面如与数列的结合,与“二次曲线”的结合,与“三角函数”的结合,与“一元二次方程,一元二次不等式、二次函数”这“三个二次”间的互相联系、互相渗透和互相制约,这些也是近年命题的重点

2在不等式证明中还要注意数学方法,如比较法(包括比差和比商)、分析法、综合法、反证法、数学归纳法等,还要注意一些数学技巧,如数形结合、放缩、分类讨论等

3比较法是证明不等式最常用最基本的方法当欲证的不等式两端是多项式或分式时,常用差值比较法当欲证

的不等式两端是乘积的形式或幂指不等式时常用商值比较法,即欲证1)0,0(,>>>>b

a b a b a 可证

4基本思想、基本方法:

⑴用分析法和综合法证明不等式常要用等价转化的数学思想的换元的基本方法 ⑵用分析法探索证明的途径,然后用综合法的形式写出证明过程,这是解决数学问题的一种重要的数学思想方法

⑶ “分析法”证明不等式就是“执果索因”,从所证的不等式出发,不断利用充分条件或者充要条件替换前面的不等式,直至找到显然成立的不等式,书写方法习惯上用“?”来表达 分析法是数学解题的两个重要策略原则的具体运用,两个重要策略原则是:

正难则反原则:若从正面考虑问题比较难入手时,则可考虑从相反方向去探索解决问题的方法,即我们常说的逆向思维,由结论向条件追溯

简单化原则:寻求解题思路与途径,常把较复杂的问题转化为较简单的问题,在证明较复杂的不等式时,可以考虑将这个不等式不断地进行变换转化,得到一个较易证明的不等式 ⑷凡是“至少”、“唯一”或含有否定词的命题适宜用反证法

⑸换元法(主要指三角代换法)多用于条件不等式的证明,此法若运用恰当,可沟通三角与代数的联系,将复杂的代数问题转化成简单的三角问题

⑹含有两上字母的不等式,若可化成一边为零,而另一边是关于某字母的二次式时,这时可考虑判别式法,并注意根的取值范围和题目的限制条件

⑺有些不等式若恰当地运用放缩法可以很快得证,放缩时要看准目标,做到有的放矢,注意放缩适度

不等式证明的基本方法

'、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 、知识分析 定理1 若a,b为实数,贝当且仅当ab>0时,等号成 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a 与一b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与—b的距离严格小于a与b到原点距离之和(下图为ab<0, a>0, b<0的情况,ab<0的其他情况可作类似解释)。 |a —b|表示a—b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,贝等号成立,即b落在a,c之间 推论1 推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到

判别式法证 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是 错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A> B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 典型例题】 例1已知函数,设a、b€ R,且a^b,求证: 思路:本题证法较多,下面用分析法和放缩法给出两个证明: 证明: 证法一: ① 当ab< —1时,式①显然成立; 当ab>—1时,式①② b,A式②成立。故原不等式成立。 证法二:当a=—b 时,原不等式显然成立; 当a M— b 时, ???原不等式成立。

高中数学不等式的几种常见证明方法(县二等奖)

高中数学不等式的几种常见证明方法 摘 要:不等式是中学数学的重要知识,考察学生对不等式理论熟练掌握的程度也是衡量学生数学水平的重要方面,同时,不等式也是高中数学的基础,因此,在每年的数学高考题中,有关不等式的相关题目都有所出现,本文介绍了几种不等式的证明方法,并举例进一步加强对各种不等式的理解. 关键字:不等式;数学归纳法;均值;柯西不等式 一、比较法 所谓比较法,就是通过两个实数a 与b 的差或商的符号(范围)确定a 与b 大小关系的方法,即通过“0a b ->,0a b -=,0a b -<;或1a b >,1a b =,1a b <”来确定a ,b 大小关系的方法,前者为作差法,后者为作商法. 例 1 设,x y R ∈,求证:224224x y x y ++≥+. 证明: 224224x y x y ++-- =2221441x x y y -++-+ =22(1)(21)x y -+- 因为 2(1)0x -≥, 2(21)0y -≥ ∴ 22(1)(21)0x y -+-≥ ∴2242240x y x y ++--≥ ∴224224x y x y ++≥+ 例 2 已知:a >b >c >0, 求证:222a b c a b c ??>b c a c b c a b c +++??. 证明:222a b c b c a c b c a b c a b c +++????=222a b c b a c c b c a b c ------?? >222a b c b a c c b c c c c ------??

=0c =1 222a b c b c a c b c a b c a b c +++??∴??>1 ∴222a b c a b c ??>b c a c b c a b c +++?? 二、分析法 分析法:从求证的不等式出发,分析这个不等式成立的充分条件,把证明这个不等式的问题转化为证明这些条件是否具备的问题,如果能够肯定这些条件都已具备,那么就可以判定所证的不等式成立. 例 3 求证3< 证明: 960+>> 5456<成立运用分析法时,需积累一些解题经验,总结一些常规思路,这样可以克服无目的的乱写,从而加强针对性,较快地探明解题的途径. 三、综合法 从已知或证明过的不等式出发,根据不等式的性质及公理推导出欲证的不等式,这种证明方法叫做综合法. 例 4 已知,a b R +∈,1a b +=,求证:221125()()2 a b a b +++≥ 证明:∵ 1a b += ∴ 1=22222()22()a b a b ab a b +=++≤+ ∴ 221 2 a b +≥

高中不等式的证明方法

不等式的证明方法 不等式的证明是高中数学的一个难点,证明方法多种多样,近几年高考出现较为形式较为活跃,证明中经常需与函数、数列的知识综合应用,灵活的掌握运用各种方法是学好这部分知识的一个前提,下面我们将证明中常见的几种方法作一列举。 注意ab b a 22 2 ≥+的变式应用。常用2 222b a b a +≥ + (其中+ ∈R b a ,)来解决有关根式不等式的问题。 一、比较法 比较法是证明不等式最基本的方法,有做差比较和作商比较两种基本途径。 1、已知a,b,c 均为正数,求证: a c c b b a c b a ++ +++≥++1 11212121 证明:∵a,b 均为正数, ∴ 0) (4)(44)()(14141)(2 ≥+=+-+++=+-+-b a ab b a ab ab b a a b a b b a b a b a 同理 0)(41 4141)(2 ≥+= +-+-c b bc c b c b c b ,0) (414141)(2 ≥+=+-+-c a ac a c a c a c 三式相加,可得 01 11212121≥+-+-+-++a c c b b a c b a ∴a c c b b a c b a ++ +++≥++111212121 二、综合法 综合法是依据题设条件与基本不等式的性质等,运用不等式的变换,从已知条件推出所要证明的结论。 2、a 、b 、),0(∞+∈c ,1=++c b a ,求证: 31222≥ ++c b a 证:2 222)(1)(3c b a c b a ++=≥++?∴ 2222)()(3c b a c b a ++-++0 )()()(222222222222≥-+-+-=---++=a c c b b a ca bc ab c b a 3、设a 、b 、c 是互不相等的正数,求证:)(4 4 4 c b a abc c b a ++>++ 证 : ∵ 2 2442b a b a >+ 2 2442c b c b >+ 2 2442a c a c >+∴ 222222444a c c b b a c b a ++>++ ∵ c ab c b b a c b b a 2 2222222222=?>+同理:a bc a c c b 222222>+ b ca b a a c 222222>+ ∴ )(222222c b a abc a c c b b a ++>++ 4、 知a,b,c R ∈,求证: )(22 2 2 2 2 2 c b a a c c b b a ++≥++ ++ + 证明:∵ ) (2 2 2 2 2 2 2 2)(22b a b a b a b a ab ab +≥++≥+∴≥+

证明不等式的几种方法

证明不等式的几种方法 淮安市吴承恩中学 严永飞 223200 摘要:不等式证明是中学数学的重要内容,证明方法多种多样.通常所用的公式法、放缩法只能解决一些较简单的问题,对于较难的问题则束手无策.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法,使解题容易,新颖独特. 关键词:不等式,公式法,构建模型法 前言 证明不等式是中学数学的重要内容之一,内容抽象,难懂,证明方法更是变化多端.通常所用的一些方法如公式法、放缩法只能解决一些较简单的问题,较难的问题则无法解决.本文给出了几种特殊方法.如倒数变换法、构建模型法、逆用等比数列求和公式等方法. 这里所举的几种证明不等式的特殊方法看似巧妙,但如果认真思考,广泛联系,学以致用,一定能使问题得到很好的解决. 1 运用倒数变换证明不等式 这里所说倒数变换是根据具体的题目要求把不等式的部分进行倒数变换,通过化简后使不等式变得简单,更好更快的解决证明问题. 例1 设+∈R z y x ,,,且xyz =1 求证:)(13z y x ++)(13z x y ++)(13y x z +≥2 3 分析 如果先通分再去分母,则不等式将变得很复杂. 令A x =-1,B y =-1 ,C z =-1 ,则+∈R C B A ,,且1=ABC . 欲证不等式可化为 C B A +2+A C B +2+B A C +2≥23(*) 事实上,a 2+22b λ≥ab λ2 (+∈R b a ,,λ), 而当b >0时, a 2/b ≥b a 22λλ-. (*)式左边≥A λ2-2λ(C B +)+ B λ2-2λ(C A +)+C λ2-2λ(A B +) = λ2(λ-1)(C B A ++) ≥λ6(λ-1)3ABC = λ6(λ-1). 令λ=21时,C B A +2+A C B +2+ B A C +2 ≥6×21×(1-21)=23 得证. (这里用到二元平均不等式的变形和三元平均不等式.) 例 2 已知z y x ,,>0,n 为大于1的正整数,且n n x x +1+n n y y +1+n n z z +1=1 求证:n x x +1+n y y +1+n z z +1≤n n 12-

不等式证明的常用基本方法

证明不等式的基本方法 导学目标:1.了解证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法.2.会用比较法、综合法、分析法、反证法、放缩法证明比较简单的不等式. [自主梳理] 1.三个正数的算术—几何平均不等式:如果a ,b ,c>0,那么_________________________,当且仅当a =b =c 时等号成立. 2.基本不等式(基本不等式的推广):对于n 个正数a 1,a 2,…,a n ,它们的算术平均不小于它们的几何平均,即a 1+a 2+…+a n n ≥n a 1·a 2·…·a n ,当且仅当__________________时等号成立. 3.证明不等式的常用五种方法 (1)比较法:比较法是证明不等式最基本的方法,具体有作差比较和作商比较两种,其基本思想是______与0比较大小或______与1比较大小. (2)综合法:从已知条件出发,利用定义、______、______、性质等,经过一系列的推理、论证而得出命题成立,这种证明方法叫综合法.也叫顺推证法或由因导果法. (3)分析法:从要证明的结论出发,逐步寻求使它成立的________条件,直至所需条件为已知条件或一个明显成立的事实(定义 、公理或已证明的定理、性质等),从而得出要证的命题成立为止,这种证明方法叫分析法.也叫逆推证法或执果索因法. (4)反证法 ①反证法的定义 先假设要证的命题不成立,以此为出发点,结合已知条件,应用公理、定义、定理、性质等,进行正确的推理,得到和命题的条件(或已证明的定理、性质、明显成立的事实等)矛盾的结论,以说明假设不正确,从而证明原命题成立,我们把它称为反证法. ②反证法的特点 先假设原命题不成立,再在正确的推理下得出矛盾,这个矛盾可以是与已知条件矛盾,或与假设矛盾,或与定义、公理、定理、事实等矛盾. (5)放缩法 ①定义:证明不等式时,通过把不等式中的某些部分的值________或________,简化不等式,从而达到证明的目的,我们把这种方法称为放缩法. ②思路:分析观察证明式的特点,适当放大或缩小是证题关键. 题型一 用比差法与比商法证明不等式 1.设t =a +2b ,s =a +b 2+1,则s 与t 的大小关系是( A ) ≥t >t ≤t 0;②a 2+b 2≥2(a -b-1);③a 2+3ab>2b 2;④,其中所 有恒成立的不等式序号是 ② . ②【解析】①a=0时不成立;②∵a 2+b 2-2(a-b-1)=(a-1)2+(b+1)2≥0,成立;③a=b=0时不成立;④a=2,b=1时不成立,故恒成立的只有②.

不等式证明的基本方法

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1

推论2 [不等式证明的基本方法] 1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量,使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证:

证明不等式的几种常用方法

证明不等式的几种常用方法 证明不等式除了教材中介绍的三种常用方法,即比较法、综合法和分析法外,在不等式证明中,不仅要用比较法、综合法和分析法,根据有些不等式的结构,恰当地运用反证法、换元法或放缩法还可以化难为易.下面几种方法在证明不等式时也经常使用. 一、反证法 如果从正面直接证明,有些问题确实相当困难,容易陷入多个元素的重围之中,而难以自拔,此时可考虑用间接法予以证明,反证法就是间接法的一种.这就是最“没办法”的时候往往又“最有办法”,所谓的“正难则反”就是这个道理. 反证法是利用互为逆否的命题具有等价性来进行证明的,在使用反证法时,必须在假设中罗列出各种与原命题相异的结论,缺少任何一种可能,则反证法都是不完全的. 用反证法证题的实质就是从否定结论入手,经过一系列的逻辑推理,导出矛盾,从而说明原结论正确.例如要证明不等式A>B,先假设A≤B,然后根据题设及不等式的性质,推出矛盾,从而否定假设,即A≤B不成立,而肯定A>B成立.对于要证明的结论中含有“至多”、“至少”、“均是”、“不都”、“任何”、“唯一”等特征字眼的不等式,若正面难以找到解题的突破口,可转换视角,用反证法往往立见奇效. 例1 设a、b、c、d均为正数,求证:下列三个不等式:①a+b<c+d; ②(a+b)(c+d)<ab+cd;③(a+b)cd<ab(c+d)中至少有一个不正确. 反证法:假设不等式①、②、③都成立,因为a、b、c、d都是正数,所以

不等式①与不等式②相乘,得:(a +b)2<ab +cd ,④ 由不等式③得(a +b)cd <ab(c +d)≤( 2 b a +)2 ·(c +d), ∵a +b >0,∴4cd <(a +b)(c +d), 综合不等式②,得4cd <ab +cd , ∴3cd <ab ,即cd <31 ab . 由不等式④,得(a +b)2<ab +cd < 34ab ,即a 2+b 2<-3 2 ab ,显然矛盾. ∴不等式①、②、③中至少有一个不正确. 例2 已知a +b +c >0,ab +bc +ca >0,abc >0,求证:a >0,b >0, c >0. 证明:反证法 由abc >0知a ≠0,假设a <0,则bc <0, 又∵a +b +c >0,∴b +c >-a >0,即a(b +c)<0, 从而ab +bc +ca = a(b +c)+bc <0,与已知矛盾. ∴假设不成立,从而a >0, 同理可证b >0,c >0. 例3 若p >0,q >0,p 3+q 3= 2,求证:p +q ≤2. 证明:反证法 假设p +q >2,则(p +q)3>8,即p 3+q 3+3pq (p +q)>8, ∵p 3+q 3= 2,∴pq (p +q)>2. 故pq (p +q)>2 = p 3+q 3= (p +q)( p 2-pq +q 2), 又p >0,q >0 ? p +q >0, ∴pq >p 2-pq +q 2,即(p -q)2 <0,矛盾.

北师大版数学高二-选修4-5 第二节 不等式证明的基本方法例题

选修4-5 第二节 不等式证明的基本方法例题 1.已知a 、b 、x 、y 均为正实数,且1a >1 b ,x >y . 求证: x x +a > y y +b . 证明:∵ x x +a - y y +b = bx -ay x +a y +b , 又1a >1 b ,且a 、b 均为正实数, ∴b >a >0. 又x >y >0, ∴bx >ay . ∴ bx -ay x +a y +b >0,即x x +a >y y +b . 2.已知a ,b ,c 均为正数,证明:a 2+b 2+c 2 +(1a +1b +1c )2≥63,并确定a ,b ,c 为何值时,等号成立. 证明:法一:因为a ,b ,c 均为正数,由平均值不等式得 a 2+ b 2+ c 2 ≥3(abc )23 ,① 1 a +1 b +1 c ≥3(abc )1 3-,② 所以(1 a +1 b +1c )2 ≥9(abc ) 2 3-. 故a 2 +b 2 +c 2 +(1a +1b +1 c )2 ≥3(abc ) 23 + 9(abc ) 23 - . 又3(abc ) 23 +9(abc ) 23 -≥227=63,③ 所以原不等式成立. 当且仅当a =b =c 时,①式和②式等号成立.当且仅当3(abc ) 23 =9(abc ) 23 - 时,③式 等号成立. 即当且仅当a =b =c =314 时,原式等号成立. 法二:因为a ,b ,c 均为正数,由基本不等式得

a2+b2≥2ab,b2+c2≥2bc,c2+a2≥2ac. 所以a2+b2+c2≥ab+bc+ac,① 同理1 a2+ 1 b2 + 1 c2 ≥ 1 ab + 1 bc + 1 ac ,② 故a2+b2+c2+(1 a + 1 b + 1 c )2≥ab+bc+ac+ 3 1 ab +3 1 bc +3 1 ac ≥6 3.③ 所以原不等式成立. 当且仅当a=b=c时,①式和②式等号成立,当且仅当a=b=c,(ab)2=(bc)2=(ac)2=3时,③式等号成立. 即当且仅当a=b=c=31 4时,原式等号成立. 3.(2012·豫南九校联考)已知x,y均为正数,且x>y,求证:2x+1 x2-2xy+y2 ≥2y +3. 解:因为x>0,y>0,x-y>0, 2x+ 1 x2-2xy+y2 -2y=2(x-y)+ 1 x-y2 =(x-y)+(x-y)+ 1 x-y2 ≥33 x-y2 1 x-y2 =3, 所以2x+ 1 x2-2xy+y2 ≥2y+3. 4.已知正实数a,b,c满足 1 a + 2 b + 3 c =1,求证:a+ b 2 + c 3 ≥9.证明:因为a,b,c均为正实数, 所以 1 a + 2 b + 3 c ≥3 31 a · 2 b · 3 c .同理可证: a+ b 2 + c 3 ≥3 3 a· b 2 · c 3 . 所以(a+ b 2 + c 3 )( 1 a + 2 b + 3 c )≥ 3 3 a· b 2 · c 3 ·3 31 a · 2 b · 3 c =9. 因为 1 a + 2 b + 3 c =1,所以a+ b 2 + c 3 ≥9, 当且仅当a=3,b=6,c=9时,等号成立.

经典不等式证明的基本方法

不等式和绝对值不等式 一、不等式 1、不等式的基本性质: ①、对称性: 传递性:_________ ②、 ,a+c >b+c ③、a >b , , 那么ac >bc ; a >b , ,那么ac <bc ④、a >b >0, 那么,ac >bd ⑤、a>b>0,那么a n >b n .(条件 ) ⑥、 a >b >0 那么 (条件 ) 2、基本不等式 定理1 如果a, b ∈R, 那么 a 2+b 2≥2ab. 当且仅当a=b 时等号成立。 定理2(基本不等式) 如果a ,b>0,那么 当且仅当a=b 时,等号成立。即两个正数的算术平均不小于它们的几何平均。 结论:已知x, y 都是正数。(1)如果积xy 是定值p ,那么当x=y 时,和x+y 有最小值 ; (2)如果和x+y 是定值s ,那么当x=y 时,积xy 有最大值 小结:理解并熟练掌握基本不等式及其应用,特别要注意利用基本不等式求最值时, 一 定要满足“一正二定三相等”的条件。 3、三个正数的算术-几何平均不等式 二、绝对值不等式 1、绝对值三角不等式 实数a 的绝对值|a|的几何意义是表示数轴上坐标为a 的点A 到原点的距离: a b b a c a c b b a >?>>,R c b a ∈>,0>c 0> d c 2,≥∈n N n 2,≥∈n N n 2 a b +≥2 1 4 s 3 ,,3a b c a b c R a b c +++∈≥==定理如果,那么当且仅当时,等号成立。 即:三个正数的算术平均不小于它们的几何平均。2122,,,,n n n a a a a a n a a ++≥=== 11把基本不等式推广到一般情形:对于n 个正数a 它们的算术平均不小于它们的几何平均,即: 当且仅当a 时,等号成立。

证明不等式的种方法

证明不等式的13种方法 咸阳师范学院基础教育课程研究中心安振平 不等式证明无论在高考、竞赛,还是其它类型的考试里,出现频率都是比较高,证明难度也是比较大的.因此,有必要总结证明不等式的基本方法,为读者提供学习时的参考资料.笔者选题的标准是题目优美、简明,其证明方法基本并兼顾巧妙. 1.排序方法 对问题的里的变量不妨排出大小顺序,有时便于获得不等式的证明. 例1已知,,0a b c ≥,且1a b c ++=,求证: ()22229 1. a b c abc +++≥2.增量方法 在变量之间增设一个增量,通过增量换元的方法,便于问题的变形和处理.例2设,,a b c R + ∈,试证:2222 a b c a b c a b b c c a ++++≥+++.3.齐次化法 利用题设条件,或者其它变形手段,把原不等式转换为齐次不等式. 例3设,,0,1x y z x y z ≥++=,求证: 2222222221.16 x y y z z x x y z +++≤4.切线方法 通过研究函数在特殊点处的切线,利用切线段代替曲线段,来建立局部不等式.例4已知正数,,x y z 满足3x y z ++=,求证: 323235 x y +≤++.. 5.调整方法 局部固定,逐步调整,探究多元最值,便能获得不等式的证明. 例5已知,,a b c 为非负实数,且1a b c ++=,求证:13.4 ab bc ca abc ++-≤ 6.抽屉原理

在桌上有3个苹果,要把这3个苹果放到2个抽屉里,无论怎样放,我们会发现至少会有一个抽屉里面放2个苹果.这一简单的现象,就是人们所说的“抽屉原理”.巧用抽屉原理,证明某些不等式,能起到比较神奇的效果. 例6(《数学通报》2010年9期1872题)证明:在任意13个实数中,一定能找到两个实数,x y ,使得0.3.10.3x y x ->+7.坐标方法 构造点坐标,应用解析几何的知识和方法证明不等式. 例7已知a b c R ∈、、,a 、b 不全为零,求证: ()()()22 22222 22.a b ac a b bc a b c a b +++++≥+++8.复数方法 构造复数,应用复数模的性质,可以快速证明一些无理不等式. 例8(数学问题1613,2006,5)设,,,0,a b c R λ+ ∈≥求证:9.向量方法 构造向量,把不等式的证明纳入到向量的知识系统当中去. 例9已知正数,,a b c 满足1a b c ++=,求证: 4 ≤. 10.放缩方法 不等式的证明,关键在于恒等变形过程中的有效放大、或者缩小技巧,放和缩应当恰到好处. 例10已知数列{}n a 中,首项132 a = ,且对任意*1,n n N >∈,均有 11n n a a +=++()211332.42 n n n a -+<

证明不等式的基本方法(20200920095256)

12. 4 证明不等式的基本方法 T 懈不评式证明的基車方诜:比较法,综合建、井析媒 ttMK MMM ■■座用它们证明一些简 厲的不等式. Kiff <年斋号悄况来看.本讲尼岛号血埶的一个热点一 fO 灿讪卜将芸号僧::1;与躺碓不零式结, 证 期不等式:2>M 破立,探索性问題结合,ttaAMML 厲中档題團L E 基础知识过关 [知识梳理] 1. 证明不等式的基本方法:比较法、综合法、分析法、反证法、放缩法. 2. 三个正数的算术-几何平均不等式 (1) 定理:如果a , b , c € R +那么a + ?+1需辰,当且仅当a = b = c 时,等号 a + b + c Q 成立.即三个正数的算术平均 3 不小于它们的几何平均Vabc. (2) 基本不等式的推广 对于n 个正数a i , a 2, , , a ,它们的算术平均数不小于它们的几何平均数, 即a 〔 + 汁‘ + 》^a 1a 2,—,当且仅当 a 1 = a 2 =, = a n 时,等号成立. n 3. 柯西不等式 (1)设 a , b , c , d 均为实数,则(a 2 + b 2)(c 2 + d 2)>(ac + bd)2,当且仅当 ad = bc 时等号成立. f n 「n J 「n ' ⑵若a i, b(i € N *)为实数,贝则 18 15 A l^a b i 2,当且仅当 I "八=1丿 T =1丿 (当a i = 0时,约定b i = 0, i = 1,2, , , n)时等号成立. (3) 柯西不等式的向量形式:设 a B 为平面上的两个向量,则|如3》|a ? (3当 且仅当a, 3共线时等号成立. 善纲解谨 君向预测 b^_ b2_ a 1 a 2 b n =a ;

证明不等式的几种方法

昭通学院 学生毕业论文 论文题目证明不等式的几种方法 姓名 学号 201103010128 学院数学与统计学院 专业数学教育 指导教师 2014年3月6日

证明不等式的几种方法 摘 要:证明不等式就是要推出这个不等式对其中所有允许值都成立或推出数值不等式成立。本文主要归纳了几种不等式证明的常用方法。 关键词:不等式; 证明; 方法 1.引言 在定义域中恒成立的不等式叫做恒不等式,确认一个不等式为恒不等式的过程为对该不等式进行证明。证明不等式的主要方法是根据不等式的性质和已有的恒不等式进行合乎逻辑的等价变换。主要方法有:比较法、综合法、分析法、反证法、归纳法、放缩法、构造法、导数法、均值不等式性质证明不等式等方法。 2.不等式证明的常用方法 2.1 比较法 比较法是直接作出所证不等式,两边的差(或商)然后推演出结论的方法。具体地说欲证B A >)(B A <,直接将差式B A -与0比较大小;或若当+∈R B A ,时,直接将商式 B A 与1比较大小[]1。 差值比较法的理论依据是不等式的基本性质:“若0≥-b a ,则b a ≥;若0≤-b a ,则 b a ≤.”其一般步骤为: 1.作差:观察不等式左右两边构成的差式,将其看成一个整体。 2.变形:把不等式两边的差进行变形,或变形成一个常数,或为若干个因式的积,或一个或几个平方和。其中变形是求差法的关键,配方和因式分解是经常使用的方法。 3.判断:根据已知条件与上述变形结果判断不等式两边差的正负号,最后肯定所求不等式成立的结论。 应用范围:当被证的不等式两端是多项式,对于分式或对数式时,一般使用差值比较法。 商值比较法的理论依据是:“∈b a ,+R ,若b a 1≥则b a ≥;若b a 1≤则b a ≤.”其一 般步骤为: 1.作商:将左右两端作商。 2.变形:化简商式到最简形式。

证明不等式的基本方法-比较法

第二讲证明不等式的基本方法 课题:第01课时不等式的证明方法之一:比较法 一.教学目标 (一)知识目标 (1)了解不等式的证明方法——比较法的基本思想; (2)会用比较法证明不等式,熟练并灵活地选择作差或作商法来证明不等式;(3)明确用比较法证明不等式的依据,以及“转化”的数学思想。 (二)能力目标 (1)培养学生将实际问题转化为数学问题的能力; (2)培养学生观察、比较、抽象、概括的能力; (3)训练学生思维的灵活性。 (三)德育目标 (1)激发学习的内在动机; (2)养成良好的学习习惯。 二.教学的重难点及教学设计 (一)教学重点 不等式证明比较法的基本思想,用作差、作商达到比较大小的目的 (二)教学难点 借助与0或1比较大小转化的数学思想,证明不等式的依据和用途 (三)教学设计要点 1.情境设计 用糖水加糖更甜,实际是糖的质量分数增大这个生活常识设置问题情境,激发学生学习动机,通过将实际问题转化为不等式大小的比较,引入新课。 2.教学内容的处理 (1)补充一系列不同种类的用作差、作商等比较法证明不等式的例题。 (2)补充一组证明不等式的变式练习。 (3)在作业中补充何时该用作差法,何时用作商法的习题,帮助同学们更好地理解比较法。 3.教学方法 独立探究,合作交流与教师引导相结合。 三.教具准备 水杯、水、白糖、调羹、粉笔等 四.教学过程 (一)、新课学习: 1.作差比较法的依据: a b a >b ? > - a a =b b - ? = a a

不等式证明的基本方法

不等式证明的基本方法 LELE was finally revised on the morning of December 16, 2020

绝对值的三角不等式;不等式证明的基本方法 一、教学目的 1、掌握绝对值的三角不等式; 2、掌握不等式证明的基本方法 二、知识分析 定理1 若a,b为实数,则,当且仅当ab≥0时,等号成立。 几何说明:(1)当ab>0时,它们落在原点的同一边,此时a与-b的距离等于它们到原点距离之和。 (2)如果ab<0,则a,b分别落在原点两边,a与-b的距离严格小于a与b到原点距离之和(下图为ab<0,a>0,b<0的情况,ab<0的其他情况可作类似解释)。 |a-b|表示a-b与原点的距离,也表示a到b之间的距离。 定理2 设a,b,c为实数,则,等号成立 ,即b落在a,c之间。 推论1 推论2 [不等式证明的基本方法]

1、比较法是证明不等式的一种最基本的方法,也是一种常用的方法,基本不等式就是用比较法证得的。 比较法有差值、比值两种形式,但比值法必须考虑正负。 比较法证不等式有作差(商)、变形、判断三个步骤,变形的主要方向是因式分解、配方,判断过程必须详细叙述。 如果作差后的式子可以整理为关于某一个变量的二次式,则可考虑用到判别式法证。 2、所谓综合法,就是从题设条件和已经证明过的基本不等式出发,不断用必要条件替换前面的不等式,直至推出要证明的结论,可简称为“由因导果”,在使用综合法证明不等式时,要注意基本不等式的应用。 所谓分析法,就是从所要证明的不等式出发,不断地用充分条件替换前面的不等式,或者是显然成立的不等式,可简称“执果索因”,在使用分析法证明不等式时,习惯上用“”表述。 综合法和分析法是两种思路截然相反的证明方法,其中分析法既可以寻找解题思路,如果表述清楚,也是一个完整的证明过程.注意综合法与分析法的联合运用。 3、反证法:从否定结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。 4、放缩法:欲证A≥B,可通过适当放大或缩小,借助一个或多个中间量, 使得,,再利用传递性,达到证明的目的.这种方法叫做放缩法。 【典型例题】 例1、已知函数,设a、b∈R,且a≠b,求证: 思路:本题证法较多,下面用分析法和放缩法给出两个证明: 证明: 证法一:

不等式的常见证明方法

不等式常见的三种证明方法 渠县中学 刘业毅 一用基本不等式证明 设c b a ,,都是正数。求证:.c b a c ab b ac a bc ++≥++ 证明:.22c b ac a bc b ac a bc =?≥+ .22b c ab a bc c ab a bc =?≥+ .22a c ab b ac c ab b ac =?≥+ ).(2)(2c b a c ab b ac a bc ++≥++ .c b a c ab b ac a bc ++≥++ 点评:可用综合法分析乘积形式运用不等式可以转化为所求。 思维训练:设c b a ,,都是正数。求证: .222c b a c b a a c b ++≥++ 二 放缩法证明不等式 已知,对于任意的n 为正整数,求证: 1+221+321+K +n 21<4 7 分析:通过变形将数列{n 21 }放缩为可求数列。 解:Θ n 21=n n ?1<)1(1-n n =11-n —n 1(n ≥2) ∴1+221+321+K +n 21<1+2 21+231?+341?+K +)1(1-n n =1+ 41+(21—31+31—41+K +11-n —n 1) =45+21—n 1 =47—n 1 点评:放缩为可求和数列或公式是高考重要思想方法。 思维训练:设c b a ,,都是正数,a+b>c,求证:a a +1+b b +1>c c +1

三 构造函数法证明 证明不等式3ln 3121112ln <+++++0有不等式x x 11ln - ≥,如果令x=k k 1+,则有111ln +>+k k k ,如果令x=1+k k ,则k k k ->+11ln ,即k k k k 1ln )1ln(11<-+<+,然后叠加不等式即可。 解:设函数x x x x f ln 1)(+-=,则易证0)(≥x f ,即不等式x x 11ln -≥对于x>0恒成立, 令x=k k 1+,则有111ln +>+k k k ,令x=1+k k ,则k k k ->+11ln ,即k k k 11ln <+成立。从而有k k k k 1ln )1ln(11<-+<+。 在不等式k k k 11ln <+中,分别令,3,,2,1n n n k K ++=得到一系列不等式相加为 )13ln()2ln()2ln()1ln(312111++++-+++->+++++n n n n n n n K K 即n n n 312111+++++K >113ln ++n n 2ln 1 22ln =++≥n n 在不等式1 11ln +>+k k k 中,分别令k=n,n+1,K 3n-1,并把所得的不等式相加,得 n n n 312111+++++K <3ln 3ln 3ln )1ln()1ln(ln ==++-++-n n n n n n K 即不等式3ln 3121112ln <+++++

数列不等式证明的几种方法

数列不等式证明的几种方法 一、巧妙构造,利用数列的单调性 例1. 对任意自然数n,求证:。 证明:构造数列 。 所以,即为单调递增数列。 所以,即 。 点评:某些问题所给条件隐含数列因素或证明与自然数有关的不等式问题,均可构造数列,通过数列的单调性解决。 二、放缩自然,顺理成章 例2. 已知函数,数列的首项,以后每项按如下方 式取定:曲线处的切线与经过(0,0)和两点的直线平行。 求证:当时: (1);

(2)。 证明:(1)因为,所以曲线处的切线斜率为。 又因为过点(0,0)和两点的斜率为,所以结论成立。(2)因为函数 , 所以,即,因此 ; 又因为。 令,且。 所以 因此, 所以

三、导数引入 例3. 求证: 证明:令,且当时,,所以 。要证明原不等式,只须证 。 设, 所以。 令, 所以。 设, 所以上为增函数 所以,即

所以 同理可证 所以。对上式中的n分别取1,2,3,…, ,得。 四、裂项求和 例4. 设是数列的前n项和,且 (1)求数列的首项,及通项; (2)设,证明。 解:(1)首项(过程略)。 (2)证明:将, 得,

则 点评:本题通过对的变形,利用裂项求和法化为“连续相差”形式,从而达到证题目的 五、独辟蹊径,灵活变通 独辟蹊径指处事有独创的新方法,对问题不局限于一种思路和方法,而是善于灵活变通,独自开辟新思路、新方法。 例5. 已知函数。设数列,数列满足 (1)求证:; (2)求证:。 证明:(1)证法1:由 令,则只须证;易知,只须证。 由分析法:

。 因为,, 所以,得证。 证法2:由于的两个不动点为。又,所以 所以 所以 , 由上可求得, 因此只需证, 即证:

证明数列不等式的常用放缩方法技巧(含答案)

证明数列不等式的常用放缩方法技巧 证明数列型不等式,因其思维跨度大、构造性强,需要有较高的放缩技巧而充满思考性和挑战性,能全面而综合地考查学生的潜能与后继学习能力,因而成为高考压轴题及各级各类竞赛试题命题的极好素材。这类问题的求解策略往往是:通过多角度观察所给数列通项的结构,深入剖析其特征,抓住其规律进行恰当地放缩;其放缩技巧主要有以下几种: ⑴添加或舍去一些项,如: a a >+12; n n n >+)1( ⑵将分子或分母放大(或缩小) ⑶利用基本不等式,如:4lg 16lg 15lg )2 5lg 3lg ( 5lg 3lg 2 =<=+n n n n (5)利用常用结论: Ⅰ. 的放缩 Ⅱ. 2 1k 的放缩(1) : 2111(1)(1) k k k k k <<+-(程度大) Ⅲ. 21k 的放缩(2):2 2 111111()1(1)(1)211 k k k k k k < ==+-+--+(程度小) Ⅳ. 2 1k 的放缩(3):2214112()412121k k k k <=+--+(程度更小) Ⅴ. 分式放缩还可利用真(假)分数的性质:)0,0(>>>++>m a b m a m b a b 和)0,0(>>>++

构造函数法证明不等式的八种方法

构造函数法证明不等式的八种方法 1、利用导数研究函数的单调性极值和最值,再由单调性来证明不等式是函数、导数、不等式综合中的一个难点,也是近几年高考的热点。 2、解题技巧是构造辅助函数,把不等式的证明转化为利用导数研究函数的单调性或求最值,从而证得不等式,而如何根据不等式的结构特征构造一个可导函数是用导数证明不等式的关键。 以下介绍构造函数法证明不等式的八种方法: 一、移项法构造函数 【例1】 已知函数x x x f -+=)1ln()(,求证:当1->x 时,恒有 x x x ≤+≤+-)1ln(1 11 分析:本题是双边不等式,其右边直接从已知函数证明,左边构造函数 11 1)1ln()(-++ +=x x x g ,从其导数入手即可证明。 【解】1111)(+-=-+='x x x x f ∴当01<<-x 时,0)(>'x f ,即)(x f 在)0,1(-∈x 上为增函数 当0>x 时,0)(<'x f ,即)(x f 在),0(+∞∈x 上为减函数 故函数()f x 的单调递增区间为)0,1(-,单调递减区间),0(+∞ 于是函数()f x 在),1(+∞-上的最大值为0)0()(max ==f x f ,因此,当1->x 时, 0)0()(=≤f x f ,即0)1ln(≤-+x x ∴x x ≤+)1ln( (右面得证) , 现证左面,令11 1)1ln()(-+++=x x x g , 22)1()1(111)(+=+-+='x x x x x g 则 当0)(,),0(;0)(,)0,1(>'+∞∈<'-∈x g x x g x 时当时 , 即)(x g 在)0,1(-∈x 上为减函数,在),0(+∞∈x 上为增函数, 故函数)(x g 在),1(+∞-上的最小值为0)0()(min ==g x g , ∴当1->x 时,0)0()(=≥g x g ,即011 1)1ln(≥-++ +x x ∴111)1ln(+-≥+x x ,综上可知,当x x x x ≤+≤-+->)1ln(11 1,1有时 【警示启迪】如果()f a 是函数()f x 在区间上的最大(小)值,则有()f x ≤()f a (或()f x ≥()f a ), 那么要证不等式,只要求函数的最大值不超过0就可得证. 2、作差法构造函数证明 【例2】已知函数.ln 21)(2x x x f += 求证:在区间),1(∞+上,函数)(x f 的图象在函数33 2)(x x g =的图象的下方;