搜档网
当前位置:搜档网 › 2.6高一数学网络授课:第四课 函数的应用(答案)

2.6高一数学网络授课:第四课 函数的应用(答案)

2.6高一数学网络授课:第四课 函数的应用(答案)

第四课、函数的应用(含幂函数)答案一、基础训练

1. { EMBED Equation.DSMT4 |1

x

设则

2.,

3.令

4. 分别作出的图象;

5.增长率类型题目

6.或应为负偶数,

即,

当时,或;当时,或

7.

8. ,得

二、思维拓展

1.解:设最佳售价为元,最大利润为元,

当时,取得最大值,所以应定价为元。

2.或k>3

3.解:令由题意可知

因为

∴,即方程有仅有一根介于和之间。

4. 解:由得,即

.

当,当

三、能力提升

1.对称轴为,可见是一个实根,另两个根关于对称

2.作出函数与函数的图象,发现它们恰有个交点

3. 3 作出的图象,交点横坐标为,

4. 解:f(x)=x2+2mx+2m+1与x轴的交点分别在区间(-1,0)和(1,2)内,

∴.

5.解:

,即,或

当时,得,与矛盾;不成立

当时,得,恒成立,即;不成立

显然,当时,得,不成立,

得得

∴或

1

人教版高中数学必修一-第三章-函数的应用知识点总结

高中数学必修一第三章函数的应用知识点总结(详细) 第三章函数的应用 一、方程的根与函数的零点 1、函数零点的概念:对于函数y=f(x),使f(x)=0 的实数x叫做函数的零点。(实质上是函数y=f(x)与x轴交点的横坐标) 2、函数零点的意义:方程f(x)=0 有实数根?函数y=f(x)的图象与x轴有交点?函数y=f(x)有零点 3、零点定理:函数y=f(x)在区间[a,b]上的图象是连续不断的,并且有f(a)f(b)<0,那么函数y=f(x)在区间(a,b)至少有一个零点c,使得f( c)=0,此时c也是方程f(x)=0 的根。 4、函数零点的求法:求函数y=f(x)的零点: (1)(代数法)求方程f(x)=0 的实数根; (2)(几何法)对于不能用求根公式的方程,可以将它与函数y=f(x)的图象联系起来,并利用函数的性质找出零点. 5、二次函数的零点:二次函数f(x)=ax2+bx+c(a≠0). 1)△>0,方程f(x)=0有两不等实根,二次函数的图象与x轴有两个交点,二次函数有两个零点. 2)△=0,方程f(x)=0有两相等实根(二重根),二次函数的图象与x轴有一个交点,二次函数有一个二重零点或二阶零点. 3)△<0,方程f(x)=0无实根,二次函数的图象与x轴无交点,二次函数无零点. 二、二分法 1、概念:对于在区间[a,b]上连续不断且f(a)f(b)<0的函数y=f(x),通过不断地把函数f(x)的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点近似值的方法叫做二分法。 2、用二分法求方程近似解的步骤: ⑴确定区间[a,b],验证f(a)f(b)<0,给定精确度ε; ⑵求区间(a,b)的中点c;

研究生必备的人工神经网络电子书汇总(31本)

研究生必备的人工神经网络电子书汇总(31本) 这些都是我从淘宝和百度文库里面搜集到的电子书,需要的可以联系我 QQ:415295747,或者登录我的博客https://www.sodocs.net/doc/138530867.html,/u/1723697742 1.神经网络在应用科学和工程中的应用——从基础原理到复杂的模式识别 5 译者序 6 前 9 致谢 10 作者简介 11 目录 19 第1章从数据到模型:理解生物学、生态学和自然系统的复杂性和挑战 27 第2章神经网络基础和线性数据分析模型 72 第3章用于非线性模式识别的神经网络 105 第4章神经网对非线性模式的学习 166 第5章从数据中抽取可靠模式的神经网络模型的实现 205 第6章数据探测、维数约简和特征提取 235 第7章使用贝叶斯统计的神经网络模型的不确定性评估 276 第8章应用自组织映射的方法发现数据中的未知聚类 359 第9章神经网络在时间序列预测中的应用 458 附录 2.MATLB 神经网络30个案例分析 第1章BP神经网络的数据分类——语音特征信号分类 23 第2章BP神经网络的非线性系统建模——非线性函数拟合 33 第3章遗传算法优化BP神经网络——非线性函数拟合 48 第4章神经网络遗传算法函数极值寻优——非线性函数极值寻优 57 第5章基于BP_Adsboost的强分类器设计——公司财务预警建模 66 第6章PID神经元网络解耦控制算法——多变量系统控制 77 第7章RBF网络的回归——非线性函数回归的实现 85 第8章GRNN的数据预测——基于广义回归神经网络的货运量预测 93 第9章离散Hopfield神经网络的联想记忆——数字识别 102 第10章离散Hopfield神经网络的分类——高校科研能力评价 112 第11章连续Hopfield神经网络的优化——旅行商问题优化计算 124 第12章SVM的数据分类预测——意大利葡萄酒种类识别 134 第13章SVM的参数优化——如何更好的提升分类器的性能

推荐-江苏省启东中学高一数学[函数的应用] 精品

江苏省启东中学高一数学 函数的应用 一、选择题 1、在本埠投寄平信,每封信不超过20g 时付邮资0.80元,超过20g 而不超过40g 付邮资1.60元,依次类推,每增加20g 需增加邮资0.80元(信重在100g 以内).如果某人所寄一封信的质量为82.5g ,那么他应付邮资 ( D ) A .2.4元 B .2.8元 C .3.2元 D .4元 2、某人2018年1月1日到银行存入一年期存款a 元,若按年利率为x ,并按复利计算,到 2018年1月1日可取回款 ( A ) A .a (1+x )5元 B .a (1+x )6元 C .a (1+x 5)元 D .a (1+x 6)元 3、已知m ,n 是方程lg 2x +lg15lg x +lg3lg5=0的两根,则mn = ( D ) A .-(lg3+lg5) B .lg3lg5 C .158 D .15 1 4、某商品2018年零售价比2001年上涨25%,欲控制2018年比2001年只上涨10%,则2018年应比2018年降价 ( B ) A .15% B .12% C .10% D .8% 5、已知0<a <1,则方程a |x |=|log a x |的实根个数是 ( B ) A .1个 B .2个 C .3个 D .1个或2个或3个 二、填空题: 6、使函数y =x 2-4x +5具有反函数的一个条件是_____________________________.(只须填上一个条件即可,不必考虑所有情形). 7、.某商人将彩电先按原价提高40%,然后“八折优惠”,结果是每台彩电比原价多赚144元,那么每台彩电原价是 元. 8、某人有资金2000元,拟投入在复利方式下年报酬为8%的投资项目,约经过 年能使现有资金翻一番.(下列数据供参考:lg2=0.3010,lg5.4=0.7324,lg5.5=0.7418,lg5.6=0.7482)

高中数学必修1《 函数的应用》知识点

第4章 函数的应用 第1讲 函数与方程 一、连续函数 连续函数: 非连续函数: 二、方程的根与函数的零点 ()()()0001f x x f x x f x ?、零点:对于函数,若使=0,则称为函数的零点. ()()()=0y f x f x y f x x ??2、函数=的零点方程的实根函数=图像与交点的横坐标. 3、零点存在性定理: ()[]()()()(),::,.0.y f x a b p q y f x a b f a f b ?????

()f x 三、用二分法求=0的近似解 步骤: ()()()()()()()12121233131323231,,0; 2,;2 30,20,2.i i x x f x f x x x x f x f x f x x x f x f x x x x x d +?<+= ?

高一数学教案:函数的基本性质

教学要求:理解增函数、减函数、单调区间、单调性等概念,掌握增(减)函数的证明和判别, 学会运用函数图象理解和研究函数的性质。 教学重点:掌握运用定义或图象进行函数的单调性的证明和判别。 教学难点:理解概念。 教学过程: 一、复习准备: 1.引言:函数是描述事物运动变化规律的数学模型,那么能否发现变化中保持不变的特征呢? 2. 观察下列各个函数的图象,并探讨下列变化规律: ①随x 的增大,y 的值有什么变化? ②能否看出函数的最大、最小值? ③函数图象是否具有某种对称性? 3. 画出函数f(x)= x +2、f(x)= x 2的图像。(小结描点 法的步骤:列表→描点→连线) 二、讲授新课: 1.教学增函数、减函数、单调性、单调区间等概念: ①根据f(x)=3x +2、 f(x)=x 2 (x>0)的图象进行讨论: 随x 的增大,函数值怎样变化? 当x 1>x 2时,f(x 1)与f(x 2)的大小关系怎样? ②.一次函数、二次函数和反比例函数,在什么区间函数有怎样的增大或减小的性质? ③定义增函数:设函数y=f(x)的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1

小波神经网络及其应用

小波神经网络及其应用 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1. 研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛 即 ,焦李神经网络2. 2.1()x ,使式中为的Fourier 变换。对作伸缩、平移变换得到小波基函数系 对任意2()()f x L R ∈,其连续小波变换定义为: 反演公式为: 在实际应用中,特别是计算机实现中,往往要把上述的连续小波及其变换离散化,通常采用二进制离散,即 令2,2m m a b k ==,则 二进小波一定是一个允许小波,且是一个正交小波基。考虑一个连续的、平方可积的函数 2()()f x L R ∈在分辨率2m 下的逼近()m f x ,由多分辨分析理论可知:

()x Φ是尺度函数,对其作伸缩、平移变换得到()mk x Φ。 Mallat 同时证明了函数()f x 在2m 和12m -分辨率下的信息差别(即细节)()m D f x ,可以通过将函数() f x 在一小波正交基上分解而获得,从而定义了一种完全而且正交的多分辨率描述,即小波描述。 ()mk x ψ就是式(5)定义的二进小波,则()f x 在12m -分辨率下的逼近式为: Mallat 并指出,对于任意一个函数 2()()f x L R ∈可以在一组正交小波基上展开: 式(11)是一个平方可积函数的小波分解,提供了小波神经网络设计的理论框架。 .. 12(,)x x ο 则有2.2 (ψ(f x 式(Lk a 与式 (17i c i 则有: 即(21)=f Ac 式(20)的最小二乘解为: +A 被称为A 的伪逆矩阵。且 如果样本i x 均匀分布,(1,2,...,)θ=i i n 是正交基, 则T A A 是一个?n n 单位矩阵,且

2020-2021年高一数学反函数一 新课标 人教版

2019-2020年高一数学反函数一新课标人教版教学目标 1.使学生了解反函数的概念; 2.使学生会求一些简单函数的反函数; 3.培养学生用辩证的观点观察、分析解决问题的能力。 教学重点 1.反函数的概念; 2.反函数的求法。 教学难点 反函数的概念。 教学方法 师生共同讨论 教具装备 幻灯片2张 第一张:反函数的定义、记法、习惯记法。(记作A); 第二张:本课时作业中的预习内容及提纲。 教学过程 (I)讲授新课 (检查预习情况)

师:这节课我们来学习反函数(板书课题)§2.4.1 反函数的概念。 同学们已经进行了预习,对反函数的概念有了初步的了解,谁来复述一下反函数的定义、记法、习惯记法? 生:(略) (学生回答之后,打出幻灯片A)。 师:反函数的定义着重强调两点: (1)根据y= f(x)中x与y的关系,用y把x表示出来,得到x= φ(y); (2)对于y在c中的任一个值,通过x= φ(y),x在A中都有惟一的值和它对应。 师:应该注意习惯记法是由记法改写过来的。 师:由反函数的定义,同学们考虑一下,怎样的映射确定的函数才有反函数呢? 生:一一映射确定的函数才有反函数。 (学生作答后,教师板书,若学生答不来,教师再予以必要的启示)。 师:在y= f(x)中与y= f -1(y)中的x、y,所表示的量相同。(前者中的x与后者中的x都属于同一个集合,y也是如此),但地位不同(前者x是自变量,y是函数值;后者y 是自变量,x是函数值。) 在y= f(x)中与y= f –1(x)中的x都是自变量,y都是函数值,即x、y在两式中所处的地位相同,但表示的量不同(前者中的x是后者中的y,前者中的y是后者中的x。)由此,请同学们谈一下,函数y= f(x)与它的反函数y= f –1(x)两者之间,定义域、值域存在什么关系呢?

高中数学《函数的应用》公开课优秀教学设计可编辑

《函数的应用》教学设计 一、教学内容解析 本节课是《普通高中课程标准实验教科书?数学1》(人教B版)第三章第四节第一课时《函数的应用》. 函数的应用是在学生学习了函数,指数函数、对数函数和幂函数的概念与性质后进行的一次综合应用,它不仅能加深学生对所学函数知识的理解,同时能提高学生利用所学知识解决实际问题的能力. 通过经历由实际问题建立函数模型,再利用模型分析、解决问题的过程,学生体验了数学在解决实际问题中的价值和作用,体验了数学与日常生活的联系,有助于增强学生的应用意识,激发他们学习数学的兴趣,发展他们的实践能力. 二、教学目标设置 根据教学内容,以及学生现有的认知水平和数学能力,我把本节课的教学目标确定为以下三个方面: 1.了解数学建模的基本步骤,会建立函数模型解决实际问题; 2.经历建立函数模型解决实际问题的过程,体验数学在解决实际问题中的价值和作用,提高综合运用数学知识和方法解决实际问题的能力; 3.加深学生对数学应用问题的理解,培养学生的科学态度和反思意识,提高学习数学的兴趣. 本节课的教学重点是建立函数模型解决实际问题; 本节课的教学难点是选择适当的方案和函数模型解决问题. 三、学生学情分析 学生已经研究了一次函数、二次函数、指数函数等基本初等函数的图象和性质,能利用函数知识解决简单的数学应用问题.他们初步掌握了图形计算器的使用方法,能根据给定数据进行指定函数模型的拟合. 授课班级的学生思维活跃,能积极参与课堂讨论.学生已经对北京的交通情况作了初步的调查和数据整理,对问题背景有一定的了解.但学生应用数学的意

识不强,数据处理能力不足,也缺乏利用数学模型对实际问题进行分析和评价的经验. 四、教学策略分析 本节课以探究学习作为主要的学习方式,通过情境引入、初步探究、综合应用、总结提升四个环节,逐步将研究引向深入.引导学生通过自主探究、合作交流,经历数学建模的过程,培养应用数学的能力. 为了突破难点,落实重点,我采取了以下措施:首先,学生使用图形计算器辅助学习,避免繁琐的计算,为从多角度,多层次研究问题提供了支持.其次,以北京的热点问题——交通问题作为研究背景,激发学生的学习兴趣,调动学生的积极性.第三,将资料的采集和整理工作交给学生课前完成,让学生提前熟悉问题背景,降低探究难度,提高课堂效率. 本节课的效果评价以当堂反馈为主,教师通过巡视、提问的方式关注学生的学习过程和学习进展.学生通过自主探索,交流讨论,上台展示等方式,展示学习的效果,发现认知障碍,以便得到及时的引导、分析和纠正.教师还将通过开放式作业进一步评估学生的学习效果. 五、教学过程 (一)创设情境,引入新课 (1)教师对学生之前的调查作简单小结,引导学生回顾他们所提出的问题,引出本节课的课题——函数的应用. 设计意图:让学生体会到数学来源于生活,激发学生的学习兴趣,并做好利用所学知识解决实际问题的准备,为后续探究做好铺垫. (2)ppt展示学生作业,师生共同梳理解题过程,并进行题后反思.

高中数学必修一 函数的应用

函数的应用 教学目标 知识目标: 使学生能根据实际问题抽象出函数的数学模型; 使学生学会用数形结合的思想解决函数值大小比较的实际问题; 能力目标: 培养学生数学的应用意识,提高解决实际问题的能力; 情感目标: 培养学生学习数学的兴趣和积极性。 教学重点和难点: 使学生学会从实际问题抽象出函数的数学模型,并用数形结合的思想解决函数值大小比较的实际问题。 课前准备:学生调查桑塔纳出租车计价情况 教学过程: 一、复习 提问:我们已学的一次函数、正比例函数、常值函数都可用怎样的函数解析式表示? y=kx+b :当k 0≠时是一次函数;当k 0≠,b=0时是正比例函数;当k=0时是常值函数。 [说明:渗透分类的数学思想,明确函数间的关系] 二、函数的应用 1、 龟兔赛跑(动画演示) 师:兔子在醒来后,发现乌龟已在自己前面2500米处,很后悔,以每小时跑3000米的速度奋力去追,而乌龟仍以每小时500米的速度继续前进,那么谁能胜利呢? 师:你能用学过的方法直观地反映这一问题吗? (学生讨论后回答) 若设兔子醒后追赶了t 小时,龟、兔离开兔子睡觉处的路程S (米)与时间t (小时)各是什么关系?并在同一直角坐标系内画出图象。 (学生回答) 师:(板书)兔:1S =3000t ()0≥t ; 龟:t S 50025002+= ()0≥t ; (图象实物投影) 师:图象的交点表示什么实际意义?交点左侧表示什么意义?右侧又表示什么意义呢? (学生回答后,老师归纳) 归纳:两图象交点表示当自变量为交点横坐标时,两函数值相等,且同为交点纵坐标;反映在龟兔赛跑中,即经过相同的时间,兔子正好追上乌龟; 交点左侧部分图象对于相同的自变量,两函数值不同,其中位于上方图象的函数值大于下方图象的相应函数值;反映在龟兔赛跑中,即乌龟跑在兔子前面, [说明:对学生 脑海中传统的龟兔赛跑的结局提出问题,引发学生兴趣的同时也引起学生的思考,从而考虑解决问题的方法;通过对函数图象的一系列问题这一师生间的互动,使学生充分认识图象获取信息,理解图象的实际含义,直观感受到数形结合解决这类问题的价值,从学法上给学生以指导,为后面学生自主解

高一数学反函数的概念

4.5反函数的概念 一、教学内容分析 “反函数”是《高中代数》第一册的重要内容.这一节课与函数的基本概念有着紧密的联 系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为今后反三角函数的教学做好准备,起到承上启下的重要作用. 二、教学目标设计 (1)理解反函数的概念,并能判定一个函数是否存在反函数; (2)掌握求反函数的基本步骤,并能理解原函数和反函数之间的内在联系; (3)通过反函数概念的引入;函数及其反函数图像特征的主动探索,初步学会自主地学习、 独立地探究问题;掌握观察、比较、分析、归纳等数学试验研究的方法;体验探索 中挫折的艰辛与成功的快乐,激发学习热情. 三、教学重点与难点: 反函数的概念及求法;反函数的图像特征;反函数定义域的确定. 四、教学流程设计 五、教学过程设计 1、设置情境,引出概念 引例:在两种温度度量制摄氏度(C )和华氏度(F )相互转化时会发现,有时两人选用相同的数据,如下表,所建立的函数关系和作出的图像完全不同,这是为什么呢?

教师点拨:指导学生观察上面两个函数的异同,引出反函数的定义.介绍反函数的记号 )(1x f y ;了解)(1x f 表示反函数的符号,1 f 表示对应法则. 2、 探索研究,深化概念 ①探求反函数成立的条件. 例1(1)2x y (R x )的反函数是 (2)2x y (0 x )的反函数是 (3)2 x y (0 x )的反函数是 学生活动:讨论函数反函数成立的条件(理论根据为函数的定 义):对值域A 中任意一个y 值,在定义域D 中总有唯一确定 的x 值与它对应,即x 与y 必须一一对应. ②探求求反函数的方法.(课本例题) 例2.求下列函数的反函数: (1)24 x y (2)13 x y (3))0(12 x x y (4))2 1,(2413 x R x x x y [说明]:学生分四组完成,教师巡视,把典型错误及正确解法投影. 学生活动:探求求反函数的方法. (1) 变形:解方程,)(x f y 得)(1y f x ; (2) 互换:互换y x ,的位置,得)(1 x f y ; (3)写出定义域:注明反函数的定义域. ③观察反函数的图像,探讨互为反函数的两个函数的关系.

基于径向基函数神经网络的函数逼近

基于径向基函数神经网络的函数逼近 刘君尧1,邱 岚2 (1.深圳信息职业技术学院,广东深圳 518029;2.中国移动广西公司,广西南宁 530022) 【摘 要】在介绍了径向基函数神经网络原理的基础上,应用该网络进行函数逼近的实现,并探讨散步常数的选取对逼近效果的影响。 【关键词】径向基函数;神经网络;散布常数;函数逼近 【中图分类号】TP183 【文献标识码】A 【文章编号】1008-1151(2009)09-0039-01 (一)引言 径向基函数(Radial Basis Function)神经网络是由 J.Moody和C.Darken于20世纪 80年代末提出的一种神经网 络,径向基函数方法在某种程度上利用了多维空间中传统的 严格插值法的研究成果。在神经网络的背景下,隐藏单元提 供一个“函数”集,该函数集在输入模式向量扩展至隐层空 间时为其构建一个任意的“基”,这个函数集中的函数就被称 为径向基函数。目前,径向基函数多用于函数逼近和分类问 题的研究。 (二)RBF神经网络模型 最基本的径向基函数神经网络包含三层,由一些感知单 元组成的输入层、包含一个具有径向基函数神经元的隐层和 一个具有线性神经原的输出层。 1.RBF径向基神经元模型 径向基函数神经元的传递函数有多种形式,最常用的形 式是高斯函数(radbas)。采用高斯基函数,具备如下优点: ①表示形式简单,即使对于多变量输入也不增加太多的复杂 性;②径向对称;③光滑性好,任意阶导数存在;④由于该 基函数表示简单且解析性好,因而便于进行理论分析。 输入向量p 图1径向基传递函数 径向基网络的神经元模型结构如图2所示。由该图可见, radbas的输入为输入矢量p和权值向量W之间的距离乘以阈 值b。 图2 径向基函数神经元模型 2.RBF神经网络的结构 径向基函数网络包括输入层、隐层和输出层,如图3所 示。输入信号传递到隐层,隐层有S1个神经元,节点函数为 高斯函数;输出层有S2个神经元,节点函数一般采用简单的 线性函数。 图3 径向基函数网络基本结构图 (三)RBF神经网络应用于函数逼近 RBF神经网络在进行函数逼近的实现时,往往在网络设计 之初并不指定隐层神经元的个数,而是在每一次针对样本集 的训练中产生一个径向基神经元,并尽可能最大程度地降低 误差,如果未达到精度要求,则继续增加神经元,直到满足 精度要求或者达到最大神经元数目。这样避免了设计之初存 在隐层神经元过少或者过多的问题。训练过程中,散布常数 的选取非常重要。 1.函数逼近的RBF神经网络 已知输入向量P和输出向量T,通过构建径向基函数神经 网络来进行曲线拟合,从而找到一个函数能够满足这21个数 据点的输入/输出关系,绘制训练样本如图所示。 输入向量P:-1:0.1:1; 输出向量T:0.9500 0.5700 0.0300 -0.2800 -0.5800 -0.6200 -0.4800 -0.1400 0.2100 0.4700 0.5000 0.3800 0.1700 -0.1200 -0.3200 -0.4200 0.3500 -0.1300 0.2120 0.4200 0.5100; 应用MATLAB神经网络工具箱中的newrb()函数快速构建 一个径向基函数网络,并且网络根据输入向量和期望值自动 进行调整,从而实现函数逼近,预先设定均方差精度为0.0001, 散布常数为1。实验结果如图4所示。可见,应用径向基函数 进行函数逼近非常有效。 图4网络输出与目标值比较(下转第19页)【收稿日期】2009-06-02 【作者简介】刘君尧(1979-),女,湖南汨罗人,深圳信息职业技术学院讲师,硕士研究生,研究方向为神经网络。

小波神经网络及其应用

小波神经网络及其应用 1014202032 陆宇颖 摘要:小波神经网络是将小波理论和神经网络理论结合起来的一种神经网络,它避免了BP 神经网络结构设计的盲目性和局部最优等非线性优化问题,大大简化了训练,具有较强的函数学习能力和推广能力及广阔的应用前景。首先阐明了小波变换和多分辨分析理论,然后介绍小波神经网络数学模型和应用概况。 1.研究背景与意义 人工神经网络是基于生物神经系统研究而建立的模型,它具有大规模并行处理和分布式存储各类图像信息的功能,有很强的容错性、联想和记忆能力,因而被广泛地应用于故障诊断、模式识别、联想记忆、复杂优化、图像处理以及计算机领域。但是,人工神经网络模型建立的物理解释,网络激活函数采用的全局性函数,网络收敛性的保证,网络节点数的经验性确定等问题尚有待进一步探讨和改善。 小波理论自 Morlet 提出以来,由于小波函数具有良好的局部化性质,已经广泛渗透到各个领域。小波变换方法是一种窗口大小固定但其形状可以改变, 时间窗和频率窗都可以改变的时频局部化分析方法, 由于在低频部分具有较高的频率分辨率和较低的时间分辨率, 在高频部分具有较高的时间分辨率和较低的频率分辨率, 所以被誉为数学显微镜。正是这种特性, 使小波变换具有对信号的自适应性。基于多分辨分析的小波变换由于具有时频局部化特性而成为了信号处理的有效工具。实际应用时常采用Mallat快速算法,利用正交小波基将信号分解到不同尺度上。实现过程如同重复使用一组高通和低通滤波器把信号分解到不同的频带上,高通滤波器产生信号的高频细节分量,低通滤波器产生信号的低频近似分量。每分解一次信号的采样频率降低一倍,近似分量还可以通过高通滤波和低通滤波进一步地分解,得到下一层次上的两个分解分量。 而小波神经网络(Wavelet Neural Network, WNN)正是在近年来小波分析研究获得突破的基础上提出的一种人工神经网络。它是基于小波分析理论以及小波变换所构造的一种分层的、多分辨率的新型人工神经网络模型,即用非线性小波基取代了通常的非线性Sigmoid 函数,其信号表述是通过将所选取的小波基进行线性叠加来表现的。 小波神经网络这方面的早期工作大约开始于1992 年,主要研究者是Zhang Q、Harold H S 和焦李成等。其中,焦李成在其代表作《神经网络的应用与实现》中从理论上对小波神经网络进行了较为详细的论述。近年来,人们在小波神经网络的理论和应用方面都开展了不少研究工作。 小波神经网络具有以下特点。首先,小波基元及整个网络结构的确定有可靠的理论根据,可避免BP 神经网络等结构设计上的盲目性;其次,网络权系数线性分布和学习目标函数的凸性,使网络训练过程从根本上避免了局部最优等非线性优化问题;第三,有较强的函数学习能力和推广能力。 2.数学模型与小波工具 2.1 小波变换及多分辨分析 L R(或更广泛的Hilbert 空间)中,选择一个母小波函数(又称为基本在函数空间2() ,使其满足允许条件: 小波函数)()x

高一数学函数的应用测试题及答案17

模块质量检测(一) 一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的) 1.设U =R ,A ={x|x>0},B ={x|x>1},则A ∩?U B =( ) A{x|0≤x<1} B .{x|01} 【解析】 ?U B ={x|x ≤1},∴A ∩?U B ={x|00,且a ≠1)的反函数,且f(2)=1,则f(x)=( ) A .log 2x B.1 2x C .log 1 2x D .2x -2 【解析】 f(x)=log a x ,∵f(2)=1, ∴log a 2=1,∴a =2. ∴f(x)=log 2x ,故选A. 【答案】 A 3.下列函数中,与函数y =1 x 有相同定义域的是( ) A .f(x)=ln x B .f(x)=1 x C .f(x)=|x| D .f(x)=e x 【解析】 ∵y =1 x 的定义域为(0,+∞).故选A. 【答案】 A 4.已知函数f(x)满足:当x ≥4时,f(x)=? ????12x ;当x<4时,f(x)=f(x +1).则 f(3)=( ) A.1 8 B .8 C.1 16 D .16

【解析】 f(3)=f(4)=(12)4=1 16. 【答案】 C 5.函数y =-x 2+8x -16在区间[3,5]上( ) A .没有零点 B .有一个零点 C .有两个零点 D .有无数个零点 【解析】 ∵y =-x 2+8x -16=-(x -4)2, ∴函数在[3,5]上只有一个零点4. 【答案】 B 6.函数y =log 12(x 2 +6x +13)的值域是( ) A .R B .[8,+∞) C .(-∞,-2] D .[-3,+∞) 【解析】 设u =x 2+6x +13 =(x +3)2+4≥4 y =log 1 2u 在[4,+∞)上是减函数, ∴y ≤log 1 24=-2,∴函数值域为(-∞,-2],故选C. 【答案】 C 7.定义在R 上的偶函数f(x)的部分图象如图所示,则在(-2,0)上,下列函数中与f(x)的单调性不同的是( ) A .y=x2+1 B .y =|x|+1 C .y =??? 2x +1,x ≥0x 3+1,x<0 D .y =??? e x ,x ≥0 e -x ,x<0 【解析】 ∵f(x)为偶函数,由图象知f(x)在(-2,0)上为减函数,而y =x 3+1在(-∞,0)上为增函数.故选C. 【答案】 C

2020高一数学:反函数的定义

【文库独家】 反函数的定义 设函数y=f(x)的定义域是A,值域是C.我们从式子y=f(x)中解出x得到式子x=φ(y).如果对于y在C中的任何一个值,通过式子x=φ(y),x在A中都有唯一的值和它对应,那么式子x=φ(y)叫函数y=f(x)的反函数,记作x=f-1(y),习惯表示为y=f-1(x).注意:函数y=f(x)的定义域和值域,分别是反函数y=f-1(x)的值域和定义域, 例如:f(x)=的定义域是[-1,+∞],值域是[0,+∞),它的反函数 f-1(x)=x2-1, x≥0,定义域为 [0,+∞),值域是[-1,+∞)。 2.反函数存在的条件 按照函数定义,y=f(x)定义域中的每一个元素x,都唯一地对应着值域中的元素y,如果值域中的每一个元素y也有定义域中的唯一的一个元素x和它相对应,即定义域中的元素x和值域中的元素y,通过对应法则y=f(x)存在着一一对应关系,那么函数y=f(x)存在反函数,否则不存在反函数.例如:函数y=x2,x∈R,定义域中的元素±1,都对应着值域中的同一个元素1,所以,没有反函数.而y=x2, x≥1表示定义域到值域的一一对应,因而存在反函数. 3.函数与反函数图象间的关系 函数y=f(x)和它的反函数y=f-1(x)的图象关于y=x对称.若点(a,b)在y=f(x)的图象上,那么点(b,a)在它的反函数y=f-1(x)的图象上. 4.反函数的几个简单命题 (1)一个奇函数y=f(x)如果存在反函数,那么它的反函数y=f-1(x)一定是奇函数. (2)一个函数在某一区间是(减)函数,并且存在反函数,那么它的反函数在相应区间也是增(减)函数.

高中一年级数学反函数教学设计

高中一年级数学反函数教学设计 一、教材分析: 1、教材的地位与作用 “反函数”一节课是《高中代数》第一册的重要内容。这一节课与函数的基本概念有着紧密的联系,通过对这一节课的学习,既可以让学生接受、理解反函数的概念并学会反函数的求法,又可使学生加深对函数基本概念的理解,还为日后反三角函数的教学做好准备,起到承上启下的重要作用。 2、重点与难点:反函数的定义和求法 二、教学目标分析: (1)知识与技能:使学生接受、理解反函数的概念,并能判定一个函数是否存在反函数;使学生能够求出指定函数的反函数,并能理解原函数和反函数之间的内在联系; (2)能力与方法:培养学生发现问题、观察问题、解决问题的能力; (3)情感与态度:使学生树立对立统一的辩证思维观点。 三、学情分析: 学生已经学习了函数的基本概念和表示法,掌握了函数的基本知识,理解反函数的概念及互为反函数的两个函数的性质和特征,更有助于学生将函数的思想理解得更透彻。 四、教学过程设计 1、创设问题情境: 导入阶段的教学中,抓住反函数也是函数这一实质,以对函数概念的复习来引出反函数。指明函数是一种映射的实质,分析原函数中映射的具体情况,进而引导学生考虑,若将定义域、值域互换,此时映射还是不是一个函数呢? 首先提问学生函数基本概念,使学生明白函数是一种单值对应,即映射。再出示电脑动画,以函数y=2x来具体分析,结合图象引导学生注意:在定义域内所有自变量,都能在值域内找到唯一确定的一个函数值,即存在x→y的单值对应,例如:1→2,2→4,3→6,……若将定义域与值域互换,则对应变为2→1,4→2,6→3,…这种对应是否构成单值对应,即映射呢?这种对应是否构成函数呢?至此,引出反函数的概念,为概念的新授做好准备。 设计意图:这样的引入方式,抓住了反函数概念的实质,确保学生不会产生概念上的偏差。此外,可以使学生明白新知识来源于旧知识,促使学生主动运用函数的研究方法去学习反函数,为顺利完成教学任务做好思维上的准备。 2、知识建构: 给出概念后,必须防止学生对于反函数f-1(y)形式的误解(以为是1/f(x))。此外,还

高一数学 函数的应用(1)

高一数学函数的应用(1) 【目标要求】 1.能把实际问题转化为数学模型. 2.能用函数等数学知识解决简单的应用问题. 3.培养学生学以致用的思想. 【巩固教材--稳扎马步】 1.固定电话市话收费规定:前三分钟0.22元(不满三分钟按三分钟计算),以后每分钟0.11元(不满一分钟按一分钟计算),那么某人打市话550秒,应该收费()A.1.10元B.0.99元C. 1.21元D.0.88元 2.某汽车运输公司,购买了一批豪华大客车投入客运,据市场分析,每辆客车盈利的总利润y(万元)与营运年数x(x)满足函数关系式y=,则每辆客车营运多少年可使其营运利润最大() A.6B.7C.6或7D.7或8 3.在一定范围内,某种产品的购买量y吨与单价x元之间满足一次函数关系,如果购买1000吨,每吨为800元;购买2000吨,每吨为700元,一客户购买400吨,单价应该为()A.820元B.840元C.860元D.880元 4.在x克a%的盐水中,加入y克b%的的盐水,浓度变成c%,则x与y的函数关系式() A.B.C.D. 【重难突破--重拳出击】 5.某厂生产两种成本不同的产品,由于市场销售变化,甲产品按成本提价20%,同时乙产品按成本降价20%,结果都以30元售出,此时厂家对甲乙两种产品各售出一件,盈亏情况是() A.不亏不赚B.赚2.5元C.赚5.5元D.亏2.5元 6.《中华人民共和国个人所得税法》规定,公民全月工资,薪金所得不超过800元的部分不必纳税,超过800元的部分为全月应纳税所得额,此项税款按下表分段累积计算: 全月应纳税所得额税率 不超过500元的部分5% 超过500至2000元部分10% 超过2000元至5000元部分15% ............ 某人一月份应缴纳税款26.78元,则他的当月工资,薪金所得介于()A.800~900元B.900~1200元C.1200~1500元D.1500~2000元7.某种商品进货单价为40元,若按50元的价格出售,能卖出50件;若销售单价每上涨1

(12)高一数学对数函数公式的运用,以及与对数有关的不等式

对数运算常用公式 (1)a=N (2)logaM+logaN=loga(MN) (3)logaM-logaN=loga (4)logaMn=nloga|M| (5)loga=loga|M| (6)loga=loga|M| (7)logbM= (8) (9)logab·logbc=logac 专题一:指数方程、指数不等式问题。 1、解下列方程。 (1)、(2)、 2、若方程有正根,求的取值范围。 3、若求的取值范围。 专题二:对数方程、对数不等式问题。解方程。 设方程的两根是,求的值。 解不等式 专题三:用字母表示式子。 已知

已知,用 设 专题四:对数式的化简与计算。 计算下列各式。 (1) (2) (3) 专题五:涉及对数函数的复合函数的定义域、值域和单调性。 1、求下列函数的定义域、值域和单调区间。 (1)(2) (3)(4) 求函数定义域一般有三类问题: (1)给出函数解析式的:函数的定义域是使解析式有意义的自变量的取值集合; (2)实际问题:函数的定义域的求解除要考虑解析式有意义外,还应考虑使实际问题有意义; (3)已知的定义域求的定义域或已知的定义域求的定义域: ①掌握基本初等函数(尤其是分式函数、无理函数、对数函数、三角函数)的定义域; ②若已知的定义域,其复合函数的定义域应由解出. 1.设函数, 求函数的定义域.

2.(2009·江西改编)函数y=的定义域为________________. 3.(2009·福建改编)下列函数中,与函数y=有相同定义域的是________. ①f(x)=ln x②f(x)= ③f(x)=|x|④f(x)=ex 4.(14分)(2009·泰州二模)(1)已知f(x)的定义域是[0,4],求 ①f(x2)的定义域; ②f(x+1)+f(x-1)的定义域. (2)已知f(x2)的定义域为[0,4],求f(x)的定义域. 求函数解析式的题型有: (1)已知函数类型,求函数的解析式:待定系数法; (2)已知求或已知求:换元法、配凑法; (3)已知函数图像,求函数解析式; (4)满足某个等式,这个等式除外还有其他未知量,需构造另个等式:解方程组法; 课堂练习: (1)已知,求; (2)已知,求; (3)已知是一次函数,且满足,求; (4)已知满足,求. 求函数的值域的方法常用的有: 直接法,配方法,判别式法,基本不等式法,逆求法(反函数法),换元法,图像法,利用函数的单调性、奇偶性求函数的值域等. 求下列函数的值域: (1);(2); (3);(4); (5);(6); (7);(8);

径向基函数神经网络.docx

径向基函数神经网络模型与学习算法 1985年,Powell提出了多变量插值的径向基丙数(Radical Basis Function, RBF)方法。1988 年,Moody 和Darken 提出了一种神经网络结构,即RBF 神经网络,属于前向神经网络类型,它能够以任意精度逼近任意连续函数,特别适合于解决分类问题。 RBF网络的结构与多层前向网络类似,它是一种三层前向网络。输入层由信号源结点组成;第二层为隐含层,隐单元数视所描述问题的需要而定,隐单元的变换函数RBFO是对中心点径向对称且衰减的非负非线性函数;第三层为输出层,它对输入模式的作用作出响应。从输入空间到隐含层空间的变换是非线性的,而从隐含层空间的输出层空间变换是线性的。 RBF网络的基本思想是:用RBF作为隐单元的“基”构成隐含层空间,这样就可以将输入矢量直接(即不需要通过权接)映射到隐空间。当RBF的屮心点确定以后,这种映射关系也就确定了。而隐含层空间到输出空间的映射是线性的,即网络的输出是隐单元输出的线性加权和。此处的权即为网络可调参数。由此可见,从总体上看,网络市输入到输出的映射是非线性的,而网络输出对叮调参数而言却又是线性的。这样网络的权就可由线性方程直接解岀,从而大大加快学习速度并避免局部极小问题。 1.1RBF神经网络模型 径向基神经网络的神经元结构如图1所示。径向基神经网络的激活函数采用径向基函数,通常定义为空间任一点到某一中心之间欧氏距离的单调函数。由图1所示的径向基神经元结构可以看出,径向基神经网络的激活函数是以输入向量和权值向量之间的距离||dist||作为自变量的。径向基神经网络的

激活函数的一般表达式为 /?(||dist||)= e~yist^(1) 图1径向基神经元模型 随着权值和输入向量之间距离的减少,网络输出是递增的,当输入向量和权值向量一致时,神经元输出1。在图1中的b为阈值,用于调整神经元的灵敏度。利用径向基神经元和线性神经元可以建立广义回归神经网络,该种神经网络适用于函数逼近方面的应用;径向基神经元和竞争神经元可以组建概率神经网络,此种神经网络适用于解决分类问题。 由输入层、隐含层和输岀层构成的一般径向基神经网络结构如图2所示。在RBF网络中,输入层仅仅起到传输信号的作用,与前面所讲述的神经网络相比较,输入层和隐含层之间可以看做连接权值为1 的连接。输出层和隐含层所完成的任务是不同的,因而它们的学习策略也不相同。输岀层是对线性权进行调整,采用的是线性优化策略。因而学习速度较快。而隐含层是对激活函数(格林函数或高斯函数,一般取高斯)的参数进行调整,采用的是非线性优化策略,因而学习速度较慢。

相关主题