搜档网
当前位置:搜档网 › 分析RIP协议如何更新路由表

分析RIP协议如何更新路由表

分析RIP协议如何更新路由表

RIP为每个目的地只记录一条路由的事实要求RIP积极地维护路由表的完整性。通过要求所有活跃的RIP路由器在固定时间间隔广播其路由表内容至相邻的RIP路由器来做到这一点,所有收到的更新自动代替已经存储在路由表中的信息。

RIP依赖3个计时器来维护路由表:

·更新计时器

·路由超时计时器

·路由刷新计时器

更新计时器用于在节点一级初始化路由表更新。每个RIP节点只使用一个更新计时器。相反的,路由超时计时器和路由刷新计时器为每一个路由维护一个。

如此看来,不同的超时和路由刷新计时器可以在每个路由表项中结合在一起。这些计时器一起能使RIP节点维护路由的完整性并且通过基于时间的触发行为使网络从故障中得到恢复。

1. 初始化表更新

RIP路由器每隔3 0秒触发一次表更新。更新计时器用于记录时间量。一旦时间到,RIP 节点就会产生一系列包含自身全部路由表的报文。

这些报文广播到每一个相邻节点。因此,每一个RIP路由器大约每隔3 0秒钟应收到从每个相邻RIP节点发来的更新。

注意在更大的基于RIP的自治系统中,这些周期性的更新会产生不能接受的流量。因此,一个节点一个节点地交错进行更新更理想一些。RIP自动完成更新,每一次更新计时器会被复位,一个小的、任意的时间值加到时钟上。

如果更新并没有如所希望的一样出现,说明互联网络中的某个地方发生了故障或错误。故障可能是简单的如把包含更新内容的报文丢掉了。故障也可能是严重的如路由器故障,或者是介于这两个极端之间的情况。显然,采取合适的措施会因不同的故障而有很大区别。由

于更新报文丢失而作废一系列路由是不明智的(记住,RIP更新报文使用不可靠的传输协议以最小化开销)。因此,当一个更新丢失时,不采取更正行为是合理的。为了帮助区别故障和错误的重要程度,RIP使用多个计时器来标识无效路由。

2. 标识无效路由

有两种方式使路由变为无效:

路由终止。

路由器从其他路由器处学习到路由不可用。

在任何一种情形下,RIP路由器需要改变路由表以反映给定路由已不可达。

一个路由如果在一个给定时间之内没有收到更新就中止。比如,路由超时计时器通常设为180秒。当路由变为活跃或被更新时,这个时钟被初始化。

180秒是大致估计的时间,这个时间足以令一台路由器从它的相邻路由器处收到6个路由表更新报文(假设它们每隔30秒发送一次路由更新),如果180秒消逝之后,RIP路由器没收到关于那条路由的更新,RIP路由器就认为那个目的I P地址不再是可达的。因此,路由器就会把那条路由表项标记为无效。通过设置它的路由度量值为1 6来实现,并且要设置路由变化标志。这个信息可以通过周期性的路由表更新来与其相邻路由器交流。

注意对于RIP节点而言,16等于无穷。因此,简单的设置耗费度量值为16能作废一条路由。

接到路由新的无效状态通知的相邻节点使用此信息来更新它们自己的路由表。这是路由变为无效的第二种方式。

无效项在路由表中存在很短时间,路由器决定是否应该删除它。即使表项保持在路由表中,报文也不能发送到那个表项的目的地址:RIP不能把报文转发至无效的目的地。 3. 删除无效路由

一旦路由器认识到路由已无效,它会初始化一个秒计时器:路由刷新计时器。因此,在最后一次超时计时器初始化后180秒,路由刷新计时器被初始化。这个计时器通常设为90秒。

如果路由更新在270秒之后仍未收到(180秒超时加上90秒路由刷新时间),就从路由表中移去此路由(也就是刷新)。而为了路由刷新递减计数的计时器称为路由刷新计时器。这个计时器对于RIP从网络故障中恢复的能力绝对必要。

主动和被动站点

注意到为了使RIP互联网络正常工作,网络中的每一个网关必须参与进去这一点很重要。参与可以是主动参与也可以是被动参与,但所有的网关必须参与。主动节点是那些主动地进行共享路由信息的节点。它们从相邻者处接收更新,并且转发它们的路由表项拷贝至那些相邻节点。

被动站点从相邻者处接收更新,并且使用那些更新来维护它们的路由表。然而被动节点不主动地发布它们自己路由表项的拷贝。

被动维护路由表的能力在硬件路由器出现之前的日子里是特别有用的特性,那时路由是一个运行在UNIX处理器下的后台程序,这样会使UNIX主机上的路由开销达到最小

多播路由选择协议

12.7 IPX路由选择协议 IPX中使用的两个主要的路由选择协议是RIP(IPX的距离向量协议,IPX’s distance vector protocol)和NLSP(IPX的链路状态协议,IPX’s link state protocol)。维持IPX路径的所有路由选择协议也会维持SAP列表,这样它才能跟踪服务。 IPX RIP与TCP/IP有许多相似之处。它们都可以使用水平分割或毒性逆转来帮助防止路由选择循环和加快会聚时间。它们也都有15个跳数限制,并且都定期发送完整的路由选择表更新,使用60秒钟而不是30秒钟的更新间隔,而且IPX RIP会发送SAP信息以及路由选择信息。IPX RIP公布的额外SAP信息是更新间隔较长的原因所在。 注意:不要混淆TCP/IP RIP和IPX RIP。虽然它们有许多相似之处,但是它们属于两个不同的协议。 直到最近几年,Novell才开始将NLSP作为默认的路由选择协议,而且默认情况下,在支持RIP兼容性的NetWare服务器上也支持NLSP。NLSP是一个链路状态协议,它允许在大型网络上构建分层的区域,就像OSPF和BGP那样。你也可以使用EIGRP来分配IPX路由选择信息,但是因为EIGRP是Cisco专用的,所以你只有在Cisco路由器之间、支持NetWare 服务器的网段之间、或者支持RIP或NLSP的NetWare资源之间使用它才能正常工作。NLSP路由器交换诸如连接状态、路由成本、吞吐量、最大数据包(MTU大小)以及通过RIP(外部网络号)了解的网络之类的信息。这种信息在LSP(链路状态数据包)中携带。通过与它的对等路由器交换信息,每一个NLSP路由器都可以构建和维护整个互联网络的逻辑图。因为NLSP是链路状态路由选择协议,所以只有当路由或服务中出现变化时,或者每隔两个小时,哪一个首先出现变化时,NLSP才传输路由选择信息。

实验12 静态路由与RIP路由协议设置

实验12 静态路由协议和RIP 路由协议设置 一、实验目的 熟悉静态路由和RIP 路由协议的配置原理,掌握它的配置方法。 二、实验内容 创建图1所示拓扑结构并配置路由器,使得各路由器(静态和动态两种)可以相互ping 得通。 三、实验步骤 1、首先按图1连接好路由器 注意:路由器通常通过串行端口连接广域网络,因此路由器通常是DTE 设备,modem 、GV 转换器等等传输设备通常被规定为DCE 。其实对于标准的串行端口,通常从外观就能判断是DTE 还是DCE ,DTE 是针头(俗称公头),DCE 是孔头(俗称母头),这样两种接口才能接在一起。 比如一台路由器,它处于网络的边缘,它有一个S0口需要从另一台路由器中学习到一些参数,具体实施时,我们就不需在这个S0口配“时钟速率”,它从对方学到。这时它就是DTE ,而对方就是DCE (需要配置时钟频率)。 ①添加路由的模块接口,如图2所示。 DTE DCE DTE DCE 图 1 拓扑结构图

图 2 添加路由模块示意图 ②连线的时候注意不同的接口,连线选择DTE线,如图3所示。 图 3 选择连接线示意图 ③设置之前需要打开对应的端口的电源,如图4所示。

图 4 开机示意图 2、根据拓扑图为路由器配置IP 地址,如表1所示。 表 1 IP地址规划表 路由器S0/1/0 S0/1/1 A 172.16.10.1/24 172.16.40.2/24 B 172.16.10.2/24 172.16.20.1/24 C 172.16.30.1/24 172.16.20.2/24 D 172.16.30.2/24 172.16.40.1/24 为各路由器上配置IP地址的命令如下: A(config)# int S0/1/0 A(config-if)#ip address 172.16.10.1 255.255.255.0 A(config-if)#no shutdown A(config)#int S0/1/1 A(config-if)#ip address 172.16.40.2 255.255.255.0 A(config-if)#no shutdown 同样道理同学们配置余下的三个路由器B、C、D。

RIP动态路由协议的汇总实验

RIP动态路由协议的汇总实验报告 一、实验目的 1、掌握RIP协议的配置实验 2、通过动态路由协议RIP实验学习路由的设置 3、熟练掌握RIPv1与RIPv2在路由中的不同 二、RIPV1与RIPV2的区别 RIPv1: 1、RIPv1 是有类路由协议 2、RIPv1发布路由更新不携带子网掩码信息 3、不支持可变长子网掩码VISM 4、RIPv1发布路由更新时自动汇总并且无法关闭的 RIPv2: 1、RIPv2是无类路由协议 2、RIPv2 发布路由更新携带子网掩码信息 3、支持可变长子网掩码VISM 4、RIPv2发布路由更新时自动汇总并且可以关闭的 三、实验器材 需要四台电脑、两个(2811型号)路由器、五根交叉线 注意:R1需要设备物理试图为(NM—4E) 四、实验拓扑图

五、实验步骤 1、路由之间实现全网互通 R1的配置实验 Router> Router>en Router#conft Router(config)#hostname R1 R1(config)# R1(config)#int e1/0 R1(config-if)#ip add R1(config-if)#ip address 10.10.10.254 255.255.255.0 R1(config-if)#no shu %LINK-5-CHANGED: Interface Ethernet1/0, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet1/0, changed state to up R1(config-if)# R1(config-if)#int e1/1 R1(config-if)#ip add R1(config-if)#ip address 10.10.20.126 255.255.255.128 R1(config-if)#no shu %LINK-5-CHANGED: Interface Ethernet1/1, changed state to up R1(config-if)# %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet1/1, changed state to up R1(config-if)#int e1/2 R1(config-if)#ip add R1(config-if)#ip address 11.11.11.254 255.255.255.0 R1(config-if)#no shu %LINK-5-CHANGED: Interface Ethernet1/2, changed state to u R1(config-if)# %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet1/2, changed state to up R1(config-if)#int e1/3 R1(config-if)#ip address 11.11.22.126 255.255.255.128 R1(config-if)#no shu %LINK-5-CHANGED: Interface Ethernet1/3, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface Ethernet1/3, changed state to up R1( (config-if)# R1(config-if)#int f0/0 R1(config-if)#ip add R1(config-if)#ip address 10.10.30.1 255.255.255.0 R1(config-if)#no shu

路由协议试题以及参考答案

关于路由协议试题以及参考答案 1、解决路由环问题的方法有(ABD) A. 水平分割 B. 路由保持法 C. 路由器重启 D. 定义路由权的最大值 2、下面哪一项正确描述了路由协议(C) A. 允许数据包在主机间传送的一种协议 B. 定义数据包中域的格式和用法的一种方式 C. 通过执行一个算法来完成路由选择的一种协议 D. 指定MAC地址和IP地址捆绑的方式和时间的一种协议 3、以下哪些内容是路由信息中所不包含的(A) A. 源地址 B. 下一跳 C. 目标网络 D. 路由权值 4、以下说法那些是正确的(BD) A. 路由优先级与路由权值的计算是一致的 B. 路由权的计算可能基于路径某单一特性计算,也可能基于路径多种属性 C. 如果几个动态路由协议都找到了到达同一目标网络的最佳路由,这几条路由都会被加入路由表中 D. 动态路由协议是按照路由的路由权值来判断路由的好坏,并且每一种路由协议的判断方法都是不一样的 5、IGP的作用范围是(C) A. 区域内 B. 局域网内 C. 自治系统内 D. 自然子网范围内 6、距离矢量协议包括(AB) A. RIP B. BGP C. IS-IS D. OSPF 7、关于矢量距离算法以下那些说法是错误的(A) A. 矢量距离算法不会产生路由环路问题 B. 矢量距离算法是靠传递路由信息来实现的 C. 路由信息的矢量表示法是(目标网络,metric) D. 使用矢量距离算法的协议只从自己的邻居获得信息 8、如果一个内部网络对外的出口只有一个,那么最好配置(A) A. 缺省路由 B. 主机路由 C. 动态路由 9、BGP是在(D)之间传播路由的协议

计算机网络实验六 rip路由协议配置 )

太原理工大学现代科技学院计算机通信网络课程实验报告专业班级 学号 姓名 指导教师

实验名称同组人 专业班级学号姓名成绩 一、实验目的 《计算机通信网络》实验指导书 掌握RIP 动态路由协议的配置、诊断方法。 二、实验任务 1、配置RIP 动态路由协议,使得3台Cisco 路由器模拟远程网络互联。 2、对运行中的RIP 动态路由协议进行诊断。 三、实验设备 Cisco 路由器3台,带有网卡的工作站PC2台,控制台电缆一条,交叉线、V35线若干。 四、实验环境 五、实验步骤 1、运行CiscoPacketTracer 软件,在逻辑工作区放入3台路由器、两台工作站PC ,分别点击各路由器,打开其配置窗口,关闭电源,分别加入一个2口同异步串口网络模块(WIC-2T ),重新打开电源。然后,用交叉线(CopperCross-Over )按图6-1(其中静态路由区域)所示分别连接路由器和各工作站PC ,用DTE 或DCE 串口线缆连接各路由器(router0router1),注意按图中所示接口连接(S0/0为DCE ,S0/1为DTE )。 2、分别点击工作站PC1、PC3,进入其配置窗口,选择桌面(Desktop )项,选择运行IP 设置(IPConfiguration ),设置IP 地址、子网掩码和网关分别为 PC1gw: PC3gw: 3、点击路由器R1,进入其配置窗口,点击命令行窗口(CLI )项,输入命令对路由器配置如下: 点击路由器R2,进入其配置窗口,点击命令行窗口(CLI )项,输入命令对路由器配置如下: 同理对R3进行相应的配置: 4、测试工作站PC 间的连通性。 从PC1到PC3:PC>ping (不通) 5、设置RIP 动态路由 接前述实验,继续对路由器R1配置如下: 同理,在路由器R2、R3上做相应的配置: 6、在路由器R1上输入showiproute 命令观察路由信息,可以看到增加的RIP 路由信息。 … … … … … … … … … … … … … … 装 … … … … … … … … … … … …… … … 订 … …… … … …… … … … …… … … … … 线 … … …… … …… … …… … … … … …

RIP动态路由协议的应用

湖南理工学院实验报告学院:计算机学院班级:姓名:学号: 一、实验目的 (1)理解RIP的工作原理和配置方法; (2)掌握通过RIP 路由方式实现网络的连通。 二、工程背景 在某一组网工程中,路由器A的 F0口连接192.168.1.128/27子网,路由器B的F0口连接192.168.1.96/27子网,两个路由器通过192.168.1.32/27子网相连,如下图所示。现需要通过配置RIP协议,保证全网路由。 三、实验方案 1、方案概述 实验原理图如下图所示,路由器A的F0口连接192.168.3.1/24子网,路由器B的F0口连接192.168.1.1/24子网,两个路由器通过192.168..1/24子网相连,然后进行RIP协议配置。 2、实验拓扑结构图 PC2 Router A Router B F0 F S0 S 192.168.3.1/2192.168.2.1/2 PC1 192.168.1.1./24 PC2 Router A Router B F0 F S0 S 192.168.3.128/2192.168.2.1/24 PC1 192.168.1.1/24

3、配置命令 (1)分别配置好路由器各接口的IP地址、时钟频率,并配置好RIP协议。路由器A RouterA#config t Enter configuration commands, one per line. End with CNTL/Z. RouterA(config)#interface serial 3/0 RouterA(config-if-Serial 3/0)#ip address 192.168.2.2 255.255.255.0 RouterA(config-if-Serial 3/0)#clock rate 64000 RouterA(config-if-Serial 3/0)#no shutdown RouterA(config-if-Serial 3/0)#exit RouterA(config)#interface f0/0 RouterA(config-if-FastEthernet 0/0)#ip address 192.168.3.1 255.255.255.0 RouterA(config-if-FastEthernet 0/0)#no shutdown RouterA(config-if-FastEthernet 0/0)#exit RouterA(config)#route rip RouterA(config-router)#network 192.168.0.0 RouterA(config-router)#exit RouterA(config)# 路由B: Ruijie#config t Enter configuration commands, one per line. End with CNTL/Z. Ruijie(config)#hostname RouterB RouterB(config)#interface serial 3/0 RouterB(config-if-Serial 3/0)#ip address 192.168.2.1 255.255.255.0 RouterB(config-if-Serial 3/0)#clock rate 64000 clock rate setting is only valid for DCE ports.

9三层交换机与路由器间RIP动态路由协议的配置

试题九 三层交换机与路由器间RIP动态路由协议的配置 三层交换机: Switch>en Switch#conf Switch(config)#ip routing Switch(config)#vlan 10 Switch(config-vlan)#exit Switch(config)#int ra fa 0/10 Switch(config-if-range)#sw acc vlan 10 Switch(config-if-range)#no sh Switch(config-if-range)#exit Switch(config)#vlan 20 Switch(config-vlan)#exit Switch(config)#int ra fa 0/20 Switch(config-if-range)#sw acc vlan 10 Switch(config-if-range)#exit Switch(config)#int vlan 10 Switch(config-if)#ip add 192.168.10.1 255.255.255.0 Switch(config-if)#no sh

Switch(config-if)#exit Switch(config)#int vlan 20 Switch(config-if)#ip add 192.168.20.1 255.255.255.0 Switch(config-if)#no sh Switch(config)#router rip Switch(config-router)#network 192.168.10.0 Switch(config-router)#network 192.168.20.0 路由器: Router>en Router#conf Configuring from terminal, memory, or network [terminal]? Enter configuration commands, one per line. End with CNTL/Z. Router(config)#int f0/1 Router(config-if)#ip add 192.168.20.2 255.255.255.0 Router(config-if)#no sh Router(config-if)# %LINK-5-CHANGED: Interface FastEthernet0/1, changed state to up %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/1, changed state to up Router(config-if)#exit Router(config)#int f0/0 Router(config-if)#ip add 192.168.30.1 255.255.255.0 Router(config-if)#no sh Router(config-if)# %LINK-5-CHANGED: Interface FastEthernet0/0, changed state to up Router(config-if)#exit Router(config)#router rip Router(config-router)#network 192.168.30.0 Router(config-router)#network 192.168.20.0 Router(config)# %LINEPROTO-5-UPDOWN: Line protocol on Interface FastEthernet0/0, changed state to up Router#

计算机网络实验六rip路由协议配置

计算机网络实验六r i p 路由协议配置 Company number【1089WT-1898YT-1W8CB-9UUT-92108】

太原理工大学现代科技学院计算机通信网络课程实验报告 专业班级 学号 姓名 指导教师

实验名称 同组人 专业班级 学号 姓名 成绩 一、实验目的 《计算机通信网络》实验指导书 掌握RIP 动态路由协议的配置、诊断方法。 二、实验任务 1、配置RIP 动态路由协议,使得3 台Cisco 路由器模拟远程网络互联。 2、对运行中的RIP 动态路由协议进行诊断。 三、实验设备 Cisco 路由器 3 台,带有网卡的工作站PC2 台,控制台电缆一条,交叉线、V35 线若干。 四、实验环境 五、实验步骤 1、运行Cisco Packet Tracer 软件,在逻辑工作区放入3 台路由器、两台工作站PC ,分别点击各路由器,打开其配置窗口,关闭电源,分别加入一个2 口同异步串口 网络模块(WIC-2T ),重新打开电源。然后,用交叉线(Copper Cross-Over )按图6-1(其中静态路由区域)所示分别连接路由器和各工作站PC ,用DTE 或DCE 串口线………… ……… …… ………… …装 … …… …… …… … …… … … …… …订 … …… … … …… …… … …… … … ……

缆连接各路由器(router0 router1),注意按图中所示接口连接(S0/0 为DCE, S0/1 为DTE)。 2、分别点击工作站PC1、PC3,进入其配置窗口,选择桌面(Desktop)项,选择 运行IP 设置(IP Configuration),设置IP 地址、子网掩码和网关分别为 PC1:/24 gw: PC3:/24 gw: 3、点击路由器R1,进入其配置窗口,点击命令行窗口(CLI)项,输入命令对路 由器配置如下: 点击路由器R2,进入其配置窗口,点击命令行窗口(CLI)项,输入命令对路由器配 置如下: 同理对R3 进行相应的配置: 4、测试工作站PC 间的连通性。 从PC1 到PC3:PC>ping (不通) 5、设置RIP 动态路由 接前述实验,继续对路由器R1 配置如下: 同理,在路由器R2、R3 上做相应的配置: 6、在路由器R1 上输入show ip route 命令观察路由信息,可以看到增加的RIP 路

rip动态路由协议的配置

实验报告 实验项目:rip动态路由协议的配置 实验环境:Cisco Packet Tracer 实验目的和要求:用两台PC和若干台路由器构成一个网络;规划PC机及路由器相关接口的IP地址,配置RIP动态路由协议,使两台PC能相互通信。 实验过程: 1.在Packet Tracer中建立如下实验拓扑图: 其中,PC 0的快速以太网端口连接在Route 0的快速以太网端口fa 0/0上,PC 1的快速以太网端口连接在Route 1的快速以太网端口fa 0/0上,Route 0的fa 0/1连接在Route 1的fa 0/1上。 2.开启Route 0、Route 1的快速以太网端口fa 0/0,fa 0/1,规划并为每个端口配置ip address,其中Route 0的fa 0/0的ip address为192.168.1.1,子网掩码为255.255.255.0;Route 0的fa 0/1的ip address为192.168.20.1,子网掩码为255.255.255.0;Route 1的fa 0/0的ip address 为192.168.10.1,子网掩码为255.255.255.0;Route 1的fa 0/1的ip address为192.168.20.2,子网掩码为255.255.255.0;具体操作如下:

3.规划并配置PC 0和PC 1的ip address,子网掩码,默认网关,具体如下:

规划配置后的网络拓扑结构如下: 4.在PC 0上通过ping命令查看此时PC 0与PC 1之间能否正常通信;

由上可知,此时两台PC机之间是无法通信的。 5.在两台路由器上配置内部网关协议RIP; 在Route 0的全局配置模式下通过route rip命令为Route 0配置内部网关协议RIP,具体操作如下:

路由选择协议和配置的详细步骤

路由选择协议和配置的详细步骤 静态路由的配置: router(config)ip route +非直连网段+子网掩码+下一跳地址 router(config)#exit 动态路由按照是否在一个自治系统内使用又可以分为内部网关协议(igp)和外部网关协议(bgp)常见的内部网关协议有rip、ospf等,外部网关协议有bgp、bgp-4,这里主要说下内部网关路由选择协议:rip(routing information protocol)是一种距离矢量选择路由协议,由于它的简单、可靠、便于配置,所以使用比较广泛,但是由于它最多支持的跳数为15,16为不可达所以只适合小型的网络,而且它每隔30s一次的路由信息广播也是造成网络广播风暴的重要原因之一。 rip的配置: router(config)#router rip router(config-router)#network network-number network_number为路由器的直连网段 由于rip的局限性,一种新的路由选择协议应运而生:igrp,igrp(interoor gateway routing protocol)igrp由于突破了15跳的限制,成为了当时大型cisco网络的首选协议 rip与igrp 的工作机制,均是从所有配置接口上定期发出路由更新。但是,

rip是以跳数为度量单位;igrp以多种因素来建立路由最佳路径;带宽(bandwidth),延迟(delay),可靠性(reliability),负载(load)等因素但是它的缺点就是不支持vlsm和不连续的子网。 igrp的配置: router(config)#router igrp 100(100为自治系统号) router(config-router)#network network-number router(config-router)#exit 注意: 1)编号的有效范围为1-65535,编号用确定一组区域编号相同的路由器和接口; 2)不同的编号的路由器不参与路由更新。 eigrp(enhanced interoor gateway routing protocol)eigrp 是最典型的平衡混合路由选择协议,它融合了距离矢量和链路状态两种路由选择协议的优点,使用散射更新算法,可实现很高的路由性能。eigrp特点是采用不定期更新,即只在路由器改变计量标准或拓扑出现变化时发送部分更新路由。支持可变长子网掩码vslm,具有相同的自治系统号的eigrp和igrp之间,可无缝交换路由信息。eigrp的配置和igrp的大致相同: router(config)#router eigrp(100为自治系统号) router(config-router)#network network-number router(config-router)#exit ospf: ospf是一种链路状态路由选择协议所谓链路状态是指路由器接口的状态,如up,down,ip及网络类型等链路状态信息通过链

RIP路由协议配置

. 2.1实验目的 通过本实验,学生可以掌握以下技能: 1.路由器基本配置使用方法; 2.配置RIP协议; 3.配置RIPv2协议; 4.查看上述配置项目的相关信息。 2.2实验任务 1.配置路由器端口的IP地址; 配置2.RIP协议; 配置3.RIP v2协议; 使得不同网段的4.PC机能够通信; 2.3实验设备 CISCO2600交换机三台,带网卡的PC机两台,控制电缆两条,串口连接线两条。 交叉线序网线两条以及Consoie电缆; 2.4实验环境 如图所示,用串口连接线把路由器router1的串口s0和router3的串口s0连接起来;把路由器router2的串口s0和router3的串口s1连接起来。PC1与路由器router1的FastEthernet0/1连接,PC2与路由器router2的FastEthernet0/11连接,电缆连接完成后。给所有设备加电,开始进行实验。 文档Word . 2.5实验报告要求 实验报告信息要求完整,包括学号、、班级、专业、课程名称、教师名称、实验目的、实验任务、实验环境、实验步骤及详细记录、实验过程中存在的问题及实验心得体会等内容。

2.6实验步骤通过PC1上的超级终端连接路由器router1,并为路由器命名 Router> enable Router# configure terminal Router(config)# Router(config)# hostname router1 router1(config)# 1.设置路由器router1的Ethernet0端口的IP地址 router1(config)# interface ethernet0 router1(config-if)# ip address 11.168.1.11 255.0.0.0 router1(config-if)# no shutdown 2.设置路由器router1的串口s0端口的IP地址 router1(config-if)# int s0 router1(config-if)# ip address 192.168.1.13 255.255.255.0 router1(config-if)# no shutdown 3.设置PC1的IP地址11.168.1.10,网关为11.168.1.11 文档Word .

基于动态路由协议RIP的网络的分析论文

目录 摘要 (2) Abstract (3) 第一章绪论 (4) 1.1局域网发展 (4) 1.2研究意义 (4) 1.3本章小结 (7) 第二章路由 (7) 2.1路由协议简介 (7) 2.1.1 RIP协议 (9) 2.2 路由环路及解决 (10) 2.3 本章小结 (16) 第三章本设计组网 (17) 3.1 需求分析 (17) 3.2 设备介绍 (17) 3.3 组网实现 (17) 3.4 本章小结 (24) 第四章网络分析 (25) 4.1网络分析总体描述 (25) 4.2 对网络进行流量的监控 (25) 4.2.1 流量监控软件 (25) 4.2.2 流量监控实现 (26)

摘要 随着社会经济的发展,越来越多的公司、工厂、学校的出现,人们对于小型局域网的需求越来越大,越来越多。而局域网的组成路由协议是不可或缺的一部分,在路由协议中RIP协议有着举足轻重的地位。考虑到小型局域网的要求及各种路由协议的优缺点,因此在这里我们将会用RIP协议来进行组网。 本文中主要针对石家庄某大型公司的内部网络进行设计和分析,更会对其中可能会出现的各种问题进行讨论及进行解决。对RIP协议的局限性进行研究、分析,对比其他路由协议查找本协议的缺点和不足之处。对该公司的局域网进行分析、讨论。 关键词:RIP 小型局域网网络分析

Abstract With the development of social economy, more and more companies, factories and schools are becoming more and more.. And the local area network routing protocol is an indispensable part, in the routing protocol RIP protocol has a pivotal position. Considering the requirements of small local area network and the advantages and disadvantages of various routing protocols, we will use RIP protocol to make a network.. This paper mainly for the internal network of a large company in Shijiazhuang of design and analysis, will discuss and solve the problems which may occur. Research and analyze thelimitations of RIP protocol, disadvantages and shortcomings compared to other routing protocols for this agreement.The company's local area network is analyzed and discussed. Keywords: RIP LAN Network analysis

实验11 静态路由与RIP路由协议设置(参考答案)

实验11:静态路由协议和RIP路由协议设置 一、实验目的:熟悉静态路由和RIP路由协议的配置原理,掌握它的配置方法。 二、实验拓扑如下: 创建以下拓扑结构并配置路由器,使得各路由器(静态和动态两种)可以相互ping得通。 三、实验步骤: 1、首先按上图连接好路由器 注意:路由器通常通过串行端口连接广域网络,因此路由器通常是DTE设备,modem、GV转换器等等传输设备通常被规定为DCE。其实对于标准的串行端口,通常从外观就能判断是DTE还是DCE,DTE是针头(俗称公头),DCE 是孔头(俗称母头),这样两种接口才能接在一起。比如一台路由器,它处于网络的边缘,它有一个S0口需要从另一台路由器中学习到一些参数,具体实施时,我们就不需在这个S0口配“时钟速率”,它从对方学到。这时它就是DTE,而对方就是DCE。 ①添加路由的模块接口,如下图所示:

②连线的时候注意不同的接口,连线选择DTE线,如下图所示: ③设置之前需要打开对应的端口的电源,如图所示:

2、按拓扑图规划IP 地址: A :S0/0 :172.16.10.1/24 S0/1:172.16.40.2/24 B :S0/0 :172.16.10.2/24 S0/1:172.16.20.1/24 C :S0/0 :172.16.30.1/24 S0/1:172.16.20.2/24 D :S0/0 :172.16.30.2/24 S0/1:172.16.40.1/24 在各路由器上配置IP地址,保证在链路的连通性 如: A(config)# int S0/0 A(config-if)#ip address 172.16.10.1 255.255.255.0 A(config-if)#no shutdown A(config)#int S0/1 A(config-if)#ip address 172.16.40.2 255.255.255.0 A(config-if)#no shutdown 同样道理同学们配置余下的三个路由器。 请记着配置时钟频率:路由器的接口模式下:Router(config-if)#clock rate 128000 实验过程可以通过思科虚拟器的操作界面进行设置,但最好通过路由命令来进行配置,视窗操作中设置路由端口需设置以下内容,如下图所示:

动态路由协议:RIP与OSPF

动态路由协议:RIP 与OSPF 1. 动态路由特点:减少管理任务、增加网络带宽。 2. 动态路由协议概述:路由器之间用来交换信息的语言。 3. 度量值:带宽、跳数、负载、时延、可靠性、成本。 4. 收敛:使所有路由表都达到一致状态的过程 动态路由分类: 自治系统(AS ) 内部网关协议(EIGRP 、RIP 、OSPF 、IGP ) 外部网关协议(EGP ) 按照路由执行的算法分类: 距离矢量路由协议(RIP ) 链路状态路由协议(OSPF ) 两种结合(EIFRP ) RIP : RIP 是距离矢量路由协议。 RIP 基本概念:定期更新(30秒)、邻居、广播更新、全路由表更新 RIP 最大跳数为15跳,16跳为不可达 RIP 使用水平分割,防止路由环路:从一个接口学习到的路由信息,不再从这个接口发出去 RIPv1:有类路由、RIPv2:无类路由 OSPF : OSPF 是链路状态路由协议。 Router ID 是OSPF 区域内唯一标识路由器的IP 地址。 Router ID 选取规则:先选取路由器lookback 接口上最高的IP 地址,如果没有lookback 接口,就选取物理接口上的最高IP 地址。也可以使用Router-id 命令手动指定。 OSPF 有三张表:邻接关系表、链路状态数据库、路由表》》首先建立邻接关系,然后建立链路数据库,最后通过SPF 算法算出最短路径树,最终形成路由表 OSPF 的度量值为COST (代价):COST=10^8/BW 接口类型 代价(108/BW ) Fast Ethernet 1 Ethernet 10 56K 1785 OSPF 和RIP 的比较: OSPF RIP v1 RIP v2 链路状态路由协议 距离矢量路由协议 没有跳数的限制 RIP 的15跳限制,超过15跳的路由被认为不可 达 支持可变长子网掩码 (VLSM ) 不支持可变长子网掩码(VLSM ) 支持可变长子网掩码(VLSM ) 收敛速度快 收敛速度慢 使用组播发送链路状态更新,在链路状态变化时使用触发更新,提高了带宽的利 周期性广播整个路由表,在低速链路及广域网中应用将产生很大问题

RIP路由协议汇总

1、RIP overview: 1. rip是tcp/ip协议开发的第一个路由选择标准;是一个distance vector协议,协议号为17;利用UDp来封装数据,用520端口发 送接受更新。 2. rip适用于小型网络,路由器数目不大于15台(默认16台不可 达),广播更新。 3. 发送和接收的更新为路由表条目,并且每个更新包最多携带25 条路由条目。 4. 基本原理:每个启动RIP协议的端口发出目标为 255.255.255.255的广播(RIP Request message),其邻居路由 器收到后发送他所知道的路由表信息(Response message), 同时在发出后出端口的时候将hop count加1(如果路由表中显 示的跳数为“1”则表示通告路由器是与自己直连的)以上过程 周期性执行(默认30秒一次);当接收方收到更新后就作如下 处理: ⑴更新信息是自己没有的,则加入路由表。 ⑵更新信息的目标是自己有的,则比较跳数,如果比自己原有的小 则更新路由表; 如果跳数比较大或为不可达(跳数大于15),则看更新信息的源地址(即为自己 去往目标的下一跳),是否与自己原来的下一跳一样,如果不一样则丢弃此更新; 如果一样,这时为了防止有不断变化的产生会启动抑制计时器(Holddown timer) 默认180秒,同时将该路由设为不可达,如果在180秒后还收到同样的更新消息 则接受。 ⑶对于接受的更新在加入路由表的同时会附加一个无效计时器 (Invalidation timer) 默认180秒,即在180秒后还没收到相关更新信息则认为不可达设跳数为16,如 果在过60秒(一共240秒)还没收到则从路由表中删除该条路由(刷新计时器 (flush timer))。这样做的好处是防止了路由黑洞 ⑷为了防止同时发更新造成广播风暴,随机设置一个25.5~30秒的数值以实 现不同 时送更新,这就是debug时看到的更新间隔不为30秒的原因。

实验六动态路由协议rip初步配置

南昌大学实验报告 学生姓名:学号:专业班级: 实验类型:□验证■综合□设计□创新实验日期: 2017/12/14 实验成绩: 实验六动态路由协议RIP配置实训 一、实验目的 深入了解RIP协议的工作原理 学会配置RIP协议网络 掌握RIP协议配置错误排除 二、实验设备及条件 运行Windows 操作系统计算机一台 Cisco Packet Tracer模拟软件 Cisco 1841路由器两台,普通交换机三台,路由器串口线一根 RJ-45转DB-9反接线一根 超级终端应用程序 三、实验原理 RIP协议简介 路由信息协议(Routing Information Protocol,RIP)是一种内部网关协议(IGP),是一种动态路由选择协议,用于自治系统(AS)内的路由信息的传递。RIP协议基于距离矢量算法(Distance Vector Algorithms),使用“跳数”(即metric)来衡量到达目标地址的路由距离。这种协议的路由器只关心自己周围的世界,只与自己相邻的路由器交换信息,范围限制在15跳(15度)之内,再远,它就不关心了。RIP应用于OSI网络七层模型的网络层。 在默认情况下,RIP使用一种非常简单的度量制度:距离就是通往目的站点所需经过的链路数,取值为1~15,数值16表示无穷大。RIP进程使用UDP的520端口来发送和接收RIP 分组。RIP分组每隔30s以广播的形式发送一次,为了防止出现“广播风暴”,其后续的的

分组将做随机延时后发送。在RIP 中,如果一个路由在180s 内未被刷,则相应的距离就被设定成无穷大,并从路由表中删除该表项。 RIP 协议是最早的路由协议,现在仍然发挥“余热”,对于小型网络,RIP 就所占带宽而言开销小,易于配置、管理和实现。有两个版本。 RIPv1协议—有类路由协议 RIPv2协议—无类路由协议,需手工关闭路由自动汇总。 另外,为了兼容IP V6的应用,RIP 协议也发布了IP V6下的应用协议RIPng(Routing Information Protocol next generation) 有类与无类的区别在于: 有类路由在路由更新时不会将子网掩码一同发送出去,路由器收到更新后会假设子网掩码。子网掩码的假设基于IP 的分类,很明显,有类路由只会机械地支持A 、B 、C 这样的IP 地址。在IPv4地址日益枯竭的情况下,只支持有类路由明显不再适合。而无类路由支持可变长子网掩码(VISM ),在网络IP 的应用上可以缓解IP 利用的问题。 比如:有一个B 类的IP 地址,默认的子网掩码是16位长,如果再进一步划分子网,采用24位长的子网掩码,可划出4个子网来(当然不止4个)。将4个子网分配出去就提高了IP 的利用。如果是有类路由,则不能支持可变的子网掩码,只会机械地发送24位长的掩码,这样也就不能区分出子网。在运行RIP v1这样的网络中,如果划分了子网则路由更新时候会丢失子网,数据就不知道从哪里转发出去。如图 1所示。 A C D E 172.16.1.0/24 B 172.16.2.0/24 172.16.4.0/24 172.16.3.0/24 发发172.16.3.0/24 发发发发发发 C 发发发发发发发发发发发发发发16发发发发发发发 发172.16.0.0/16 图1 路由汇聚造成丢包示意图

路由协议原理

第八章 第八章 路由协议原理

Network Protocol Destinati on Network Connected RIP IGRP 10.120.2.0172.16.1.0172.17.3.0Exit Interface E0S0S1被动路由协议: IP ,IP IPX X ,APPLETalk 主动路由协议: RIP ,E IGR IGRP P ,OSPF 172.17.3.0 172.16.1.0 10.120.2.0E0S0

在TCP/IP 协议栈中,Rout Routing ing ing Protocol Protocol 工作在网络层,而Rout Routed ed ed Protocol Protocol 工作在传输层或者应用层 ,他们之间的关系为:Routing Protocol 负责学习最佳路径,而Routed Protocol 根据最佳路径将来 自上层的信息封装在IP 包里传输 路由协议和被路由协议的区别

路由器是如何进行选路? ?路由器转发数据包的关键是路由表。 ?每个路由器中都保存着一张路由表,表中每条路由项都指明数据包到某子网或某主机应通过路由器的哪个物理端口发送,然后就可到达该路径的下一个路由器,或者不再经过别的路由器而传送到直接相连的网络中的目的主机。

要实现路由要实现路由,路由器,路由器,路由器必须知道必须知道必须知道::目的地址所有可能的路由路径最佳路由路径管理路由信息172.16.1.010.120.2.0

管理距离 Administrative Distances ?管理距离主要用于不同路由协议之间的可信度。 ?可信度的范围是:0 到255 之间,它表示一条路由选择信息源的可信性值.该值越小,可信度越高.0 为最信任,255 为最不信任.

相关主题