搜档网
当前位置:搜档网 › 化工热力学复习资料讲解

化工热力学复习资料讲解

化工热力学复习资料讲解
化工热力学复习资料讲解

1、化工热力学的研究方法:宏观研究方法 微观研究方法。

2、热力学体系:孤立体系(无物质无能量) 封闭体系(无物质 有能量) 敞开体系(有物质 有能量)。

3、体系 环境:在热力学分析中,将研究中涉及的一部分物质(或空间)从其余物质(或空间)中划分出来。其划分出来部分称为体系,其余部分称为环境。

4、状态函数:描述体系所处状态的宏观物理量成为热力学变量(状态函数)。常用的状态函数有压力、温度、比容、内能、焓、熵、自由焓等。

5、循环:体系经过一系列的状态变化过程后,最后由回到最初状态,则整个的变化称为循环。分为正向循环和逆向循环。

6、临界点:气化线的另一个端点是临界点C ,它表示气液两相能共存的最高压力和温度,即临界压力c p 和临界温度c T 。

7、临界点的数学表达式:临界等温线在临界点上的斜率和曲率都等于零。数学上表示为

0=??? ????=c

T T V p (2-1) 022=???? ????=c T T V p (2-2)

8、直线直径定律:当以饱和液体和饱和蒸气密度的算术平均值对温度作图时,得一近似的直线。

9、纯物质的p-V-T 图:P 5 10、理想气体状态方程:RT pV = (2-4)

式中,p 为气体压力;V 为气体摩尔体积;T 为绝对温度;R 为通用气体常数 8.314J/(mol ·K)

11、范德华方程(van der Waals 方程):

2V

a b V RT p --= (2-5) 其中c c p T R a 642722=;c

p RT b 8=。 12、R-K 方程: )

(5.0b V V T a b V RT p +--= (2-6) 其中c c p T R a /42748.05.22=;c c p RT b /08664.0=。

13、维里方程(Virial 方程)

: ++++==

321V

D V C V B RT pV Z (2-26) 或者 ++++==32'''1p D p C p B RT pV Z (2-27) 式中, 、、、)'()'()'(D D C C B B 分别称为第二、第三、第四、 Virial 系数。

14、对比态原理:在相同的对比状态下,所有的物质表现出相同的性质。

令 c r T T T /= c r p p p /= c r V V V /=

式中,r T 、r p 、r V 分别称为对比温度、对比压力、对比摩尔体积。

15、偏心因子ω:其他流体在T r =0.7处的纵坐标S r p lg 值与氩、氪和氙在同一条件下的S

r p lg 值的差能够表征该物质的某种特性,Pitzer 就把这个差值定义为偏心因子ω。

即00.1)(-l 7.0-==r T S r p g ω (2-45)

15、普遍化的维里方程:???

? ?????? ??=+=r r c c T p RT Bp RT Bp Z 1 (2-50) 对于指定的气体来说,B 仅仅是温度的函数,B 的普遍化关系只与对比温度有关,而与对比压力无关。因此 10B B RT Bp c

c ω+= (2-51) 式中6.10/422.0083.0r T B -=

2.41/172.0139.0r T B -=

16、热力学性质间的关系(四大方程):pdV TdS dU -=

Vdp TdS dH +=

SdT pdV dA --=

SdT Vdp dG -=

17、循环关系式:1-=??? ???????? ??????? ????x

z y z y y x x z (3-7) 当需要将变量加以变化是,这一方程式很有用。 18、Maxwell 关系式: V S S p V T ??? ????-=???

???? p S S V p T ??? ?

???=???? ???? T V V S T p ??? ????=???

???? T

p p S T V ???? ????-=??? ???? 19、剩余性质法(R M ):气体在真实状态下的热力学性质与在同一温度、压力下当气体处于理想状态下热力学性质之间的差额。

即:ig R M M M -= (3-31)

20、逸度和逸度系数:由于只有当压力为零时,真实气体状态才表现为理想气体状态性质,所以1lim 0=→p

f i p ,给出了纯物质的逸度定义。 逸度性质定义为物质的逸度和它的压力之比。对纯物质

p

f i i =φ (3-75) 由于逸度与压力具有相同的单位,所以逸度系数是无量纲的。

21、两相系统的热力学性质:单组分系统气液平衡的两相混合物性质,与各相的性质和各相的相对量有关。因为体积、焓和熵等都是容量性质,故气液混合物的相应值是两相数值之和。

x M x M M βα+-=)1( (3-96)

式中,M 是泛指的热力学容量性质;下角标α、β分别表示互成平衡的两相。

22、干度:气相的质量分数或摩尔分数。

23、化学位:

j j j j n p T i n T nV i n p nS i n nV nS i i n nG n nA n nH n nU ,,,,,,,,)()()()(?????

???=????????=????????=????????=μ(4-9) 式中,下标j n 是指除i 组分以外的其余组分的物质的量都保持不变。上式给出了组分i 的化

学位定义。

24、偏摩尔性质:式(4-9)中用偏微分形式j

n p T i n nM ,,????????)(表明了体系性质随组成的改变,这种偏微分在溶液热力学中具有重要的意义,称作溶液中组分i 的偏摩尔性质,用符号i M 表示。其定义式可写为 j

n p T i i n nG M ,,)(????????= (4-10) 式中,i M 称为在指定T 、p 和组成下物质i 的偏摩尔性质;n 是总物质的量;M 泛指溶液的摩尔热力学性质()(等、、、、、、ρZ G H S A U 。

对于二元体系 )(2

21dx dM x M M -= (4-16) )(

112dx dM x M M -= (4-17) 在溶液热力学中有三类性质:溶液性质(M )偏摩尔性质(i M )纯组分性质(i M )。

25、混合物的逸度和逸度系数:同纯物质一样,理想气体混合物的逸度等于压力。 纯物质的逸度i f ,混合物中。组分的逸度∧

i f ,混合物的逸度f 。也有三种逸度系数φφφ、、∧i i 。

混合物的逸度系数φ定义为p

f =φ 26、活度与活度系数:活度定义为溶液中组分的逸度∧i f 对该组分在标准时的逸度θi f 之比,

用∧

i a 表示,以表示真实溶液对理想溶液的偏离。 θi i i f f a ∧

∧= (4-58) 式中选取与溶液处于同一温度、同一压力下的纯组分作为标准态。

理想溶液中组分i 的活度等于以摩尔分数表示的组分i 。

活度与摩尔分数之比称为活度系数,以i γ表示。

i i i x a ∧

=γ (4-59)

27、理想溶液的混合性质变化:∑=?i i id

x x RT

G ln (4-68) 0=?id V (4-69)

0=?id H (4-70)

∑-=?i i id

x x R

S ln (4-71) 理想溶液的混合焓和混合体积变化都等于零,而id G ?为负值,id S ?是正值。

28、相平衡判据:除各相的温度、压力相同外,各相中各组分的化学位或各相中各组分的分逸度必须相等。

29、相律:相律揭示出平衡体系的自由度F 、组分数N 、相数π之间的关系。其表达式如下 2+-=πN F (5-6)

30、单组分与二元体系的T p -图的差异:

31、闪蒸:高于泡点压力的液体混合物,如果压力降低到泡点压力与露点压力之间,就会部分气化,也叫闪蒸。

32、液液相分裂判据:

等温等压 021

2

(1)封闭体系:体系与环境之间的界面不允许传递物质,而只有能量交换,

W Q dU δδ+= (6-12)

(2)稳态流动体系:物料连续地通过设备,进入和流出的质量流率在任何时刻都完全相等,体系中任意点的热力学性质都不随时间变化,体系没有物质及能量的积累,

S W Q Z g u H +=?+?+?22

1 (6-13) 或写成 S p k W Q E E H +=?+?+? (6-14)

式中,S p k W Q Z g E u E H 和、、、?=??=??)2

(2

分别为单位质量的焓变、动能变化、位能变化、与环境交换的热量及轴功。

34、理想功、损失功、热力学效率:

理想功即指体系的状态变化是在一定的环境条件下按完全可逆的过程进行时,理论上可能产生的最大功或者必须消耗的最小功。

损失功:由于实际过程的不可逆性,导致在给定状态变化的不可逆的实际功ac W 和产生相同状态变化的理想功之间的差值,此差值就称为损失功L W 。

id ac L W W W -= (6-42)

热力学效率T η定义为理想功和实际功的比值

id

ac T W W =)(产生功η (6-45) ac id T W W =

)(需要功η (6-46) 35、制冷循环分类:

制冷循环就是消耗外功或热能而实现热由低温传向高温的逆向循环。分为消耗外功的制冷循环(空气压缩制冷、蒸汽压缩制冷)和消耗热能的制冷循环(吸收式制冷、蒸气喷射制冷)。

36、化学反应计量系数:

化学反应式可表示为下述的通式

++?++44332211A v A v A v A ν (10-1) 式中,i v 为化学计量系数。

37、反应进度:凡参加反应的各种物质,反应了的物质的量对其计量系数的比值都相等。令此比值为εd ,其定义式由下列方程式表示

εd v dn v dn v dn v dn ===== 4

4332211 (10-2) 因此,化学物质的物质的量的微分变化i dn 和εd 间的普遍关系为

),,2,1(N i d v dn i i ==ε (10-3)

式中,变量ε称为反应进度,它表示化学反应已经发生的程度。

38、平衡常数(K )的计算方法:

①实验测定法(直接测定在一定条件下达到平衡时各组分的成分)。

②由基本热数据间接算出K 值。

∑?≡=-θθG G v K RT i i ln (10-14)

式中,θG ?称为反应的标准自由焓变化,是

∑θi

i G v 的一种习惯表示。 从标准生成自由焓数据来估算: 过程的θG ?是由始末状态决定,与与过程的途径无关,因此任何一化学反应的标准生成自由焓变化等于生成物的标准生成自由焓之和减去反应物的标准生成自由焓之和。

∑∑==?-?=?m

j f j j f n i i i G G G 11)()(θ

θ

θβα(10-15) 式中,i α为生成物中i 组分的物质的量;j β为反应物中j 组分的物质的量;f i G )(θ

?为i 组分在温度T 时的标准生成自由焓;f j G )(θ?为j 组分在温度T 时的标准生成自由焓。 从标准反应热和标准反应熵来估算: )(ln θθθS T H G K RT ?-?-=?-= (10-16)

∑∑==?-?=?m

j f j j f n i i i H H H 11)()(θ

θ

θβα (10-17) 式中,θH ?是温度T 时化学反应的标准焓变,即反应热;θ

f H ?是组分的生成热。 ∑∑==?-?=?m

j j j n i i i S S S 11)()(θ

θ

θβα (10-18) 式中,θS ?为温度T 时化学反应的标准熵变;θ

i S ?为生成物在温度T 和标准状态下的绝对熵;θ

j S ?为生成物在温度T 和标准状态下的绝对熵。

39、轻烃类混合物平衡组成的计算方法:

对轻烃类体系,可利用Depriester 所制作的K T p --列线图(附录八),根据压力与温度条件直接查出各组分的i K 值,如果温度T 或压力p 未知,需用试差法求解。

40、蒸汽动力循环的过程分析: Rankine 循环是最简单的蒸汽动力循环。由锅炉、过热器、汽轮机、冷凝器和水泵组成。

化工热力学详细答案

化工热力学详细答案

————————————————————————————————作者:————————————————————————————————日期:

化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P =68.314673 4.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.5 6 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p = =6 0.08678.314190.6 4.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106= 5 8.314673 2.98710 V -?-?-0.553.224(673)( 2.98710)V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 664.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3·mol -1 2.2试分别用(1)Van der Waals,(2)R-K ,(3)S-R-K 方程计算27 3.15K 时将CO 2压缩到比体积为 550.1cm 3·mol - 1所需要的压力。实验值为3.090MPa 。 解: 从附录二查得CO 2得临界参数和偏心因子为

化工热力学答案课后总习题答案详解

化工热力学答案_课后总习题答案详解 第二章习题解答 一、问答题: 2-1为什么要研究流体的pVT 关系? 【参考答案】:流体p-V-T 关系是化工热力学的基石,是化工过程开发和设计、安全操作和科学研究必不可少的基础数据。(1)流体的PVT 关系可以直接用于设计。(2)利用可测的热力学性质(T ,P ,V 等)计算不可测的热力学性质(H ,S ,G ,等)。只要有了p-V-T 关系加上理想气体的id p C ,可以解决化工热力学的大多数问题。 2-2在p -V 图上指出超临界萃取技术所处的区域,以及该区域的特征;同时指出其它重要的点、线、面以及它们的特征。 【参考答案】:1)超临界流体区的特征是:T >T c 、p >p c 。 2)临界点C 的数学特征: 3)饱和液相线是不同压力下产生第一个气泡的那个点的连线; 4)饱和汽相线是不同压力下产生第一个液滴点(或露点)那个点的连线。 5)过冷液体区的特征:给定压力下液体的温度低于该压力下的泡点温度。 6)过热蒸气区的特征:给定压力下蒸气的温度高于该压力下的露点温度。 7)汽液共存区:在此区域温度压力保持不变,只有体积在变化。 2-3 要满足什么条件,气体才能液化? 【参考答案】:气体只有在低于T c 条件下才能被液化。 2-4 不同气体在相同温度压力下,偏离理想气体的程度是否相同?你认为哪些是决定偏离理想气体程度的最本质因素? 【参考答案】:不同。真实气体偏离理想气体程度不仅与T 、p 有关,而且与每个气体的临界特性有 ()() () () 点在点在C V P C V P T T 00 2 2 ==?? ?

关,即最本质的因素是对比温度、对比压力以及偏心因子r T ,r P 和ω。 2-5 偏心因子的概念是什么?为什么要提出这个概念?它可以直接测量吗? 【参考答案】:偏心因子ω为两个分子间的相互作用力偏离分子中心之间的作用力的程度。其物理意义为:一般流体与球形非极性简单流体(氩,氪、氙)在形状和极性方面的偏心度。为了提高计算复杂分子压缩因子的准确度。 偏心因子不可以直接测量。偏心因子ω的定义为:000.1)p lg(7.0T s r r --==ω , ω由测定的对比温度为0.7时的对比饱和压力的数据计算而得,并不能直接测量。 2-6 什么是状态方程的普遍化方法?普遍化方法有哪些类型? 【参考答案】:所谓状态方程的普遍化方法是指方程中不含有物性常数a ,b ,而是以对比参数作为独立变量;普遍化状态方程可用于任何流体、任意条件下的PVT 性质的计算。普遍化方法有两种类型:(1)以压缩因子的多项式表示的普遍化关系式 (普遍化压缩因子图法);(2)以两项virial 方程表示的普遍化第二virial 系数关系式(普遍化virial 系数法) 2-7简述三参数对应状态原理与两参数对应状态原理的区别。 【参考答案】:三参数对应状态原理与两参数对应状态原理的区别在于为了提高对比态原理的精度,引入了第三参数如偏心因子ω。三参数对应态原理为:在相同的 r T 和r p 下,具有相同ω值的所有 流体具有相同的压缩因子Z ,因此它们偏离理想气体的程度相同,即),P ,T (f Z r r ω=。而两参数对应状态原理为:在相同对比温度r T 、对比压力 r p 下,不同气体的对比摩尔体积r V (或压缩因子z ) 是近似相等的,即(,) r r Z T P =。三参数对应状态原理比两参数对应状态原理精度高得多。 2-8总结纯气体和纯液体pVT 计算的异同。 【参考答案】: 由于范德华方程(vdW 方程)最 大突破在于能同时计算汽、液两相性质,因此,理论上讲,采用基于vdW 方程的立方型状态方程能同时将纯气体和纯液体的性质计算出来(最小值是饱和液体摩尔体积、最大值是饱和气体摩尔体积),但事实上计算的纯气体性质误差较小,而纯液体的误差较大。因此,液体的p-V-T 关系往往采用专门计算液体体积的公式计算,如修正Rackett 方程,它与立方型状态方程相比,既简单精度又高。 2-9如何理解混合规则?为什么要提出这个概念?有哪些类型的混合规则? 【参考答案】:对于混合气体,只要把混合物看成一个虚拟的纯物质,算出虚拟的特征参数,如Tr ,

化工热力学第1章解答

习题 第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。(错。G S H U ??=?=?,,0,0但和 A ?,0=U ?,=T ?)2ln R =, G =?2. 3. 4. 5. ) 6. V )的自变 7. 1 T P 无关。) 8. 描述封闭体系中理想气体绝热可逆途径的方程是 γ γ) 1(1212-??? ? ??=P P T T (其中ig V ig P C C =γ), 而一位学生认为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。(错。) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。 (错。有时可能不一致) 10. 自变量与独立变量是不可能相同的。(错。有时可以一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。

2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。 3. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的 以V 表示) (以P 表示)。 4. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则 A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ???? ??--,?U =()112 1T P P R C ig P ??? ? ??--,?H = 112 1T P P C ig P ? ?? ? ??-。 B 等温过程的 W =2 1ln P P RT -,Q =2 1ln P P RT ,?U = 0 ,?H = 0 。 Q = 0 ,? 5. 1cm 2, 6. 7. 8. =8.314 J mol -1 K -1 1. t A 、B 两 室。两室装有不同的理想气体。突然将隔板移走,使容器内的气体自发达到平衡。计算 该过程的Q 、W 、U ?和最终的T 和P 。设初压力是(a )两室均为P 0;(b )左室为P 0,右室是真空。 解:(a )不变P T U W Q ,;0,0,0===? (b) 05.0,,;0,0,0P P T U W Q ====即下降一半不变? 2. 常压下非常纯的水可以过冷至0℃以下。一些-5℃的水由于受到干扰而开始结晶,由于 结晶过程进行得很快,可以认为体系是绝热的,试求凝固分率和过程的熵变化。已知冰 的熔化热为333.4J g -1和水在0~-5℃之间的热容为4.22J g -1 K -1。 解:以1克水为基准,即

化工热力学复习总结材料

第一章、绪论 一、化工热力学的目的和任务 通过一定的理论方法,从容易测量的性质推测难测量的性质、从有限的实验数据获得更系统的物性的信息具有重要的理论和实际意义。 化工热力学就是运用经典热力学的原理,结合反映系统特征的模型,解决工业过程(特别是化工过程)中热力学性质的计算和预测、相平衡和化学平衡计算、能量的有效利用等实际问题。 二、1-2化工热力学与物理化学的关系 化工热力学与物理化学关系密切,物理化学的热力学部分已经介绍了经典热力学的基本原理和理想系统(如理想气体和理想溶液等)的模型,化工热力学将在此基础上,将重点转移到更接近实际的系统。 三、热力学性质计算的一般方法 (1)基于相律分析系统的独立变量和从属变量; (2)由经典热力学原理得到普遍化关系式。特别是将热力学性质与能容易测量的p、V、T及组成性质和理想气体等压热容联系起来; (3)引入表达系统特性的模型,如状态方程或活度系数; (4)数学求解。 第2章流体的P-V-T关系 1.掌握状态方程式和用三参数对应态原理计算PVT性质的方法。 2.了解偏心因子的概念,掌握有关图表及计算方法。 1.状态方程:在题意要求时使用该法。 ①范德华方程:常用于公式证明和推导中。 ②R—K 方程: ③维里方程: 2.普遍化法:使用条件:在不清楚用何种状态方程的情况下使用。 三参数法: ①普遍化压缩因子法 ②普遍化第二维里系数法 3、Redlich-Kwong(RK)方程 3、Soave(SRK)方程

4、Peng-Robinson (PR )方程 () 22 a 0.45724c r c R T T P α= 0.0778 c c RT b P = §2-5高次型状态方程 5、virial 方程 virial 方程分为密度 型: 和压力型: 第3章 纯物质的热力学性质 1、热力学性质间的关系 dU TdS pdV =- H=U+PV dH TdS Vdp =+ A=U-TS dA SdT pdV =-- G=H-TS dG SdT Vdp =-+ Maxwell 关系式 S V T P V S ?????? =- ? ??????? S P T V P S ?????? = ? ??????? V T P S T V ??????= ? ??????? P T V S T P ?????? =- ? ??????? 转换公式: 1Z X Y X Y Z Y Z X ??????? ??=- ? ? ?????????? 3.2计算H ?和S ?的方法 1.状态方程法: P P V dH C dT V T dP T ?? ???=+- ???????? P P C V dS dT dP T T ???=- ???? 2.剩余性质法: ①普遍化压缩因子图 ()()0 1 R R R T C C C H H H RT RT RT ω =+ ()()0 1 R R R T S S S R R R ω = +

化工热力学答案(完整资料).doc

【最新整理,下载后即可编辑】 化工热力学第二章作业解答 2.1试用下述三种方法计算673K ,4.053MPa 下甲烷气体的摩尔体积,(1)用理想气体方程;(2)用R-K 方程;(3)用普遍化关系式 解 (1)用理想气体方程(2-4) V = RT P = 6 8.314673 4.05310 ??=1.381×10-3m 3·mol -1 (2)用R-K 方程(2-6) 从附录二查的甲烷的临界参数和偏心因子为 Tc =190.6K ,Pc =4.600Mpa ,ω=0.008 将Tc ,Pc 值代入式(2-7a )式(2-7b ) 2 2.50.42748c c R T a p ==2 2.56 0.42748(8.314)(190.6)4.610???=3.224Pa ·m 6·K 0.5·mol -2 0.0867c c RT b p ==6 0.08678.314190.64.610 ???=2.987×10-5 m 3·mol -1 将有关的已知值代入式(2-6) 4.053×106= 5 8.314673 2.98710V -?-?- 0.553.224 (673)( 2.98710) V V -+? 迭代解得 V =1.390×10-3 m 3·mol -1 (注:用式2-22和式2-25迭代得Z 然后用PV=ZRT 求V 也可) (3)用普遍化关系式 673 3.53190.6 r T T Tc === 6 6 4.053100.8814.610r P P Pc ?===? 因为该状态点落在图2-9曲线上方,故采用普遍化第二维里系数法。 由式(2-44a )、式(2-44b )求出B 0和B 1 B 0=0.083-0.422/Tr 1.6=0.083-0.422/(3.53)1.6=0.0269 B 1=0.139-0.172/Tr 4.2=0.139-0.172/(3.53)4.2=0.138 代入式(2-43) 010.02690.0080.1380.0281BPc B B RTc ω=+=+?= 由式(2-42)得 Pr 0.881110.0281 1.0073.53BPc Z RTc Tr ???? =+=+?= ??? ???? V =1.390×10-3 m 3·mol -1

《化工热力学》详细课后习题答案陈新志

2 习题 第1章 绪言 一、是否题 1. 孤立体系的热力学能和熵都是一定值。( 错。 和 ,如一 体积等于2V 的绝热刚性容器,被一理想的隔板一分为二,左侧状态是T ,P 的理想气体,右侧是T 温度 的真空。当隔板抽去后,由于Q =W =0, , ,,故体系将在T ,2V ,0.5P 状态下 达到平衡, , , ) 2. 封闭体系的体积为一常数。(错) 3. 封闭体系中有两个相 。在尚未达到平衡时,两个相都是均相敞开体系;达到平衡时,则 两个相都等价于均相封闭体系。(对) 4. 理想气体的焓和热容仅是温度的函数。(对) 5. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T ,V )的自变量中只有一个强度 性质,所以,这与相律有矛盾。(错。V 也是强度性质) 7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和终 态的温度分别为T 1和T 2,则该过程的 ;同样,对于初、终态压力相等的过程有 。(对。状态函数的变化仅决定于初、终态与途径无关。) 8. 描述封闭体系中理想气体绝热可逆途径的方程是(其中 ),而一位学生认 为这是状态函数间的关系,与途径无关,所以不需要可逆的条件。(错。) 9. 自变量与独立变量是一致的,从属变量与函数是一致的。(错。有时可能不一致) 10. 自变量与独立变量是不可能相同的。(错。有时可以一致) 三、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 单相区的纯物质和定组成混合物的自由度数目分别是 2 和 2 。 3. 封闭体系中,温度是T 的1mol 理想气体从(P ,V )等温可逆地膨胀到(P ,V ),则所做的功为 i i f f (以V 表示)或 (以P 表示)。 4. 封闭体系中的1mol 理想气体(已知 ),按下列途径由T 1、P 1和V 1可逆地变化至P ,则

化工热力学第一章 习题解答

第一章习题解答 一、问答题: 1-1化工热力学与哪些学科相邻?化工热力学与物理化学中的化学热力学有哪些异同点? 【参考答案】:高等数学、物理化学是化工热力学的基础,而化工热力学又是《化工原理》、《化工设计》、《反应工程》、《化工分离过程》等课程的基础和指导。化工热力学是以化学热力学和工程热力学为基础。化工热力学与化学热力学的共同点为:两者都是利用热力学第一、第二定律解决问题;区别在于:化学热力学的处理对象是理想气体、理想溶液、封闭体系;而化工热力学面对的是实际气体、实际溶液、流动体系,因此化工热力学要比化学热力学要复杂得多。 1-2化工热力学在化学工程与工艺专业知识构成中居于什么位置? 【参考答案】:化工热力学与其它化学工程分支学科间的关系如下图所示,可以看出,化工热力学在化学工程中有极其重要的作用。 1-3化工热力学有些什么实际应用?请举例说明。 【参考答案】: ①确定化学反应发生的可能性及其方向,确定反应平衡条件和平衡时体系的状态。(可行性分析)

②描述能量转换的规律,确定某种能量向目标能量转换的最大效率。(能量有效利用) ③描述物态变化的规律和状态性质。 ④确定相变发生的可能性及其方向,确定相平衡条件和相平衡时体系的状态。 ⑤通过模拟计算,得到最优操作条件,代替耗费巨大的中间试验。 化工热力学最直接的应用就是精馏塔的设计:1)汽液平衡线是确定精馏塔理论板数的依据,可以说没有化工热力学的汽液平衡数据就没有精馏塔的设计;2)精馏塔再沸器提供的热量离不开化工热力学的焓的数据。由此可见,化工热力学在既涉及到相平衡问题又涉及到能量有效利用的分离过程中有着举足轻重的作用。 1-4化工热力学能为目前全世界提倡的“节能减排”做些什么? 【参考答案】:化工热力学是化学工程的一个重要分支,它的最根本任务就是利用热力学第一、第二定律给出物质和能量的最大利用极限,有效地降低生产能耗,减少污染。因此毫不夸张地说:化工热力学就是为节能减排而生的! 1-5化工热力学的研究特点是什么? 【参考答案】:化工热力学的研究特点: (1)从局部的实验数据加半经验模型来推算系统完整的信息; (2)从常温常压的物性数据来推算苛刻条件下的性质; (3)从容易获得的物性数据(p、V、T、x)来推算较难测定或不可测试 的数据(y,H,S,G); (4)从纯物质的性质利用混合规则求取混合物的性质; (5)以理想态为标准态加上校正,求取真实物质的性质。 其中最大的特点是将实际过程变成理想模型加校正的处理问题方法。

化工热力学 第三版 课后答案 朱自强

第二章流体的压力、体积、浓度关系:状态方程式 2-1试分别用下述方法求出400℃、4.053MPa 下甲烷气体的摩尔体积。(1)理想气体方程;(2)RK 方程;(3)PR 方程;(4)维里截断式(2-7)。其中B 用Pitzer 的普遍化关联法计算。 [解](1)根据理想气体状态方程,可求出甲烷气体在理想情况下的摩尔体积id V 为 331 6 8.314(400273.15) 1.381104.05310 id RT V m mol p --?+= ==???(2)用RK 方程求摩尔体积 将RK 方程稍加变形,可写为 0.5() () RT a V b V b p T pV V b -= +-+(E1) 其中 2 2.5 0.427480.08664c c c c R T a p RT b p = = 从附表1查得甲烷的临界温度和压力分别为c T =190.6K,c p =4.60MPa ,将它们代入a,b 表达式得 2 2.56-20.560.427488.314190.6 3.2217m Pa mol K 4.6010a ??==????531 6 0.086648.314190.6 2.9846104.6010b m mol --??= =???以理想气体状态方程求得的id V 为初值,代入式(E1)中迭代求解,第一次迭代得到1V 值为 516 8.314673.15 2.9846104.05310 V -?= +??350.563353.2217(1.38110 2.984610) 673.15 4.05310 1.38110(1.38110 2.984610) -----??-?- ??????+?355331 1.38110 2.984610 2.1246101.389610m mol -----=?+?-?=??第二次迭代得2V 为

《化工热力学》课程标准

《化工热力学》课程标准 英文名称:Chemical Engineering Thermodynamics 课程编号: 适用专业:应用化学本科学分数:2 一、课程性质 所属一级学科——化学工程,二级学科——化学工程基础学科。 《化工热力学》是应用化学专业的重要专业方向课程。该课程包括化工基础理论,热力学案例分析、化工节能创新等化工技能,是化工类专业教学体系和人才培养体系中比较重要的专业课。 先修课程为《高等数学》、《物理化学》、《化工原理》等。 二、课程理念 1、该课程是化学工程的精髓 《化工热力学》课程属于工学学科门类下化学工程学科,是化工过程研究、开发和设计的理论基础,在科研和生产领域具有不可缺少的地位。它是从化学工程的角度,分析并给出化工过程经历的实质性变化,在原理和计算方法上指导各种化工过程的进行和优化。 该课程是应用化学专业的重要专业方向课程,是化学工程的精髓,是所有单元操作的基础,是《化工原理》、《反应工程》、《化工分离过程》等课程的基础和指导。 该课程在化学化工类人才培养中起着重要的承前启后、由基础到专业的桥梁作用,是化工类人才持续深造和研究开发必须打好的知识功底。 2、理论与工程应用相结合,培养学生的工程与开发能力 该课程定位为工程学科专业方向课,故在培养学生科学素质的同时,始终强调工程能力的培养,将化工热力学理论,模型与工程应用融为一体,旨在培养学生能够应用和建立热力学模型解决化学工程和工艺开发中的问题。 3、砸实热力学知识,培养学生扎实的学习能力和创造能力 该课程是以化工热力学、工程热力学和统计热力学为学科基础,以计算机及其技术为工具,培养学生从热力学角度分析解决现代化工技术的复杂工程问题。为了培养创新型高素质人才,既要给学生以干粮——扎实的热力学知识,又要给学生以猎枪——获取和创造知识的能力。 4、重视过程与动态评价 采用平时表现与考试成绩相结合的评价理念。学生在完成课后作业、课堂讨论、口试等内容和环节后,获得参加考试资格。知识和能力之间应树立一种内在联系,多看重教学过程中学生的参与程度和提高程度,不把期末考试作为教学评价的唯一标准,坚持“过程评价”和“动态评价”。 三、课程目标 总目标: 通过介绍化工热力学的起源、现状和发展,使学生了解热力学在化工过程中的主要实际应用;引导学生构建化工热力学课程的知识网络,使学生掌握化工热力学的基本概念和基本原理,利用化工热力学的方法对化工中物系的热力学性质和其它化工物性进行关联及推算,利用化工热力学的原理和模型进行化工过程能量、相平衡分析和研究;训练学生理论联系实际的思维,使学生具备利用热力学知识分析解决化工领域中有关实际问题的初步能力,形成基本知识扎实、应用能力突出的专业素养。 分目标:

化工热力学习题集(附答案)

模拟题一 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( c ) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T 温度下的过冷纯液体的压力P ( a ) A. >()T P s B. <()T P s C. =()T P s 3. T 温度下的过热纯蒸汽的压力P ( b ) A. >()T P s B. <()T P s C. =()T P s 4. 纯物质的第二virial 系数B ( a ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( a ) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项 D. 只需要理想气体方程 6. 液化石油气的主要成分是( a ) A. 丙烷、丁烷和少量的戊烷 B. 甲烷、乙烷 C. 正己烷 7. 立方型状态方程计算V 时如果出现三个根,则最大的根表示( ) A. 饱和液摩尔体积 B. 饱和汽摩尔体积 C. 无物理意义 8. 偏心因子的定义式( ) A. 0.7lg()1s r Tr P ω==-- B. 0.8lg()1s r Tr P ω==-- C. 1.0lg()s r Tr P ω==- 9. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( ) A. 1x y z Z Z x x y y ?????????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ?????????= ? ? ?????????? D. 1y Z x Z y y x x Z ?????????=- ? ? ?????????? 10. 关于偏离函数M R ,理想性质M *,下列公式正确的是( ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 11. 下面的说法中不正确的是 ( ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。

化工热力学复习题(附答案)

化工热力学复习题 一、选择题 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为( C ) A. 饱和蒸汽 超临界流体 过热蒸汽 2. 纯物质的第二virial 系数B ( A ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 3. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( B ) A. 1x y z Z Z x x y y ?????????=- ? ? ?????????? B. 1y x Z Z x y x y Z ?????????=- ? ? ?????????? C. 1y x Z Z x y x y Z ?????????= ? ? ?????????? D. 1y Z x Z y y x x Z ?????????=- ? ? ?????????? 4. 关于偏离函数M R ,理想性质M *,下列公式正确的是( C ) " A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 5. 下面的说法中不正确的是 ( B ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。 (C )偏摩尔性质是强度性质。 (D )强度性质无偏摩尔量 。 6. 关于逸度的下列说法中不正确的是 ( D ) (A )逸度可称为“校正压力” 。 (B )逸度可称为“有效压力” 。 (C )逸度表达了真实气体对理想气体的偏差 。 (D )逸度可代替压力,使真实气体的状态方程变为fv=nRT 。 (E )逸度就是物质从系统中逃逸趋势的量度。 7. 二元溶液,T, P 一定时,Gibbs —Duhem 方程的正确形式是 ( C ). a. X 1dlnγ1/dX 1+ X 2dlnγ2/dX 2 = 0 b. X 1dlnγ1/dX 2+ X 2 dlnγ2/dX 1 = 0 ` c. X 1dlnγ1/dX 1+ X 2dlnγ2/dX 1 = 0 d. X 1dlnγ1/dX 1– X 2 dlnγ2/dX 1 = 0 8. 关于化学势的下列说法中不正确的是( A ) A. 系统的偏摩尔量就是化学势 B. 化学势是系统的强度性质 C. 系统中的任一物质都有化学势 D. 化学势大小决定物质迁移的方向 9.关于活度和活度系数的下列说法中不正确的是 ( E ) (A )活度是相对逸度,校正浓度,有效浓度;(B) 理想溶液活度等于其浓度。 (C )活度系数表示实际溶液与理想溶液的偏差。(D )任何纯物质的活度均为1。 (E )r i 是G E /RT 的偏摩尔量。 10.等温等压下,在A 和B 组成的均相体系中,若A 的偏摩尔体积随浓度的改变而增加,则B 的偏摩尔体积将(B ) A. 增加 B. 减小 C. 不变 D. 不一定 " 11.下列各式中,化学位的定义式是 ( A ) 12.混合物中组分i 的逸度的完整定义式是( A )。 A. d G ___i =RTdln f ^i , 0lim →p [f ^i /(Y i P)]=1 B. d G ___i =RTdln f ^i , 0lim →p [f ^ i /P]=1 C. dG i =RTdln f ^i , 0lim →p f i =1 ; D. d G ___i =RTdln f ^i , 0lim →p f ^ i =1 j j j j n nS T i i n T P i i n nS nV i i n nS P i i n nU d n nA c n nG b n nH a ,,,,,,,,])([.])([.])([.])([.??≡??≡??≡??≡μμμμ

化工热力学第一章绪论试题

第1章 绪 言 1. 凡是体系的温度升高时,就一定吸热,而温度不变时,则体系既不吸热也不放热。 答:错。等温等压的相变化或化学变化始、终态温度不变,但有热效应。气体的绝热压缩,体系温度升高,但无吸收热量。 2. 当n 摩尔气体反抗一定的压力做绝热膨胀时,其内能总是减少的。 答:对。绝热:Q=0;反抗外压作功:W <0;?U=Q +W=W<0。 3. 封闭体系中有两个相βα,。在尚未达到平衡时,βα,两个相都是均相敞开体系;达到平衡时, 则βα,两个相都等价于均相封闭体系。 答:对 4. 理想气体的焓和热容仅是温度的函数。 答:对 5. 理想气体的熵和吉氏函数仅是温度的函数。 答:错。理想气体的熵和吉氏函数不仅与温度有关,还与压力或摩尔体积有关。 6. 要确定物质在单相区的状态需要指定两个强度性质,但是状态方程 P=P (T , V )的自变量中只有一个强度性质,所以,这与相律有矛盾。 答:错。V 也是强度性质 7. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积相等,初态和 终态的温度分别为T 1和T 2,则该过程的? =21T T V dT C U ?;同样,对于初、终态压力相等的过程有 ? =2 1T T P dT C H ?。 答:对。状态函数的变化仅决定于初、终态与途径无关。 8. 状态函数的特点是什么? 答:状态函数的变化与途径无关,仅决定于初、终态。 9. 对封闭体系而言,当过程的始态和终态确定后,下列哪项的值不能确定: A Q B Q + W, ?U C W (Q=0),?U D Q (W=0),?U 答:A 。因为Q 不是状态函数,虽然始态和终态确定,但未说明具体过程,故Q 值不能确定 。 10. 下列各式中哪一个不受理想气体条件的限制 A △H = △U+P△V B CPm - CVm=R C = 常数 D W = nRTln (V2╱V1) 答:A 11.对于内能是体系的状态的单值函数概念的错误理解是: A 体系处于一定的状态,具有一定的内能 B 对应于某一状态,内能只能有一数值,不能有两个以上的数值

化工热力学复习题及答案 ()

《化工热力学》课程模拟考试试卷 A 开课学院:化工学院,专业:材料化学工程 考试形式: ,所需时间: 分钟 考生姓名: 学号: 班级: 任课教师: 写T ,错的写F) 1.理想气体的压缩因子1Z =,但由于分子间相互作用力的存在,实际气体的压缩因子 。 (A) 小于1 (B) 大于1 (C) 可能小于1也可能大于1 (D) 说不清楚 2.甲烷c 4.599MPa p =,处在r 0.3p =时,甲烷的压力为 。 (A) 15.33MPa (B) 2.7594 MPa ; (C) 1.3797 MPa (D) 1.1746 MPa 3.关于建立状态方程的作用,以下叙述不正确的是 。 (A) 可以解决由于实验的p -V -T 数据有限无法全面了解流体p -V -T 行为的问题。 (B) 可以解决实验的p -V -T 数据精确度不高的问题。 (C) 可以从容易获得的物性数据(p 、V 、T 、x )来推算较难测定的数据(H ,U ,S ,G )。 (D) 可以解决由于p -V -T 数据离散不便于求导和积分,无法获得数据点以外的p -V -T 的 问题。 4.对于流体混合物,下面式子错误的是 。 (A) lim i i i x M M ∞→=(B)i i i H U pV =+ (C) 理想溶液的i i V V =,i i U U = (D) 理想溶液的i i S S =,i i G G = 5.剩余性质R M 的概念是表示什么差别的 。 (A) 真实溶液与理想溶液 (B) 理想气体与真实气体 (C) 浓度与活度 (D) 压力与逸度 6.纯物质在临界点处的状态,通常都是 。 (A) 气体状态 (B) 液体状态 (C) 固体状态 (D) 气液不分状态 7.关于化工热力学研究内容,下列说法中不正确的是( )。

化工热力学作业答案

一、试计算一个125cm 3的刚性容器,在50℃和18.745MPa 的条件下能贮存甲烷多少克(实验值是17克)?分别比较理想气体方程、三参数对应态原理和PR 方程的结果。 解:查出T c =190.58K,P c =4.604MPa,ω=0.011 (1) 利用理想气体状态方程nRT PV = g m RT PV n 14872.0=?== (2) 三参数对应态原理 查表得 Z 0=0.8846 Z 1=0.2562 (3) PR 方程利用软件计算得g m n mol cm V 3.1602.1/7268.1223=?=?= 二、用virial 方程估算0.5MPa ,373.15K 时的等摩尔甲烷(1)-乙烷(2)-戊烷(3)混合物的摩尔体积(实验值5975cm 3mol -1)。已知373.15K 时的virial 系数如下(单位:cm 3 mol -1), 399,122,75,621,241,20231312332211-=-=-=-=-=-=B B B B B B 。 解:混合物的virial 系数是 44 .2309 399 212227526212412022231 132332122132 3222121313 1 -=?-?-?----= +++++==∑∑==B y y B y y B y y B y B y B y B y y B ij i j j i 298.597444.2305.0/15.373314.8/=-?=+=B P RT V cm 3 mol -1 三、(1) 在一定的温度和常压下,二元溶液中的组分1的偏摩尔焓如服从下式2 211 x H H α+=,并已知纯组分的焓是H 1,H 2,试求出H 2和H 表达式。 解: ()112221 2 2121121222dx x dx x x x dx dx H d x x H d x x H d αα-=-=???? ??-=- =得 2122x H H α+= 同样有2211 x H H α+= 所以 212211x x x H x H H x H i i α++==∑ ()()1,,o r r r r Z Z P T Z P T ω=+323.1518.745 1.696 4.071190.58 4.604r r T P = ===0.88640.0110.25620.8892Z =+?=30.88928.314323.15127.4/18.745 ZRT V cm mol P ??= ==1250.9812127.4t V n mol V ===15.7m g =

化工热力学习题集(附标准答案)

化工热力学习题集(附标准答案)

————————————————————————————————作者:————————————————————————————————日期:

模拟题一 一.单项选择题(每题1分,共20分) 本大题解答(用A 或B 或C 或D )请填入下表: 1. T 温度下的纯物质,当压力低于该温度下的饱和蒸汽压时,则气体的状态为(C ) A. 饱和蒸汽 B. 超临界流体 C. 过热蒸汽 2. T 温度下的过冷纯液体的压力P ( A ) A. >()T P s B. <()T P s C. =()T P s 3. T 温度下的过热纯蒸汽的压力P ( B ) A. >()T P s B. <()T P s C. =()T P s 4. 纯物质的第二virial 系数B ( A ) A 仅是T 的函数 B 是T 和P 的函数 C 是T 和V 的函数 D 是任何两强度性质的函数 5. 能表达流体在临界点的P-V 等温线的正确趋势的virial 方程,必须至少用到( ) A. 第三virial 系数 B. 第二virial 系数 C. 无穷项 D. 只需要理想气体方程 6. 液化石油气的主要成分是( A ) A. 丙烷、丁烷和少量的戊烷 B. 甲烷、乙烷 C. 正己烷 7. 立方型状态方程计算V 时如果出现三个根,则最大的根表示( B ) A. 饱和液摩尔体积 B. 饱和汽摩尔体积 C. 无物理意义 8. 偏心因子的定义式( A ) A. 0.7lg()1 s r Tr P ω==-- B. 0.8lg()1 s r Tr P ω==-- C. 1.0lg()s r Tr P ω==- 9. 设Z 为x ,y 的连续函数,,根据欧拉连锁式,有( B ) A. 1x y z Z Z x x y y ???? ?????=- ? ? ?????????? B. 1y x Z Z x y x y Z ????????? =- ? ? ?????????? C. 1y x Z Z x y x y Z ????????? = ? ? ?????????? D. 1y Z x Z y y x x Z ????????? =- ? ? ?????????? 10. 关于偏离函数M R ,理想性质M *,下列公式正确的是( C ) A. *R M M M =+ B. *2R M M M =- C. *R M M M =- D. *R M M M =+ 11. 下面的说法中不正确的是 ( B ) (A )纯物质无偏摩尔量 。 (B )任何偏摩尔性质都是T ,P 的函数。 (C )偏摩尔性质是强度性质。(D )强度性质无偏摩尔量 。 12. 关于逸度的下列说法中不正确的是 ( D ) (A )逸度可称为“校正压力” 。 (B )逸度可称为“有效压力” 。 (C )逸度表达了真实气体对理想气体的偏差 。 (D )逸度可代替压力,使真实气体 的状态方程变为fv=nRT 。 (E )逸度就是物质从系统中逃逸趋势的量度。 题号 1 2 3 4 5 6 7 8 9 10 答案 题号 11 12 13 14 15 16 17 18 19 20 答案

化工热力学课后答案

化工热力学课后答案(填空、判断、画图) 第1章 绪言 一、是否题 1. 封闭体系的体积为一常数。(错) 2. 封闭体系中有两个相βα,。在尚未达到平衡时,βα,两个相都是均相敞开体系; 达到平衡时,则βα,两个相都等价于均相封闭体系。(对) 3. 理想气体的焓和热容仅是温度的函数。(对) 4. 理想气体的熵和吉氏函数仅是温度的函数。(错。还与压力或摩尔体积有关。) 5. 封闭体系的1mol 气体进行了某一过程,其体积总是变化着的,但是初态和终态的体积 相等,初态和终态的温度分别为T 1和T 2,则该过程的? =2 1 T T V dT C U ?;同样,对于初、 终态压力相等的过程有? =2 1 T T P dT C H ?。(对。状态函数的变化仅决定于初、终态与途径 无关。) 二、填空题 1. 状态函数的特点是:状态函数的变化与途径无关,仅决定于初、终态 。 2. 封闭体系中,温度是T 的1mol 理想气体从(P i ,V i )等温可逆地膨胀到(P f ,V f ),则所做的 功为() f i rev V V RT W ln =(以V 表示)或() i f rev P P RT W ln = (以P 表示)。 3. 封闭体系中的1mol 理想气体(已知ig P C ),按下列途径由T 1、P 1和V 1可逆地变化至P 2,则 A 等容过程的 W = 0 ,Q =()1121T P P R C ig P ???? ??--,?U =() 1121T P P R C ig P ???? ??--,?H = 112 1T P P C ig P ??? ? ??-。 B 等温过程的 W =21ln P P RT -,Q =2 1ln P P RT ,?U = 0 ,?H = 0 。 第2章P-V-T关系和状态方程 一、是否题 1. 纯物质由蒸汽变成液体,必须经过冷凝的相变化过程。(错。可以通过超临界流体区。) 2. 当压力大于临界压力时,纯物质就以液态存在。(错。若温度也大于临界温度时,则是 超临界流体。)

化工热力学

天津市高等教育自学考试课程考试大纲 课程名称:化工热力学课程代码:0708 第一部分课程性质与目标 一、课程性质与特点化工热力学是高等教育自学考试化学工程专业所开设的专业基础课程之一。它是化学工程学的一个重要分支,也是化工过程研究、开发与设计的理论基础。本课程系统地介绍了将热力学原理应用于化学工程技术领域的研究方法。它以热力学第一、第二定律为基础,研究化工过程中各种能量的相互转化及其有效利用,深刻阐述了各种物理和化学变化过程达到平衡的理论极限、条件和状态。它是一门理论性与应用性均较强的课程。 二、课程目标与基本要求 设置本课程,为了使考生能够掌握化工热力学的基本概念、理论和专业知识;能利用化工热力学的原理和模型对化工中涉及到的化学反应平衡原理、相平衡原理等进行分析和研究;能利用化工热力学的方法对化工中涉及的物系的热力学性质和其它化工物性进行关联和推算;并学会利用化工热力学的基本理论对化工中能量进行分析等。 通过本课程学习,要求考生: 1、正确理解化工热力学的有关基本概念和理论; 2、理解各个概念之间的联系和应用; 3、掌握化工热力学的基本计算方法; 4、能理论联系实际,灵活分析和解决实际化工生产和设计中的有关问题。 三、与本专业其它课程的关系化工热力学是化工类专业必修的专业基础课程,它与化学工程专业的许多其它课程有着十分密切的关系。物理化学是本课程的基础,同时本课程又是化工原理、化工设计、反应工程、化工分离过程等课程的基础和指导。 第二部分考核内容与考核目标 第一章绪论 一、学习目的与要求通过本章学习,正确认识“热”的概念及人们对于“热”的认识发展过程;了解化工热力学的主要内容及研究方法。 二、考核知识点与考核目标 (一)什么是“热” (一般)识记:人们对于“热”的几种认识;“热”概念的发展过程 (二)化工热力学的主要内容(次重点)识记:化工热力学的主要内容理解:“化工热力学”与“物理化学”的主要区别 (三)化工热力学的研究方法(一般)识记:化工热力学的研究方法有经典热力学方法和分子热力学方法。 第二章流体的p-V-T 关系 、学习目的与要求 通过本章的学习,能熟练掌握流体(特别是气体)的各种类型的p、V、T 关系(包括 状态方程法和对应状态法)及其应用、优缺点和应用范围。 二、考核知识点与考核目标 (一)维里方程(重点)理解:维里方程的几种形式维里系数的物理意义应用:二阶舍项的维里方

相关主题