搜档网
当前位置:搜档网 › 分子生物学总结

分子生物学总结

分子生物学总结
分子生物学总结

分子生物学复习思考题(仅供参考)

1.染色质(chromosome)和染色体(chromatin):DNA+蛋白质为主,RNA很少

2.染色体的组装:DNA+蛋白质不断螺旋缠绕、折叠。蛋白质含量为DNA的2倍,包含组

蛋白与非组蛋白,组蛋白≈组蛋白≈DNA

3.核小体(nucleosome):核心颗粒+连接区DNA即core particle+ link DNA;染色质的基本

结构,大约有200bp=DNA(60bp)+核心颗粒(146bp)

4.核心颗粒(core particle):蛋白质,146bp的DNA片段和组蛋白H2AH2BH3H4各二分子组

成.(H2AH2BH3H4)形成八聚体,位于颗粒中央,146bp的DNA缠绕组蛋白1.75圈

5.连接区DNA(link DNA):核心颗粒外,”裸露”的DNA长度为60bp

6.染色质纤维:从DNA到染色质的多级螺旋纤维.一级,核小体的串珠结构;二级,螺线体(H1

组蛋白为骨架);三级,超螺线体(非组蛋白为骨架);四级,染色单体

7.基因(Gene):DNA分子中能编码蛋白肽链或RNA的核酸序列,并具有一定长度的片段,

为保证转录所需的调控序列(即前导区,尾部区,内含子,外显子)

8.基因组(genome):细胞或生物体中,一套完整的单倍体遗传物质的总合

9.重叠基因(overlapping gene):两个或两个以上的基因共有的一段DNA序列或DNA序

列成为2个或2个以上基因组成部分

10.割(断)裂基因(splite gene ):真核生物的结构基因由编码序列和非编码序列两部分组成,

编码序列在DNA中是不连续的,被非编码序列分隔开

11.基因病(gene disease):基因突变或其表达调控障碍引起的疾病.包括单基因突变和多基因

突变

12.线粒体遗传病(mitochondrial disease):由于线粒体内的DNA突变引起的疾病

13.线粒体基因组:独立于核染色体外的基因组,人类的mtDNA全长16596bp,双链闭合环状

DNA,外链为H链(富含G),内链为L链(富含C), 人mtDNA结构紧凑、没有内含子,唯一非编码区为D环区,共有37个基因,包括2种rRNA(12S,16S)基因,22种tRNA基因,13条多肽链(呼吸链酶复合物亚单位)。

14.基因诊断(gene diagnosis):基因诊断是在DNA水平或RNA水平对某一基因进行分析,从

而对特定的疾病进行诊断

15.基因治疗(gene therapy):是用正常基因置换疾病基因以纠正基因结构和功能异常的一种

治疗疾病方法。

16.C值矛盾(C value paradox):生物体的进化程度与基因组大小之间不完全成比例的现象

17.端粒(telomere):是一种特殊结构,位于染色体的末端,由端粒DNA与端粒结合蛋白

组成。端粒DNA序列是多次重复的富含G碱基的短序列组成。

18.高度重复序列:基因组DNA分子中特殊的碱基序列,重复单位仅含4~20bp,但重复频

率>10^5,可高达10^8次,包括卫星DNA,反向重复序列和较复杂的重复单位组成的重复序列

19.卫星DNA:一般有2-10bp组成重复单位,部分重复单位在20-200bp之间,这种DNA序列

在用等密度CsCl离心时可以从主沉淀带附近分出小沉淀带而与其他DNA序列分开

20.低度重复序列:2~10个拷贝

21.中度重复序列:一般不编码的序列

22.单拷贝序列:在整个基因组中仅出现一次或少数几次,在人类基因组中有60%~65%的

DNA序列是单拷贝的

23.单拷贝基因:为蛋白质或酶编码的结构基因均为单一序列

24.基因家族(gene family): 真核生物基因组中有许多来源相同、结构相似、功能相关的

基因,这样一组基因称为基因家族。

25.假基因(pseudogene):基因家族中那些不产生有功能基因产物的一类基因,用ψ表示

26.组学:研究细胞、组织或整个生物体内某种分子(DNA、RNA、蛋白质、代谢物或其他

分子)所有组成内容的学科

27.结构基因组学:是通过基因作图,核苷酸序列分析确定基因组成、基因定位的科学。

28.功能基因组学(后基因组学):利用结构基因组提供的遗传信息和产物,通过在基因组

或系统水平上全面分析基因的功能,使得生物学研究从对单一基因或蛋白质研究转向多个基因或蛋白质同时进行系统的研究

29.比较基因组学:在基因组层次上,比较不同基因组之间的异同,是在整个基因组层次上

对不同生物基因组的大小、基因数目的多寡、特定基因的存在或缺失、基因或一串位标的位置及排列顺序进行比较

30.药物基因组学:通过DNA序列差异的分析,从基因水平上深入认识疾病与药物作用的

个体差异的机理,指导和优化临床用药。

31.疾病基因组学:从基因组中分离重要疾病的致病基因与相关基因,确定其致病机制

32.个体差异:不同个体对同一药物同一剂量的反应存在量与质的差别

33.单核苷酸多态性(SNP):不同个体基因组DNA序列上单个碱基的差异,是导致人类遗

传易感性的重要因素,也是导致人类药物代谢和反应差异的重要因素

34. 药物蛋白质组学:将蛋白组学的理论和技术用于药物研究领域,通过对比健康状态与疾病状态的细胞或组织的蛋白质组表达差异,用于药物研究或药物受体的研究或药物治疗前后蛋白质表达状况的总体,以评价药物类似物的结构与活性关系,寻找高活性的药物,由此发展起来的一门学科称之为药物蛋白组学(Pharmacoproteomics)。

35. 2-DE(双向电泳凝胶):是等电聚焦电泳和SDS-PAGE的组合,即先进行等电聚焦电泳(按照pI分离),然后再进行SDS-PAGE(按照分子大小),经染色得到的电泳图是个二维分布的蛋白质图。

36. 质谱:样品分子离子化后,根据不同离子间质核比(m/z)的差异来分离并确定分子量。

37. 核酸分子杂交:两条DNA链或两条RNA链或一条DNA链和一条RNA链按碱基互补的原则缔合成异质双链的过程称为分子杂交或核酸分子杂交

38. In situ hybridization(原位杂交):是以特定标记的已知序列的核酸分子作为探针与细胞或组织片中核酸进行杂交并对其检测的方法

39. gene chip(基因芯片):又称DNA芯片(DNA chip)或DNA微阵列(DNA microarray),将大量的基因片段有序地、高密度地排列在玻璃片或纤维膜等载体上,称之为基因芯片。40. PCR:聚合酶链式反应:在体外由引物介导的、酶促快速合成扩增特定基因或DNA片段的一种方法。具有特异性强、灵敏度高、操作简便、省时等特点。

41. Primer(引物):引物是人工合成的两段寡核苷酸序列,一个引物与感兴趣区域一端的一条DNA模板链互补,另一个引物与感兴趣区域另一端的另一条DNA模板链互补。

42. cDNA library(cDNA文库):某种生物基因组转录的部分或全部mRNA经反转录产生的各种cDNA片段分别与克隆载体重组,贮存在一种受体菌群体中,这样的群体称为cDNA 文库。

43. Gene knock out(基因敲除):将细胞基因组中某基因去除或使基因失去活性的技术。去除原核生物细胞、真核生物的生殖细胞、体细胞或干细胞基因组中的基因等。广义的基因敲除包括某个或某些基因的完全敲除、部分敲除、基因调控序列的敲除以及成段基因组序列的敲除。(简单的说基因敲除是指将目标基因从基因组中删除。)

44. RNAi(RNA干扰):是外源或内源双链RNA (double.stranded RNA,dsRNA)在生物体内诱导同源靶基因的mRNA特异性降解,导致转录后基因沉默(post transcriptional gene silenc ing, PTGS)的技术。

45. gene engineering(基因工程):将不同的生物基因(供体)在体外剪切、组合并和载体(质粒、噬菌体、病毒)DNA连接,然后引入原先没有这类基因的微生物或细胞(受体)内进行扩增,使转入的基因在细胞内高效表达,合成编码该基因的蛋白质。(核心技术是DNA 重组技术)

46. restriction endonuclease(RE,限制性核酸内切酶):是一类由细菌产生的能专一识别双链DNA中的特定碱基序列、并由此切割DNA双链结构的核苷酸内切酶,简称限制酶或切割酶。

47. V ector(载体):是将外源DNA(目的DNA)片断引入宿主细胞进行扩增或表达的运载工具,其化学本质为DNA。常用的载体分为3类:质粒、噬菌体和病毒

48. plasmid (质粒):是存在于细菌染色体外的、能自主复制的环状双链小分子DNA,适于做小片断基因的载体。

49. host cell(宿主细胞):能接纳重组子并实现重组子的外源基因扩增或表达的受体细胞。

50. Transformation(转化):以质粒DNA或以它为载体构建重组DNA导入细胞,而使细胞的遗传发生改变的过程。

一.问答题

1.从分子生物学的角度简述何谓基因:

基因: DNA分子中能编码蛋白肽链或RNA的核酸序列,并具有一定长度的片段,为保证转录所需的调控序列(即前导区,尾部区,内含子,外显子)

基因的化学本质是DNA,是基因组序列上的遗传单位,有调节区,转录区和其他功能序列区DNA:核心颗粒外,”裸露”的DNA长度为60bp

基因的结构:重叠基因,断裂基因,外显子和内含子,调控序列

基因的特征:自我复制,决定性状,能发生突变

2.线粒体遗传病的特征&线粒体基因组结构特点:

线粒体遗传病的特征:(1)母系遗传;(2)异质性与同质性;(3)阈值效应;(4)突变率高;(5)mtDNA 可以稳定地整合到核基因组中;(6) mtDNA在有丝分裂和减数分裂期间复制分离的瓶颈

线粒体基因组结构特点:1.半自主性;2.基因排列紧密;3.遗传密码与通用密码不同

3.真核基因组,原核基因组与病毒基因组特点的异同点

相同点:

1.真核基因组和原核基因组都具有可移动的DNA序列

2.噬菌体基因是连续的;原核生物基因组基因也是连续的

不同点:

1.真核生物的基因组DNA都是双链线状且往往不是一条;原核生物基因组DNA通常仅由一条环状双链DNA分子组成;病毒基因组较小,且有的是DNA,有的是RNA,RNA病毒基因组可以由数条RNA组成

2. 真核生物的结构基因为断裂基因,并受一系列顺式作用元件的调控,结构基因的转录产物为单顺反子;原核生物结构基因为单拷贝,且其与调控序列以操纵子的形式组织在一起,转录的RNA为多顺反子;病毒基因组可以形成多顺反子mRNA

3.编码区在基因组所占比例:病毒基因组>原核生物基因组>真核生物基因组

4.真核生物基因组中含有大量的重复序列和基因家族;原核生物基因组中重复序列很少

5.真核生物病毒基因是不连续的

6.真核生物基因组DNA的末端都有端粒结构

7.真核生物基因组还包括细胞器基因组

8.原核生物编码序列一般不会重叠;病毒基因组存在重叠基因

4.药物研发中如何发挥药物基因组学的潜在价值?

要点:

(1)药物基因组学

(2)SNP

(3)个体化医学

:针对每个个体的基因谱,进行个体化的终身疾病检测、预防和治疗

预警:疾病概率史-DNA序列,定期体检和血液带白参数检测

预防:生活方式的改变和避免危险因素,疫苗,重点在疗养

个体化治疗:根据个体的独特遗传变异, 选择合适药物和治疗方案;开发针对独特遗传变异人群的药物

参与:病人了解疾病并参与用药选择

2.分子诊断:检测基因的SNP

(e.g. )

(1)细胞色素P450酶系不仅存在种属差异,在人群中还具有基因和酶活性多态性。不同基因突变型的个体分为:超快速代谢型UM;快速代谢型EM;中等代谢型IM和慢代谢型PM。其中PM个体很容易发生药物在体内的蓄积中毒,UM个体则常常因为达不到药物有效浓度而对药物无应答。

(2)对CYP2D6慢代谢者需要较高的可待因剂量才能达到足够的镇痛效果,而超快代谢者,由于可待因转变为吗啡的代谢增强,需要低剂量的可待因而避免潜在的药物过量所致的呼吸抑制等药物不良反隐。

1.核酸分子杂交基本原理

核酸分子杂交(molecular hybridization):两条DNA链或两条RNA链或一条DNA链和一条RNA链按碱基互补的原则缔合成异质双链的过程称为分子杂交或核酸分子杂交。

其基本原理是:就是在一定条件下使互补核酸链实现复性。利用探针(probe)与靶DNA (RNA)杂交,特异性识别靶DNA(RNA)。探针以放射核素或非放射性核素标记,以利于杂交信号的检测。根据其来源和性质可分为cDNA探针、基因组探针、寡核苷酸探针、RNA探针等。

2.目的基因制备

对于已知序列的基因制备,方法相对简单成熟,常采用PCR法扩增,序列短的目的基因也可使用化学合成的方法;对于序列未知的基因制备,方法复杂费时。原核生物来源的基因常从基因文库中筛选,真核生物来源基因可从CDNA文库中制备。

3.PCR基本原理及体系

基本原理:是以拟扩增的DNA分子为模板,以以对分别与模板互补的寡核苷酸片段为引物,在DNA聚合酶的作用下,以dTNP为底物,按照半保留复制的原理,通过变性、退火、延生三个步骤完成新的DNA的合成,并反复重复这一过程。且新合成的DNA片段也可作为模板,因而PCR技术可以使DNA的合成量呈指数增加。

体系:模板引物热稳定性DNA聚合酶dNTP(脱氧核苷三磷酸)PCR缓冲液二价阳离子(Mg2+)及一价阳离子。

4基因敲除的一般流程

一基因敲除载体构建

1.获得目的基因的同源片段,并将其克隆到一般的质粒载体中;

2.从重组质粒中切除目的基因同源片段的大部分同源DNA序列,只留部分序列在线性质粒载体的两端;

3.将选择性标记基因新霉素抗性基因(neo)克隆到上述线性质粒中;

4.在目的基因同源序列的外侧引入疱疹病毒胸苷激酶(HSV-tk);

根据载体与靶基因组同源序列双链断裂位点位置的不同,基因载体通常分为两种:置换型载体和插入型载体。

二、基因敲除载体导入ES细胞

基因敲除载体导入ES细胞的方法:显微注射法、电穿孔法等

三、筛选与鉴定

遗传筛选法,包括正负筛选法(PNS法)和正向筛选法

物理筛选法,主要是PCR筛选方法

四、基因敲除动物产生

ES细胞经体外遗传修饰后重新引入动物胚胎(显微注射、胚胎聚合法或核移植法),可以发育产生嵌合体或完全ES细胞来源的动物

5.RNAi的作用机制与特点

主要涉及两个方面:①RNAi作用可通过RNA诱导的DNA甲基化来实现,此过程中dsRNA 被降解成21~23nt的小片段,这些小的RNA分子可以特异性诱导其同源序列的DNA甲基化。当dsRNA与启动子序列同源时,即可使同源靶基因启动子序列甲基化而失去启动转录的功能,导致其下游基因沉默。

②dsRNA诱导的RNAi作用机制分为起始阶段、效应阶段和扩增扩散阶段

起始阶段:dsRNA在核酸酶内切酶作用下,被加工裂解为21-23nt的由正反义链组成的双链小分子干扰RNA(siRNA),这些siRNA与所作用的靶mRNA序列具有同源性,且每条链均有2nt的3’突出端。

效应阶段:siRNA与解旋酶、A TP、多个蛋白质形成核酸内切酶复合体即RNA诱导沉默复合体(RISC)。激活该复合物需要一个A TP依赖的将siRNA解双链的过程,活化的RISC在单链siRNA引导下识别互补的mRNA,并在距离siRNA 3’端12个碱基的切割靶mRNA,最后可能再被核酸外切酶进一步降解,从而干扰基因表达。

扩增扩散阶段:新合成的长链dsRNA同样可被Dicer切割、降解生成大量的次级siRNA。次级siRNA又可进入合成一切割的循环过程,进一步放大RNAi作用

特点

高度特异性

高效性

受多基因控制

需siRNA介导

对靶基因位点的选择性

放大性

6.siRNA的设计与制备

设计原则

(1)从mRNA 的AUG起始密码开始,寻找“AA”二连序列,并记下其3‘端的19个碱基序列,作为潜在的siRNA靶位点。不要针对5’和3‘端的非编码区(untranslated regions,UTRs)。(这些地方有丰富的调控蛋白结合区域,而这些UTR结合蛋白或者翻译起始复合物可能会影响siRNP核酸内切酶复合物结合mRNA从而影响siRNA的效果。)

(2)GC含量在30%—50%左右的siRNA要比那些GC含量偏高的更为有效。

(3)将潜在的序列和相应的基因组数据库(人,或者小鼠,大鼠等等)进行比较,排除那些和其他编码序列/EST同源的序列。使用BLAST选出合适的目标序列进行合成。通常一个基因需要设计多个靶序列的siRNA,以找到最有效的siRNA序列。

制备

1.化学合成

2.体外转录

3用RNase III 消化长片断双链RNA制备siRNA

4.siRNA表达载体

5.siRNA表达框架

7.基因工程的一般原理(流程)

(1)分离:提取和获得目的基因和载体DNA;

(2)切割:分别对目的基因和载体DNA酶切;

(3)连接:用DNA连接酶连接目的基因与载体,形成新的重组DNA分子;

(4)转化:用重组DNA分子转化受体(宿主)细胞;

(5)筛选:重组体在受体细胞中复制和遗传;对转化子筛选和鉴定;

(6)表达:对获得外源基因的细胞或生物体通过培养,获得所需的遗传性状或表达出所需要的产物。

8.基因工程的载体(包括克隆载体和表达载体)必须具备哪些条件?

●能独立复制

●具备多个限制酶的识别位点(多克隆位点)

●具有遗传表型或筛选标记

●有足够的容量以容纳外源DNA片段。

●载体DNA中均有一段非必需区,将外源基因插入该非必需区,而载体本身不受影响

9.重组子筛选与确认的方法有哪些?

一、生物学方法

1.表型筛选法:

抗生素、LacZ

2. 噬菌斑形成筛选法

重组噬菌体能形成噬菌斑(平板上清亮、透明)

3. 遗传互补法(二氢叶酸还原酶)

4. 利用报告基因筛选植物转化细胞

抗生素类、某些酶类、特殊产物等等

二、PCR法

已知目的序列的长度和两端的序列,则可以设计合成一对引物,以转化细胞所得的DNA为模板进行扩增,若能得到预期长度的PCR产物,则该转化细胞就可能含有目的的序列。

三、DNA限制性内切酶图谱分析

四、测序

10.α互补筛选的原理是什么?

许多载体都带有一个大肠杆菌的DNA的短区段,其中有β-半乳糖苷酶基因(lacZ)的调控序列和前146个氨基酸的编码信息。在这个编码区中插入了一个多克隆位点(MCS),它并不破坏读框,但可使少数几个氨基酸插入到β-半乳糖苷酶的氨基端而不影响功能,这种载体适用于可编码β-半乳糖苷酶C端部分序列的宿主细胞。因此,宿主和质粒编码的片段虽都没有酶活性,但它们同时存在时,可形成具有酶学活性的蛋白质。这样,lacZ基因在缺少近操纵基因区段的宿主细胞与带有完整近操纵基因区段的质粒之间实现了互补,称为α-互补。由α-互补而产生的LacZ+细菌在诱导剂IPTG的作用下,在生色底物X-Gal存在时产生蓝色菌落,因而易于识别。然而,当外源DNA插入到质粒的多克隆位点后,几乎不可避免地导致无α-互补能力的氨基端片段,使得带有重组质粒的细菌形成白色菌落。

11.基因工程有哪些应用?

基因工程药物

基因疫苗

基因治疗

转基因动物

转基因植物

熟悉~酵母双杂交示意图P214

蛋白质组学技术在药学研究中应用示意图P215

分子生物学与基因工程主要知识点

分子生物学与基因工程复习重点 第一讲绪论 1、分子生物学与基因工程的含义 从狭义上讲,分子生物学主要是研究生物体主要遗传物质-基因或DNA的结构及其复制、转录、表达和调节控制等过程的科学。 基因工程是一项将生物的某个基因通过载体运送到另一种生物的活体细胞中,并使之无性繁殖和行使正常功能,从而创造生物新品种或新物种的遗传学技术。 2、分子生物学与基因工程的发展简史,特别是里程碑事件,要求掌握其必要的理由 上个世纪50年代,Watson和Crick提出了的DNA双螺旋模型; 60年代,法国科学家Jacob和Monod提出了的乳糖操纵子模型; 70年代,Berg首先发现了DNA连接酶,并构建了世界上第一个重组DNA分子; 80年代,Mullis发明了聚合酶链式反应(Polymerase Chain Reaction,PCR)技术; 90年代,开展了“人类基因组计划”和模式生物的基因组测序,分子生物学进入“基因组时代”; 目前,分子生物学进入了“后基因组时代”或“蛋白质组时代”。 3、分子生物学与基因工程的专业地位与作用:从专业基础课角度阐述对专业课程的支 撑作用 第二讲核酸概述 1、核酸的化学组成(图画说明) 2、核酸的种类与特点:DNA和RNA的区别 (1)DNA含的糖分子是脱氧核糖,RNA含的是核糖; (2)DNA含有的碱基是腺嘌呤(A)、胞嘧啶(C)、鸟嘌呤(G)和胸腺嘧啶(T),RNA含有的碱基前3个与DNA完全相同,只有最后一个胸腺嘧啶被尿嘧啶(U)所代替; (3)DNA通常是双链,而RNA主要为单链;

(4)DNA的分子链一般较长,而RNA分子链较短。 3、DNA作为遗传物质的直接和间接证据; 间接: (1)一种生物不同组织的细胞,不论年龄大小,功能如何,它的DNA含量是恒定的,而生殖细胞精子的DNA含量则刚好是体细胞的一半。多倍体生物细胞的DNA含量是按其染色体倍数性的增加而递增的,但细胞核里的蛋白质并没有相似的分布规律。 (2)DNA在代谢上较稳定。 (3)DNA是所有生物的染色体所共有的,而某些生物的染色体上则没有蛋白质。(4)DNA通常只存在于细胞核染色体上,但某些能自体复制的细胞器,如线粒体、叶绿体有其自己的DNA。 (5)在各类生物中能引起DNA结构改变的化学物质都可引起基因突变。 直接:肺炎链球菌试验、噬菌体侵染实验 4、DNA的变性与复性:两者的含义与特点及应用 变性:它是指当双螺旋DNA加热至生理温度以上(接近100oC)时,它就失去生理活性。这时DNA双股链间的氢键断裂,最后双股链完全分开并成为无规则线团的过程。简而言之,就是DNA从双链变成单链的过程。增色效应:它是指在DNA的变性过程中,它在260 nm的吸收值先是缓慢上升,到达某一温度后即骤然上升的效应。 复性:它是指热变性的DNA如缓慢冷却,已分开的互补链又可能重新缔合成双螺旋的过程。复性的速度与DNA的浓度有关,因为两互补序列间的配对决定于它们碰撞频率。DNA复性的应用-分子杂交:由DNA复性研究发展成的一种实验技术是分子杂交技术。杂交可发生在DNA和DNA或DNA与RNA间。 5、Tm的含义与影响因素 Tm的含义:是指吸收值增加的中点。 影响因素: 1)DNA序列中G + C的含量或比例含量越高,Tm值也越大(决定性因素);2)溶液的离子强度 3)核酸分子的长度有关:核酸分子越长,Tm值越大

现代分子生物学_复习笔记完整版.doc

现代分子生物学 复习提纲 第一章绪论 第一节分子生物学的基本含义及主要研究内容 1 分子生物学Molecular Biology的基本含义 ?广义的分子生物学:以核酸和蛋白质等生物大分子的结构及其在遗传信息和细胞信息传递中的作用为研究 对象,从分子水平阐明生命现象和生物学规律。 ?狭义的分子生物学:偏重于核酸(基因)的分子生物学,主要研究基因或DNA的复制、转录、表达和调控 等过程,也涉及与这些过程相关的蛋白质和酶的结构与功能的研究。 1.1 分子生物学的三大原则 1) 构成生物大分子的单体是相同的 2) 生物遗传信息表达的中心法则相同 3) 生物大分子单体的排列(核苷酸、氨基酸)的不同 1.3 分子生物学的研究内容 ●DNA重组技术(基因工程) ●基因的表达调控 ●生物大分子的结构和功能研究(结构分子生物学) ●基因组、功能基因组与生物信息学研究 第二节分子生物学发展简史 1 准备和酝酿阶段 ?时间:19世纪后期到20世纪50年代初。 ?确定了生物遗传的物质基础是DNA。 DNA是遗传物质的证明实验一:肺炎双球菌转化实验 DNA是遗传物质的证明实验二:噬菌体感染大肠杆菌实验 RNA也是重要的遗传物质-----烟草花叶病毒的感染和繁殖过程 2 建立和发展阶段 ?1953年Watson和Crick的DNA双螺旋结构模型作为现代分子生物学诞生的里程碑。 ?主要进展包括: ?遗传信息传递中心法则的建立 3 发展阶段 ?基因工程技术作为新的里程碑,标志着人类深入认识生命本质并能动改造生命的新时期开始。 ? 第三节分子生物学与其他学科的关系 思考 ?证明DNA是遗传物质的实验有哪些? ?分子生物学的主要研究内容。 ?列举5~10位获诺贝尔奖的科学家,简要说明其贡献。

分子生物学总结(朱玉贤版)(2020年10月整理).pdf

结合着下载的资料复习吧~~~~ 绪论 分子生物学的发展简史 Schleiden和Schwann提出“细胞学说” 孟德尔提出了“遗传因子”的概念、分离定律、独立分配规律 Miescher首次从莱茵河鲑鱼精子中分离出DNA Morgan基因存在于染色体上、连锁遗传规律 Avery证明基因就是DNA分子,提出DNA是遗传信息的载体 McClintock首次提出转座子或跳跃基因概念 Watson和Crick提出DNA双螺旋模型 Crick提出了“中心法则” Meselson与Stah用N重同位素证明了DNA复制是一种半保留复制 Jacob和Monod提出了著名的乳糖操纵子模型 Arber首次发现DNA限制性内切酶的存在 Temin和Baltimore发现在病毒中存在以RNA为模板,逆转录成DNA的逆转录酶 哪几种经典实验证明了DNA是遗传物质? (Avery等进行的肺炎双球菌转化实验、Hershey 利用放射性同位素35S和32P分别标记T2噬菌体的蛋白质外壳和DNA) 第二章染色体与DNA 第一节染色体 一、真核细胞染色体的组成 DNA:组蛋白:非组蛋白:RNA = 1:1:(1-1.5):0.05 (一)蛋白质(组蛋白、非组蛋白) (1)组蛋白:H1、H2A、H2B、H3、H4 功能:①核小体组蛋白(H2A、H2B、H3、H4)作用是将DNA分子盘绕成核小体

②不参加核小体组建的组蛋白H1,在构成核小体时起连接作用 (2)非组蛋白:包括以DNA为底物的酶、作用于组蛋白的酶、RNA聚合酶等。常见的有(HMG蛋白、DNA结合蛋白) 二、染色质 染色体:分裂期由染色质聚缩形成。 染色质:线性复合结构,间期遗传物质存在形式。 常染色质(着色浅) 具间期染色质形态特征和着色特征染色质 异染色质(着色深) 结构性异染色质兼性异染色质 (在整个细胞周期内都处于凝集状态)(特定时期处于凝集状态)三、核小体 由H2A、H2B、H3、H4各2 分子组成的八聚体和绕在八聚体外的DNA、一分 子H1组成。八聚体在中央,DNA分子盘绕在外,由此形成核心颗粒。,H1结合在核心颗粒外侧DNA双链的进出口端,如搭扣将绕在八聚体外DNA链固定,核心颗粒之间的连接部分为连接DNA。 核小体的定位对转录有促进作用

分子生物学知识点

第一章染色体与DNA 1.原核生物的DNA的主要特征:一般只有一条染色体且大都带有单拷贝基因,只有少数的基因是以多拷贝形式存在的;整个染色体DNA几乎全部由功能基因与调控序列所组成;几乎每个基因序列都与它所编码的蛋白质序列呈线性对应状态。 2.真核生物染色体所具有的特征:分子结构稳定;能够自我复制,使亲代之间保持连续性;能够知道蛋白质的合成,从而控制整个生命活动过程;能够产生可遗传的变异。 3.染色体上的蛋白质主要包括组蛋白和非组蛋白。组蛋白是染色体的结构蛋白,与DNA组成核小体。其中组蛋白又分为:H1、H2、H2B、H3及H4。 4.组蛋白的特性:①进化上的极端保守性:不同种生物组蛋白的氨基酸组成是十分相似的②无组织特异性③肽链上的氨基酸分布的不对称性:碱性氨基酸集中分布在N端的半条链上④组蛋白的修饰作用:包括甲基化、乙酰化、磷酸化、泛素华及ADP核糖基化(修饰作用只发生在细胞周期的特定时间和组蛋白的特定位点上)⑤富含赖氨酸的组蛋白H5。 5.非组蛋白包括酶类,与细胞分裂有关的收缩蛋白、骨架蛋白、核孔复合蛋白以及肌动蛋白、肌球蛋白、微管蛋白、原基蛋白等。 ①HMG蛋白:其特点在于能与DNA结合,也能与H1作用,但都容易用低盐溶液抽提,说明他们与DNA的结合并不牢靠。 ②DNA结合蛋白:相对分子质量较低的蛋白质,约占非组蛋白的20%,可能是一些与DNA的复制或者转录相关的酶或调节物质。 ③A24非组蛋白:其有两个N端,呈酸性,含有较多的谷氨酸和天冬氨酸,总含量大约是H2A的1%,位于核小体内。 6.C值(C value):一种生物单倍体基因组DNA的总量。 C值反常现象:某些两栖类的C值甚至比哺乳动物还大,而在两栖类中C值的变化也很大,可相差100倍。 7.真核细胞的DNA序列大概可分为三类(根据对DNA的动力学): ①不重复序列:这些序列一般只有一个或几个拷贝,它占DNA总量的40%—80%。注:单拷贝基因通过基因扩增仍可合成大量蛋白质。 ②中度重复序列:序列的重复次数为10-10000,约占总DNA的10%—40%。 ③高度重复序列(卫星序列):只在真核生物中发现,这类DNA是高度浓缩的,是异染色质的组成部分。 8.真核生物基因组的结构特点总结:①基因组庞大,一般大于原核生物的基因组 ②存在大量的重复序列③大部分为非编码序列,占整个基因组序列的90%以上,该特点是真核生物与细菌和病毒之间的最主要区别④转录产物为单顺反子⑤存在大量的顺式作用元件,包括启动子、增强子、沉默子等⑥存在大量的DNA多态性。DNA多态性指DNA序列中发生变异而导致的个体间核苷酸序列的差异⑦真核基因是断裂基因,有内含子结构⑧具有端粒结构。端粒是真核生物线性基因组DNA末端的一段特殊结构,它是一段DNA序列和蛋白质形成的复合体。

分子生物学问题汇总

Section A 细胞与大分子 简述复杂大分子的生物学功能及与人类健康的关系。 Section C 核酸的性质 1.DNA的超螺旋结构的特点有哪些? A 发生在闭环双链DNA分子上 B DNA双链轴线高卷曲,与简单的环状相比,连接数发生变化 C 当DNA扭曲方向与双螺旋方向相同时,DNA变得紧绷,为正超螺旋,反之变得松弛为负超螺旋。自然界几乎所有DNA分子超螺旋都为负的,因为能量最低。 2.简述核酸的性质。 A 核酸的稳定性:由于核酸中碱基对的疏水效应以及电荷偶极作用而趋于稳定 B 酸效应:在强酸和高温条件下,核酸完全水解,而在稀酸条件下,DNA的核苷键被选择性地断裂生成脱嘌呤核酸 C 碱效应:当PH超出生理范围时(7-8),碱基的互变异构态发生变化 D 化学变性:一些化学物质如尿素,甲酰胺能破坏DNA和RNA二级结构中的 而使核酸变性。 E 粘性:DNA的粘性是由其形态决定的,DNA分子细长,称为高轴比,可被机械力和超声波剪切而粘性下降。 F 浮力密度:1.7g/cm^3,因此可利用高浓度分子质量的盐溶液进行纯化和分析 G 紫外线吸收:核酸中的芳香族碱基在269nm 处有最大光吸收 H 减色性,热变性,复性。 思考题:提取细菌的质粒依据是核酸的哪些性质? 质粒是抗性基因,,在基因组或者质粒DNA中用碱提取法。 Sectio C 课前提问 1.在1.5mL的离心管中有500μL,取出10 μL稀释至1000 μL后进行检测,测得A260=0.15。 问(1):试管中的DNA浓度是多少? 问(2):如果测得A280=0.078, .A260/A280=?说明什么问题? (1)稀释前的浓度:0.15/20=0.0075 稀释后的浓度:0.0075/100=0.75ug/ml (2)0.15/0.078=1.92〉1.8,说明DNA中混有RNA样品。 2.解释以下两幅图

分子生物学知识点总结

, 宛 本人自己总结,大家随便一看。 基因与基因组 基因(gene ):储存有功能的蛋白质多肽链或 RNA 序列信息,及表达这些信息所必须的全部 核苷酸序列所构成的遗传单位。 1.顺式作用元件有:启动子和上游启动子元件,反应元件,增强子,沉默子,Poly 加尾信号 启动子:有方向性,转录起始位点上游,TATA 盒,B 地贫,与 RNA 聚合酶特异结合及启 动转录 上游启动子元件:TATA 盒上游,与反式作用因子结合,调控基因转录效率。CAAT 盒,GC 盒,CACA 盒—B 地贫 反应元件:与激活的信息分子受体结合,调控基因表达 增强子:与反式作用因子结合,基因表达正调控,无方向性 沉默子:与反式作用因子结合,基因表达负调控 Poly 加尾信号:结构基因末端 AATAAA 及下游富含 GT 或 T 区,多聚腺苷酸化特异因子, 在 3 末端加 200 个 A B 地贫 1.除逆转录病毒外,通常为单倍体基因组。 逆转录病毒:单股正链二倍体 RNA ,三个结构基因,gag ,pol ,env ,5 端甲基化帽,3 端 poly 加尾。 HIV 免疫缺陷病毒,白血病病毒,肉瘤病毒 感染细菌的病毒基因组与细菌相似,基因连续,感染真核细胞的病毒基因组与真核细胞相似, 有内含子,基因不连续。 3.基因组连续:冠状病毒,脊髓灰质炎病毒,鼻病毒 4.编码区占大部分 原核生物基因组 1.由一条环状双链 DNA 分子组成,通常只有一个复制起点。 2.结构基因大多组成操纵子,形成多顺反子(mRNA ) 3.非编码区主要是调控序列。(转录终止区可有强终止子有反向重复序列,形成茎环结构) 4.存在可移动的 DNA 序列(转座因子:能够在一个 DNA 内或两个 DNA 间移动的 DNA 片 段转座因子:插入序列,转座子,可转座的噬菌体,转座作用的机制:复制性转座,简单转 座,共整合体,插入突变) 5.编码区大于非编码区 真核生物基因组 1.有同源性的功能相关基因构成基因家族 核酸序列相同,核酸序列高度同源,编码产物的功能或功能区相同,假基因 2.真核基因为断裂基因,编码为单顺反子。 3.有单一序列(低度重复序列) 中度重复序列,高度重复序列(反向重复序列—发卡结构, 卫星 DNA :大卫星 DNA ,高度多态性:小卫星 DNA ,微卫星 DNA ) 基因表达调控 基因表达:。生物基因组中结构基因所携带的遗传信息,经过转录、翻译等一系列过程,合 成具有特定的生物学功能和生物学效应的 RNA 或蛋白质的全过程。包括 rRNA 和 tRNA 的 转录过程。 基因表达特点:时间特异性,空间特异性 按对刺激的反应性分类:基本表达(管家基因),诱导和阻遏表达。协同表达 基因表达调控:机体各种细胞中含有的相同遗传信息(相同的结构基因),根据机体的不同发

现代分子生物学总结(朱玉贤、最新版)

现代分子生物学总结(朱玉贤、最新版)

一、绪论 两个经典实验 1、肺炎球菌在老鼠体内的毒性实验:先将光滑型致病菌(S型)烧煮杀活性以后、以及活的粗糙型细菌(R型)分别侵染小鼠发现这些细菌自然丧失了治病能力;当他们将经烧煮杀死的S型细菌和活的R型细菌混合再感染小鼠时,实验小鼠每次都死亡。解剖死鼠,发现有大量活的S型细菌。实验表明,死细菌DNA 进行了可遗传的转化,从而导致小鼠死亡。 2、T2噬菌体感染大肠杆菌:当细菌培养基中分别带有35S或32P标记的氨基酸或核苷酸,子代噬菌体就相应含有35S标记的蛋白质或32P标记的核酸。分别用这些噬菌体感染没有放射性标记的细菌,经过1~2个噬菌体DNA 复制周期后进行检测,子代噬菌体中几乎不含带35S标记的蛋白质,但含30%以上的32P 标记。说明在噬菌体传代过程中发挥作用的可能是DNA而不是蛋白质。 基因的概念:基因是产生一条多肽链或功能RNA分子所必需的全部核苷酸序列。

二、染色体与DNA 嘌呤嘧啶 腺嘌呤鸟嘌呤胞嘧啶尿嘧啶胸腺嘧啶 染色体 性质:1、分子结构相对稳定;2、能够自我复制,使亲、子代之间保持连续性;3、能指导蛋白质的合成,从而控制生命过程;4、能产生可遗传的变异。 组蛋白一般特性:1、进化上极端保守,特别是H3、H4;2、无组织特异性;3、肽链上氨基酸分布的不对称性;4、存在较普遍的修饰作用;5、富含赖氨酸的组蛋白H5 非组蛋白:HMG蛋白;DNA结合蛋白;A24非组蛋白

真核生物基因组DNA 真核细胞基因组最大特点是它含有大量的重复序列,而且功能DNA序列大多被不编码蛋白质的非功能蛋白质所隔开。人们把一种生物单倍体基因组DNA的总量称为C值,在真核生物中C 值一般是随着生物进化而增加的,高等生物的C 值一般大于低等动物,但某些两栖类的C值甚至比哺乳动物还大,这就是著名的C值反常现象。真核细胞DNA序列可被分为3类:不重复序列、中度重复序列、高度重复序列。 真核生物基因组的特点:1、真核生物基因组庞大,一般都远大于原核生物的基因组;2、真核基因组存在大量的的重复序列;3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,这是真核生物与细菌和病毒之间的最主要的区别;4、真核基因组的转录产物为单顺反之;5、真核基因组是断裂基因,有内含子结构;6、真核基因组存在大量的顺式元件,包括启动子、增强子、沉默子等;7、真核基因组中存在大量的DNA多态性;8、真核基因组具有端粒结构。

(完整版)分子生物学总结完整版

分子生物学 第一章绪论 分子生物学研究内容有哪些方面? 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、Tm(熔链温度):DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分 9、DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为3.4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0.34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。 特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列 11、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成:由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复制,使插入的转座子位于两个重复的靶序列之间。 复制型转座:整个转座子被复制,所移动和转位的仅为原转座子的拷贝。 非复制型转座:原始转座子作为一个可移动的实体直接被移位。 第三章DNA Replication and repair 1、半保留复制:DNA生物合成时,母链DNA解开为两股单链,各自作为模板(template)按碱

分子生物学知识点整理知识讲解

分子生物学知识点整 理

一、名词解释: 1. 基因:基因是位于染色体上的遗传基本单位,是负载特定遗传信息的DNA 片段,编码具有生物功能的产物包括RNA和多肽链。 2. 基因表达:即基因负载遗传信息转变生成具有生物学功能产物的过程,包括基因的激活、转录、翻译以及相关的加工修饰等多个步骤或过程。 3.管家基因:在一个生物个体的几乎所有组织细胞中和所有时间段都持续表达的基因,其表达水平变化很小且较少受环境变化的影响。如GAPDH、β-肌动蛋白基因。 4. 启动子:是指位于基因转录起始位点上游、能够与RNA聚合酶和其他转录因子结合并进而调节其下游目的基因转录起始和转录效率的一段DNA片段。 5.操纵子:是原核生物基因表达的协调控制单位,包括有结构基因、启动序列、操纵序列等。如:乳糖操纵子、色氨酸操纵子等。 6.反式作用因子:指由其他基因表达产生的、能与顺式作用元件直接或间接作用而参与调节靶基因转录的蛋白因子(转录因子)。 7.顺式作用元件:即位于基因附近或内部的能够调节基因自身表达的特定DNA 序列。是转录因子的结合位点,通过与转录因子的结合而实现对真核基因转录的精确调控。 8. Ct值:即循环阈值(cycle threshold,Ct),是指在PCR扩增过程中,扩增产物的荧光信号达到设定的荧光阈值所经历的循环数。(它与PCR扩增的起始模板量存在线性对数关系,由此可以对扩增样品中的目的基因的模板量进行准确的绝对和(或)相对定量。)

9.核酸分子杂交:是指核酸分子在变性后再复性的过程中,来源不同但互不配对的核酸单链(包括DNA和DNA,DNA和RNA,RNA和RNA)相互结合形成杂合双链的特性或现象,依据此特性建立的一种对目的核酸分子进行定性和定量分析的技术则称为分子杂交技术。 10. 印迹或转印:是指将核酸或蛋白质等生物大分子通过一定的方法转移并固定至尼龙膜等支持载体上的一种方法,该技术类似于用吸墨纸吸收纸张上的墨迹。 11. 探针:是一种用同位素或非同位素标记核酸单链,通常是人工合成的寡核苷酸片段。 12. 基因芯片:又称DNA芯片或DNA微阵列,是基于核酸分子杂交原理建立的一种对DNA进行高通量、大规模、并进行分析的技术,其基本原理是将大量寡核苷酸分子固定于支持物上,然后与标记的待测样品进行杂交,通过检测杂交信号的强弱进而对待测样品中的核酸进行定性和定量分析。 13. 基因文库:是指通过克隆方法保存在适当宿主中的一群混合的DNA分子,所有这些分子中的插入片段的总和,可代表某种生物的全部基因组序列或全部的mRNA序列,因此基因文库实际上是包含某一生物体或生物组织样本的全部DNA序列的克隆群体。基因文库包括两类:基因组文库和cDNA文库。 14. 克隆:是来自同一始祖的相同副本或拷贝的集合。 15. 载体:为携带的目的基因,实现其无性繁殖或表达有意义的蛋白质所采用的一些DNA分子。 16. 限制性核酸内切酶:识别DNA的特意序列,并在识别位点或其周围切割双链DNA的一类内切酶。

现代分子生物学课后答案(朱玉贤_第三版)上

第一章绪论 2.写出DNA和RNA的英文全称。 答:脱氧核糖核酸(DNA, Deoxyribonucleic acid),核糖核酸(RNA, Ribonucleic acid)4.早期主要有哪些实验证实DNA是遗传物质?写出这些实验的主要步骤。 答:一,肺炎双球菌感染实验,1,R型菌落粗糙,菌体无多糖荚膜,无毒,注入小鼠体内后,小鼠不死亡。2,S型菌落光滑,菌体有多糖荚膜,有毒,注入到小鼠体内可以使小鼠患病死亡。3,用加热的方法杀死S型细菌后注入到小鼠体内,小鼠不死亡; 二,噬菌体侵染细菌的实验:1,噬菌体侵染细菌的实验过程:吸附→侵入→复制→组装→释放。2,DNA中P的含量多,蛋白质中P的含量少;蛋白质中有S而DNA中没有S,所以用放射性同位素35S标记一部分噬菌体的蛋白质,用放射性同位素32P标记另一部分噬菌体的DNA。用35P标记蛋白质的噬菌体侵染后,细菌体内无放射性,即表明噬菌体的蛋白质没有进入细菌内部;而用32P标记DNA的噬菌体侵染细菌后,细菌体内有放射性,即表明噬菌体的DNA进入了细菌体内。 三,烟草TMV的重建实验:1957年,Fraenkel-Conrat等人,将两个不同的TMV株系(S株系和HR株系)的蛋白质和RNA分别提取出来,然后相互对换,将S株系的蛋白质和HR株系的RNA,或反过来将HR株系的蛋白质和S株系的RNA放在一起,重建形成两种杂种病毒,去感染烟草叶片。 6.说出分子生物学的主要研究内容。 答:1,DNA重组技术;2,基因表达调控研究;3,生物大分子的结构功能研究----结构分子生物学;4,基因组、功能基因组与生物信息学研究。 第二章染色体与DNA 3.简述真核生物染色体的组成及组装过程 真核生物染色体除了性细胞外全是二倍体,DNA以及大量蛋白质及核膜构成的核小体是染色体结构的最基本单位。核小体的核心是由4种组蛋白(H2A、H2B、H3和H4)构成的扁球状8聚体。 蛋白质包括组蛋白与非组蛋白。组蛋白是染色体的结构蛋白,它与DNA组成核小体,含有大量赖氨酸核精氨酸。非组蛋白包括酶类与细胞分裂有关的蛋白等,他们也有可能是染色体的结构成分 由DNA和组蛋白组成的染色体纤维细丝是许多核小体连成的念珠状结构。 1.由DNA与组蛋白包装成核小体,在组蛋白H1的介导下核小体彼此连接形成直径约10nm的核小体串珠结构,这是染色质包装的一级结构。 2.在有组蛋白H1存在的情况下,由直径10nm的核小体串珠结构螺旋盘绕,每圈6个核小体,形成外径为30nm,内径10nm,螺距11nm的螺线管,这是染色质包装的二级结构。 3.由螺线管进一步螺旋化形成直径为0.4μm的圆筒状结构,称为超螺线管,这是染色

分子生物学总结完整版

分子生物学总结完整版 1、结构分子生物学; 2、基因表达的调节与控制; 3、DNA重组技术及其应用; 4、结构基因组学、功能基因组学、生物信息学、系统生物学 第二章DNA and Chromosome 1、DNA的变性:在某些理化因素作用下,DNA双链解开成两条单链的过程。 2、 DNA复性:变性DNA在适当条件下,分开的两条单链分子按照碱基互补原则重新恢复天然的双螺旋构象的现象。 3、 Tm(熔链温度): DNA加热变性时,紫外吸收达到最大值的一半时的温度,即DNA分子内50%的双链结构被解开成单链分子时的温度) 4、退火:热变性的DNA经缓慢冷却后即可复性,称为退火 5、假基因:基因组中存在的一段与正常基因非常相似但不能表达的DNA序列。以Ψ来表示。 6、 C值矛盾或C值悖论:C值的大小与生物的复杂度和进化的地位并不一致,称为C值矛盾或C值悖论(C-Value Paradox)。 7、转座:可移动因子介导的遗传物质的重排现象。 8、转座子:染色体、质粒或噬菌体上可以转移位置的遗传成分

9、 DNA二级结构的特点:1)DNA分子是由两条相互平行的脱氧核苷酸长链盘绕而成;2)DNA分子中的脱氧核苷酸和磷酸交替连接,排在外侧,构成基本骨架,碱基排列在外侧;3)DNA分子表面有大沟和小沟;4)两条链间存在碱基互补,通过氢键连系,且A=T、G ≡ C(碱基互补原则);5)螺旋的螺距为 3、4nm,直径为2nm,相邻两个碱基对之间的垂直距离为0、34nm,每圈螺旋包含10个碱基对;6)碱基平面与螺旋纵轴接近垂直,糖环平面接近平行 10、真核生物基因组结构:编码蛋白质或RNA的编码序列和非编码序列,包括编码区两侧的调控序列和编码序列间的间隔序列。特点:1)真核基因组结构庞大哺乳类生物大于2X109bp;2)单顺反子(单顺反子:一个基因单独转录,一个基因一条mRNA,翻译成一条多肽链;)3)基因不连续性断裂基因(interrupted gene)、内含子(intron)、外显子(exon);4)非编码区较多,多于编码序列(9:1) 5)含有大量重复序列1 1、Histon(组蛋白)特点:极端保守性、无组织特异性、氨基酸分布的不对称性、可修饰作用、富含Lys的H5 12、核小体组成: 由组蛋白和200bp DNA组成 13、转座的机制:转座时发生的插入作用有一个普遍的特征,那就是受体分子中有一段很短的被称为靶序列的DNA会被复

分子生物学知识点归纳

分子生物学 1.DNA的一级结构:指DNA分子中核苷酸的排列顺序。 2.DNA的二级结构:指两条DNA单链形成的双螺旋结构、三股螺旋结构以及四股螺旋结构。3.DNA的三级结构:双链DNA进一步扭曲盘旋形成的超螺旋结构。 4.DNA的甲基化:DNA的一级结构中,有一些碱基可以通过加上一个甲基而被修饰,称为DNA的甲基化。甲基化修饰在原核生物DNA中多为对一些酶切位点的修饰,其作用是对自身DNA产生保护作用。真核生物中的DNA甲基化则在基因表达调控中有重要作用。真核生物DNA中,几乎所有的甲基化都发生于二核苷酸序列5’-CG-3’的C上,即5’-mCG-3’. 5.CG岛:基因组DNA中大部分CG二核苷酸是高度甲基化的,但有些成簇的、稳定的非甲基化的CG小片段,称为CG岛,存在于整个基因组中。“CG”岛特点是G+C含量高以及大部分CG二核苷酸缺乏甲基化。 6.DNA双螺旋结构模型要点: (1)DNA是反向平行的互补双链结构。 (2)DNA双链是右手螺旋结构。螺旋每旋转一周包含了10对碱基,螺距为3.4nm. DNA 双链说形成的螺旋直径为2 nm。每个碱基旋转角度为36度。DNA双螺旋分子表面 存在一个大沟和一个小沟,目前认为这些沟状结构与蛋白质和DNA间的识别有关。(3)疏水力和氢键维系DNA双螺旋结构的稳定。DNA双链结构的稳定横向依靠两条链互补碱基间的氢键维系,纵向则靠碱基平面间的疏水性堆积力维持。 7.核小体的组成: 染色质的基本组成单位被称为核小体,由DNA和5种组蛋白H1,H2A,H2B,H3和H4共同构成。各两分子的H2A,H2B,H3和H4共同构成八聚体的核心组蛋白,DNA双螺旋缠绕在这一核心上形成核小体的核心颗粒。核小体的核心颗粒之间再由DNA和组蛋白H1构成的连接区连接起来形成串珠样结构。 8.顺反子(Cistron):由结构基因转录生成的RNA序列亦称为顺反子。 9.单顺反子(monocistron):真核生物的一个结构基因与相应的调控区组成一个完整的基因,即一个表达单位,转录物为一个单顺反子。从一条mRNA只能翻译出一条多肽链。10.多顺反子(polycistron): 原核生物具有操纵子结构,几个结构基因转录在一条mRNA 链上,因而转录物为多顺反子。每个顺反子分别翻译出各自的蛋白质。 11.原核生物mRNA结构的特点: (1) 原核生物mRNA往往是多顺反子的,即每分子mRNA带有几种蛋白质的遗传信息。 (2)mRNA 5‘端无帽子结构,3‘端无多聚A尾。 (3)mRNA一般没有修饰碱基。 12.真核生物mRNA结构的特点: (1)5‘端有帽子结构。即7-甲基鸟嘌呤-三磷酸鸟苷m7GpppN。 (2)3‘端大多数带有多聚腺苷酸尾巴。 (3)分子中可能有修饰碱基,主要有甲基化。 (4)分子中有编码区和非编码区。 14.tRNA的结构特点 (1)tRNA是单链小分子。 (2)tRNA含有很多稀有碱基。 (3)tRNA的5‘端总是磷酸化,5’末端核苷酸往往是pG. (4)tRNA的3‘端是CCA-OH序列。是氨基酸的结合部位。 (5)tRNA的二级结构形状类似于三叶草,含二氢尿嘧啶环(D环)、T环和反密码子环。

现代分子生物学总结题库

第一章、基因的结构和功能实体及基因组 1、基因定义 基因(遗传因子)是遗传的物质基础,是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,是具有遗传效应的DNA分子片段,是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 2、DNA修复 DNA修复(DNA repairing)是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA损伤事件,就不能生存。对不同的DNA损伤,细胞可以有不同的修复反应。3、DNA损伤 DNA损伤是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。 DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。b、缺失:指DNA链上一个或一段核苷酸的消失。c、插入:指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。d、倒位或转位:(transposition)指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。 e、双链断裂:对单倍体细胞一个双链断裂就是致死性事件。 4、同源重组 同源重组,(Homologus Recombination)是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday 结构(Holiday Juncture Structure) 的形成和拆分分为三个阶段,即前联会体阶段、联会体形成和Holiday 结构的拆分。 a、基因敲除 基因敲除(geneknockout),是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除,或用其它顺序相近基因取代,然后从整体观察实验动物,推测相应基因的功能。这与早期生理学研究中常用的切除部分-观察整体-推测功能的三部曲思想相似。基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 b、因转移法 同源重组(homologousrecombination)是将外源基因定位导人受体细胞染色体上的方法,因为在该座位有与导人基因同源的序列,通过单一或双交换,新基因片段可替换有缺陷的基因片段,达到修正缺陷基因的目的。位点特异性重组是发生在两条DNA链特异位点上的重组,重组的发生需一段同源序列即特异性位点(又称附着点;attachmentsite,att)和位点特异性的蛋白因子即重组酶参与催化。重组酶仅能催化特异性位点间的重组,因而重组具有特异性和高度保守性。

现代分子生物学考研复习重点

现代分子生物学考研复习资料整理 第一章绪论 分子生物学:是研究核酸、蛋白质等所有生物大分子的形态、结构及其重要性、规律性和相互关系的科学 分子生物学的主要研究内容 1、DNA重组技术 2、基因表达调控研究 3、生物大分子的结构功能研究——结构分子生物学 4、基因组、功能基因组与生物信息学研究 5、DNA的复制转录和翻译 第二章染色体与DNA 半保留复制:DNA在复制过程中碱基间的氢键首先断裂,双螺旋解旋并被分开,每条链分别作为模板合成新链,产生互补的两条链。这样新形成的两个DNA分子与原来DNA分子的碱基顺序完全一样,因此,每个子代分子的一条链来自亲代DNA,另一条链则是新合成的,所以这种复制方式被称为DNA半保留复制 DNA半不连续复制:DNA双螺旋的两条链反向平行,复制时,前导链DNA的合成以5′-3′方向,随着亲本双链体的解开而连续进行复制;后随链在合成过程中,一段亲本DNA单链首先暴露出来,然后以与复制叉移动相反的方向、按照5′-3′方向合成一系列的冈崎片段,然后再把它们连接成完整的后随链,这种前导链的连续复制和后随链的不连续复制称为DNA 的半不连续复制 原核生物基因组结构特点:1、基因组很小,大多只有一条染色体2、结构简练3、存在转录单元,多顺反子4、有重叠基因 真核生物基因组的结构特点:1、真核基因组庞大,一般都远大于原核生物的基因组2、真核基因组存在大量的重复序列3、真核基因组的大部分为非编码序列,占整个基因组序列的90%以上,该特点是真核生物与细菌和病毒之间最主要区别4、真核基因组的转录产物为单顺反子5、真核基因是断裂基因,有内含子结构6、真核基因组存在大量的顺式作用元件,包括启动子、增强子,沉默子等7、真核基因组中存在大量的DNA多态性8、真核基因组具有端粒结构 DNA转座(移位)是由可移位因子介导的遗传物质重排现象 DNA转座的遗传学效应:1、转座引入插入突变2、转座产生新的基因3、转座产生的染色体畸变4、转座引起生物进化 转座子分为插入序列和复合型转座子两大类 环状DNA复制方式:θ型、滚环型和D-环型 第三章生物信息的传递(上)从DNA到RNA 转录:指拷贝出一条与DNA链序列完全相同的RNA单链的过程 启动子:是一段位于结构基因5′段上游区的DNA序列,能活化RNA聚合酶,使之与模板DNA准确地结合并具有转录起始的特异性 原核生物启动子结构:存在位于-10bp处的TATA区和-35bp处的TTGACA区,其是RNA聚合酶与启动子的结合位点,能与σ因子相互识别而具有很高的亲和力 终止子:是给予RNA聚合酶转录终止信号的DNA序列(促进转录终止的DNA序列) 终止子的类型:不依赖于ρ因子和依赖于ρ因子 增强子:能增强或促进转录起始的序列 增强子的特点:1、远距离效应2、无方向性3、顺式调节4、无物种和基因的特异性5、具

现代分子生物学总结

第一章、基因的结构与功能实体及基因组 1、基因定义 基因(遗传因子)就是遗传的物质基础,就是DNA(脱氧核糖核酸)分子上具有遗传信息的特定核苷酸序列的总称,携带有遗传信息的DNA序列,就是具有遗传效应的DNA分子片段,就是控制性状的基本遗传单位,通过指导蛋白质的合成来表达自己所携带的遗传信息,从而控制生物个体的性状表现。 2、DNA修复 DNA修复(DNA repairing)就是细胞对DNA受损伤后的一种反应,这种反应可能使DNA结构恢复原样,重新能执行它原来的功能;但有时并非能完全消除DNA的损伤,只就是使细胞能够耐受这DNA的损伤而能继续生存。也许这未能完全修复而存留下来的损伤会在适合的条件下显示出来(如细胞的癌变等),但如果细胞不具备这修复功能,就无法对付经常在发生的DNA 损伤事件,就不能生存。对不同的DNA损伤,细胞可以有不同的修复反应。 3、DNA损伤 DNA损伤就是复制过程中发生的DNA核苷酸序列永久性改变,并导致遗传特征改变的现象。情况分为:substitutation (替换)deletion (删除)insertion (插入)exon skipping (外显子跳跃)。DNA损伤的改变类型:a、点突变:指DNA上单一碱基的变异。嘌呤替代嘌呤(A与G之间的相互替代)、嘧啶替代嘧啶(C与T之间的替代)称为转换(transition);嘌呤变嘧啶或嘧啶变嘌呤则称为颠换(transvertion)。b、缺失:指DNA链上一个或一段核苷酸的消失。c、插入:指一个或一段核苷酸插入到DNA链中。在为蛋白质编码的序列中如缺失及插入的核苷酸数不就是3的整倍数,则发生读框移动(reading frame shift),使其后所译读的氨基酸序列全部混乱,称为移码突变(frame-shift mutaion)。d、倒位或转位:(transposition) 指DNA链重组使其中一段核苷酸链方向倒置、或从一处迁移到另一处。e、双链断裂:对单倍体细胞一个双链断裂就就是致死性事件。 4、同源重组 同源重组,(Homologus Recombination)就是指发生在姐妹染色单体(sister chromatin) 之间或同一染色体上含有同源序列的DNA分子之间或分子之内的重新组合。同源重组需要一系列的蛋白质催化,如原核生物细胞内的RecA、RecBCD、RecF、RecO、RecR等;以及真核生物细胞内的Rad51、Mre11-Rad50等等。同源重组反应通常根据交叉分子或holiday结构(Holiday Juncture Structure) 的形成与拆分分为三个阶段,即前联会体阶段、联会体形成与Holiday 结构的拆分。 a、基因敲除 基因敲除(geneknockout),就是指对一个结构已知但功能未知的基因,从分子水平上设计实验,将该基因去除,或用其它顺序相近基因取代,然后从整体观察实验动物,推测相应基因的功能。这与早期生理学研究中常用的切除部分-观察整体-推测功能的三部曲思想相似。基因敲除除可中止某一基因的表达外,还包括引入新基因及引入定点突变。既可以就是用突变基因或其它基因敲除相应的正常基因,也可以用正常基因敲除相应的突变基因。 b、因转移法 同源重组(homologousrecombination)就是将外源基因定位导人受体细胞染色体上的方法,因为在该座位有与导人基因同源的序列,通过单一或双交换,新基因片段可替换有缺陷的基因片段,达到修正缺陷基因的目的。位点特异性重组就是发生在两条DNA链特异位点上的重组,重组的发生需一段同源序列即特异性位点(又称附着点;attachmentsite,att)与位点特异性的蛋白因子即重组酶参与催化。重组酶仅能催化特异性位点间的重组,因而重组具有特异性与高度保守性。 5、碱基错配对修复

高二生物会考知识点总结5篇精选

高二生物会考知识点总结5篇精选 直到高二,学生的学习自觉性增强,获取知识一方面从教师那里接受,但这种接受也应该有别于以前的被动接受,它是在经过自己思考、理解的基础上接受。另一方面通过自学主动获取知识。能否顺利实现转变,是成绩能否突破的关键。下面就是给大家带来的高二生物会考知识点,希望能帮助到大家! 1.酶的定义?由活细胞产生的具有催化作用的生物大分子 2.ATP的中文名称、结构简式?腺苷三磷酸A-P~P~P 3.叶绿体层析在滤纸条上的名称和颜色分布?自上而下:胡萝卜素(橙黄色,蓝紫光)叶黄素(黄色,蓝紫光)叶绿素a(蓝绿色,红橙光、蓝紫光)叶绿素b(黄绿色,红橙光、蓝紫光) 4.光合作用的光反应和暗反应的能量变化光:光能-活跃化学能暗:活跃化学能-稳定化学能 5.光合作用的反应式?6CO2+12H2O——>C6H12O6+6H2O+6O2 6.影响光合作用的因素?温度、光照、CO2浓度

7.有氧呼吸的场所?细胞质基质、线粒体 8.无氧呼吸的2个反应式?C6H12O6→C2H5OH+CO2+能量、C6H12O6→2C3H6O3(乳酸)+能量 9.呼吸作用的意义?氧化分解有机物,为生命活动提供能量 10.糖代谢的途径?多糖分为肝糖原与肌糖原,肝糖原能合成葡萄糖 1.解旋酶:作用于氢键,是一类解开氢键的酶,由水解ATP来供给能量它们常常依赖于单链的存在,并能识别复制叉的单链结构。在细菌中类似的解旋酶很多,都具有ATP酶的活性。大部分的移动方向是5′→3′,但也有3′→5′移到的情况,如n′蛋白在φχ174以正链为模板合成复制形的过程中,就是按3′→5′移动。在DNA复制中起作用。 2.DNA聚合酶:在DNA复制中起作用,是以一条单链DNA为模板,将单个脱氧核苷酸通过磷酸二酯键形成一条与模板链互补的DNA 链,形成链与母链构成一个DNA分子。 3.DNA连接酶:其功能是在两个DNA片段之间形成磷酸二酯键。如果将经过同一种内切酶剪切而成的两段DNA比喻为断成两截的梯

相关主题