搜档网
当前位置:搜档网 › 单管放大电路实验报告王剑晓

单管放大电路实验报告王剑晓

单管放大电路实验报告王剑晓
单管放大电路实验报告王剑晓

单管放大电路实验报告

电03 王剑晓

2010010929

单管放大电路报告

一、实验目的

(1)掌握放大电路直流工作点的调整与测量方法;

(2)掌握放大电路主要性能指标的测量方法;

(3)了解直流工作点对放大电路动态特性的影响;

(4)掌握发射极负反馈电阻对放大电路动态特性的影响;

(5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响;

二、实验电路与实验原理

实验电路如课本P77所示。

图中可变电阻R W是为调节晶体管静态工作点而设置的。

(1)静态工作点的估算与调整;

将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路,

如下图1.2所示。其开路电压V BB和内阻R B分别为:

V BB= R B2/( R B1+R B2)* V CC;

R B= R B1// R B2;

所以由输入特性可得:

V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ;

即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B];

因此,由晶体管特性可知:

I CQ=ΒI BQ;

由输出回路知:

V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ;

整理得:

U CEQ= V CC-(R E1+ R E2+ R C) I CQ;

分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减

小;U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部

失真(截止失真);

(2)放大电路的电压增益、输入电阻和输出电阻

做出电路的交流微变等效模型:

则:

电压增益A i=U O/U i=-?(R C// R L)/r be;

输入电阻R i=R B1//R B2//r be;

输出电阻R O= R C;

其中r be=r bb’+(1+?)U T/ I EQ,体现了直流工作点对动态特性的影响;

分析:当R C、R L选定后,电压增益主要决定于r be,受到I EQ,即直流工作点的

影响。由上面对直流工作点的分析可知,R w变化(以下以增大为例)时I CQ减

小,那么r be增大,电压增益A i减小,输入电阻R i增大,输出电阻R O基本不变,

与直流无关;

如果将发射极旁路电容C E改为与R E2并联,R E1成为交流负反馈电阻,电路的动

态参数分别变为

电压增益A i=U O/U i=-?(R C// R L)/[r be+(1+?) R E1];

输入电阻R i=R B1//R B2/[r be+(1+?) R E1];

输出电阻R O= R C;

分析:此时电压增益A i减小(R E1影响了放大倍数),此时如果有r be<<(1+?) R E1,

则A i=(R C//R L)/R E1,实现了稳定;输入电阻R i增大(使得更多的输入信号被

放大),输出电阻R O基本不变;

R w变化(以下以增大为例)时I CQ减小,那么r be增大,电压增益A i仍然减小,

输入电阻R i增大,输出电阻R O基本不变,与直流无关;

(3)放大电路电压增益的幅频特性和频带

放大电路一般含有电抗,使得电路对不同频率的信号具有不同的放大能力,即

电压增益是频率的函数。电压增益的大小与频率的函数关系即是幅频特性。

需要注意的是:测量放大电路的动态指标必须在波形不失真的条件下进行,因

此输入信号不能太大,实验中一般使用示波器监视输出信号的波形。

三、实验内容与扩展内容

(1)工作点的调整;

调节R w,分别使I CQ=1mA和2mA,测量V CEQ的值;

(2)工作点对放大电路的动态特性的影响;

在I CQ=1mA和2mA时,测量电压放大倍数、幅频特性(只测上下截止频率)、

输入电阻、输出电阻。

其中输入正弦电压信号V i的幅度为5mV,频率为1kHz。

(3)射极负反馈电阻对动态特性的影响;(扩展内容)

如果将发射极旁路电容C E改为与R E2并联,R E1成为交流负反馈电阻,在

I CQ=1mA时,测量电压放大倍数、幅频特性(只测上下截止频率)、输入电阻、

输出电阻,总结射极负反馈电阻对电路动态特性的影响;

四、注意事项:

(1)实验中要将直流电源、信号源、示波器等电子仪器和实验线路接地,以免引起干扰;(2)电路性能指标的测试要在输出电压波形不失真和没有明显干扰的情况下进行;

五、仿真(仿真报告请见文档“仿真报告”)

1)仿真电路图

见《电子电路实验》p77图3.1“单管共发射极放大电路”。其中R S=0,为实验室所用信号发生器的内阻。与器件盒中的器件参数相匹配。

2)Multisim 7中的元件选择

三极管选用实际元件,型号为MRF9011L,将模型参数中的β(即BF)改为212;其它元件都选用虚拟器件。

2)仿真内容

a. 静态工作点

在I CQ=1mA和2mA时,测量V CEQ的值,并记录R B1的值。

R B1可选用Multisim中的“Virtual Linear Potentiometer”元件。

b. 动态特性仿真

在I CQ=1mA和2mA时,测量电压放大倍数和幅频特性。

其中输入正弦电压信号V i的幅度为5mV,频率为1kHz。

六、仿真心得:

1)在仿真进行过程中,应保持R W的值不变;

2)R W的量程要为100 kΩ;

3)新接入万用表后,对电流和电压是有影响的,也就是会产生误差;

4)看清楚要对谁测量,提前做好测量准备,以免测量时出现遗漏或差错;

(一)预习报告

1、预习计算

晶体管的主要参数为:B=260,VBE=0.7V,rbb’=10欧,fT=300MHz,Cb’c=1pF,计算实验地那路的主要性能指标,以备与实验测试结果进行分析比较。

(1)首先计算直流状态下的I CQ、U CEQ以及此时的R w:

I BQ=(V BB- U BEQ)/(R B+(I+?)(R E1+ R E2))

U CEQ =V CC- I CQ(R C+ R E1+ R E2)

I CQ=1mA时,I BQ= I CQ/ ?=1/260mA; 带入,解得R B1=77.170kΩ;

此时,

U CEQ=7.495V

I CQ=2mA时,I BQ= I CQ/ ?=2/260mA; 带入,解得R B1=41.357kΩ;

此时,

U CEQ=2.991V

(2)其次,计算各交流量:电压放大倍数A U、输入电阻Ri、输出电阻R O:

<1>I CQ=1mA时, R B1=77.170KΩ;

此时r be=r bb’+U T/ I BQ=0.010+26*0.26=6.86 KΩ;

电压放大倍数为:A U =U O / U i=-?(R C// R L)/ r be=-75.94;

输入电阻Ri= R B1// R B2//r be=4.44 kΩ;

输出电阻R O=R C=3.3 kΩ;

<2>I CQ=2mA时, R B1=41.357KΩ;

此时r be=r bb’+U T/ I BQ=0.01+26*0.26/2=3.39 KΩ;

电压放大倍数为:A U =U O / U i=-?(R C// R L)/ r be=-153.666;

输入电阻Ri= R B1// R B2//r be=2.59 kΩ;

输出电阻R O=R C=3.3 kΩ;

2、主要实验步骤

a)实验数据表格

b)主要实验步骤:

(1)测量?:

(2)测量直流工作点:用万用表测量集电极对地电压使之为8.4V(I CQ=1mA时,U C=12V-3.6V=8.4V)和4.8V(I CQ=2mA时,U C=12V-3.6V*2=4.8V);记录下此时的R w;并测量U CEQ;

(3)测量动态特性:

电压放大倍数:将输入电压、输出电压分别加在示波器两输入端,调节R w的值分别为上步骤中记录的值,测量U i、U O的峰值,相比后得到A U;

测量输入电阻Ri:在输入端串联R1=3.6kΩ,调节R w的值分别为上步骤中记录的值,测量输出电压U o、U o’;由公式Ri= U o’/( U o- U o’)即可计算Ri;

测量输出电阻R O: 在输出端串联R2=4.7kΩ,调节R w的值分别为上步骤中记录的值,测量输出电压U o、U o’;由公式R O=(U OC/U OC’-1)* R2即可计算R O;

测量频带:调节R w的值分别为上步骤中记录的值,保持输入电压为近似5mV不变,分别向上、向下调节函数信号发生器的频率,测量输出电压的幅值使之为5mV* A U/√2,读取此时的频率,记录。

(二)终结报告

1、实验数据记录、处理及分析

1)数据记录、处理

(1)测量β值

=实验中利用学习机和示波器测得MRF9011L的输出特性曲线,测得β=?i c

?i B 212,小与理论值的260。

(2)测量直流工作点

(3)测量计算电压放大倍数

(4)测量计算输入电阻Ri

(5

6

注:该提高要求是由王剑晓同学在课堂上完成,但由于当时未能完成全部的数据处理,因此

未经任老师批准,只将部分处理好的数据以及原始数据交给助教老师过目。

2)数据分析

通过理论估算与仿真结果,我们来进行实验结果的对比分析。

(1)理论计算

根据测量结果,?=212

首先计算直流状态下的I CQ、U CEQ以及此时的R w

I BQ=(V BB- U BEQ)/(R B+(I+?)(R E1+ R E2))

U CEQ =V CC- I CQ(R C+ R E1+ R E2)

I CQ=1mA时,I BQ= I CQ/ ?=1/212mA; 带入解得R B1=79.74kΩ;

此时,U CEQ=7.50V.

I CQ=2mA时,I BQ= I CQ/ ?=2/212mA; 带入解得R B1=43.07kΩ;

此时,U CEQ=3.00V.

其次,计算各交流量:电压放大倍数A U、输入电阻Ri、输出电阻R O:

I CQ=1mA时, R B1=79.74KΩ;

此时r be=r bb’+U T/ I BQ=10+26*212=5.52 KΩ;

电压放大倍数为:A U =U O / U i=-?(R C// R L)/ r be=-76.95;

输入电阻Ri= R B1// R B2//r be=3.84 kΩ;

输出电阻R O=R C=3.3 kΩ;

I CQ=2mA时, R B1=43.07KΩ;

此时r be=r bb’+U T/ I BQ=10+26*212/2=2.77 KΩ;

电压放大倍数为:A U =U O / U i=-?(R C// R L)/ r be=-153.34;

输入电阻Ri= R B1// R B2//r be=2.22 kΩ;

输出电阻R O=R C=3.3kΩ;

提高要求:(I CQ=1mA)

此时R B1=79.74KΩ,r be=5.52 KΩ;

电压放大倍数为:A U =U O / U i=-?(R C// R L)/((1+ ?)*R E1+r be)=-8.83 输入电阻Ri= R B1// R B2//(r be+(1+ ?)*R E1)=10.00KΩ;

输出电阻R O=R C=3.3 kΩ;

(2)理论值、仿真值、实验值的对比表格如下

从数据直观看:

大多数实验数据相比仿真值比相对理论值更相近,说明实际电路较理论更复杂,其各量的影响因素更多。

3)下面对仿真、实验所造成的误差进行分析:

所需参数的求解公式:

①电压放大倍数为:A U =U O / U i=-?(R C// R L)/ r be;

②输入电阻Ri= R B1// R B2//r be;

③输出电阻R O=R C;

(1)理论值的误差:

由于理论计算时的等效模型是中频等效模型,忽略了耦合电容和极间电容的影响,因而造成理论计算的误差。由于CE使R E1+ R E2的等效值变大。

V BB= R B2/( R B1+R B2)* V CC; V BB基本不变;

R B= R B1// R B2; R B基本不变;

I BQ=(V BB- U BEQ)/[β(R E1+ R E2)+ R B]; I BQ减小;

I CQ=βI BQ;I CQ减小;

U CEQ= V CC-(R E1+ R E2+ R C) I CQ;U CEQ不定;

注意:上述分析忽略了C1\C2和极间电容的影响,虽然误差小了一些,但是具体来说仍是不准确的。

(2)理论值与仿真值:在误差允许范围内,仿真的输入输出电阻普遍小于理论值,而电压放大倍数偏小。

原因:由于并联在电阻两端的极间电容的影响,造成输入电流偏大,输入电阻Ri将偏小,输出电阻R O也将偏小,同时由于耦合电容组成高通网络,使得电压放大倍数A U将偏小。

(3)理论值与实验值:在误差允许范围内,实验中的输入电阻值比理论值偏大,但是输出电阻和电压放大倍数偏小。

原因:输入电阻偏大,有着多方面的原因。存在系统误差与偶然误差。同时由于耦合电容和

旁路电容的存在将导致输入电流偏小,所以输入电阻偏大。电压放大倍数偏小的原因同上;下面分析输出电阻偏小的可能原因:可能由于晶体管的极间电阻r ce相对于Rc和RL相差不大,不能忽略;如果忽略,则相当于少了一个并联的电阻,故理论值相对比较的大。

比较有负反馈和无负反馈电阻时的幅频特性,可见无反馈情况下的频带宽度BW小于有反馈时的频带宽度。根据负反馈的特性,增益下降的同时应该有频带展宽,即有负反馈时的BW应远大于无负反馈时的BW。可见实验结论与理论有差距。经分析,其原因可能是由于示波器的×10档探头的截止频率约为2-3MHz左右,因此由于探头的频率限制,可能造成误差。

(4)仿真值与实验值:相比理论值,实验值与仿真值更为接近,但是由于实验中很多未知因素的影响使得实验值与仿真值还有一定的误差。

原因:由于具体实验中的分布电容和耦合电容与仿真工具中的器件参数不同,再考虑上温度和实验室环境的影响以及操作中的误差,导致f L偏大,同样极间电容、测量工具的限制等因素也影响着f H,导致其偏小。

综上所述,实验值、理论值和仿真值都存在一定的误差。

总结误差产生的原因:

(1)实验仪器的误差

测上限截止频率时,会受到示波器中电容等内部元件的影响,并且由于示波器分辨率的问题导致数据不准确,此外频率信号发生器也会给电路带来影响;用数字万用表测电阻以及静态工作点时,也会带入仪器误差;

(2)三极管参数的误差

由于实际晶体管和仿真及计算所用的器件参数不完全一致,性能不能替代,特别是估算动态电阻r be时,因此在静态电流I CQ=2mA的状态下,实验值与理论的差别较大;

(3)实际电路中电容的影响

实验电路中所用的旁路电容有22uF,仿真时用10uF的电容,故在一定程度上也会减小上限截止频率。

(三)实验总结

1)思考题

(1)测量放大电路输人电阻时,若串联电阻的阻值比其输入电阻大得多或小的多,对测量结果会有什么影响?请对测量误差进行简单的分析。

答:输入电阻测量公式为

?

Ri=Vi×Rs(V′?Vi)

当Rs<

当Rs>>Ri时,Vi很小,而电压测量的绝对误差基本不变,因此?Vi基本不变,从而造成?Vi/Vi 变大,同样测量结果的相对误差较大。

(2)在图3.1所示的电路图中,一般是改变上偏置电阻R B1来调节工作点,为什么?改变下偏置电阻R B2来调节工作点可以吗?调节Rc呢?为什么?

答:调节工作点要求能同时调节I BQ、I CQ和V CEQ。如果改变下偏置电阻R B2,可以改变基极电位,从而改变I BQ,以至影响I CQ和V CEQ,但是改变R B2可能没有改变R B1方便。如果改变下偏置电阻R C,基极电位不变,I BQ、I CQ均不变,只有V CEQ改变,因此不适合调节静态工作点。

2)实验总结

1、在调节R w寻找静态工作点时,利用万用表的电压档检测R C两端的电压,得到合适的电流。

2、在测量输入电阻时也将电压输出到示波器进行测量,准确度更高,不包含直流分量;

3、测量单管放大电路的上限截止频率时,注意使用表笔的×10挡;

4、通常通过调节R B来设置静态工作点,静态参数也会影响动态。

3)实验收获与心得

通过本次实验,我更深入地了解了单管共射放大电路的静态和动态特性,学会了测量、调节静态工作点和动态特性有关参数(增益、输入电阻、幅频特性)的实验和仿真方法,并和理论计算相验证,加强了对理论知识的掌握。在仿真时熟悉了Multisim软件的使用环境,认识到预习计算和仿真对实验的重要性和指导意义,并学会搭实际电路检查电路的联接和排查错误。

电子技术实验报告—实验单级放大电路

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

单管放大电路实验报告—王剑晓

单管放大电路实验报告 电03 王剑晓 2010010929 单管放大电路报告

一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理 实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减小; U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部失真(截 止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则: 电压增益A i=U O/U i=-?(R C// R L)/r be; 输入电阻R i=R B1//R B2//r be; 输出电阻R O= R C; 其中r be=r bb’+(1+?)U T/ I EQ,体现了直流工作点对动态特性的影响; 分析:当R C、R L选定后,电压增益主要决定于r be,受到I EQ,即直流工作点的影 响。由上面对直流工作点的分析可知,R w变化(以下以增大为例)时I CQ减小, 那么r be增大,电压增益A i减小,输入电阻R i增大,输出电阻R O基本不变,与直 流无关; 如果将发射极旁路电容C E改为与R E2并联,R E1成为交流负反馈电阻,电路的动态 参数分别变为 电压增益A i=U O/U i=-?(R C// R L)/[r be+(1+?) R E1];

共射放大电路实验报告

实验报告 课程名称:电子电路设计实验 指导老师:李锡华,叶险峰,施红军 成绩:________ 实验名称:晶体管共射放大电路分析 实验类型:设计实验 同组学生姓名: 一、实验目的 1、学习晶体管放大电路的设计方法, 2、掌握放大电路静态工作点的调整和测量方法,了解放大器的非线性失真。 3、掌握放大电路电压增益、输入电阻、输出电阻、通频带等主要性能指标的测量方法。 4、理解射极电阻和旁路电容在负反馈中所起的作用及对放大电路性能的影响。 5、学习晶体管放大电路元件参数选取方法,掌握单级放大器设计的一般原则。 二、实验任务与要求 1.设计一个阻容耦合单级放大电路 已知条件:=+10V cc V , 5.1L R k =Ω,10,600i S V mV R ==Ω 性能指标要求:30L f Hz <,对频率为1kHz 的正弦信号15/,7.5v i A V V R k >>Ω 2.设计要求 (1)写出详细设计过程并进行验算 (2)用软件进行仿真 3.电路安装、调整与测量 自己编写调试步骤,自己设计数据记录表格 4.写出设计性实验报告 三、实验方案设计与实验参数计算 共射放大电路

(一).电路电阻求解过程(β=100) (没有设置上课要求的160的原因是因为电路其他参数要求和讲义作业要求基本一样,为了显示区别,将β改为100进行设计): (1)考虑噪声系数,高频小型号晶体管工作电流一般设定在1mA 以下,取I c =1mA (2)为使Q 点稳定,取2 5 BB CC V V =,即4V, (3)0.7 3.3BB E E V R k I -≈=Ω,恰为电阻标称值 (4)2 12 124:3:2 CC BB R V V V R R R R ==+∴= 取R 2为R i 下限值的3倍可满足输入电阻的要求,即R 2=22.5k , R 1=33.75k ; 1121 10=0.1,60,40cc B B V V IR I mA R K R K IR -== =Ω=Ω由 综上:取标称值R1=51k ,R2=33k (5) 25T T e E C V V r I I =≈=Ω (6)从输入电阻角度考虑: , 取(获得4V 足够大的正负信号摆幅)得: 从电压增益的角度考虑: >15V/V,取得 : ; 为 (二).电路频率特性 (1) 电容与低频截止频率 取 ;

晶体管共射极单管放大电路实验报告

晶体管共射极单管放大 电路实验报告 Document number:NOCG-YUNOO-BUYTT-UU986-1986UT

实验二 晶体管共射极单管放大器 一、实验目的 1.学会放大器静态工作点的调式方法和测量方法。 2.掌握放大器电压放大倍数的测试方法及放大器参数对放大倍数的影 响。 3.熟悉常用电子仪器及模拟电路实验设备的使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E ,以稳定放大器的静态工作点。当在放大器的输入端加入输入信号后,在放大器的输出端便可得到一个与输入信号相位相反、幅值被放大了的输出信号,从而实现了电压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它的静态工作点估算方法为: U B ≈ 2 11B B CC B R R U R +?

图2—1 共射极单管放大器实验电路图 I E = E BE B R U U -≈Ic U CE = U C C -I C (R C +R E ) 实验中测量放大器的静态工作点,应在输入信号为零的情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V 电源位置)。 2)检查接线无误后,接通电源。 3)用万用表的直流10V 挡测量U E = 2V 左右,如果偏差太大可调节静态工作点(电位器RP )。然后测量U B 、U C ,记入表2—1中。 表2—1 测 量 值 计 算 值 U B (V ) U E (V ) U C (V ) R B2(K Ω) U BE (V ) U CE (V ) I C (mA ) 2 60 2 B2所有测量结果记入表2—1中。 5)根据实验结果可用:I C ≈I E = E E R U 或I C =C C CC R U U -

单管共射极放大电路仿真实验报告

单管共射极分压式放大电路仿真实验报告 班级__________姓名___________学号_________ 一、实验目的:1.学会放大器静态工作点的调试方法,分析静态工作点对放大器性能的影响。 2.掌握放大器电压放大倍数、输入电阻、输出电阻及最大不失真输出电压的 测量法。 3.熟悉简单放大电路的计算及电路调试。 4.能够设计较为简单的对温度稳定的具有一定放大倍数的放大电路。 二、实验要求:输入信号Ai=5 mv, 频率f=20KHz, 输出电阻R0=3kΩ, 放大倍数Au=60,直 流电源V cc=6v,负载R L=20 kΩ,Ri≥5k,Ro≤3k,电容C1=C2=C3=10uf。三、实验原理: (一)双极型三极管放大电路的三种基本组态。 1.单管共射极放大电路。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/R B (V CC为图中RC(1)) I=βI BQ

U CEQ=V CC-I CQ R C (3)动态分析。A U=-β(R C管共集电极放大电路(射极跟随器)。 (1)基本电路组成。如下图所示: (2)静态分析。I BQ=(V cc-U BEQ)/(R b +(1+β)R e)(V CC为图中Q1(C)) I CQ=βI BQ U CEQ=V CC-I EQ R e≈V CC-I CQ R e (3)动态分析。A U=(1+β)(R e管共基极放大电路。 (1)基本电路组成。如下图所示:

(2)静态分析。I EQ=(U BQ-U BEQ)/R e≈I CQ (V CC为图中RB2(2)) I BQ=I EQ/(1+β) U CEQ=V CC-I CQ R C-I EQ R e≈V CC-I QC(R C+R e) (3)动态分析。AU=β(R C极管将输入信号放大。 2.两电阻给三极管基极提供一个不受温度影响的偏置电流。 3.采用单管分压式共射极电流负反馈式工作点稳定电路。 四、实验步骤: 1.选用2N1711型三极管,测出其β值。 (1)接好如图所示测定电路。为使ib达到毫安级,设定滑动变阻器Rv1的最大阻值是 1000kΩ,又R1=3 kΩ。

电子技术实验报告—实验4单级放大电路

电子技术实验报告 实验名称:单级放大电路 系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期: ?

目录 一、实验目的 (3) 二、实验仪器 (3) 三、实验原理 (3) (一)单级低频放大器的模型和性能 (3) (二)放大器参数及其测量方法 (5) 四、实验内容 (7) 1、搭接实验电路 (7) 2、静态工作点的测量和调试 (8) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (9) 4、放大器上限、下限频率的测量 (10) 5、电流串联负反馈放大器参数测量 (11) 五、思考题 (11) 六、实验总结 (11)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一) 单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放

大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

实验1单管放大

模拟电子实验—01 单管交流放大电路 一.实验目的 1.掌握单管放大器静态工作点的调整及电压放大倍数的测量方法。 2.研究静态工作点和负载电阻对电压放大倍数的影响,进一步理解静态工作点对放大器工作的意义。 3.观察放大器输出波形的非线性失真。 4.熟悉低频信号发生器、示波器及晶体管毫伏表的使用方法。 二.电路原理简述 单管放大器是放大器中最基本的一类,本实验采用固定偏置式放大电路, 如图2-1所示。其中R B1=100KΩ,R C1 =2KΩ,R L1 =100Ω,R W1 =1MΩ,R W3 =2.2k Ω,C1=C2=10μF/15V,T1为9013(β=160-200)。 图1-1 为保证放大器正常工作,即不失真地放大信号,首先必须适当取代静态工作点。工作点太高将使输出信号产生饱和失真;太低则产生截止失真,因而工作点的选取,直接影响在不失真前提下的输出电压的大小,也就影响电压放大倍数 (A v =V /V i )的大小。当晶体管和电源电压V cc =12V选定之后,电压放大倍数还与 集电极总负载电阻R L ’(R L ’=R c //R L )有关,改变R c 或R L ,则电压放大倍数将改变。 在晶体管、电源电压V cc 及电路其他参数(如R c 等)确定之后,静态工作点 主要取决于I B 的选择。因此,调整工作点主要是调节偏置电阻的数值(本实验 通过调节R w1 电位器来实现),进而可以观察工作点对输出电压波形的影响。

三.实验设备 名称数量型号 1.直流稳压电源 1台 HY1711-3S 0~30V可调2.低频信号发生器1台 SG1646A 3.示波器 1台 4.晶体管毫伏表 1只 5.万用电表 1只 6.电阻 3只 100Ω*1 2kΩ*1 100 kΩ*1 7. 电位器 2只 2.2 kΩ*1 1MΩ*1 8.电容 2只 10μF/15V*2 9. 三极管 1只 9013*1 10.短接桥和连接导线若干 P8-1和50148 11.实验用9孔插件方板 297mm×300mm 四. 实验内容与步骤 1.调整静态工作点 实验电路见9孔插件方板上的“单管交流放大电路”单元,如下图2-2所示。 方板上的直流稳压电源的输入电压为+12V,用导线将电源输出分别接入方板 上的“单管交流放大电路”的+12V和地端,将图2-2中J 1、J 2 用一短线相连, J 3、J 4 相连(即Rc 1 =5kΩ),J 5 、J 6 相连,并将R W3 放在最大位置(即负载电阻 R L =R L1 +R W3 =2.7kΩ左右),检查无误后接通电源。 图1-2 使用万用表测量晶体管电压V CE ,同时调节电位器R W1 ,使V CE =5V左右,从而 使静态工作点位于负载线的中点。 为了校验放大器的工作点是否合适,把信号发生器输出的f=1kHz的信号加到放大器的输入端,从零逐渐增加信号υ i 的幅值,用示波器观察放大器的输出 电压υ 的波形。若放大器工作点调整合适,则放大器的截止失真和饱和失真应 该同时出现,若不是同时出现,只要稍微改变R W1 的阻值便可得到合适的工作点。

晶体管共射极单管放大电路实验报告

实验二晶体管共射极单管放大器 一、实验目得 1.学会放大器静态工作点得调式方法与测量方法。 2.掌握放大器电压放大倍数得测试方法及放大器参数对放大倍数得影响。 3.熟悉常用电子仪器及模拟电路实验设备得使用。 二、实验原理 图2—1为电阻分压式工作点稳定单管放大器实验电路图。偏置电阻R B1、R B2组成分压电路,并在发射极中接有电阻R E,以稳定放大器得静 态工作点。当在放大器得输入端加入输入信号后,在放大器得输出端便可 得到一个与输入信号相位相反、幅值被放大了得输出信号,从而实现了电 压放大。 三、实验设备 1、信号发生器 2、双踪示波器 3、交流毫伏表 4、模拟电路实验箱 5、万用表 四、实验内容 1.测量静态工作点 实验电路如图2—1所示,它得静态工作点估算方法为: UB≈

图2—1共射极单管放大器实验电路图 I E=≈Ic U CE=UCC-I C(RC+RE) 实验中测量放大器得静态工作点,应在输入信号为零得情况下进行。 1)没通电前,将放大器输入端与地端短接,接好电源线(注意12V电源位置)。 2)检查接线无误后,接通电源。 3)用万用表得直流10V挡测量UE =2V左右,如果偏差太大可调节静态工作点(电位器RP)。然后测量U B、U C,记入表2—1中。 表2—1 测量值计算值UB(V) UE(V) UC(V)R B2(KΩ)U BE(V) UCE(V) I C(mA) 2、6 2 7、2 60 0、6 5、2 2 B2 量结果记入表2—1中。 5)根据实验结果可用:I C≈I E=或I C= UBE=U B-U E U CE=U C-UE 计算出放大器得静态工作点。 2.测量电压放大倍数

单级共射放大电路实验报告(完整资料).doc

【最新整理,下载后即可编辑】 单级共射放大电路实验报告 1.熟悉常用电子仪器的使用方法。 2.掌握放大器静态工作点的调试方法及对放大 器电路性能的影响。 3.掌握放大器动态性能参数的测试方法。 4.进一步掌握单级放大电路的工作原理。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 4.交流毫伏表 5.直流稳压源 三、预习要求 1.复习基本共发射极放大电路的工作原理,并进 一步熟悉示波器的正确使用方法。 2.根据实验电路图和元器件参数,估算电路的静 态工作点及电路的电压放大倍数。 3.估算电路的最大不失真输出电压幅值。 4.根据实验内容设计实验数据记录表格。 四、实验原理及测量方法 实验测试电路如下图所示:

1.电路参数变化对静态工作点的影响: 放大器的基本任务是不失真地放大信号,实现输入变化量对输出变化量的控制作用,要使放大器正常工作,除要保证放大电路正常工作的电压外,还要有合适的静态工作点。放大器的静态工作点是指放大器输入端短路时,流过电路直流电流IBQ、ICQ及管子C、E极之间的直流电压UCEQ和B、E 极的直流电压UBEQ。图5-2-1中的射极电阻BE1、RE2是用来稳定放大器的静态工作点。其工作原理如下。 ○1用RB和RB2的分压作用固定基极电压UB。 由图5-2-1可各,当RB、RB2选择适当,满足I2远大于IB时,则有

UB=RB2·VCC/(RB+RB2)式中,RB、RB2和VCC都是固定不随温度变化的,所以基极电位基本上是一定值。 ○2通过IE的负反馈作用,限制IC的改变,使工作点保持稳定。具体稳定过程如下: T↑→IC↑→IE↑→UE↑→UBE ↓→IB↓→IC↓ 2.静态工作点的理论计算: 图5-2-1电路的静态工作点可由以下几个关系式确定 UB=RB2·VCC/(RB+RB2) IC≈IE=(UB-UBE)/RE UCE=VCC-IC(RC+RE) 由以上式子可知,,当管子确定后,改变V CC、RB、RB2、RC、(或RE)中任一参数值,都会导致静态工作点的变化。当电路参数确定后,静态工作点主要通过RP调整。工作点偏高,输出信号易产生饱和失真;工作点偏低,输出波形易产生截止失真。但当输入信号过大时,管子将工作在非线性区,输出波形会产生双向失真。当输出波形不很大时,静态工作点的设置应偏低,以减小电路的表态损耗。3.静态工作点的测量与调整: 调整放大电路的静态工作点有两种方法(1)将放大电路的输入端电路(即Ui=0),让其工作在直流状态,用直流电压表测量三极管C、E间的电压,调整电位器RP使UCE稍小于电源电压的1/2(本实

单管放大电路实验报告王剑晓

单管放大电路实验报告

电03 王剑晓 2010010929 单管放大电路报告 一、实验目的 (1)掌握放大电路直流工作点的调整与测量方法; (2)掌握放大电路主要性能指标的测量方法; (3)了解直流工作点对放大电路动态特性的影响; (4)掌握发射极负反馈电阻对放大电路动态特性的影响; (5)掌握信号源内阻R S对放大电路频带(上下截止频率)的影响; 二、实验电路与实验原理

实验电路如课本P77所示。 图中可变电阻R W是为调节晶体管静态工作点而设置的。 (1)静态工作点的估算与调整; 将图中基极偏置电路V CC、R B1、R B2用戴维南定理等效成电压源,得到直流通路, 如下图1.2所示。其开路电压V BB和内阻R B分别为: V BB= R B2/( R B1+R B2)* V CC; R B= R B1// R B2; 所以由输入特性可得: V BB= R B I BQ+U BEQ+(R E1+ R E2)(1+Β) I BQ; 即:I BQ=(V BB- U BEQ)/[Β(R E1+ R E2)+ R B]; 因此,由晶体管特性可知: I CQ=ΒI BQ; 由输出回路知: V CC= R C I CQ + U CEQ+(R E1+ R E2) I EQ; 整理得: U CEQ= V CC-(R E1+ R E2+ R C) I CQ; 分析:当R w变化(以下以增大为例)时,R B1增大,R B增大,I BQ减小;I CQ减 小;U CEQ增大,但需要防止出现顶部失真;若R w减小变化相反,需要考虑底部 失真(截止失真); (2)放大电路的电压增益、输入电阻和输出电阻 做出电路的交流微变等效模型: 则:

武汉大学单级放大电路实验报告

武汉大学计算机学院教学实验报告 课程名称电路与电子技术成绩教师签名 实验名称单级放大电路(多人合作实验)实验序号06 实验日期2011-12-12 姓名学号专业年级-班 小题分: 一、实验目的及实验内容 (本次实验所涉及并要求掌握的知识;实验内容;必要的原理分析) 实验目的: 1.掌握放大器静态工作点的调试方法及其对放大器性能的影响。 2.学习测量放大器的静态工作点Q,Av,ri,ro的方法啊,了解共射极电路特性。 3.学习放大器的动态性能。 实验内容: 测量放大器的动态和静态工作状态结果填入相应表格当中,记录相应的β值,A值和等效的输入电阻ri与输出电阻r0。 二、实验环境及实验步骤 小题分: (本次实验所使用的器件、仪器设备等的情况;具体的实验步骤) 实验环境: 1.示波器 2.信号发生器 3.数字万用电表 4.TRE-A3模拟电路实验箱 实验步骤: 1.?值测量 (1)按图2.1所示连接电路,将Rp的阻值调到最大值。 (2)连线完毕仔细检查,确定无误后再接通电源。改变Rp,记录Ic分别为0.8mA,1mA, 1.2mA时三极管V的?值。

Ib(mA)0.05 0.06 0.066 Ic(mA) 0.8 1 1.2 ? 16 16.67 18.18 ?=Ic/Ib代入各式即可 2.Q点测量 信号源频率f=500Hz时,逐渐加大ui幅度,观察uo不失真时的最大输入ui值和最大输出uo值,并测量Ib,Ic,和VCE填入表2.2 表2.2 实测法估算法误差 IB (uA)IC (mA) Vce (V) IB’ (uA) IC’ (mA) V’ce (V) IB-I’B IC-I’C Vce-V’ 47.2 1.4 4.86 47.2 1.56 3 0 0.16 1.86 估算法:Ib=V1/(R1+R2)=12/(51k+200K)=47.2uA Ic= ?Ib=1.56mA Vce=V1-R3*Ic=3V 3.Av值测量 (1)将信号发生器调到频率f=500Hz,幅值为5mA,接到放大器输入端ui,观察ui和uo 端的波形,用示波器进行测量,并将测得的ui,uo和实测计算的Av值及理论估算的Av’值填入表2.3 表2.3 实测法估算法误差 Ui(mV)Uo(V) Av=uo/ui Av’Av’-Av 5 -1.3 -260 -31 .7 -55.7 估算法:Vbe=V1-Ib(R1+R2) Vce=V1-Ic*R3 Av’=Vce/Vbe=-315.7 (2)保持Vi=5mV不变,放大器接入负载RL,在改变Rc的数值情况下测量,并将计算结果填表2.4 表2.4 给定参数实 实测计 估算 Rc RL Vi(mV) V o(V) Av Av 2k 5k 5 0.83 165 177.89 2k 2k2 5 0.60 119 129.7 5k1 5k1 5 1.30 260 315.76 5k1 2k2 5 0.90 180 190.3

实验一 单管放大电路_68260459

实验一单管放大电路 一、实验目的 1.掌握放大电路静态工作点的调整与测试方法。 2.掌握放大电路主要性能指标的测试方法,了解静态工作点对动态性能的影响。 3.掌握晶体管输出特性曲线的测试方法。 4.掌握晶体管输出特性、放大电路静态工作点和动态参数的仿真测试方法。 5.了解发射极电阻对放大电路性能的影响。 二、实验必作内容 实验电路如图1所示。 说明:图1中u S、R s分别代表信号源及其内阻,信号源输出正弦交流信号。 1.测试晶体管输出特性曲线 测试晶体管9011输出特性曲线及在静态工作点Q附近的β值。 2.调整放大电路静态工作点 调节R W,测量U CQ、U EQ,使I CQ=1mA。测试I CQ=1mA下的R b1值。 3.测试放大电路的主要性能指标 在I CQ=1mA时,测试电压放大倍数、输入电阻R i、输出电阻R o和幅频特性。 4.静态工作点对放大电路的动态性能的影响 调节R W,使I CQ=2mA,测试R b1值、测试、R i、R o、。 测试中,输入信号有效值U i ≈ 5mV,频率为10kHz。 三、实验选作内容 1.发射极电阻对动态性能的影响 改接电容C e,使之与R e2并联,测试I CQ=1mA下的、R i、R o。与上面测试结果相比较,总结发射极电阻对电路动态性能的影响。 2.静态工作点对最大不失真输出电压的影响 分别在I CQ=1mA和2mA情况下,失真度为10%时测试放大电路的,并与理论值比较(该题只做仿真实验)。

四、实验要求 1.对实验内容先进行仿真测试再搭建硬件电路测试。 2.仿真实验使用Multisim软件。图1电路中,晶体管型号为MRF9011L,仿真时需将模型参数中的BF(β ) 修改为实用晶体管9011的实测β值。 3.记录实验内容中各项仿真与硬件测试数据。 五、预习要求 1.复习共射放大电路的基本工作原理。 2.学习放大电路、R i、R o、的测试方法。 3.测试9011的输出特性曲线。“晶体管输出特性曲线的测试”方法见课程文件。 4.计算图1单管共射放大电路的、R i、R o。 计算中?取实测值。设晶体管U BEQ≈0.7V,若?在150~260、I CQ为2mA~1mA间,则r bb’取值范围650 ?~950 ?。 5.拟定各项测试内容的操作步骤,设计好实验数据记录表格。 6.学习使用Multisim软件测试晶体管输出特性曲线、放大电路静态工作点、动态参数的方法。请利用课下时间搭接电路,对电路进行仿真。第5周实验课上老师将检查学生的仿真结果。 《Multisim仿真应用手册》、《Multisim V7使用说明书》见课程文件。 六、实验注意事项 1.测试静态工作点和放大电路动态参数时放大电路要与仪器仪表共地。 2.放大电路输入信号U i应无直流分量即上、下半周对称的信号,信号幅值以示波器测试值为准。 3.、R i、R o、的测试方法见附录。 4.测试时首先要保证静态工作点符合要求。用示波器监视放大器输出波形, 在保证输出波形不失真的情况下测试。 七、实验报告 1.整理实验数据,对数据进行理论分析,并将仿真数据、测试值与理论计算值进行比较,分析其误差及产生误差的主要原因。 2.实验中若电路出现故障,请分析故障原因。 3.总结、分析发射极电阻对放大电路动态参数的影响。 4.总结放大电路主要性能指标的测试方法。 5.回答思考题。 八、思考题 1.R b1为什么要由一个电位器和一个固定电阻器串联组成?电解电容两端的静态电压方向与它的极性应该有何关系? 2.测试放大电路R i时,若串联电阻的阻值比其R i的大得多或小得多,对测试结果会有什么影响?请对测试误差进行分析。 3.能否用数字万用表测试图1所示放大电路的R i、R o、,为什么?

模电共射放大电路实验报告

实验一BJT单管共射电压放大电路 实验报告 自动化一班 李振昌 一、实验目的 (1)掌握共射放大电路的基本调试方法。 (2)掌握放大电路电压放大倍数、输入电阻、输出电阻的基本分析方法。(3)进一步熟练电子仪器的使用。 二、实验内容和原理 仿真电路图

静态工作点变化而引起的饱和失真与截止失真 静态工作点的调整和测量 : 调节RW1,使Q 点满足要求(ICQ =。测量个点的静 态电压值 RL =∞及RL =2K 时,电压放大倍数的测量 : 保持静态工作点不变!输入中频段正弦波,示波器监视输出波形,交流毫伏表测出有效值。 装 订 线

RL=∞时,最大不失真输出电压Vomax(有效值)≥3V : 增大输入信号幅度与调节RW1,用示波器监视输出波形、交流毫伏表测出最大不失真输出电压Vomax 。输入电阻和输出电阻的测量 : 采用分压法或半压法测量输入、输出电阻。 放大电路上限频率fH、下限频率fL的测量 : 改变输入信号频率,下降到中频段输出电压的倍。 观察静态工作点对输出波形的影响 : 饱和失真、截止失真、同时出现。 三、主要仪器设备 示波器、函数信号发生器、12V稳压源、万用表、实验电路板、三极管9013、电位器、各种电阻及电容器若干等 四、操作方法和实验步骤 准备工作: 修改实验电路 将K1用连接线短路(短接R7); RW2用连接线短路; 在V1处插入NPN型三极管(9013); 将RL接入到A为RL=2k,不接入为RL=∞(开路) 。 开启直流稳压电源,将直流稳压电源的输出调整到12V,并用万用表检测输出电压。 确认输出电压为12V后,关闭直流稳压电源。 用导线将电路板的工作电源与12V直流稳压电源连接。

电子专业技术实验报告—实验4单级放大电路

电子技术实验报告—实验4单级放大电路

————————————————————————————————作者:————————————————————————————————日期:

电子技术实验报告 实验名称:单级放大电路系别: 班号: 实验者姓名: 学号: 实验日期: 实验报告完成日期:

目录 一、实验目的 (5) 二、实验仪器 (5) 三、实验原理 (5) (一)单级低频放大器的模型和性能 (5) (二)放大器参数及其测量方法 (7) 四、实验内容 (9) 1、搭接实验电路 (9) 2、静态工作点的测量和调试 (10) 3、基本放大器的电压放大倍数、输入电阻、输出电阻的测量 (11) 4、放大器上限、下限频率的测量 (12) 5、电流串联负反馈放大器参数测量 (13) 五、思考题 (13) 六、实验总结 (13)

一、实验目的 1.学会在面包板上搭接电路的方法; 2.学习放大电路的调试方法; 3.掌握放大电路的静态工作点、电压放大倍数、输出电阻和通频带测量方法; 4.研究负反馈对放大器性能的影响;了解射级输出器的基本性能; 5.了解静态工作点对输出波形的影响和负载对放大电路倍数的影响。 二、实验仪器 1.示波器1台 2.函数信号发生器1台 3. 直流稳压电源1台 4.数字万用表1台 5.多功能电路实验箱1台 6.交流毫伏表1台 三、实验原理 (一)单级低频放大器的模型和性能 1. 单级低频放大器的模型 单级低频放大器能将频率从几十Hz~几百kHz的低频信号进行不失真地放

大,是放大器中最基本的放大器,单级低频放大器根据性能不同科分为基本放大器和负反馈放大器。 从放大器的输出端取出信号电压(或电流)经过反馈网络得到反馈信号电压(或电流)送回放大器的输入端称为反馈。若反馈信号的极性与原输入信号的极性相反,则为负反馈。 根据输出端的取样信号(电压或电流)与送回输入端的连接方式(串联或并联)的不同,一般可分为四种反馈类型——电压串联反馈、电流串联反馈、电压并联反馈和电流并联反馈。负反馈是改变房卡器及其他电子系统特性的一种重要手段。负反馈使放大器的净输入信号减小,因此放大器的增益下降;同时改善了放大器的其他性能:提高了增益稳定性,展宽了通频带,减小了非线性失真,以及改变了放大器的输入阻抗和输出阻抗。负反馈对输入阻抗和输出阻抗的影响跟反馈类型有关。由于串联负反馈实在基本放大器的输入回路中串接了一个反馈电压,因而提高了输入阻抗,而并联负反馈是在输入回路上并联了一个反馈电流,从而降低了输入阻抗。凡是电压负反馈都有保持输出电压稳定的趋势,与此恒压相关的是输出阻抗减小;凡是电流负反馈都有保持输出电流稳定的趋势,与此恒流相关的是输出阻抗增大。 2.单级电流串联负反馈放大器与基本放大器的性能比较 电路图2是分压式偏置的共射级基本放大电路,它未引入交流负反馈。 电路图3是在图2的基础上,去掉射极旁路电容C e,这样就引入了电流串联负反馈。

实验三_晶体管共射级单管放大器实验报告

实验三晶体管共射级单管放大器实验报告学号:姓名: 一、题目:晶体管共射级单管放大器 二、实验原理: 下图为电阻分压式工作点稳定单管放大 器实验电路图。晶体管共射电路是电压反向放大器。当在放大器的输入端加入输入信号U i后,在放大器的输出端便可得到一个与U i相位相反,幅值被放大了的输出信号U o,从而实现了电压放大。 实验电路图 三、实验过程

1.放大器静态工作点的测量与测试 ①静态工作点的测量 置输入信号U i=0,将放大器的输入端与地端短接,然后选用量程合适的万用表分别测量晶体管的各电极对地的电位U、U和U。通过I=(U-U)/R 由U确定I。 ②静态工作点的调试 在放大器的输入端加入一定的输入电压U i,检查输出电压U o的大小和波形。若工作点偏高,则放大器在加入交流信号后易产生饱和失真,若工作点偏低则易产生截止失真。 2.测量最大不失真输出电压 将静态工作点调在交流负载的中点。在放大器正常工作的情况下,逐步加大输入信号的幅度,并同时调节R w,用示波器观察U o,当输出波形同时出现削底和缩顶现象时,说明静态工作点已调在交流负载线的中点。然后反复调整输入信号,使波形输出幅度最大,且无明显失真时,用示波器直接读出U opp。 3.测量电压放大倍数 调整放大器到合适的静态工作点,然后加入输入电压U i,在输出电压U o不失真的情况下,测出U i和U o的有效值, A u=U o/U i 4.输入电阻R i的测量

在被测放大器的输入端与信号源之间串入一已知电阻R,在放大器正常工作的情况下,用毫伏表测出U s和U i。 根据输入电阻的定义可求出R i。 5.输出电阻R o的测量 在放大器正常工作条件下,测出输出端不接负载的输出电压U o和接入负载的输出电压U L。 U L=R L U O /(R O+R L) 计算出Ro。 在测试中保证负载接入前后输入信号的大小不变。 四、实验数据 1.调试静态工作点 2.测量电压放大倍数

单管放大器实验报告实验总结

竭诚为您提供优质文档/双击可除单管放大器实验报告实验总结 篇一:单管放大电路实验报告 单管放大电路 一、实验目的 1.掌握放大电路直流工作点的调整与测量方法;2.掌握放大电路主要性能指标的测量方法;3.了解直流工作点对放大电路动态特性的影响;4.掌握射极负反馈电阻对放大电路特性的影响;5.了解射极跟随器的基本特性。 二、实验电路 实验电路如图2.1所示。图中可变电阻Rw是为调节晶体管静态工作点而设置的。 三、实验原理1.静态工作点的估算 将基极偏置电路Vcc,Rb1和Rb2用戴维南定理等效成电压源。 开路电压Vbb? Rb2 Vcc,内阻

Rb1?Rb2 Rb?Rb1//Rb2 则IbQ? Vbb?VbeQ Rb?(??1)(Re1?Re2) ,IcQ??IbQ VceQ?Vcc?(Rc?Re1?Re2)IcQ 可见,静态工作点与电路元件参数及晶体管β均有关。 在实际工作中,一般是通过改变上偏置电阻Rb1(调节电位器Rw)来调节静态工作点的。Rw调大,工作点降低(IcQ 减小),Rw调小,工作点升高(IcQ增加)。 一般为方便起见,通过间接方法测量IcQ,先测Ve,IcQ?IeQ?Ve/(Re1?Re2)。 2.放大电路的电压增益与输入、输出电阻 ?u? ??(Rc//RL) Ri?Rb1//Rb2//rbeRo?Rc rbe 式中晶体管的输入电阻rbe=rbb′+(β+1)VT/IeQ ≈rbb′+(β+1)×26/IcQ(室温)。 3.放大电路电压增益的幅频特性 放大电路一般含有电抗元件,使得电路对不同频率的信

号具有不同的放大能力,即电压增益是频率的函数。电压增益的大小与频率的函数关系即是幅频特性。一般用逐点法进行测量。测量时要保持输入信号幅度不变,改变信号的频率,逐点测量不同频率点的电压增益,以各点数据描绘出特性曲线。由曲线确定出放大电路的上、下限截止频率fh、fL和频带宽度bw=fh-fL。 需要注意,测量放大电路的动态指标必须在输出波形不失真的条件下进行,因此输入信号不能太大,一般应使用示波器监视输出电压波形。 三、预习计算1.当??????=??????时 由实验原理知计算结果如下: IeQ=IbQ= β+1β1β IcQ=1mA IcQ=4.878μA ucQ=Vcc?IcQ×Rc=8.7VueQ=IeQ×Re=1× 1.2=1.2VuceQ=ucQ?ueQ=8.7?1.2=7.5V rbe=rbb′+1+β uT26 =650+206×=6.006kΩeQubQ=ueQ+0.7=1.9VVcc?ubQubQ =IbQ+wb1b2 可以解出Rw=40.78kΩ

运算放大电路实验报告

实验报告 课程名称:电子电路设计与仿真 实验名称:集成运算放大器的运用 班级:计算机18-4班 姓名:祁金文 学号:5011214406

实验目的 1.通过实验,进一步理解集成运算放大器线性应用电路的特点。 2.掌握集成运算放大器基本线性应用电路的设计方法。 3.了解限幅放大器的转移特性以及转移特性曲线的绘制方法。 集成运算放大器放大电路概述 集成电路是一种将“管”和“路”紧密结合的器件,它以半导 体单晶硅为芯片,采用专门的制造工艺,把晶体管、场效应管、 二极管、电阻和电容等元件及它们之间的连线所组成的完整电路 制作在一起,使之具有特定的功能。集成放大电路最初多用于各 种模拟信号的运算(如比例、求和、求差、积分、微分……)上, 故被称为运算放大电路,简称集成运放。集成运放广泛用于模拟 信号的处理和产生电路之中,因其高性价能地价位,在大多数情 况下,已经取代了分立元件放大电路。 反相比例放大电路 输入输出关系: i o V R R V 12-=i R o V R R V R R V 1 212)1(-+=

输入电阻:Ri=R1 反相比例运算电路 反相加法运算电路 反相比例放大电路仿真电路图

压输入输出波形图 同相比例放大电路 输入输出关系: i o V R R V )1(12+=R o V R R V R R V 1 2i 12)1(-+=

输入电阻:Ri=∞ 输出电阻:Ro=0 同相比例放大电路仿真电路图 电压输入输出波形图

差动放大电路电路图 差动放大电路仿真电路图 五:实验步骤: 1.反相比例运算电路 (1)设计一个反相放大器,Au=-5V,Rf=10KΩ,供电电压为±12V。

实验一 单级交流放大电路 实验报告

实验一单级交流放大电路 一、实验目的 1.熟悉电子元器件和模拟电路实验箱, 2.掌握放大电路静态工作点的调试方法及其对放大电路性能的影响。 3.学习测量放大电路Q点,A V ,r i ,r o 的方法,了解共射极电路特性。 4.学习放大电路的动态性能。 二、实验仪器 1.示波器 2.信号发生器 3.数字万用表 三、实验原理 1.三极管及单管放大电路工作原理。 以NPN三极管的共发射极放大电路为例说明三极管放大电路的基本原理: 三极管的放大作用是:集电极电流受基极电流的控制,并且基极电流很小的变化,会引起集电极电流很大的变化,。如果将一个变化的小信号加到基极跟发射极之间,这就会引起基极电流Ib的变化,Ib的变化被放大后,导致了Ic很大的变化。如果集电极电流Ic是流过一个电阻R的,那么根据电压计算公式U=R*I可以算得,这电阻上电压就会发生很大的变化。我们将这个电阻上的电压取出来,就得到了放大后的电压信号了。 2.放大电路静态和动态测量方法。 放大电路良好工作的基础是设置正确的静态工作点。因此静态测试应该是指放大电路静态偏置的设置是否正确,以保证放大电路达到最优性能。 放大电路的动态特性指对交流小信号的放大能力。因此动态特性的测试应该指放大电路的工作频带,输入信号的幅度范围,输出信号的幅度范围等指标。 四、实验内容及步骤 1.装接电路与简单测量 图1.1 工作点稳定的放大电路

(1)用万用表判断实验箱上三极管V 的极性和好坏,电解电容C 的极性和好坏。 测三极管B 、C 和B 、E 极间正反向导通电压,可以判断好坏;测电解电容的好坏必须使用指针万用表,通过测正反向电阻。 三极管导通电压UBE=0.7V 、UBC=0.7V ,反向导通电压无穷大。 (2)按图1.1所示,连接电路(注意:接线前先测量+12V 电源,关断电源后再连线),将RP 的阻值调到最大位置。 2.静态测量与调整 接线完毕仔细检查,确定无误后接通电源。改变R P ,记录I C 分别为0.5mA 、1mA 、1.5mA 时三极管V 的β值。 注意:I b 和I c 一般用间接测量法,即通过测V c 和V b ,R c 和R b 计算出I b 和I c 。此法虽不直观,但操作较简单,建议采用。以避免直接测量法中,若操作不当容易损坏器件和仪表的情况。 (2)按图1.1接线,调整R P 使V E =1.8V ,计算并填表1.1。 为稳定工作点,在电路中引入负反馈电阻Re ,用于稳定静态工作点,即当环境温度变化时,保持静态集电极电流ICQ 和管压降UCEQ 基本不变。 依靠于下列反馈关系: T ↑—β↑—ICQ ↑—UE ↑—UBE ↓—IBQ ↓—ICQ ↓,反过程也一样。其中Rb2的引入是为了稳定Ub 。但此类工作电路的放大倍数由于引入负反馈而减小了,而输入电阻ri 变大了,输出电阻ro 不变。 e be L c u R r R R A )1()(ββ++-= ,))1((21e be b b i R r R R r β++=,c o R r = 由以上公式可知,当β很大时,放大倍数约等于e L c R R R ,不受β值变化的 影响。 表1.1 注意:图1.1中b 为支路电流。 3.动态研究 (1)按图1.2所示电路接线。 (2)将信号发生器的输出信号调到f=1KHz ,幅值为500mV ,接至放大电路的A 点,经过R 1、R 2衰减(100倍),V i 点得到5mV 的小信号,观察V i 和V O 端波形,并比较相位。 图中所示电路中,R1、R2为分压衰减电路,除R1、R2以外的电路为放大电路。由于一般信号源在输出信号小到几毫伏时,会不可避免的受到电源纹波影响出现失真,而大信号时电源纹波几乎无影响,所以采取大信号加R1、R2衰减形式。此外,观察输出波形时要调节Rb1,使输出波形最大且不失真时开始测量。输入输出波形两者反相,相差180度。

相关主题