搜档网
当前位置:搜档网 › 主汽温度波动大分析

主汽温度波动大分析

主汽温度波动大分析
主汽温度波动大分析

锅炉主汽温度分析

本公司锅炉为武汉锅炉厂制造的亚临界压力一次中间再热自然循环汽包炉,锅炉呈“П”型布臵,型式为亚临界自然循环汽包炉,钢球磨中储式制粉系统,热风送粉,直流式百叶窗水平浓淡燃烧器,四角布臵,切向燃烧方式,尾部双烟道布臵汽温控制方式为烟气挡板调节再热汽温,喷水减温控制过热汽温。

公司机组正常运行期间,主汽温度波动较大(波动区间在510℃—550℃之间),无法维持稳定运行,长期以往极易使锅炉受热面各级管路产生交变温差应力,以致使金属疲劳,出现本身或焊口裂纹,最后造成锅炉四管泄露,机组被迫停运。针对对汽温波动采取以下几步进行分析:

1、找出汽温变化因素;

2、对各因素进行分析。

3、找出主要原因。

4、对各主要原因再次进行分析。

5、并提出建议。

一、汽温变化波动的因素有:

1)负荷的变化

2)汽压的波动

3)煤质的变化

4)给水温度的变化

5)风量的变化

6)制粉系统的启、停

7)水位的变化

8)锅炉吹灰

9)锅炉炉膛结焦

10)锅炉炉膛漏风时

11)自动失灵

二、对影响汽温的因素分析如下:

1)负荷的变化,我公司在市场营销努力工作下,我公司负荷基本比

较稳定,非要因。

2)给水温度的变化,公司带负荷平稳,汽侧加热器运行正常,给水

温度稳定,非要因。

3)制粉系统的启、停,我公司汽温波动不仅发生在制粉系统启停期

间,之外也发生波动,非要因。

4)水位的变化,我公司汽包水位控制正常,非要因。

5)锅炉吹灰,锅炉吹灰后,受热面积灰减少,换热能力加强,是汽

温发生波动的因素,但我公司吹灰非连续吹灰,且汽温波动在非

吹灰期间也发生波动,非要因。

6)锅炉炉膛结焦,我公司结焦情况不明显,非要因。

7)锅炉炉膛漏风,我公司锅炉本体漏风主要发生在各吹灰器、各观

火孔、液压关门处,漏风量一定,非主因。

8)煤质的变化;主要指燃料的挥发份、含碳量、发热量等的变化,

同煤粉细度下,燃料在炉内燃烬时间长,火焰中心上移,汽温将

升高。当燃料的水份增加时,水份在炉内蒸发需吸收部分热量,

使炉膛温度降低,同时水份增加,也使烟气体积增大,增加了烟

气流速,使辐射过热器的吸热量降低,对流过热器的吸热量增

加,汽温升高,反之气温下降,是主因。

9)汽温自动失灵:主要原因为减温器进、出口及受热面后温度测点

测量不准,造成调整不灵敏,是主因。

10)风量的变化,设备原因造成造成一次风、二次风风量波动,而

一、二次风风量波动造成炉膛负压波动,当炉膛负压减小时,一

次风与炉膛差压降低,送粉能力下降、二次风刚性降低;当负压

瞬间产生急剧增大后,相应一、二次风与炉膛差压升高,送粉能

力瞬间增强,造成炉膛内燃烧加强,引起汽温升高,反之汽温降

低,是主因。

11)汽压变化:因为汽压升高,汽化潜热减少,水冷壁产生同样数量的

蒸汽所需的吸热量少,导致炉膛出口烟温升高.同时,因负荷未变,

汽轮机汽耗量减少,锅炉蒸发量减少,过热器流量减少,在燃料量

未改变前,导致过热汽温升高反之,汽温降低,是要因。

三、我公司汽温波动主要原因如下:

1)煤质的变化

2)风量的变化

3)汽压变化

四、对各主要原因再次进行分析

1、煤质变化:

我公司煤源较广,煤质热值、灰分、挥发份、水份各不相同,且受掺烧设备限制,入炉煤质不均匀,在同煤粉细度情况

下,煤粉燃烬时间不一,火焰中心忽高忽低,造成汽温波动。

2、风量的变化

我公司空预器存在堵塞、漏风现象,空预器堵塞造成一次风、二次风风量波动,而一、二次风风量波动造成炉膛负压波

动,当炉膛负压减小时,一次风与炉膛差压降低,送粉能力下

降、二次风刚性降低;当负压瞬间产生急剧增大后,相应一、二

次风与炉膛差压升高,送粉能力瞬间增强,造成炉膛内燃烧加

强,引起汽温升高,反之汽温降低;

空预器漏风造成二次风箱压力不足,二次风刚性不足,不能及时补充煤粉燃烧所需氧量,主要表在高负荷,我公司锅炉规定

250MW负荷二次风箱压力应在0.8~0.9Kpa之间,300MW负荷二次

风箱压力应在0.9~1.1Kpa之间,目前我公司#7炉300MW负荷时

二次风箱压力低仅为0.8Kpa,#6炉更低仅为0.5Kpa,建议:机

组大修对空预器堵塞、漏风彻底治理

3、汽压变化:我公司汽压波动较大范围为±0.5Mpa,比较大,汽压

波动原因主要原因为:

1)风量不稳定,造成机组燃烧不稳。

2)粉仓不严密、各给粉锥斗保温不全、吸潮管不起作用及细粉

分离器锁气器卡涩关闭不到位,造成粉仓板结,下粉通道

变小,给粉量不足。

混合器问题,我2009年公司混合器按照中试所为我公司提供了改造的示意图

将原混合器由双托板改为单托板

经就地检查混合器(公司备品库)发现下粉管与风管结合部增加凸台的高度不足,约有2cm,及托板边缘线与凸台垂直线距离较短50mm,无法使落粉区气流平衡,将此处由层流区变为紊乱区,整个流场无法呈一簇互相平行的流线,做直线运动而平行向前,出现上升的气流引起托粉,使得下粉不均。

3)各燃烧器动角度不一致,风速不一致,动力场不稳,造成燃

烧波动,使得汽压波动。

五、针对汽温波动大治理提出的建议及所做具体工作:

1、建议:

1)建议公司尽量增加适燃煤种的购进量,添加部分掺烧设备,提高入炉

煤掺烧的均匀性,尽可能保证入炉煤质稳定。

2)利用2014年机组大修,对#6、7炉粉仓进行清理、下粉锥斗保温恢

复、吸潮管检查,并对各细粉分离器下部锁气器进行更换。

3)利用2014年机组大修彻底对空预器进行治理,消除堵塞及漏风。

4)在#6、7炉给粉机平台给粉机落粉管安装负压测点对各给粉机下粉进

行负压测量,查找原因。

5)2014年机组大修找资质好的单位对锅炉进行动力场试验。

6)2014年机组大修对汽水系统各测点进行检查,确保其测量准确。

2、针对主汽温波动大运行部进行了以下工作

1)对#6、7炉粉仓及绞龙吸潮管排查,结果正常。

2)对不下粉的给粉机检查给粉机间隙及积粉情况,检查给粉机间隙正常,无

积粉。

3)在#6、7炉给粉机平台给粉机落粉管安装测压管对各给粉机下粉进行测

量,发现下粉不正常的给粉机均存在冒正压及压力摆动大现象,正常运行期间应均为负压值且稳定波动小,从而判断汽温波动大的主要原因是给粉机下粉不好,而下粉不好的原因是冒正压、压力波动。

4)针对混合器检测发现的问题,将#6炉C4混合器割开检查,发现混合器内

部凸台、托板磨损严重,耐磨脱落严重如下图:

5)针对此情况,将备品库存放备用混合器换上并进行再次检测发现情况依

旧,仍然不下粉,仍存在冒正压及压力摆动大现象,

6)对磨损混合器进行修补,修补后如下图

将修复后的混合器安装至#6炉D1处检测发现还是存在冒正压及压力摆动大现象,并对原#6炉D1混合器割开检查发现凸台及托板磨损严重,浇注料脱落较多:

针对混合器进粉管处冒正压及压力摆动大现象对#6炉D1混合器修复并进行改造,如简图

将改造后的混合器安装至#6炉C4给粉机,目前处于观察运行阶段,如仍存在冒正压及压力摆动大现象,下一步计划建议公司从厂家进一台采用新技术的混合器全面测量数据后安装,进行效果比对,如下粉正常,将#6、7炉所有混合器按照其进行改造。

组态王课程设计锅炉温度控制系统

锅炉温度控制系统上位机设计 1.设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对

汽轮机排汽及抽真空系统培训教材

汽轮机排汽及抽真空系统培训教材 11.1概述 排汽装置抽真空系统在机组启动初期将空冷凝汽器、主排汽装置以及附属管道和设备中的空气抽出以达到汽机启动要求;机组在正常运行中除去空冷岛积聚的非凝结气体及排汽装置中的因凝结水除氧而产生的部分不凝结气体。 空冷凝汽器抽真空设备的选择应按最大空气泄漏量和空气容积来选择。二期每台主机空冷凝汽器抽真空系统中设置三台100%容量的水环式真空泵,在排汽装置和空冷凝汽器安装检修质量良好,漏气正常时,一台水环式真空泵运行即可维持凝汽器所要求的真空度,另外两台作为备用。在机组启动时,可投入三台运行,这样可以更快地建立起所需要的真空度,从而缩短机组启动时间。 每个排汽装置上还设置一台带有滤网的真空破坏阀,在机组出现紧急事故危及机组安全时,以达到破坏真空的需要。 真空泵选择条件:①启动时40分钟内将空冷岛及排汽装置内真空达到35KPa;②正常运行时一台或两台运行,从空冷岛及排汽装置内抽出不凝结气体,保持真空度。 每台机组设一套排汽装置,分为排汽装置A和排汽装置

B。本体设有低压旁路三级减温减压装置,与排汽装置作为一体。 凝结水箱放置于低压缸排汽装置下部,其有效容积不小于200m3,并能够满足机组启动和所有运行条件的要求。排汽装置下部凝结水箱内设有凝结水回热系统,以减少凝结水的过冷度。凝结水箱水位正常控制在1.4±0.3米,最高不超过2米,最低控制在0.7米。 汽机本体疏水扩容器在机组启动和甩负荷时,能承受全部疏水的压力和容量。疏水扩容器的形式为内置于排汽装置上,疏水扩容器的数量为2套,每套24m3。 为了防止蒸汽冲击管子和低加壳体,在每个低压缸与排汽装置喉部位置设有水幕保护,用凝水对可能向上至低压缸的返汽进行喷水,降温。水源取自凝水杂用水母管。当旁路系统投入或疏水量大造成排汽温度高时,投入水幕喷水,在排汽装置喉部形成一层水膜,用以阻挡向上的热蒸汽,改善低压缸尾部的工作条件,降低排汽温度,防止低压缸过热引起膨胀不均,引发振动。 两套#7低加分别置于排汽装置A、B颈部。在排汽装置颈内,所有抽汽管道均采用不锈钢膨胀节。 在每个排汽装置上设有真空破坏阀,真空破坏阀上设有滤网及注水门。在抽真空母管与凝结水回水管上设有联络管,

锅炉温度串级控制系统的设计说明书

1 前言 (1) 2 控制系统的总体方案 (2) 2.1 概述 (2) 2.2 控制方式的确定 (2) 2.3检测元件和执行机构的选择 (3) 2.4微型计算机的选择 (4) 2.5输入输出通道及外围设备的选择 (6) 2.6系统的原理框图 (6) 3 控制算法的选择和参数计算 (8) 3.1 控制算法的选择 (8) 3.2 参数的计算 (8) 4系统硬件设计 (16) 4.1概述 (16) 4.2 系统的硬件设计 (16) 4.3系统电气原理图 (33) 4.4 元器件明细表 (34) 5 软件程序的编制 (35) 5.1概述 (35) 5.2程序流程图 (35) 5.3 地址分配 (40) 5.4程序设计 (40) 6 控制系统的调试与实验 (42) 6.1单元电路调试 (42) 6.2 程序调试 (42) 6.3 系统调试 (43) 6.4 系统实验和结果分析 (43) 7 设计总结 (44) 7.1 系统具备的主要功能 (44) 7.2 系统的测量精度 (44) 7.3 存在的问题及改进措施 (44) 参考文献 (46) 致谢 (47)

1 前言 随着我国国民经济的快速发展,锅炉的使用范围越来越广泛。而锅炉温度控制是工业生产过程中经常遇到的过程控制,有些工艺过程对其温度的控制效果直接影响着产品的质量,因而设计一种较为理想的温度控制系统是非常必要的。而锅炉系统是一个具有时变和时滞的比较复杂的系统,因此,对锅炉温度进行控制是工业过程控制中一个重要而且困难的问题。由于串级控制具有有效改善过程的动态特性、提高工作频率、减小等效过程时间常数和加快响应速度等特点,所以在克服被控系统的时滞方面能够取得较好的效果[1]。 由于PLC具有高可靠性、易于实现等优点,在工业控制领域中得到了广泛的应用。进入21世纪以来,PLC已经由原来的逻辑控制器发展成具有较强的数据处理能力、通讯能力的标准工控设备,用其进行各种算法的实现是工控领域的发展趋势。 本设计以锅炉为被控对象,以锅炉出口水温为主被控参数,以炉膛内水温为副被控参数,以加热炉电阻丝电压为控制参数,以PLC为控制器,构成锅炉温度串级控制系统;采用PID 算法,运用PLC梯形图编程语言进行编程,实现锅炉温度的自动控制[2]。 本文对锅炉温度控制系统的硬件和软件都进行了介绍,全文主要有5个部分。 第1部分是对锅炉温度控制系统的总体方案的介绍。控制总体方案的设计是系统设计的核心。若设计方案设计不正确,则无论选用何种先进的过程控制仪表或计算机系统,其安装如何细心,都不可能使系统在工业生产过程中发挥良好的作用,甚至系统不能运行。 第2部分是对锅炉温度控制系统控制算法的选择和参数的设置进行了介绍。采用合适的控制算法能更好地对整个系统进行控制。 第3部分是锅炉液位控制系统硬件的设计,对选择的仪表、设备等的性能、使用方法和接口要求等进行了介绍。 第4部分是对锅炉液位控制系统软件程序的编制,主要是采用PLC梯形图编程语言进行编程,并写出相应的流程图和地址分配。 第5部分是对锅炉温度控制系统的调试与实验。其中包括单元电路调试、程序调试、系统调试、系统试验和结果分析。

主蒸汽温度控制系统

主蒸汽温度控制系统 本机组的锅炉为单汽包、单炉膛、再热式自然循环锅炉。由汽包分离分离出的蒸汽依次流过顶棚、热回收包覆面、初级过热器、屏式过热器和未级过热器,最后达到一定的温度离开锅炉。 两级喷水减温器分别布置于初过出口、屏过入口处和屏过出口、未级过热器入口处,如图1所示。主蒸汽温度控制系统,通过这两级喷水减温,将未级过热器出口主蒸汽温度控制在某个定值上,并且保护整个过热器管路乃至主蒸汽管道及汽机金属不被高温损坏。 该系统分两级喷水控制,每级喷水又分左右两侧控制,如图1所示,同一级的两侧减温控制设计思想是相同的。一、二级减温水控制系统是相互独立的,现分别予以剖析。 1.1一级减温水控制 一级减温水的作用,简单地说是将一级减温器出口温度即屏过入口温度控制在某个定值上。图2为原理性框图。 这个温度定值通常是锅炉负荷(用汽机第一级压力P1代表),主汽压力P,主汽压偏差△P的函数(P1、P、△P)。其中,定值与负荷的关系,如图2中的曲线所示,而与压力的关系待定。但在特殊工况下,这个定值还要受最小减温水量和最大减温水量的限制。 ①最小一级减温水量限制 限制最小减温水量的目的是为了防止屏式过热器被高温烧坏,因屏过接受炉内高温火焰辐射,防止屏过内蒸汽温度过高尤为重要,因此最小一级减温水量限制又可理解成屏过出口最高蒸汽温度限制。图2中,A1为屏过出口所允许的最高汽温值。当屏过出口汽温高于这个最高值后,PID1将逐渐减小输出,最后在小值选择器之后,将取代通常的定值(P1、P,

△P),即去降低一级减温器出口温度定值,PID0将去增加一级减温水量,从而降低整个屏过段的蒸汽温度。 ②最大一级减温水量限制 限制最大一级减温水量目的是为了防止屏过入口汽温过低以致低于此处当前压力下水蒸汽的饱和点,所以又可将最大一级减温水量限制理解成屏过入口最低温度限制。图2中,f(x)输出为相应压力下屏过入口蒸汽的饱和温度,在此基础上再加上A2(约11℃)的过热度,这个和值在大值选择器中与前级的小选输出进行比较,取大值输出。这样就可限制屏过入口蒸汽温度定值,使其不致低于饱和点,从而防止了屏过入口蒸汽带水。 如果不出现两种极端情况,即屏过出口汽温过高或屏过入口汽温过低,定值将是f(P1、P、△P)。 实际屏过入口温度与其定值求偏差后,经PID0调节器运算,其输出去调节一级减温水量最终使屏过入口实际汽温与其定值相等。 由此可见,一级减温水控制回路只是一个单回路调节系统,虽然虽然在框图中有两个PID调节器“串联”在一起,但并不是串级控制系统。

锅炉过热蒸汽温度控制系统设计

课程设计任务书 题目: 锅炉过热蒸汽温度控制系统设计 摘要 本文是针对锅炉过热蒸汽温度控制系统进行的分析和设计。控制系统采用串级控制以提高系统的控制性能,在系统中采用了主控-串级控制的切换装置,使系统可以适用于不同的工作环境。通过使用该系统,可以使得锅炉过热器出口蒸汽温度在允许的范围内变化,并保护过热器营壁温度不超过允许的工作温度。 关键字:过热蒸汽控制串级控制系统自动控制主控-串级切换 目录 1 生产工艺介绍 .................................................. 错误!未定义书签。 1.1 锅炉设备介绍............................................................................ 3 1.2 蒸汽过热系统的控制................................................................ 52控制原理简介 ..................................................................................... 6 2.1控制方案选择............................................................................. 6 2.1.1单回路控制方案................................................................. 6

51单片机的热水锅炉温度控制系统设计

0 基于单片机热 水锅炉炉温控制系统设计

东北大学秦皇岛分校基于单片机的热水锅炉温度控制系统设计dennis 基于单片机热水锅炉炉温控制系统设计 作者:陈明 单位:东北大学秦皇岛 【摘要】本系统是基于单片机的锅炉温度控制,在设计中主要有温度检测、按键控制、水温控制、循环控制、显示部分、故障报警等几部分组成来实现温度控制。主要用数字温度传感器DS18B20来检测水温,用五个控制按键来实现按健控制,用液晶显示屏LCD1602来完成显示部分。并且通过模数转换把这些信号送入单片机中。把这些信号与单片机中内部设定的值相比,以判断单片机是否需要进行相应的操作,即是否需要打开或者关闭温度加热的操作,从而实现单片机自动控制的目的。本设计用单片机控制易于实现锅炉供暖、而且有造价低、程序易于调试、一部分出现故障不会影响其他部分的工作、维修方便。 【关键词】单片机(AT89C51),传感器DS18B20,扬声器,继电器 引言 自从20世纪90年代以来,单片机已经进入了一个高速发展的阶段,世界上著名的半导体厂商都注重新型单片机的研制、生产和推广。单片机的应用已经深入到来各个国家的国民经济当中。例如国内外目前知名的企业:atmel公司的avr单片机,motorola单片机,MICROCHIP单片机,东芝单片机,intel的8051单片机,宏晶STC单片机等等。 温度自动控制系统主要是有温度采集系统、液晶显示系统、扬声器报警系统和继电器控制系统四部分组成。本次设计主要是以温度采集到的温度为参考。如果温度在设定值内部,则系统正常工作,本系统的温度正常范围为0-50摄氏度,如果超出温度范围,则系统发出警报并控制系统负载停止工作。温度控制系统的编程软件为keil,仿真软件为proteus。 1. 热水锅炉温度控制系统设计 1.1方案极其论证 方案一: 用PLC做主要的设计技术,通过用其中的相关部件的开关控制达到锅炉水温的控制目的。但是由于对PLC相关配套的设备和仿真软件的限制,因此放弃了PLC方案。

常用真空单位换算表

常用真空单位换算表 1标准大气压=760毫米汞柱=76厘米汞柱=1.013×10^5帕斯卡=10.336米水柱 公斤不是单位,一般我们通常说的,事实上是一种非标准单位,名称叫:公斤力/平方厘米[Kgf/cm^2]1标准大气压=0.1MPa[兆帕]=101KPa=[千帕]左右=1bar[巴]=760mmHg(毫米汞柱)=14.696磅/英寸2(psi)≈1工程大气压 ≈1Kgf/cm^2[千克力/平方厘米] 千克:是质量单位,千克力:是作用在单位体积上一千克的力一个标准大气压一般约等于101千帕即0.1兆帕,约等于一工程大气压约等于一千克力每平方厘米工程大气压是比标准大气压小一点的1物理大气压=1标准大气压(atm) 为什么会多一个工程大气压我也不清楚但是工程大气压通常按千克力等,用一种质量作用力对单位面积获得的压强。而标准大气压(atm)则为标准的大气压强,比工程大气压精确,但他们是约等于的。没必要那么精确,除非你是在某些特定领域使用 饱和水蒸汽的压力与温度的关系( 摘自范仲元: "水和水蒸气热力性质图表 " p4~10 )

真空计算常用公式 1、玻义尔定律 体积V,压强P,P·V=常数(一定质量的气体,当温度不变时,气体的压强与气体的体积成反比。 即P1/P2=V2/V1) 2、盖·吕萨克定律 当压强P不变时,一定质量的气体,其体积V与绝对温度T成正比:(V1/V2=T1/T2=常数)当压强不变时,一定质量的气体,温度每升高(或P降低)1℃,则它的体积比原来增加(或缩小)1/273。3、查理定律 当气体的体积V保持不变,一定质量的气体,压强P与其他绝对温度T成正比,即:P1/P2=T1/T2在一定的体积下,一定质量的气体,温度每升高(或降低)1℃,它的压强比原来增加(或减少)1/273。 4、平均自由程: λ=(5×10-3)/P (cm) 5、抽速: S=dv/dt (升/秒)或S=Q/P Q=流量(托·升/秒) P=压强(托)V=体积(升) t=时间(秒) 6、通导:C=Q/(P2-P1) (升/秒) 7、真空抽气时间: 对于从大气压到1托抽气时间计算式:t=8V/S (经验公式) (V为体积,S为抽气速率,通常t在5~10分钟内选择。) 8、维持泵选择: S维=S前/10 9、扩散泵抽速估算: S=3D2 (D=直径cm)

锅炉主汽温度控制系统设计说明书

内蒙古科技大学 本科生过程控制课程设计说明书 摘要 随着先进的电子和计算机技术的发展和控制功能的不断完善以及对热电厂中锅炉仪表控制系统进行的先进改造,以先进的DCS系统作为锅炉的控制核心,锅炉鼓风机和引风机采用变频驱动技术,以保护电机和节约能源,结合实际的现场仪表、变频调速器、DCS控制方案的具体实施方案。而在锅炉主汽温度控制系统中,也有越来越多的方法可以实现生产控制,这里需要我们对过热器的出口蒸汽温度进行检测,当温度不在控制范围内时就通过对过热器阀门的控制,设计锅炉主汽温度控制系统,实现对汽包主蒸汽温度的控制,以产生合格的产品,这个就是这次设计的主要内容。 关键词:锅炉;主汽;温度;控制

目录 第一章绪论 (3) 第二章热电厂概述 (4) 2.1锅炉概述 (4) 2.2锅炉、锅筒设备及结构 (5) 2.3锅炉控制的工作原理 (6) 第三章锅炉主汽温度控制系统概述 (7) 3.1锅炉蒸汽温度控制概述 (7) 3.2过热器的基本概念 (7) 3.3锅炉主汽温度控制系统的总体设计方案 (8) 第四章锅炉主汽温度控制的设计过程 (9) 4.1锅炉主汽温度控制说明 (9) 4.2锅炉主汽温度控制系统的分析与初步设计 (10) 4.3锅炉主汽温度串级控制系统图解及仪表选型 (11) 4.4锅炉主汽温度控制系统安全保护对策 (13) 第五章总结 (15) 参考文献 (16)

第一章绪论 这个学期的第一个课程设计是过程控制课程设计,通过上个学期的热电厂的实习,以及对热电厂的工艺和锅炉的生产设备及工艺的了解,我们选择了各自的课程设计题目,我的设计主要是介绍锅炉控制中的主汽温度控制系统的设计。随着科学的进步以及各种仪器的发展,现在已经有很成熟的控制方法来控制锅炉的生产,我这里是根据一般的场合所需要的控制方案,设计了一个串级的控制系统。对一些大的生产设备和一些有大的延迟或者是大的滞后的生产过程就不做叙述了。

锅炉内胆温度控制系统设计

锅炉内胆温度控制系统设计 一.引言 过程控制是自动化的重要分支,其应用范围覆盖石油、化工、制药、生物、医疗、水利、电力、冶金、轻工、建材、核能、环境等许多领域,在国民经济中占有极其重要的地位。无论是在现代复杂工业生产过程中还是在传统生产过程的技术改造中,过程控制技术对于提高劳动生产率、保证产品质量、改善劳动条件以及保护生态环境、优化技术经济指标等方面都起着非常重要的作用。 过程控制的主要任务是对生产过程中的有关参数(温度、压力、流量、物位、成分、湿度、PH值和物性等)进行控制,使其保持恒定或按一定规律变化,在保证产品质量和生产安全的前提下,是连续型生产过程自动的进行下去。实际的生产过程千变万化,要解决生产过程的各种控制问题必须采用有针对性的特殊方法与途径。这就是过程控制要研究和解决的问题。二.任务和要求 任务:设计锅炉内胆温度控制系统,选择合适的传感器、控制器和执行器,使其满足一定的控制要求。 要求:本系统的控制对象为锅炉内胆的水温,要求锅炉内胆的温度的稳定值等于给定值,误差保持在 5%的误差带以内。 三.总体方案 系统组成:本实验装置由被控对象和控制仪表两部分组成。系统动力支路分两路:一路由三相(380V交流)磁力驱动泵、电动调节阀、直流电磁阀、涡轮流量计及手动调节阀组成;另一路由日本三菱变频器、三相磁力驱动泵(220V变频)、涡轮流量计及手动调节阀组成。1.原理框图 图1

2.简要原理 单闭环锅炉水温定值控制系统的结构示意如课程设计指导书所示,图1为其结构框图。其中锅炉内胆为动态循环水,磁力泵、电动调节阀、锅炉内胆组成循环供水系统。而控制参数为锅炉内胆的水温,即要求锅炉内胆的水温等于设定值。先通过变频器-磁力泵动力支路给锅炉内胆打满水,然后关闭锅炉内胆的进水阀。待系统投入运行后,再打开锅炉内胆的进水阀,允许变频器-磁力泵以固定的小流量使锅炉内胆的水处于循环状态。在锅炉内胆水温的控制过程中,由于锅炉内胆由循环水,因此锅炉内胆循环水水温控制相比于内胆静态水温控制时更充分,因而控制速度有较大的改善。 在结构原理框图中可以清楚的看出,我们给定温度的设定值,将温度传感器的值与设定值相比较,把偏差值送入PID调节器,PID调节器的输出信号送入可控硅调压装置,经调压装置输出的电压信号来控制加热装置的阻值,从而控制锅炉内胆的水温。此控制系统为单闭环反馈系统,只要PID参数设置的合理,就能够使系统达到稳定。 3.优缺点分析 优点:单闭环系统结构简单,稳定性好、可靠性高,在工业控制中得到广泛的应用。 缺点:对动态特性复杂、存在多种扰动或扰动幅度很大,控制质量要求高的生产过程,简单控制系统难以满足要求 四.元器件的选择与参数整定 1.元器件的选择: (1)被控对象 由不诱钢储水箱、4.5千瓦电加热锅炉(由不锈钢锅炉内胆加温筒构成)、冷热水交换盘管和敷朔不锈钢管道组成。 模拟锅炉:本装置采用模拟锅炉进行温度实验,此锅炉采用不锈钢精制而成,设计巧妙。 管道:整个系统管道采用不诱钢管组成,所有的水阀采用优质球阀,彻底避免了管道系统生锈的可能性。有效提高了实验装置的使用年限。其中储水箱底有一个出水阀,当水箱需要更换水时,将球阀步打开直接将水排出。 (2)检测装置 变送器:采用工业用的扩散硅压力变送器,含不诱钢隔离膜片,同时采用信号隔离技术,对传感器温度漂移跟随补偿。 温度传感器:本装置采用六个Pt100传感器,分别用来检测上水箱出口、锅炉内胆、锅炉夹套以及盘管的水温。经过调节器的温度变送器,可将温度信号转换成4~20mA DC电流信

影响汽轮机排汽真空因素探析详细版

文件编号:GD/FS-6175 (安全管理范本系列) 影响汽轮机排汽真空因素 探析详细版 In Order To Simplify The Management Process And Improve The Management Efficiency, It Is Necessary To Make Effective Use Of Production Resources And Carry Out Production Activities. 编辑:_________________ 单位:_________________ 日期:_________________

影响汽轮机排汽真空因素探析详细 版 提示语:本安全管理文件适合使用于平时合理组织的生产过程中,有效利用生产资源,经济合理地进行生产活动,以达到实现简化管理过程,提高管理效率,实现预期的生产目标。,文档所展示内容即为所得,可在下载完成后直接进行编辑。 汽轮机系统的凝汽设备主要由凝汽器、循环水泵、凝结水泵、抽气器、循环水冷却塔等设备组成。凝汽器真空度的高低是凝汽设备各部分运行状况的集中反映。凝汽设备任何部分的失常,都会导致凝汽器真空的降低,使系统做功能力下降,同时危及各运行部件的安全。 真空下降分以下三种情况: 一、正常运行时:(1)负荷增加;(2)循环水量减少;(3)循环水温升高。 二、设备有故障时:(1)抽气器故障;(2)凝汽器水位高;(3)真空系统漏气;(4)后汽封

损坏;(5)循环水系统故障;(6)凝汽器铜管结垢;(7)凝结水泵故障。 三、操作失误:(1)汽封断汽;(2)各负压阀门误开;(3)补水带气。 各影响因素除影响真空外,还影响端差和过冷却度,同时还有温度、压力等其他征象变动,只要认真分析,就能确定。 凝汽器内存在三种换热,即:蒸汽在铜管外壁的凝结换热;铜管内外壁的传导换热;铜管内水的对流换热(液相)。他们的热阻和构成凝汽器的传热热阻。各影响因素都会对换热产生影响。 忽略凝汽器外筒的散热,蒸汽凝结放热量等于循环水吸热量,也等于传热量。 以下内容重点讲解引起真空变化的因素对其他指标的影响:

锅炉主蒸汽温度低原因及处理

我厂三期机组主蒸汽温度低原因及处理 近期,我厂#6、7机组机组负荷在50%及以上时经常出现主蒸汽温度低现象,现总结其原因及其处理方向。 一、主蒸汽温度过低的危害 当主蒸汽压力和凝结真空不变,主蒸汽温度降低时,主蒸汽在汽轮机内的总焓降减少,若要维持额定 负荷,必须开大调速汽阀的开度,增加主蒸汽的进汽量。一般机组主蒸汽温度每降低10C,汽耗量要 增加 1.3%~1.5%。 主蒸汽温度降低时,不但影响机组的经济性,也威胁着机组的运行安全。其主要危害是: (1)末级叶片可能过负荷。因为主蒸汽温度降低后,为维持额定负荷不变,则主蒸汽流量要增加,末级焓降增大,末级叶片可能过负荷状态。 (2)末几级叶片的蒸汽湿度增大。主蒸汽压力不变,温度降低时,末几级叶片的蒸汽湿度将要增加,这样除了会增大末几级动叶的湿汽损失外,同时还将加剧开几级动叶的水滴冲蚀,缩短叶片的使用寿命。 (3 )各级反动度增加。由于主蒸汽温度降低,则各级反动度增加,转子的轴向推力明显增大,推力瓦块温度升高,机组运行的安全可靠性降低。 (4)高温部件将产生很大的热应力和热变形。若主蒸汽温度快速下降较多时,自动主汽阀外壳、调节级、汽缸等高温部件的内壁温度会急剧下降而产生很大的热应力和热变形,严重时可能使金属部件产生裂纹或使汽轮机内动、静部分造成磨损事故;当主蒸汽温度降至极限值时,应打闸停机。 (5)有水击的可能。当主蒸汽温度急剧下降50C以上时,往往是发生水冲击事故的先兆,汽轮机值班员必须密切注意,当主蒸汽温度还继续下降时,为确保机组安全,应立即打闸停机。 二、引起主蒸汽温度低的因素: 1)水煤比。 在直流锅炉动态分析中,汽轮机调节汽阀的扰动,对直流锅炉是一种典型的负荷扰动。当调节汽阀阶 跃开大时,蒸汽流量D和机组输出功率N E立即增加,随即逐渐减少,并恢复初始值,汽轮机阀前压力 P T一开始立即下降,然后逐渐下降至新的平衡压力。由于直流锅炉的蓄热系数比汽包锅炉小,所以直流锅炉的汽压变化比汽包锅炉大得多。当负荷扰动时,过热汽温T2近似不变,这是由于给水流量和燃 烧率保持不变,过热汽温就基本保持不变。 燃烧率扰动是燃料量、送风量和引风量同时协调变化的一种扰动。当燃烧率B阶跃增加时,经过一段 较短的迟延时间,蒸汽流量D会暂时向增加方向变化;过热汽温T2则经过一段较长的迟延时间后单调上升,最后稳定在较高的温度上;汽压P T和功率N E的变化也因汽温的上升而最后稳定在较高的数值。 当燃烧率不变而给水流量增加时,一开始由于加热段和蒸发段的伸长而推出一部分蒸汽,因此蒸汽流 量D、汽压P T、功率Nk几乎没有迟延的开始增加,但由于汽温T2的下降,最后虽然蒸汽流量D增加,而输出功率N E却有所减少;汽压Pr也降至略高于扰动前的汽压,过热汽温T2则经过一段较长的迟延时间后,最后稳定在较低的温度。 给水和燃料复合扰动时的动态特性是两者单独扰动时的动态特性之和,由图2可知,当给水和燃料按 比例变化时,蒸发量D立即变化,然后稳定在新的数值上,过热汽温则保持在原来的数值上(额定汽温)。这就是说明严格控制水煤比是直流炉主蒸汽调节的关键。

电厂汽轮机排汽湿度及凝汽器的最佳真空和最佳冷却水量的确定

科技信息 SCIENCE&TECHNOLOGYINFORMATION2013年第5期0引言 随着国民经济的持续快速发展和能源消耗量的日益增加,我国已 成为世界第二大能源消费国和世界上对能源依赖程度最高的国家之 一。特别是近几年,我国大部分地区,能源短缺已成为当地制约经济和 社会可持续发展的重要因素之一。因此,以“低消耗、低排放、高效率” 的集约型增长方式逐步取代传统的“高消耗、高污染、低效率”的粗放 型增长方式,已越来越得到我国政府和各阶层的广泛重视。在我国, “节能减排”已成为21世纪的主题。 火力发电行业是一个资源消耗巨大的产业。我国目前的燃煤机组 约占全国装机总容量的74%,它对不可再生资源———煤的消耗巨大, 同时也是消耗水资源和产生污染的大户,所以火力发电厂的“节能减 排”显得尤其重要。汽轮机冷端系统是火电机组的重要组成部分。1汽轮机排汽湿度在大型发电厂中,凝汽式汽轮机的末几级都工作在湿蒸汽区,因此部分蒸汽在湿蒸汽区内发生自发凝结,以十分细小水滴的型式悬浮于汽相中,形成湿蒸汽。湿蒸汽主要给汽轮机运行带来两方面的影响:一是,湿蒸汽中水分会对汽轮机动叶产生侵蚀与冲击,威胁汽轮机的安全运行;二是,产生较大的湿汽损失,使湿蒸汽级的效率大大低于干蒸汽级。在湿蒸汽中高速流动的水滴撞击叶片表面造成低压级叶片水蚀,水蚀使得叶片的强度和振动特性向着有害的方向变化,使叶片变得粗糙,出现凹坑,甚至断裂,造成叶片事故,对汽轮机的安全运行造成了威胁。据统计,叶片事故在汽轮机各部件中居首位。美国电力研究所EPRI (Electric Power Research Institute)指出,美国电站汽轮机强迫停运率的70%与叶片损坏有关,各国统计还一致反映,叶片事故引起的损失往往占全部损失的一半左右。与此同时,水蚀也增加了叶片通流部分的流动损失,导致汽轮机的级效率降低可多达0.664%。同样湿度造成的湿汽损失也降低了汽轮机的效率,所以湿度对汽轮机的安全性和经济性有着重要的影响。湿蒸汽在汽轮机级内膨胀做功时,同过热蒸汽相比还额外增加了湿汽损失,使汽轮机的低压级效率降低,蒸汽湿度越大,湿汽损失就越大。英国统计数字表明,仅由汽轮机中湿度引起的效率降低带来的经济损失每年高达5000万英镑,所以,湿蒸汽带来的湿汽损失不可低估。由此可见,蒸汽的湿度对机组的经济性和安全性有很大的影响,降低蒸汽湿度是保证末几级叶片安全工作的必要手段之一。运行中限制蒸汽的湿度,一般规定汽轮机未级叶片后排汽的最大可见湿度(是指在h-s 图上查到的湿度)不得超过12%-15%。 2 凝汽器的最佳真空和最佳冷却水量的确定2.1最佳真空和最佳冷却水量的确定方法 首先,在给定的冷却水进水温度t w 1和汽轮机排汽量D c 条件下, 改变冷却水量D w ,分别求出汽轮机功率增量ΔP t 、循环水泵耗功增量 ΔP p 和水资源使用费及冷却水热污染的环保收费ΔC w 。知道汽轮机功 率增量ΔP t 和循环水泵耗功增量ΔP p 后,就能计算出汽轮功率增量的收益ΔC t 和拖动循环水泵的电动机耗功增量的支出ΔC p ,然后再确定净收益:Δw net =ΔC t -ΔC p -ΔC w 对应上式净收益最大时所对应的真空和冷却水量即为最佳真空和最佳冷却水量。这样,选取不同的冷却水进水温度和汽轮机的排汽量,就能得到各种对应工况下的凝汽器最佳真空和最佳冷却水量。对于变速可调或可动叶片调节的循环水泵,可通过改变转速或改变动叶安装角来改变循环水量;对于冷却水量不能连续调节的定速不可调循环水泵,当改变循环水泵的运行台数后,并不能保证所得的冷却水量是最佳值,只能是接近最佳值。因此,判别循环水泵的运行方式是否属于最优运行方式,应该根据Δw net 值的大小来判断,当Δw net >0时,即当循环水泵的运行台数改变后,净收益大于零时,可以采用多泵 运行,否则应采用单泵运行。 2.2循环水泵的常见调节方式 2.2.1改变循环水泵台数调节 目前,大多数电厂常用的冷却水量调节方法是通过启停循环水泵 的台数来达到改变循环冷却水量的目的。一机两泵扩大单元制方式: 设置两台50%容量的循环水泵,冬季运行一台,夏季运行两台,春秋 季节两机三泵(即运行三台循环水泵,供两台机组);一机三泵方式:设 置三台33%容量的循环泵,冬季运行一台,春秋季运行两台,夏季运 行三台。运行人员主要根据运行经验和环境温度等因素调整循环水泵 运行的台数,虽然有一定的经济性,但其效果取决于电厂运行人员的 操作水平和判断能力,随机性和盲目性较强。 2.2.2循环水泵转速调节 大功率循环水泵改变转速的方法主要是通过变极调速和变频调 速两种手段,近年来,变频调速发展很快,是通过改变供给电动机的供 电频率,来改变电机的转速,从而改变负载的转速,具有效率高、调速 范围宽、精度高、调速平稳、无级变速等优点。循环水泵的流量与转速 的一次方成正比,压力与转速的平方成正比,功率与转速的三次方成 正比,当通过降低转速以减少流量来达到节流目的时,所消耗的功率 将降低很多。 2.2.3循环水泵导叶和叶片的安装角调节 可调叶片循环水泵可分为动叶可调和静叶可调,有级和无级,静 叶可调循环水泵以前用得比较多。静叶可调采用人工控制,分不同季 节和不同运行工况停泵后人工调叶,操作管理繁琐,节能效果不理想。 而采用动叶无级可调叶泵并配套全自动调叶软件可以通过不停泵的 状态下来调节叶片角度,改变循环水泵的流量、扬程参数,使得循环水 泵适应机组的各种工况,运行更经济,充分发挥其节能功能,也适应于 电厂循环水系统无人值班的管理方式。动叶可调循环水泵与传统的固 定叶循环水泵比较,前者的制造技术难度大、造价高。3结束语总之,随着我国电力市场体制的逐步完善,实行厂网分开,现在各个发电企业所面临的最主要任务是:使电厂的发电成本尽量接近最低值和进一步改善电厂运行的经济性。在通常情况下,汽轮机冷端系统的设计人员是在机组额定负荷和额定冷却进水温度的情况下进行汽 轮机冷端系统的优化设计,而在运行过程中,汽轮机(下转第447页) 电厂汽轮机排汽湿度及凝汽器的最佳真空和最佳冷却水量的确定 张捷尚 (宁夏大唐国际大坝发电有限责任公司,宁夏青铜峡751607) 【摘要】在电厂机组实际运行中,凝汽器真空的调整是通过改变冷却水量来实现的。例如,在夏季或高负荷时,对定速不可调循环水泵,往往通过投入多台甚至全部循环水泵运行,达到增加冷却水量的目的;而对变速可调循环水泵,是通过调整动叶安装角或提高循环水泵的转速,达到增加冷却水量的目的。在冬季或低负荷时,冷却水量的调整方法则相反。这样的调整方法看似合理,实际上并不能保证在各种负荷下汽轮机的凝汽器均在最佳真空下运行。因而对汽轮机冷端系统进行运行优化研究很有必要。 【关键词】电厂机组;汽轮机系统;冷却水量;循环水泵;综合效益;运行优化;最佳真空 作者简介:张捷尚(1986—),男,汉族,宁夏银川人,2007年毕业于东北电力大学,工学学士,助理工程师,现主要从事火电厂集控运行。 ○电力与能源○388

管式加热炉温度-温度串级控制系统的设计

课程设计任务书 学生姓名:方诗豪专业班级:自动化0804 指导教师:傅剑工作单位:自动化学院 题目: 管式加热炉温度-温度串级控制系统的设计 初始条件: 管式加热炉是石油工业中重要的设备之一,它的任务是把原油加热到一定的温度,以保证下一道工序的顺利进行。加热炉的工艺过程为:燃料油经雾化后在炉膛中燃烧,被加热油料流过炉膛四周的排管后,就被加热到出口温度。试以温度-温度串级控制控制策略设计过程控制系统,使得管式加热炉出口温度为为70℃,稳态误差±2℃。 要求完成的主要任务: 1、了解管式加热炉工艺设备及其工作流程 2、基于对象特点分析,绘制控制系统方案图 3、确定系统所需检测元件、执行元件、控制器技术参数 4、撰写系统调节原理及调节过程说明书 5、总结课程设计的经验和收获 时间安排 12月19日选题、理解课题任务、要求 12月20日方案设计 12月21~28日参数计算、撰写说明书 12月29日答辩 指导教师签名:年月日 系主任(或责任教师)签名:年月日

目录 前言 (2) 1设计的目的及意义 (3) 1.1管式加热炉简介 (3) 1.2 设计目的及意义 (4) 2 管式加热炉温度控系统工作原理及控制要求 (4) 3 总体设计方案 (5) 3.1 温度—温度串级控制系统 (5) 3.2 方案特点 (6) 4 串级控制系统分析 (6) 4.1 主回路设计 (6) 4.2 副回路选择 (7) 4.3 主、副调节器规律选择 (7) 4.4 主、副调节器正反作用方式确定 (7) 4.5 控制器软件设计 (7) 4.6数字PID控制器参数整定 (9) 5 各仪表的选取及元器件清单 (10) 5.1 温度检测元件 (10) 5.2 温度变送器 (12) 5.3 调节阀 (13) 5.4 联锁保护 (13) 6 感受和体会 (14)

火电厂燃煤锅炉温度控制系统

火电厂锅炉温度控制系统 锅炉温度的控制效果直接影响着产品的质量,温度低于或高于要求时要么不能达到生产质量指标有时甚至会发生生产事故。采用双交叉燃烧控制以锅炉炉膛温度为主控参数、燃料和空气并列为副被控变 量设计火电厂锅炉温度控制系统,以达到精度在5 ℃范围内。 工程控制是工业自动化的重要分支。几十年来,工业过程控制获得了惊人的发展,无论是在大规模的结构复杂的工业生产过程中,还是在传统工业过程改造中,过程控制技术对于提高产品质量以及能源的节约都起着重要的作用。 生产过程是指物料经过若干加工步骤而成为产品的过程。该过程中通常会发生物理化学反应、生化反应、物质能量的转换与传递等等,或者说生产过程表现为物流过变化的过程,伴随物流变化的信息包括物流性质的信息和操作条件的信息。 生产过程的总目标,应该是在可能获得的原料和能源条件下,以最经济的途径,将原物料加工成预期的合格产品。为了打到目标,必须对生产过程进行监视和控制。因此,过程控制的任务是在了解生产过程的工艺流程和动静态特性的基础上,应用理论对系统进行分析与综合,以生产过程中物流变化信息量作为被控量,选用适宜的技术手段。实现生产过程的控制目标。 生产过程总目标具体表现为生产过程的安全性、稳定性和经济性。 (1)安全性在整个生产过程中,确保人身和设备的安全是最重要和最基本的要求。在过程控制系统中采用越限报警、事故报警和连锁保护等措施来保证生产过程的安全性。另外,在线故障预测与诊断、容错控制等可以进一步提高生产过程的安全性。 (2)稳定性指系统抑制外部干扰、保持生产过程运行稳定的能力。变化的工业运行环境、原料成分的变化、能源系统的波动等均有可能影响生产过程的稳定运行。在外部干扰下,过程控制系统应该使生产过程参数与状态产生的变化尽可能小,以消除或者减少外部干扰可能造成的不良影响。 (3)经济性在满足以上两个基本要求的基础上,低成本高效益是过程控制的另外一个重要目标。为了打到这个目标,不进需要对过程控制系统进行优化设计,还需要管控一体化,即一经济效益为目标的整体优化。 工业过程控制可以分为连续过程工业、离散过程工业和间隙过程工业。其中,连续过程工业占的比重最大,涉及石油、化工、冶金、电力、轻工、纺织、医药、建材、食品等工业部门,连续过程工业的发展对我国国民经济意义最大。过程控制主要指的就是连续过程工业的过程控制。 锅炉是工业生产中不可缺少的动力设备,它多产生的蒸汽不仅能够为蒸馏、化学反应、干燥、蒸发等过程提供热源,而且,还可以作为风机,压缩机、泵类驱动透平的动力源。随着石油化学工业规模的

组态王课程设计--锅炉温度控制系统

锅炉温度控制系统上位机设计 1. 设计背景 锅炉是化工、炼油、发电等工业生产过程中必不可少的重要的动力设备。它所产生的高压蒸汽,既可以作为风机、压缩机、大型泵类的驱动透平的动力源,又可作为蒸馏、化学反应、干燥和蒸发等过程的热源。随着工业生产规模的不断扩大,生产设备的不断创新,作为全厂动力和热源的锅炉,办向着大容量、高参数、高效率发展。为了确保安全,稳定生产,锅炉设备的控制系统就显得愈加重要。随着经济的迅猛发展,自动化控制水平越来越高,用户对锅炉控制系统的工作效率要求也越来越高,为了提高锅炉的工作效率,较少对环境的污染问题,所以利用计算机与组态软件技术对锅炉生产过程进行自动控制有着重要的意义。 2.任务要求 (1) 按照题目设计监控画面及动态模拟; (2) 在数据字典中定义需要的内存变量和I/O变量; (3) 实现监控系统的实时、历史曲线及报警界面显示; (4) 实现保存数据和参数报表打印功能; (5) 实现登陆界面和帮助界面。 3. 界面功能 3.1 系统说明 本系统的目的是实现锅炉的温度控制,所以在监控界面设置了加热部分和降温部分,同时通过观察相应仪表,操作者手动的实现对锅炉温度的控制,而且在加热过程和降温过程中有信号灯可以清楚地显示系统工作在什么阶段。此外,在监控界面加入了液位控制部分,通过对进水量和出水量的控制实现液位平衡。实时曲线和历史曲线可以让操作者清楚地观察到锅炉内液体的液位高度和温度,从而更加准确的操作系统,达到控制要求。实时报警界面可以随时进行提醒,防止发生意外情况。帮助界面可以让初次登陆该系统的用户快速学会如何操作系统。登陆界面中加入用户登陆部分,只有有相应权限的操作者也可以控制系统。该系统还加入历史曲线打印功能和对系统相关变量的保存功能,用户可以随时查看历史记录。 3.2主监控界面 主控界面实现的是操作者观察仪表,得到锅炉内液体温度和液位的实时信息,通过调节电磁阀1、2,使得锅炉内液体液位保持在要求范围内,通过加热按钮和降温按钮对温度进行控制,使得温度在要求范围内。这样,就实现了锅炉温度的控制。在该界面加入菜单项,可以查看历史系统报警。加入实时曲线、历史曲线和帮助界面按钮,可以使操作者更加快捷、准确的实现对系统的控制。如图1所示:

过程控制系统课程设计(锅炉汽包温度控制系统论文)

洛阳理工学院 过程控制系统课程设计题目:水塔温度控制系统

目录 第1章水塔温度控制系统设计方案.......................... 错误!未定义书签。 1. 1系统设计方案概述............................... 错误!未定义书签。 1.2 水塔温度串级控制系统仿真........................ 错误!未定义书签。 第2章水塔温度控制系统硬件设计.......................... 错误!未定义书签。 2.1系统对象特性设计................................ 错误!未定义书签。 2.2系统检测回路设计................................ 错误!未定义书签。 2.3控制器设计...................................... 错误!未定义书签。 2.4执行器选择...................................... 错误!未定义书签。 2.5参数整定 (9) 第3章水塔温度控制系统软件设计 (10) 3.1 程序设计 (11) 3.2 温度控制算法程序设计............................ 错误!未定义书签。 第4章设计结论.......................................... 错误!未定义书签。 参考文献................................................. 错误!未定义书签。 第1章水塔温度控制系统设计方案 1. 1系统设计方案概述 本次设计采用串级控制系统对水塔温度进行控制。 过程控制系统由过程检测、变送和控制仪表、执行装置等组成,通过各种类型的仪 表完成对过程变量的检测、变送和控制,并经执行装置作用于生产过程。 串级控制系统是两只调节器串联起来工作,其中一个调节器的输出作为另一个调节 器的给定值的系统。此系统改善了过程的动态特性,提高了系统控制质量,能迅速克服 进入副回路的二次扰动,提高了系统的工作频率,对负荷变化的适应性较强。 串级控制系统工程应用场合如下:

关于锅炉主蒸汽温度达不到设计参数

关于锅炉主蒸汽温度达不到设计参数 的初步原因分析及建议 (陕西秦安科技有限责任公司) 自从云南云维集团大为制焦有限公司热电站的#1、#2、#3锅炉试运行以来,虽经多方调整,在额定负荷下,锅炉主汽温度仍不能达到设计数值,减温水根本不能正常投入使用,导致汽轮发电机组因主汽温度偏低而无法带满负荷的问题。为满足汽轮发电机组的带满负荷能力,而不得不采取加大排汽等非常手段。长期以来,不但使机组的经济性大大降低,而且影响到机组安全运行。为探讨造成主蒸汽温度严重偏低的原因,对锅炉的设计、运行等方面进行了粗略的估算或分析,并提出一些不成熟的意见或建议,供公司、热电厂等部门参考。 1.锅炉设计简况。 ⑴锅炉概况。 锅炉为无锡锅炉厂制造的UG-75/5.3-M25型次高压、掺烧煤泥、焦炉煤气、高温旋风分离器、单锅筒、自然循环的循环流化床锅炉。锅炉由炉膛及尾部竖井烟道组成。炉膛为悬吊结构,炉膛四周由膜式水冷壁组成。锅炉尾部自上而下依次布置了高温过热器、低温过热器、模式省煤器及管式空气预热器。 锅炉设计规范: 锅炉型号:UG-75/5.3-M25 额定蒸发量BMCR:75 t/h (G) MPa 过热蒸汽出口压力: 5.299+0.3 -0.5 ℃ 过热蒸汽出口温度: 485+5 -10 给水温度 150℃ 排烟温度: 145±10℃ 锅炉设计效率:≥88 % 煤泥进料口:锅炉炉顶进料 炉膛出口烟温(BMCR)~900 ℃ 炉膛出口过量空气系数 1.2

汽包的工作压力 5.83 MPa 灰渣比 6:4 高温分离器温度850℃~1000℃ 高温过热器进口烟气温度830.5℃。 图一锅炉简图 锅炉采用平衡通风方式,配用一台引风机,一台一次风机,一台二次风机。 空气分为一次风及二次风,一次风及二次风比为55:45。在80%煤泥20%中煤时,设计的一次风量为56603 Nm3/h(20℃),二次风量为47561 Nm3/h (20℃),流化风机风量为500 Nm3/h,烟气量为163846 m3/h(140℃)。 ⑵燃料特性: 锅炉燃料采用当地煤泥同时掺烧部分中煤(正常运行时煤泥与中煤掺烧比例为6:4) 煤质资料如表一所示。

相关主题