搜档网
当前位置:搜档网 › 高中数学讲义 第八章 直线和圆的方程(超级详细)

高中数学讲义 第八章 直线和圆的方程(超级详细)

高中数学讲义 第八章  直线和圆的方程(超级详细)
高中数学讲义 第八章  直线和圆的方程(超级详细)

高中数学复习讲义第八章直线和圆的方程

【方法点拨】

1.掌握直线的倾斜角,斜率以及直线方程的各种形式,能正确地判断两直线位置关系,并能熟练地利用距离公式解决有关问题.注意直线方程各种形式应用的条件.了解二元一次不等式表示的平面区域,能解决一些简单的线性规划问题.

2.掌握关于点对称及关于直线对称的问题讨论方法,并能够熟练运用对称性来解决问题.

3.熟练运用待定系数法求圆的方程.

4.处理解析几何问题时,主要表现在两个方面:(1)根据图形的性质,建立与之等价的代数结构;(2)根据方程的代数特征洞察并揭示图形的性质.5.要重视坐标法,学会如何借助于坐标系,用代数方法研究几何问题,体会这种方法所体现的数形结合思想.

6.要善于综合运用初中几何有关直线和圆的知识解决本章问题;还要注意综合运用三角函数、平面向量等与本章内容关系比较密切的知识.

第1课直线的方程

【考点导读】

理解直线倾斜角、斜率的概念,掌握过两点的直线的斜率公式,掌握直线方程的几种形式,能根据条件,求出直线的方程.

高考中主要考查直线的斜率、截距、直线相对坐标系位置确定和求在不同条件下的直线方程,属中、低档题,多以填空题和选择题出现,每年必考.

【基础练习】 1. 直线x cos α+

3y +2=0

的倾斜角范围是50,,66πππ?????????????

2. 过点)3,2(P ,且在两坐标轴上的截距互为相反数的直线方程是

10320-+=-=或x y x y

3.直线l 经过点(3,-1),且与两坐标轴围成一个等腰直角三角形,则直线l 的方程为42=-=-+或y x y x

4.无论k 取任何实数,直线()()()14232140k x k y k +--+-=必经过一定点P ,则P 的坐标为(2,2) 【范例导析】

例1.已知两点A (-1,2)、B (m ,3) (1)求直线AB 的斜率k ; (2)求直线AB 的方程;

(3)已知实数m 1?

?∈????

,求直线AB 的倾斜角α的取值范围. 分析:运用两点连线的子斜率公式解决,要注意斜率不存在的情况. 解:(1)当m =-1时,直线AB 的斜率不存在. 当m ≠-1时,1

1

k m =

+, (2)当m =-1时,AB :x =-1, 当m ≠1时,AB :()1

211

y x m -=

++. (3)①当m =-1时,2

π

α=;

②当m ≠-1时,

∵(

1,1k m ?=∈-∞?+∞??+??

∴2,,6223

ππππα????

∈?? ??????

故综合①、②得,直线AB 的倾斜角2,

6

3ππα??

∈????

点拨:本题容易忽视对分母等于0和斜率不存在情况的讨论.

例2.直线l 过点P(2,1),且分别交x 轴、y 轴的正半轴于点A 、B 、O 为坐标原点. (1)当△AOB 的面积最小时,求直线l 的方程; (2)当|PA|·|PB|取最小值时,求直线l 的方程.

分析: 引进合适的变量,建立相应的目标函数,通过寻找函数最值的取得条件来求l 的方程.

解 (1)设直线l 的方程为y -1=k (x -2),则点A(2-1

k

,0),B(0,1-2k ),且2-1k

>0, 1-2k >0,即k <0.

△AOB 的面积S=1

2

(1-2k )(2-1k

)=12

[(-4k )+

1k -+4]≥4,当-4k =1k -,即k =1

2

-时, △AOB 的面积有最小值4,则所求直线方程是x +2y -4=0. (2)解法一:由题设,可令直线方程l 为y -1=k (x -2). 分别令y =0和x =0,得A(2-1k

,0),B(0,1-2k ), ∴|PA|·

|PB|=4=≥,当且仅当k 2=1,即k =±1时, |PA|·|PB|取得最小值4.又k <0, ∴k =-1,这是直线l 的方程是x +y -3=0. 解法二:如下图,设∠BAO=θ,由题意得θ∈(0,2

π),且|PA|·|PB|=

||||4

4sin cos sin 2PE PF θθθ

?=≥ 当且仅当θ=4

π时, |PA|·|PB|取得最小值4,此时直线l 的斜率为-1, 直线l 的方程是x +y -3=0.

例2图

点评 ①求直线方程的基本方法包括利用条件直接求直线的基本量和利用待定系数法求直线的基本量.②在研究最值问题时,可以从几何图形开始,找到取最值时的情形,也可以从代数角度出发,构建目标函数,利用函数的单调性或基本不等式等知识来求最值.

例3.直线l 被两条直线l 1:4x +y +3=0和l 2:3x -5y -5=0截得的线段中点为P (-1,2).求直线l 的方程.

分析 本题关键是如何使用好中点坐标,对问题进行适当转化.

解:解法一 设直线l 交l 1于A (a ,b ),则点(-2-a ,4-b )必在l 2,所以有

4303(2)5(4)50a b a b ++=??

-----=?,解得2

5a b =-??=?

直线l 过A(-2,5),P(-1,2),它的方程是3x +y +1=0.

解法二 由已知可设直线l 与l 1的交点为A (-1+m ,2+n ),则直线l 与l 2的交点为B (-1-m ,2-n ),且l 的斜率k =n m

,∵A,B 两点分别l 1和l 2上,∴

4(1)(2)30

3(1)5(2)50

m n m n -++++=??

-----=?,消去常数项得-3m =n ,所以k =-3, 从而直线l 的方程为3x +y +1=0.

解法三 设l 1、l 2与l 的交点分别为A,B ,则l 1关于点P (-1,2)对称的直线m 过点B ,利用对称关系可求得m 的方程为4x +y +1=0,因为直线l 过点B ,故直线l 的方程可设为3x -5y -5+λ(4x +y +1)=0.由于直线l 点P (-1,2),

所以可求得λ=-18,从而l 的方程为3x -5y -5-18(4x +y +1)=0,即3x +y +1=0.

点评 本题主要复习有关线段中点的几种解法,本题也可以先设直线方程,然后求交点,再根据中点坐标求出直线l 的斜率,但这种解法思路清晰,计算量大,解法一和解法二灵活运用中点坐标公式,使计算简化,对解法二还可以用来求已知中点坐标的圆锥曲线的弦所在直线方程,解法三是利用直线系方程求解,对学生的思维层次要求较高。

【反馈练习】

1.已知下列四个命题①经过定点P 0(x 0,y 0)的直线都可以用方程y-y 0=k(x-x 0)表示;②经过任意两个不同点P 1(x 1,y 1)、P 2(x 2,y 2)的直线都可以用方程(y-y 1)(x 2-x 1)=(x-x 1)(y 2-y 1)表示;③不经过原点的直线都可以用方程a

x

+b

y =1表示;④经过定点A(0,b)的直线都可以用方程y =kx+b 表示,其中正确的是①③④

2.设直线l 的方程为()()232603x k y k k +--+=≠,当直线l 的斜率为-1时,k 值为__5__,当直线l 在x 轴、y 轴上截距之和等于0时,k 值为1或3

3.设直线 a x+b y+c =0的倾斜角为α,且sin α+cos α=0,则a ,b 满足的关系式为

0=-b a

4.若直线l :y =kx 3-与直线2x +3y -6=0的交点位于第一象限,则直线l 的倾

斜角的取值范围是)2

,6(π

π

5.若直线4x-3y-12=0被两坐标轴截得的线段长为c 1,则c 的值为5

1

6.若直线(m 2─1)x ─y ─2m +1=0不经过第一象限,则实数m 的取值范围是112?? ???

7.已知两直线a 1x +b 1y +1=0和a 2x +b 2y +1=0的交点为P (2,3),求过两点Q 1(a 1,b 1)、Q 2(a 2,b 2)(a 1≠a 2)的直线方程 分析:利用点斜式或直线与方程的概念进行解答

解:∵P (2,3)在已知直线上,∴ 2a 1+3b 1+1=0,2a 2+3b 2+1=0 ∴2(a 1-a 2)+3(b 1-b 2)=0,即2

12

1a a b b --=-3

2∴所求直线方程为y -b 1=-3

2(x

-a 1)

∴2x +3y -(2a 1+3b 1)=0,即2x +3y +1=0

点拨:1.由已知求斜率; 2.运用了整体代入的思想,方法巧妙.

8.一条直线经过点P (3,2),并且分别满足下列条件,求直线方程: (1)倾斜角是直线x -4y +3=0的倾斜角的2倍;

(2)与x 、y 轴的正半轴交于A 、B 两点,且△AOB 的面积最小(O 为坐标原点) 解:(1)设所求直线倾斜角为θ,已知直线的倾斜角为α,则θ=2α,且tan α=4

1,

tan θ=tan2α=

15

8

, 从而方程为8x -15y +6=0

(2)设直线方程为a

x +b

y =1,a >0,b >0,

代入P (3,2),得a

3+b 2=1≥2

ab

6

,得ab ≥24,

从而S △AOB =2

1ab ≥12,

此时a

3=b

2,∴k =-a b =-3

2

点拨:此题(2)也可以转化成关于a 或b 的一元函数后再求其最小值

第2课 两条直线的位置关系

【考点导读】

1.掌握两条直线平行与垂直的条件,能根据直线方程判定两条直线的位置关系,会求两条相交直线的交点,掌握点到直线的距离公式及两平行线间距离公式.

2.高考数学卷重点考察两直线平行与垂直的判定和点到直线的距离公式的运用,有时考察单一知识点,有时也和函数三角不等式等结合,题目难度中等偏易. 【基础练习】

1.已知过点A(-2,m )和B(m ,4)的直线与直线2x +y -1=0平行,则m 的值为-8

2.过点(-1,3)且垂直于直线x -2y +3=0的直线方程为2x +y -1=0

3.若三条直线2380,x y ++=10x y --=和102

x ky k +++=相交于一点,则k 的值等于

1

2- .

【范例导析】

例1.已知两条直线1l :x +m 2y +6=0, 2l :(m -2)x +3my +2m =0,当m 为何值时, 1l 与

2l

(1) 相交;(2)平行;(3)重合? 分析:利用垂直、平行的充要条件解决.

解:当m=0时,1l :x +6=0,2l :x =0,∴1l ∥2l , 当m=2时,1l :x +4y +6=0,2l :3y +2=0 ∴1l 与2l 相交;

当m ≠0且m ≠2时,由m m m 3212=-得m =-1或m =3,由m

m 26

21=-得m =3 故(1)当m ≠-1且m ≠3且m ≠0时1l 与2l 相交。 (2)m =-1或m =0时1l ∥2l , (3)当m =3时1l 与2l 重合。

点拨:判断两条直线平行或垂直时,不要忘了考虑两条直线斜率是否存在. 例2.已知直线l 经过点P (3,1),且被两平行直线1l :x +y +1=0和2l :x +y +6=0截得的线段之长为5。求直线l 的方程。

分析:可以求出直线l 与两平行线的交点坐标,运用两点距离公式求出直线斜率 解法一::若直线l 的斜率不存在,则直线l 的方程为x =3,此时与1l 、2l 的交点分别是A 1(3,-4)和

B 1(3,-9),截得的线段AB 的长|AB|=|-4+9|=5,符合题意。若直线l 的斜率存在,则设l 的方程为y =k (x -3)+1, 解方程组()1031

x y y k x ++=???

=-+??得A (,123+-k k -

114+-k k ) 解方程组 ()60

31x y y k x ++=???=-+??

得B (173+-k k ,-119+-k k )

由|AB|=5得

2

323711k k k k --??- ?++??+2

419111k k k k --??

-+ ?++??

=25, 解之,得k =0,即所求的直线方程为y =1。 综上可知,所求l 的方程为x =3或y =1。

解法二.设直线l 与1l 、2l 分别相交于A (x 1,y 1)、B (x 2,y 2),则x 1+y 1+1=0, x 2+y 2+6=0。两式相减,得(x 1-x 2)+(y 1-y 2)=5 ①

又(x 1-x 2)2+(y 1-y 2)2=25 ②

联立① ②,可得121250x x y y -=??-=?或1212

5x x y y -=??-=?

由上可知,直线l 的倾斜角为0°或90°,又由直线l 过点P (3,1),故所求l 的方程为x =3或y =1。

点拨:用待定系数法求直线方程时,要注意对斜率不存在的情况的讨论.

【反馈练习】

1.已知直线l 在x 轴上的截距为1,且垂直于直线x y 2

1=,则l 的方程是22+-=x y

2.若直线3)1(=-+y a ax 与5)32()1(=++-y a x a 互相垂直,则 =a -3或1

3.若直线l 1:ax +2y +6=0与直线l 2:x +(a -1)y +(a 2-1)=0平行,则a 的值是___-1___.

4.已知2

0πθ≤≤,且点)cos ,1(θ到直线1cos sin =+θθy x 的距离等于4

1,则θ等于6

π

5. 经过直线0732=-+y x 与01157=++y x 的交点,且平行于直线032=-+y x 的直线方程是3x+6y-2=0

6.线1l 过点)0,5(A ,2l 过点)1,0(B ,1l ∥2l ,且1l 与2l 之间的距离等于5,求1l 与2l 的方程。

解:1l 与2l 的方程分别为:12x-5y-60=0,12x-5y+5=0或x=5,x=0

7.已知!ABC 的三边方程分别为AB:43100x y -+=,BC:20y -=,CA:3450x y --=. 求:(1)AB 边上的高所在直线的方程;(2)∠BAC 的内角平分线所在直线的方程.

解:(1)AB 边上的高斜率为3

4

-且过点C ,解方程组203450

y x y -=??

--=?得点C (13

3,2)

所以AB 边上的高方程为34210x y +-=.

(2)设P (),x y 为∠BAC

=

得7750x y -+=或150x y ++=,由图形知7750x y -+=即为所求.

第3课 圆的方程

【考点导读】

1.掌握圆的标准方程与一般方程,能根据问题的条件选择适当的形式求圆的方程;理解圆的标准方程与一般方程之间的关系,会进行互化。

2.本节内容主要考查利用待定系数法求圆的方程,利用三角换元或数形结合求最值问题,题型难度以容易题和中档题为主. 【基础练习】

1.已知点A(3,-2),B(-5,4),以线段AB 为直径的圆的方程为(x + 1)2 + (y -1)2 = 25

2.过点A (1,-1)、B (-1,1)且圆心在直线x +y -2=0上的圆的方程是(x -1)2+(y -1)2=4

3.已知圆C 的半径为2,圆心在x 轴的正半轴上,直线0443=++y x 与圆C 相切,则圆C 的方程为0422=-+x y x

4.圆22420x y x y c +-++=与y 轴交于A 、B 两点,圆心为P ,若∠APB=120°,则实数c 值为_-11__

5.如果方程220x y Dx Ey F ++++=()2240D E F +->所表示的曲线关于直线y x =对称,那么必有__D=E__ 【范例导析】

【例1】 设方程22242(3)2(14)1690x y m x m y m +-++-++=,若该方程表示一个圆,

求m 的取值范围及这时圆心的轨迹方程。 分析:配成圆的标准方程再求解

解:配方得:[]2

2

22(3)(14)167x m y m m m ??-++--=+-??

该方程表示圆,则有21670m m +->,得1

(,1)7m ∈-,此时圆心的轨迹方程为2

341

x m y m =+??=-?,消去m ,得24(3)1y x =--,由1(,1)7m ∈-得x =m +320,47??

∈ ???∴所求的轨迹方程是24(3)1y x =--,

20,47x ??

∈ ???

注意:方程表示圆的充要条件,求轨迹方程时,一定要讨论变量的取值范围,如题中20,47x ??

???

变式1:方程224(1)40ax ay a x y +--+=表示圆,求实数a 的取值范围,并求出其中半径最小的圆的方程。

解:原方程可化为2

2222(1)24(22)()a a a x y a a a --+??

-++=???

? 2220,a a -+>∴Q 当a 0≠时,原方程表示圆。

又r ===≥

当min 2,a r ==()()22

112x y -++=

例2 求半径为4,与圆042422=---+y x y x 相切,且和直线0=y 相切的圆的方程. 分析:根据问题的特征,宜用圆的标准方程求解.

解:则题意,设所求圆的方程为圆222)()(r b y a x C =-+-:

. 圆C 与直线0=y 相切,且半径为4,则圆心C 的坐标为)4,(1a C 或)4,(2-a C . 又已知圆042422=---+y x y x 的圆心A 的坐标为)1,2(,半径为3.

若两圆相切,则734=+=CA 或134=-=CA .

(1)当)4,(1a C 时,2227)14()2(=-+-a ,或2221)14()2(=-+-a (无解),故可得

1022±=a .

∴所求圆方程为2224)4()1022(=-+--y x ,或2224)4()1022(=-++-y x . (2)当)4,(2-a C 时,2227)14()2(=--+-a ,或2221)14()2(=--+-a (无解),故622±=a . ∴所求圆的方程为2224)4()622(=++--y x ,或2224)4()622(=+++-y x .

【反馈练习】

1.关于x,y 的方程Ax 2+Bxy+Cy 2+Dx+Ey+F=0表示一个圆的充要条件是B=0且A=C ≠0,D 2+E 2-4AF >0

2.过点P(-8,-1),Q(5,12),R(17,4)三点的圆的圆心坐标是(5,-1)

3.若两直线y=x+2k 与y=2x+k+1的交点P 在圆x 2+y 2=4的内部,则k 的范围是

1

15

k -<< 4.已知圆心为点(2,-3),一条直径的两个端点恰好落在两个坐标轴上,则这个圆的方程是22460x y x y +-+=

5.直线y=3x+1与曲线x 2+y 2=4相交于A 、B 两点,则AB 的中点坐标是31,1010??- ??

?

6.方程1x -=_两个半圆

7.圆2)4()3(22=++-y x 关于直线0=+y x 的对称圆的方程是22(4)(3)2x y -++=

8.如果实数x 、y 满足等式()2

223x y -+=,那么y x

的最大值是3

9.已知点)1,1(-A 和圆4)7()5(:22=-+-y x C ,求一束光线从点A 经x 轴反射到圆周C 的最短路程为___8___

10.求经过点A(5,2),B(3,2),圆心在直线2x─y─3=0上的圆的方程;

解:设圆心P(x 0,y 0),则有???-+-=-+-=--2

020202000)

2()3()2()5(0

32y x y x y x , 解得 x 0=4, y 0=5, ∴半径r=10,

∴所求圆的方程为(x─4)2+(y─5)2=10

11. 一圆与y 轴相切,圆心在直线x -3y =0上,且直线y =x 截圆所得弦长为27

求此圆的方程

解:因圆与y 轴相切,且圆心在直线x -3y =0上, 故设圆方程为222(3)()9x b y b b -+-=

又因为直线y =x 截圆得弦长为27

则有2

+2=9b 2, 解得b =±1故所求圆方程为

22(3)(1)9x y -+-=或22(3)(1)9x y +++=

点拨:(1)确定圆方程首先明确是标准方程还是一般方程;(2)待定系数法;(3)尽量利用几何关系求a 、b 、r 或D 、E 、F .

第4课 直线与圆的位置关系

【考点导读】

能利用代数方法和几何方法判定直线与圆的位置关系;熟练运用圆的有关性质解决直线与圆、圆与圆的综合问题,运用空间直角坐标系刻画点的位置,了解空间中两点间的距离公式及其简单应用.

【基础练习】

1.若直线4x -3y -2=0与圆x 2+y 2-2ax +4y +a 2-12=0总有两个不同交点,则a 的取值范围是-6<a <4

2.直线x -y +4=0被圆x 2+y 2+4x -4y +6=0截得的弦长等于22

3.过点P(2,1)且与圆x 2+y 2-2x +2y +1=0相切的直线的方程为 x =2或3x -4y -2=0 . 【范例导析】

例1.已知圆C :(x -1)2+(y -2)2=25,直线l :(2m +1)x +(m +1)y -7m -4=0(m ∈R ).

(1)证明:不论m 取什么实数,直线l 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时l 的方程. 分析:直线过定点,而该定点在圆内,此题便可解得. (1)证明:l 的方程(x +y -4)+m (2x +y -7)=0. 由27040x y x y +-=??

+-=?得3

1

x y =??=? 即l 恒过定点A (3,1).

∵圆心C (1,2),|AC |=5<5(半径),

∴点A 在圆C 内,从而直线l

恒与圆C 相交于两点.

(2)解:弦长最小时,l ⊥AC ,由k AC =-2

1, ∴l 的方程为2x -y -5=0.

点拨:直线与圆相交截得弦长的最小值时,可以从垂径定理角度考虑,充分利用圆的几何性质.

例2.已知圆O : 122=+y x ,圆C : 1)4()2(22=-+-y x ,由两圆外一点),(b a P 引两圆切线PA 、PB ,切点分别为A 、B ,满足|PA|=|PB|.求实数a 、b 间满足的等量关系.

解:连结PO 、PC ,∵|PA|=|PB|,|OA|=|CB|=1 ∴|PO|2=|PC|2,从而2222)4()2(-+-=+b a b a

化简得实数a 、b 间满足的等量关系为: 052=-+b a .

例3.已知圆C 与两坐标轴都相切,圆心C 到直线y x =-

. 求圆C 的方程.

解:设圆C 半径为r

,由已知得:a b r a ?

?=??=?= ∴1

1a b r ==??

=?,或11a b r ==-??=? ∴圆C 方程为2222(1)(1)1,(1)(1)1x y x y -+-=+=或++.

例4.如图,在平面直角坐标系x O y 中,平行于x 轴且过点A(33,2)的入射光线l 1被直线l :y =3

3x 反射.反射光线l 2交y 轴于B 点,圆C 过点A 且与l 1, l 2都相切.

(1)求l 2所在直线的方程和圆C 的方程; (2)设P ,Q 分别是直线l 和圆C 上的动点,求PB+PQ 的最小值及此时点P 的坐标.

解:(1)直线1:2,l y =

设1l l D D 交于点,则()

.

例2

例4

l Q 的倾斜角为30o ,260l ∴o 的倾斜角为

,2k ∴=反射光线2l 所在的直线方程为

2y x -=-.

40y --=.

已知圆C 与1l A 切于点,设C (a,b),

Q 圆心C 在过点D 且与l

垂直的直线上,8b ∴=+ ,又圆心C 在过点A 且与1

l

垂直的直线上,a ∴=

81b ∴=+=-,圆C 的半径r=3, 故所求圆C

的方程为22((1)9x y -++=.

(2)设点()0,4B -关于l 的对称点00(,)B x y '

,则00

00

4232

4y x y x ?-=??

??+?=??

,得(2)B '-,固定

点Q 可发现,当B P Q '、、共线时,PB PQ +最小,

故PB PQ +

的最小值为33B C '-=.

此时由1213y y x ?+=?

+???

=??

,

得1)2P .

【反馈练习】

1.圆x 2+y 2-4x=0在点P(1,3)

处的切线方程为20x -+=

2.已知直线l 过点)

,(02-,当直线l 与圆x y x 222=+有两个交点时,其斜率k 的取值范围是

4-(,)4

3.设m>0,则直线2(x+y)+1+m=0与圆x 2+y 2=m 的位置关系为相切或相离

解析:圆心到直线的距离为d=

2

1m

+,圆半径为m . ∵d-r=21m +-m =21(m-2m +1)=2

1

(m -1)2≥0,∴直线与圆的位置关系是相切或

相离.

4.圆(x-3)2+(y-3)2=9上到直线3x+4y-11=0的距离等于1的点有个数为3

5.点P 从(1,0)出发,沿单位圆122=+y x 逆时针方向运动3

弧长到达Q 点,则Q 的坐标为

)2

3

,21(- 6.若圆04

122=-++mx y x 与直线1-=y 相切,且其圆心在y 轴的左侧,则m 的值为

34

7.设P 为圆122=+y x 上的动点,则点P 到直线01043=--y x 的距离的最小值为 1 .

8.已知平面区域0

240x y x y ≥??≥??+-≤?

恰好被面积最小的圆222:()()C x a y b r -+-=及其内 部所覆盖.

(1)试求圆C 的方程.

(2)若斜率为1的直线l 与圆C 交于不同两点,.A B 满足CA CB ⊥,求直线l 的方程. 解:(1)由题意知此平面区域表示的是以(0,0),(4,0),(0,2)O P Q 构成的三角形及其内部,且△OPQ 是直角三角形, 所以覆盖它的且面积最小的圆是其外接圆,故圆心是(2,1),

,所以圆C 的方程是22(2)(1)5x y -+-=. (2)设直线l 的方程是:y x b =+.

因为CA CB ⊥u u u r u u u r ,

所以圆心C 到直线l

,

=

解得

:1b =-±所以直线l 的方程是

:1y x =-±.

高中数学三角函数知识点(复习)

三角函数知识点复习 §1.1.1、任意角 1、正角、负角、零角、象限角的概念. 2、 与角终边相同的角的集合: . §1.1.2、弧度制 1、把长度等于半径长的弧所对的圆心角叫做1弧度的角. 2、 . 3、弧长公式:. 4、扇形面积公式:. §1.2.1、任意角的三角函数 1、设是一个任意角,它的终边与单位圆交于点,那么: 2、 设点为角终边上任意一点,那么:(设),,, 3、 ,,在四个象限的符号和三角函数线的画法. 正弦线:MP; 余弦线:OM; 正切线:AT 5、特殊角0°,30°,45°,60°, 1、平方关系:. 2、商数关系:. 3、倒数关系: §1.3、三角函数的诱导公式 (概括为“奇变偶不变,符号看象限”) 1、 诱导公式一: (其中:)

2、 诱导公式二: 3、诱导公式三: 4、诱导公式四: 5、诱导公式五: 6、诱导公式六: §1.4.1、正弦、余弦函数的图象和性质 1、记住正弦、余弦函数图象: 2、能够对照图象讲出正弦、余弦函数的相关性质:定义域、值域、最大 最小值、对称轴、对称中心、奇偶性、单调性、周期性. 3、会用五点法作图. 在上的五个关键点为:

§1.4.3、正切函数的图象与性质 图表归纳:正弦、余弦、正切函数的图像及其性质

图象

定 义 域 值 域 [-1,1][-1,1] 最 值 周 期 性 奇 偶 性 奇偶 单调性在上单调递增 在上单调递减 在上单调递增 在上单调递减 对称性对称轴方程: 对称中心 对称轴方程: 对称中心

1、记住正切函数的图象: 2、记住余切函数的图象:

高中数学-必修二-圆与方程-经典例题

习题精选精讲圆标准方程 已知圆心),(b a C 和半径r ,即得圆的标准方程222 )() (r b y a x =-+-;已知圆的标准方程222)()(r b y a x =-+-,即得圆心 ),(b a C 和半径r ,进而可解得与圆有关的任何问题. 一、求圆的方程 例1 (06重庆卷文) 以点)1,2(-为圆心且与直线0543=+-y x 相切的圆的方程为( ) (A)3)1()2(22=++-y x (B)3)1()2(2 2=-++y x (C)9)1() 2(22 =++-y x (D)9)1()2(22=-++y x 解 已知圆心为)1,2(-,且由题意知线心距等于圆半径,即2 243546+++= d r ==3,∴所求的圆方程为9)1()2(22=++-y x , 故选(C). 点评:一般先求得圆心和半径,再代入圆的标准方程222 )()(r b y a x =-+-即得圆的方程. 二、位置关系问题 例2 (06安徽卷文) 直线1=+y x 与圆0222=-+ay y x )0(>a 没有公共点,则a 的取值范围是( ) (A))12,0(- (B ))12,12( +- (C))12,12(+-- (D))12, 0(+ 解 化为标准方程222 )(a a y x =-+,即得圆心),0(a C 和半径a r =. ∵直线 1=+y x 与已知圆没有公共点,∴线心距a r a d =>-= 2 1,平方去分母得 2 2212a a a >+-,解得 1212-<<--a ,注意到0>a ,∴120-<r d 线圆相离;?=r d 线圆相切;?

高中数学公式三角函数公式大全

高中数学公式:三角函数公式大全三角函数看似很多,很复杂,但只要掌握了三角函数的本质及内部规律就会发现三角函数各个公式之间有强大的联系。而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全: 锐角三角函数公式 sin α=∠α的对边 / 斜边 cos α=∠α的邻边 / 斜边 tan α=∠α的对边 / ∠α的邻边 cot α=∠α的邻边 / ∠α的对边 倍角公式 Sin2A=2SinA?CosA Cos2A=CosA^2-SinA^2=1-2SinA^2=2CosA^2-1 tan2A=(2tanA)/(1-tanA^2) (注:SinA^2 是sinA的平方 sin2(A)) 三倍角公式 sin3α=4sinα·sin(π/3+α)sin(π/3-α) cos3α=4cosα·cos(π/3+α)cos(π/3-α) tan3a = tan a · tan(π/3+a)· tan(π/3-a) 三倍角公式推导 sin3a

=sin(2a+a) 页 1 第 =sin2acosa+cos2asina 辅助角公式 Asinα+Bcosα=(A^2+B^2)^(1/2)sin(α+t),其中 sint=B/(A^2+B^2)^(1/2) cost=A/(A^2+B^2)^(1/2) tant=B/A Asinα+Bcosα=(A^2+B^2)^(1/2)cos(α-t),tant=A/B 降幂公式 cos(2α))/2=versin(2α)/2sin^2(α)=(1- cos^2(α)=(1+cos(2α))/2=covers(2α)/2 -cos(2α))/(1+cos(2α))tan^2(α)=(1 推导公式 tanα+cotα=2/sin2α 2cot2α-cotα=-tanα s2α=2cos^2α1+co 1-cos2α=2sin^2α 1+sinα=(sinα/2+cosα /2)^2=2sina(1-sin2a)+(1-2sin2a)sina =3sina-4sin3a cos3a =cos(2a+a) =cos2acosa-sin2asina 页 2 第 =(2cos2a-1)cosa-2(1-sin2a)cosa =4cos3a-3cosa

高中数学三角函数知识点归纳总结

《三角函数》 【知识网络】 一、任意角的概念与弧度制 1、将沿x 轴正向的射线,围绕原点旋转所形成的图形称作角. 逆时针旋转为正角,顺时针旋转为负角,不旋转为零角 2、同终边的角可表示为 {}()360k k Z ααβ? =+∈g x 轴上角:{}()180k k Z αα=∈o g y 轴上角:{}()90180k k Z αα=+∈o o g 3、第一象限角:{}()036090360k k k Z αα? ?+<<+∈o g g 第二象限角:{}()90 360180360k k k Z αα??+<<+∈o o g g 第三象限角:{}()180360270360k k k Z αα? ?+<<+∈o o g g 第四象限角: {}()270 360360360k k k Z αα??+<<+∈o o g g 4、区分第一象限角、锐角以及小于90o 的角 第一象限角:{}()0360 90360k k k Z αα? ?+<<+∈o g g 锐角: {}090αα<

,2 4 , 0π απ ≤ ≤=k ,2 345, 1παπ≤≤=k 所以 2 α 在第一、三象限 6、弧度制:弧长等于半径时,所对的圆心角为1弧度的圆心角,记作1rad . 7、角度与弧度的转化:01745.0180 1≈=?π 815730.571801'?=?≈? = π 9、弧长与面积计算公式 弧长:l R α=?;面积:211 22 S l R R α=?=?,注意:这里的α均为弧度制. 二、任意角的三角函数 1、正弦:sin y r α=;余弦cos x r α=;正切tan y x α= 其中(),x y 为角α终边上任意点坐标,r = 2、三角函数值对应表: 3、三角函数在各象限中的符号

高中数学三角函数知识点总结(非常好用)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化:,23600π= ,1800π= 1rad =π 180°≈°=57°18ˊ. 1°= 180 π≈(rad ) 3.弧长及扇形面积公式 弧长公式:r l .α= 扇形面积公式:S=r l .2 1 α----是圆心角且为弧度制。 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: x y + O — — + # x y O — + + — + y O ) | — + + —

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1。(2)商数关系:αα cos sin =tan α (z k k ∈+≠ ,2 ππ α) 6.诱导公式:记忆口诀:2 k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号 看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ' ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. 7正弦函数、余弦函数和正切函数的图象与性质

高中数学圆的方程典型例题

高中数学圆的方程典型例题 类型一:圆的方程 例1 求过两点)4,1(A 、)2,3(B 且圆心在直线0=y 上的圆的标准方程并判断点)4,2(P 与圆的关系. 分析:欲求圆的标准方程,需求出圆心坐标的圆的半径的大小,而要判断点P 与圆的位置关系,只须看点P 与圆心的距离和圆的半径的大小关系,若距离大于半径,则点在圆外;若距离等于半径,则点在圆上;若距离小于半径,则点在圆内. 解法一:(待定系数法) 设圆的标准方程为222)()(r b y a x =-+-. ∵圆心在0=y 上,故0=b . ∴圆的方程为2 22)(r y a x =+-. 又∵该圆过)4,1(A 、)2,3(B 两点. ∴?????=+-=+-2 22 24)3(16)1(r a r a 解之得:1-=a ,202 =r . 所以所求圆的方程为20)1(2 2 =++y x . 解法二:(直接求出圆心坐标和半径) 因为圆过)4,1(A 、)2,3(B 两点,所以圆心C 必在线段AB 的垂直平分线l 上,又因为 13 12 4-=--= AB k ,故l 的斜率为1,又AB 的中点为)3,2(,故AB 的垂直平分线l 的方程为:23-=-x y 即01=+-y x . 又知圆心在直线0=y 上,故圆心坐标为)0,1(-C ∴半径204)11(22=++= =AC r . 故所求圆的方程为20)1(2 2 =++y x . 又点)4,2(P 到圆心)0,1(-C 的距离为 r PC d >=++==254)12(22. ∴点P 在圆外. 说明:本题利用两种方法求解了圆的方程,都围绕着求圆的圆心和半径这两个关键的量,然后根据圆心与定点之间的距离和半径的大小关系来判定点与圆的位置关系,若将点换成直线又该如何来判定直线与圆的位置关系呢?

高中数学三角函数公式大全全解

三角函数公式 1.正弦定理: A a sin = B b sin =C c sin = 2R (R 为三角形外接圆半径) 2.余弦定理:a 2=b 2+c 2-2bc A cos b 2=a 2+c 2-2ac B cos c 2=a 2+b 2-2ab C cos bc a c b A 2cos 2 22-+= 3.S ⊿= 21a a h ?=21ab C sin =21bc A sin =21ac B sin =R abc 4=2R 2A sin B sin C sin =A C B a sin 2sin sin 2=B C A b sin 2sin sin 2=C B A c sin 2sin sin 2=pr=))()((c p b p a p p --- (其中)(2 1 c b a p ++=, r 为三角形内切圆半径) 4.诱导公试 注:奇变偶不变,符号看象限。 注:三角函数值等于α的同名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:函数名不变,符号看象限 注:三角函数值等于α的 异名三角函数值,前面加上一个把α看作锐角时,原三角函数值的符号;即:

函数名改变,符号看象限 5.和差角公式 ①βαβαβαsin cos cos sin )sin(±=± ②βαβαβαsin sin cos cos )cos( =± ③β αβ αβαtg tg tg tg tg ?±= ± 1)( ④)1)((βαβαβαtg tg tg tg tg ?±=± 6.二倍角公式:(含万能公式) ①θ θ θθθ2 12cos sin 22sin tg tg += = ②θ θ θθθθθ2 22 2 2 2 11sin 211cos 2sin cos 2cos tg tg +-=-=-=-= ③θθθ2122tg tg tg -= ④22cos 11sin 222θθθθ-=+=tg tg ⑤22cos 1cos 2 θθ+= 7.半角公式:(符号的选择由 2 θ 所在的象限确定) ①2cos 12 sin θθ -± = ②2 cos 12sin 2θ θ-= ③2cos 12cos θθ+±= ④2cos 12 cos 2 θθ += ⑤2sin 2cos 12θθ=- ⑥2 cos 2cos 12θθ=+ ⑦2 sin 2 cos )2 sin 2 (cos sin 12θ θθθθ±=±=± ⑧θ θ θθθθθ sin cos 1cos 1sin cos 1cos 12 -=+=+-± =tg 8.积化和差公式: [])sin()sin(21cos sin βαβαβα-++=[] )sin()sin(21 sin cos βαβαβα--+=[])cos()cos(21cos cos βαβαβα-++= ()[]βαβαβα--+-=cos )cos(2 1 sin sin 9.和差化积公式:

高中数学三角函数公式大全

高中数学三角函数公式大全 三角函数看似很多,很复杂,而掌握三角函数的内部规律及本质也是学好三角函数的关键所在,下面是三角函数公式大全:操作方法 01 两角和公式 sin(A+B) = sinAcosB+cosAsinB sin(A-B) = sinAcosB-cosAsinB cos(A+B) = cosAcosB-sinAsinB cos(A-B) = cosAcosB+sinAsinB tan(A+B) = (tanA+tanB)/(1-tanAtanB) tan(A-B) = (tanA-tanB)/(1+tanAtanB) cot(A+B) = (cotAcotB-1)/(cotB+cotA) cot(A-B) = (cotAcotB+1)/(cotB-cotA)

02 倍角公式 tan2A = 2tanA/(1-tan^2 A) Sin2A=2SinA?CosA Cos2A = Cos^2 A--Sin^2 A =2Cos^2 A—1 =1—2sin^2 A 三倍角公式 sin3A = 3sinA-4(sinA)^3; cos3A = 4(cosA)^3 -3cosA -a) tan3a = tan a ? tan(π/3+a)? tan(π/3 半角公式 --cosA)/2} sin(A/2) = √{(1 cos(A/2) = √{(1+cosA)/2} --cosA)/(1+cosA)} tan(A/2) = √{(1 cot(A/2) = √{(1+cosA)/(1 -cosA)} tan(A/2) = (1--cosA)/sinA=sinA/(1+cosA)

人教版高中数学必修二圆与方程题库完整

(数学2必修)第四章 圆与方程 [基础训练A 组] 一、选择题 1.圆22(2)5x y ++=关于原点(0,0)P 对称的圆的方程为 ( ) A .22(2)5x y -+= B .22(2)5x y +-= C .22(2)(2)5x y +++= D .22(2)5x y ++= 2.若)1,2(-P 为圆25)1(22=+-y x 的弦AB 的中点,则直线AB 的方程是( ) A. 03=--y x B. 032=-+y x C. 01=-+y x D. 052=--y x 3.圆012222=+--+y x y x 上的点到直线2=-y x 的距离最大值是( ) A .2 B .21+ C .2 21+ D .221+ 4.将直线20x y λ-+=,沿x 轴向左平移1个单位,所得直线与 圆22 240x y x y ++-=相切,则实数λ的值为( ) A .37-或 B .2-或8 C .0或10 D .1或11 5.在坐标平面,与点(1,2)A 距离为1,且与点(3,1)B 距离为2的直线共有( ) A .1条 B .2条 C .3条 D .4条 6.圆0422=-+x y x 在点)3,1(P 处的切线方程为( ) A .023=-+y x B .043=-+y x C .043=+-y x D .023=+-y x 二、填空题 1.若经过点(1,0)P -的直线与圆03242 2=+-++y x y x 相切,则此直线在y 轴上的截距是 __________________. 2.由动点P 向圆221x y +=引两条切线,PA PB ,切点分别为0 ,,60A B APB ∠=,则动点P 的轨迹方程为 。 3.圆心在直线270x y --=上的圆C 与y 轴交于两点(0,4),(0,2)A B --,则圆C 的方程为 . 4.已知圆()4322 =+-y x 和过原点的直线kx y =的交点为,P Q 则OQ OP ?的值为________________。

人教版 高中数学必修4 三角函数知识点

高中数学必修4知识点总结 第一章 三角函数(初等函数二) ?? ?? ?正角:按逆时针方向旋转形成的角1、任意角负角:按顺时针方向旋转形成的角零角:不作任何旋转形成的角 2、角α的顶点与原点重合,角的始边与x 轴的非负半轴重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为{} 36036090,k k k αα?<, 则sin y r α= ,cos x r α= ,()tan 0y x x α= ≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:sin α=M P ,cos α=O M ,tan α=AT . 12、同角三角函数的基本关系:()2 2 1sin cos 1αα+=

高中数学圆与方程讲义练习及答案

第四章 圆方程 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。 2 (1 点00(,)M x y 与圆2 2 2 ()()x a y b r -+-=的位置关系: 当22 00()()x a y b -+->2r ,点在圆外 当22 00()()x a y b -+-=2r ,点在圆上 当22 00()()x a y b -+-<2r ,点在圆内 (2当04>-+F E D 时,方程表示圆,此时圆心为? ? ? ? ?--2,2 E D ,半径为 F E D r 42 122-+= 当0422 =-+F E D 时,表示一个点; 当042 2<-+F E D 时,方程不表示任何图形。 (3)求圆方程的方法: 一般都采用待定系数法:先设后求。确定一个圆需要三个独立条件,若利用圆的标准方程, 需求出a ,b ,r ;若利用一般方程,需要求出D ,E ,F ; 另外要注意多利用圆的几何性质:如弦的中垂线必经过原点,以此来确定圆心的位置。 3、直线与圆的位置关系: 直线与圆的位置关系有相离,相切,相交三种情况: (1)设直线0:=++C By Ax l ,圆()()222:r b y a x C =-+-,圆心()b a C ,到l 的距离为 相离与C l r d ?>;相切与C l r d ?=;相交与C l r d ?< (2)过圆外一点的切线:①k 不存在,验证是否成立②k 存在,设点斜式方程,用圆心到该直线距离=半径,求解k ,得到方程【一定两解】 程:圆(x-a)2+(y-b)2=r 2,圆上一点为(x 0,y 0),则过此点的切线方程为 4、圆与圆的位置关系:通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 设圆()()221211:r b y a x C =-+-,()()22 2222:R b y a x C =-+- 两圆的位置关系常通过两圆半径的和(差),与圆心距(d )之间的大小比较来确定。 当r R d +>时两圆外离,此时有公切线四条; 当r R d +=时两圆外切,连心线过切点,有外公切线两条,内公切线一条; 注意:已知圆上两点,圆心必在中垂线上;已知两圆相切,两圆心与切点共线 圆的辅助线一般为连圆心与切线或者连圆心与弦中点

高中数学三角函数知识点总结(珍藏版)

高中数学三角函数知识点总结 1.特殊角的三角函数值: 2.角度制与弧度制的互化: ,23600π= ,1800 π= 1rad =π 180°≈57.30°=57°18ˊ 1°= 180 π≈0.01745(rad ) 3.弧长及扇形面积公式 (1)弧长公式:r l .α= α----是圆心角且为弧度制 (2)扇形面积公式:S=r l .2 1 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: 记忆口诀:一全正,二正弦,三两切,四余弦

sin α cos α tan α 5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1 (2)商数关系:ααcos sin =tan α(z k k ∈+≠,2 ππ α) 6.诱导公式: 记忆口诀:把2 k π α±的三角函数化为α的三角函数,概括为:奇变偶不变,符号看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2π αα??+= ???,cos sin 2παα?? +=- ??? . 口诀:正弦与余弦互换,符号看象限. x y O — + + — + y O — + + —

高中数学圆与方程知识点

高中数学圆与方程知识点分析 1. 圆的方程:(1)标准方程:2 22()()x a y b r -+-=(圆心为A(a,b),半径为r ) (2)圆的一般方程:022=++++F Ey Dx y x (0422>-+F E D ) 圆心(-2D ,-2 E )半径 F E D 421 22-+ 2. 点与圆的位置关系的判断方法:根据点与圆心的距离d 与r 在大小关系判断 3. 直线与圆的位置关系判断方法 (1)几何法:由圆心到直线的距离和圆的半径的大小关系来判断。 d=r 为相切,d>r 为相交,d0为相交,△<0为相离。利用这种方法,可以很简单的求出直线与圆有交点时的交点坐标。 4.圆与圆的位置关系判断方法 (1)几何法:两圆的连心线长为l ,则判别圆与圆的位置关系的依据有以下几点: 1)当21r r l +>时,圆1C 与圆2C 相离;2)当21r r l +=时,圆1C 与圆2C 外切; 3)当<-||21r r 21r r l +<时,圆1C 与圆2C 相交;4)当||21r r l -=时,圆1C 与圆2C 内切; 5)当||21r r l -<时,圆1C 与圆2C 内含; (2)代数法:由两圆的方程联立得到关于x 或y 的一元二次方程, 然后由判别式△来判断。△=0为外切 或内切,△>0为相交,△<0为相离或内含。若两圆相交,两圆方程相减得公共弦所在直线方程。 5. 直线与圆的方程的应用:利用平面直角坐标系解决直线与圆的位置关系 题型一 求圆的方程 例1.求过点A( 2,0),圆心在(3, 2)圆的方程。 变式1求过三点A (0,0),B (1,1),C (4,2)的圆的方程,并求这个圆的半径长和圆心坐标。 解:设所求的圆的方程为:02 2=++++F Ey Dx y x (也可设圆的标准方程求) ∵(0,0),(11A B φ,),C(4,2)在圆上,所以它们的坐标是方程的解.把它们的坐标代入上面的方程,可以得到关于F E D ,,的三元一次方程组. 即??? ??=+++=+++=02024020F E D F E D F 解此方程组,可得:0,6,8==-=F E D 王新敞 ∴所求圆的方程为: 0682 2=+-+y x y x 王新敞

最全高中数学三角函数公式

定义式 ) ct 函数关系 倒数关系:;; 商数关系:;. 平方关系:;;.诱导公式

公式一:设为任意角,终边相同的角的同一三角函数的值相等: 公式二:设为任意角,与的三角函数值之间的关系: 公式三:任意角与的三角函数值之间的关系: 公式四:与的三角函数值之间的关系: 公式五:与的三角函数值之间的关系: 公式六:及与的三角函数值之间的关系:

记背诀窍:奇变偶不变,符号看象限.即形如(2k+1)90°±α,则函数名称变为余名函数,正弦变余弦,余弦变正弦,正切变余切,余切变正切。形如2k×90°±α,则函数名称不变。 诱导公式口诀“奇变偶不变,符号看象限”意义: k×π/2±a(k∈z)的三角函数值.(1)当k为偶数时,等于α的同名三角函数值,前面加上一个把α看作 锐角时原三角函数值的符号; (2)当k为奇数时,等于α的异名三角函数值,前面加上一个把α看作锐角时原三角函数值的符号。 记忆方法一:奇变偶不变,符号看象限:

记忆方法二:无论α是多大的角,都将α看成锐角. 以诱导公式二为例: 若将α看成锐角(终边在第一象限),则π十α是第三象限的角(终边在第三象限),正弦函数的函数值在第三象限是负值,余弦函数的函数值在第三象限是负值,正切函数的函数值在第三象限是正值.这样,就得到了诱导公式二. 以诱导公式四为例: 若将α看成锐角(终边在第一象限),则π-α是第二象限的角(终边在第二象限),正弦函数的三角函数值在第二象限是正值,余弦函数的三角函数值在第二象限是负值,正切函数的三角函数值在第二象限是负值.这样,就得到了诱导公式四. 诱导公式的应用: 运用诱导公式转化三角函数的一般步骤: 特别提醒:三角函数化简与求值时需要的知识储备:①熟记特殊角的三角函数值;②注意诱导公式的灵活运用;③三角函数化简的要求是项数要最少,次数要最低,函数名最少,分母能最简,易求值最好。

高中数学三角函数

三角函数常见题 1、A,B,C为三角形内角,已知1+cos2A-cos2B-cos2C=2sinBsinC,求角A 解:1+cos2A-cos2B-cos2C=2sinBsinC 2cos2A-1-2cos2B+1+2sin2C=2sinBsinC cos2A-cos2B+sin2(A+B)=sinBsinC cos2A-cos2B+sin2Acos2B+2sinAcosAsinBcosB+cos2Asin2B=sinBsinC cos2A-cos2Acos2B+2sinAcosAsinBcosB+cos2Asin2B=sinBsinC 2cos2AsinB+2sinAcosAcosB=sin(180-A-B) 2cosA(cosAsinB+sinAcosB)-sin(A+B)=0 Sin(A+B)(2cosA-1)=0 cosA=1/2 A=60 2、证明:(1+sinα+cosα+2sinαcosα)/(1+sinα+cosα)=sinα+cosα <===>1+sina+cosa+2sinacosa=sina+cosa+(sina+cosa)2 <===>1+sina+cosa+2sinacosa=sina+cosa+1+2sinacosa <===>0=0恒成立 以上各步可逆,原命题成立 证毕 3、在△ABC中,sinB*sinC=cos2(A/2),则△ABC的形状是? sinBsin(180-A-B)=(1+cosA)/2 2sinBsin(A+B)=1+cosA 2sinB(sinAcosB+cosAsinB)=1+cosA sin2BsinA+2cosAsin2B-cosA-1=0 sin2BsinA+cosA(2sin2B-1)=1 sin2BsinA-cosAcos2B=1 cos2BcosA-sin2BsinA=-1 cos(2B+A)=-1 因为A,B是三角形内角 2B+A=180 因为A+B+C=180 所以B=C 三角形ABC是等腰三角形 4、求函数y=2-cos(x/3)的最大值和最小值并分别写出使这个函数取得最大值和最小值的x的集合 -1≤cos(x/3)≤1 -1≤-cos(x/3)≤1 1≤2-cos(x/3)≤3 值域[1,3] 当cos(x/3)=1时即x/3=2kπ即x=6kπ时,y有最小值1此时{x|x=6kπ,k∈Z} 当cos(x/3)=-1时即x/3=2kπ+π即x=6kπ+3π时,y有最小值1此时{x|x=6k π+3π,k∈Z} 5、已知△ABC,若(2c-b)tanB=btanA,求角A [(2c-b)/b]sinB/cosB=sinA/cosA 正弦定理c/sinC=b/sinB=2R代入

高中数学必修三角函数知识点与题型总结

高中数学必修三角函数知 识点与题型总结 Last updated on the afternoon of January 3, 2021

三角函数典型考题归类 1.根据解析式研究函数性质 例1(天津理)已知函数()2cos (sin cos )1f x x x x x =-+∈R ,. (Ⅰ)求函数()f x 的最小正周期;(Ⅱ)求函数()f x 在区间π3π84?? ????,上的最小值和最大值. 【相关高考1】(湖南文)已知函数2πππ()12sin 2sin cos 888f x x x x ????? ?=-++++ ? ? ?????? ?. 求:(I )函数()f x 的最小正周期;(II )函数()f x 的单调增区间. 【相关高考2】(湖南理)已知函数2π()cos 12f x x ? ?=+ ?? ?,1()1sin 22g x x =+. (I )设0x x =是函数()y f x =图象的一条对称轴,求0()g x 的值.(II )求函数()()()h x f x g x =+的单调递增区间. 2.根据函数性质确定函数解析式 例2(江西)如图,函数π 2cos()(00)2 y x x >ωθωθ=+∈R ,,≤≤的图象与y 轴相交于点(0,且 该函数的最小正周期为π. (1)求θ和ω的值; (2)已知点π02A ?? ??? ,,点P 是该函数图象上一点,点00()Q x y ,是PA 的中点,当0y = 0ππ2x ?? ∈???? ,时,求0x 的值. 【相关高考1】(辽宁)已知函数2 ππ()sin sin 2cos 662x f x x x x ωωω??? ?=++--∈ ? ???? ?R ,(其中0ω>),(I )求函数()f x 的值域;(II )(文)若函数()y f x =的图象与直线1y =-的两个相邻交 点间的距离为 π 2 ,求函数()y f x =的单调增区间.

高中数学三角函数知识点

高中数学第四章-三角函数知识点汇总 1. ①与α(0°≤α<360°)终边相同的角的集合(角α与角β的终边重合):{}Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {}Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{}Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{}Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{}Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{}Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:βα-=k 360 ⑧若角α与角β的终边关于y 轴对称,则角α与角β的关系:βα-+= 180360k ⑨若角α与角β的终边在一条直线上,则角α与角β的关系:βα+=k 180 ⑩角α与角β的终边互相垂直,则角α与角β的关系: 90360±+=βαk 2. 角度与弧度的互换关系:360°=2π 180°=π 1°=0.01745 1=57.30°=57°18′ 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 、弧度与角度互换公式: 1rad =π 180°≈57.30°=57°18ˊ. 1°= 180 π≈0.01745(rad ) 3、弧长公式:r l ?=||α. 扇形面积公式:2 11||2 2 s lr r α= = ?扇形 4、三角函数:设α是一个任意角,在α的终边上任取(异于原点的)一点P (x,y )P 与原点的距离为r ,则 r y =α sin ; r x = αcos ; x y = α tan ; y x = α cot ; x r = α sec ;. y r = α csc . 5、三角函数在各象限的符号:(一全二正弦,三切四余弦) 正切、余切 余弦、正割 正弦、余割 6、三角函数线 正弦线:MP; 余弦线:OM; 正切线: AT. 7. 三角函数的定义域: SIN \C O S 三角函数值大小关系图 1、2、3、4表示第一、二、三、四象限一半所在区域 (3) 若 o

高一三角函数知识点梳理总结

高一三角函数知识 §1.1任意角和弧度制 ?? ? ??零角负角:顺时针防线旋转正角:逆时针方向旋转 任意角..1 2.象限角:在直角坐标系中,使角的顶点与原点重合,角的始边与x 轴的非负半轴重合,角的终边在第几象限,就说这个角是第几象限的角。如果角的终边在坐标轴上,就认为这个角不属于任何象限。 3.. ①与α(0°≤α<360°)终边相同的角的集合:{} Z k k ∈+?=,360|αββ ②终边在x 轴上的角的集合: {} Z k k ∈?=,180| ββ ③终边在y 轴上的角的集合:{} Z k k ∈+?=,90180| ββ ④终边在坐标轴上的角的集合:{} Z k k ∈?=,90| ββ ⑤终边在y =x 轴上的角的集合:{ } Z k k ∈+?=,45180| ββ ⑥终边在x y -=轴上的角的集合:{} Z k k ∈-?=,45180| ββ ⑦若角α与角β的终边关于x 轴对称,则角α与角β的关系:Z k k ∈-=,βα 360 ⑧若角α与角β的终边关于y 轴对称,则α与角β的关系:Z k k ∈-+=,βα 180360 ⑨若角α与角β的终边在一条直线上,则α与角β的关系:Z k k ∈+=,βα 180 ⑩角α与角β的终边互相垂直,则α与角β的关系:Z k k ∈++=, 90180βα 4. 弧度制:把等于半径长的圆弧所对的圆心角叫做一弧度。360度=2π弧度。若圆心角所对 的弧长为l ,则其弧度数的绝对值|r l = α,其中r 是圆的半径。 5. 弧度与角度互换公式: 1rad =(π 180)°≈57.30° 1°=180 π 注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零. 6.. 第一象限的角:? ?? ? ??∈+<

(新)高中数学圆的方程典型例题全

类型七:圆中的最值问题 例18:圆010442 2 =---+y x y x 上的点到直线014=-+y x 的最大距离与最小距离的差是 例19 (1)已知圆1)4()3(221=-+-y x O : ,),(y x P 为圆O 上的动点,求2 2y x d +=的最大、最小值. (2)已知圆1)2(2 22=++y x O : ,),(y x P 为圆上任一点.求1 2 --x y 的最大、最小值,求y x 2-的最大、最小值. 分析:(1)、(2)两小题都涉及到圆上点的坐标,可考虑用圆的参数方程或数形结合解决. 解:(1)(法1)由圆的标准方程1)4()3(2 2 =-+-y x . 可设圆的参数方程为?? ?+=+=, sin 4, cos 3θθy x (θ是参数). 则θθθθ2 2 2 2 sin sin 816cos cos 69+++++=+=y x d )cos(1026sin 8cos 626φθθθ-+=++=(其中3 4 tan = φ). 所以361026max =+=d ,161026min =-=d . (法2)圆上点到原点距离的最大值1d 等于圆心到原点的距离' 1d 加上半径1,圆上点到原点距离的最小值2d 等于圆心到原点的距离' 1d 减去半径1. 所以6143221=++=d . 4143222=-+=d . 所以36max =d .16min =d . (2) (法1)由1)2(2 2 =++y x 得圆的参数方程:???=+-=, sin , cos 2θθy x θ是参数. 则 3cos 2sin 12--=--θθx y .令t =--3 cos 2 sin θθ, 得t t 32cos sin -=-θθ,t t 32)sin(12-=-+φθ 1)sin(1322 ≤-=+-? φθt t 4 3 3433+≤≤-? t .

高中数学三角函数知识点及试题总结

高考三角函数 1.特殊角的三角函数值: 2.角度制与弧度制的互化:,23600π= ,1800π= 3.弧长及扇形面积公式 弧长公式:r l .α= 扇形面积公式:S=r l .2 1 α----是圆心角且为弧度制。 r-----是扇形半径 4.任意角的三角函数 设α是一个任意角,它的终边上一点p (x,y ), r=22y x + (1)正弦sin α= r y 余弦cos α=r x 正切tan α=x y (2)各象限的符号: sin α cos α tan α x y + O — — + x y O — + + — + y O — + + —

5.同角三角函数的基本关系: (1)平方关系:s in 2α+ cos 2α=1。(2)商数关系:α α cos sin =tan α (z k k ∈+≠ ,2 ππ α) 6.诱导公式:记忆口诀:2 k παα±把的三角函数化为的三角函数,概括为:奇变偶不变,符号 看象限。 ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-. ()()4sin sin παα-=,()cos cos παα-=-,()tan tan παα-=-. 口诀:函数名称不变,符号看象限. ()5sin cos 2π αα??-= ???,cos sin 2παα?? -= ??? . ()6sin cos 2παα??+= ???,cos sin 2παα??+=- ??? . 口诀:正弦与余弦互换,符号看象限. 7正弦函数、余弦函数和正切函数的图象与性质

相关主题