搜档网
当前位置:搜档网 › 欧阳光中数学分析答案

欧阳光中数学分析答案

欧阳光中数学分析答案
欧阳光中数学分析答案

欧阳光中数学分析答案

【篇一:数学分析目录】

合1.1集合1.2数集及其确界第二章数列极限2.1数列极限

2.2数列极限(续)2.3单调数列的极限2.4子列第三章映射和实函数

3.1映射3.2一元实函数3.3函数的几何特性第四章函数极限和连续性4.1函数极限4.2函数极限的性质4.3无穷小量、无穷大量和有界量第五章连续函数和单调函数5.1区间上的连续函数5.2区间上连续函数的基本性质5.3单调函数的性质第六章导数和微分6.1导数概念6.2求导法则6.3高阶导数和其他求导法则6.4微分第七章微分学基本定理及使用7.1微分中值定理7.2taylor展开式及使用7.3lhospital法则及使用第八章导数的使用8.1判别函数的单调性8.2寻求极值和最值8.3函数的凸性8.4函数作图8.5向量值函数第九章积分9.1不定积分9.2不定积分的换元法和分部积分法9.3定积分9.4可积函数类r[a,b]

9.5定积分性质9.6广义积分9.7定积分和广义积分的计算9.8若干初等可积函数类第十章定积分的使用10.1平面图形的面积10.2曲线的弧长10.3旋转体的体积和侧面积10.4物理使用10.5近似求积第十一章极限论及实数理论的补充11.1cauchy收敛准则及迭代法11.2上极限和下极限11.3实数系基本定理第十二章级数的一般理论12.1级数的敛散性12.2绝对收敛的判别法12.3收敛级数的性质12.4abel-dirichlet判别法12.5无穷乘积第十三章广义积分的敛散性13.1广又积分的绝对收敛性判别法13.2广义积分的abel-dirichlet判别法第十四章函数项级数及幂级数14.1一致收敛性14.2一致收敛性的判别14.3一致收敛级数的性质14.4幂级数14.5函数的幂级数展开第十五章fourier级数15.1fourier级数15.2fourier级数的收敛性15.3fourier级数的

性质15.4用分项式逼近连续函数第十六章euclid空间上的点集拓

16.1euclid空间上点集拓扑的基本概念16.2euclid空间上点集

拓扑的基本定理第十七章euclid空间上映射的极限和连续17.1多

元函数的极限和连续17.2euclid空间上的映射17.3连续映射第

十八章偏导数18.1偏导数和全微分18.2链式法则第十九章隐函

数存在定理和隐函数求导法19.1隐函数的求导法19.2隐函数存

在定理第二十章偏导数的使用20.1偏导数在几何上的使用20.2

方向导数和梯度20.3taylor公式20.4极值20.5logrange乘子

法20.6向量值函数的全导数第二十一章重积分21.1矩形上的二

重积分21.2有界集上的二重积分21.3二重积分的变量代换及曲

面的面积21.4三重积分、n重积分的例子第二十二章广义重积分22.1无界集上的广义重积分22.2无界函数的重积分第二十三章

曲线积分23.1第一类曲线积分23.2第二类曲线积分23.3green 公式23.4green定理第二十四章曲面积分24.1第一类曲面积分24.2第二类曲面积分24.3gauss公式24.4stokes公式24.5

场论初步第二十五章含参变量的积分25.1含参变量的常义积分25,2含参变量的广义积分25.3b函数和函数第二十六章lebesgue积

分26.1可测函数26.2若干预备定理26.3lebesgue积分26.4(l)积分存在的充分必要条件26.5三大极限定理26.6可测集及

其测度26.7fubini定理练习及习题解答

? 序言

复旦大学数学系的数学分析教材从20世纪60年代起出版了几种版本,随着改革开放和对外交流的发展,现代数学观点和方法融入数

学分析教材是必然的趋势。20世纪90年代初由欧阳光中和姚允龙编写的《数学分析》(以下称原书,由复旦大学出版社出版)由于其

独特的风格深受读者欢迎,被许多学校选用作为教材或教学参考书,也为其他教材提供了参考,迄今为止已经三次重印。近年来,原书

在复旦大学数学系多次使用,取得了很好的教学效果,深受广大学

生欢迎。在教学过程中,通过对教材不断地改进,又积累了很多新

的经验,得到了各方同仁建议性意见,同时对照国内外同类教材的

发展方向,以及21世纪数学分析课程对教学的要求,本着学生易学、教师易教的宗旨对原书进行了重新编写。本书继续保持了原书的基

本特色,对上下册风格进行了协调,并进一步简化一些重要结论的

证明,将现代数学的一些重要工具引入数学分析课程,为读者进一

步学习现代数学打好基础。本书的重要特点是理论体系完整,对所

有重要结论都给出了严格的证明;对数学分析教材中的一系列难点

问题的讲述进行了系统的改进,提出了许多新的思想和方法。本书

对数学分析教材进行的创新工作主要包括:1。提出用qd10函数建

立实数系的新方法,使得实数系理论处理变得非常简明,学生也容

易接受。2。在不涉及圆周长和圆面积的前提下,用数列极限定义了

圆周率,克服了传统教材和圆周长相互循环定义之嫌,严格化了重

要极限lim的证明。3。在积分理论中,不论是定积分还是重积分,

我们都引入并证明了rie-mann积分中的最深刻结论:函数

riemann可积的充要条件是有界几乎处处连续。我们引入了零测度

集和几乎处处连续等概念,并且简化了相应结论的证明和riemann

积分的讨论。

4。给出了全新的无穷限积分顺序交换定理。5。作为选用章节,我

们引进了经过数学分析化的lebesgue积分理论。仅用了一章的篇幅,使用了崭新的方法介绍了lebesgue积分以及各种极限理论和lebesgue测度,所需知识只是初等微积分,容易为初学者接受。本

书的lebesgue积分理论不仅是数学分析的一个强有力工具,而且也

是实变函数的一个重要使用。这部分内容衔接了数学分析和实变函

数课程并填补了两者之间的空白区域。当然,这部分内容即使不讲,也不影响整个课程的完整性。6。严格化了广义重积分的理论。7。

简化了cauchy收敛原理。本书还引进了现代分析的观点和概念,对下列内容作了修改:1。将有界闭区间上的连续函数的三大定理合并

为一条值域定理。2。用整体眼光来讲授极值问题,尤其是lagrange 乘子法,克服了传统教材过分强调局部的毛病。3。强调了集合论观

点处理问题的方法。4。引进了可列集、零测度等概念。在教材内容编排上,作了下述改进:1。正文和习题紧连布排,改变传统的只在章末安排习题的做法,为教师、学生针对性地选题带来方便,章末主要安排了一些综合性的习题。书末还附有参考答案。2。不同于用正项级数和变号级数为标准分类,采用绝对收敛和收敛为标准分类讨论收敛性,更为科学合理。而传统方法容易导致学生对变号级数使用等价量判别收敛性感到困惑。3。改变以往轻广义积分重定积分的做法,加强了广义积分的运算。4。引进了任意区间记号,使得许多结论的描述更为简洁。5。多重积分的变

量代换公式的证明是传统课程的难点。现在修改为先讲述曲面积分公式,由此轻而易举地推出该公式,证明过程简洁明了。在实际教学中有关lebesgue积分的内容可以根据实际情况和教学计划的要求由主讲讲师决定取舍。希望本书的出版能受到广大读者欢迎,并能对于数学分析课程的教学研究和教学改革起到一点推进作用。应读者的意见和建议,本书所有习题提供了参考性的解答。最后,感谢教育部对于本书的资助,并将本书列入普通高等教育“十五”国家级规划教材。感谢复旦大学教务处、复旦大学数学系领导和同仁的帮助,感谢复旦大学出版社范仁梅女士对本书提出了很好的建议以及对本书的出版的大力支持。本书上册及第26章由姚允龙编写,下册原作者欧阳光中,第16章到第20章由周渊负责改写,第21章到第25章由姚允龙改写,习题参考答案由周渊提供。本书作为“十五”国家级规划教材敬献给复旦大学,谨以此贺母校百年校庆。

【篇二:2001-2016年合肥工业大学716数学分析考研

真题及答案分析汇编】

> 我们是布丁考研网合工大考研团队,是在读学长。我们亲身经历过合工大考研,录取后把自己当年考研时用过的资料重新整理,从本校的研招办拿到了最新的真题,同时新添加很多高参考价值的内部复习资料,保证资料的真实性,希望能帮助大家成功考入合工大。此外,我们还提供学长一对一个性化辅导服务,适合二战、在职、

基础或本科不好的同学,可在短时间内快速把握重点和考点。有任

何考合工大相关的疑问,也可以咨询我们,学长会提供免费的解答。更多信息,请关注布丁考研网。

以下为本科目的资料清单(有实物图及预览,货真价实):合肥工

业大学《数学分析》全套考研资料包含:

一、合肥工业大学《数学分析》历年考研真题及答案分析

2016年合肥工业大学《数学分析》考研真题(含答案分析)(11

月份统一更新) 2015年合肥工业大学《数学分析》考研真题(含答

案分析)

2014年合肥工业大学《数学分析》考研真题(含答案分析)

2013年合肥工业大学《数学分析》考研真题(含答案分析)

2012年合肥工业大学《数学分析》考研真题(含答案分析)

2011年合肥工业大学《数学分析》考研真题(含答案分析)

2010年合肥工业大学《数学分析》考研真题(含答案分析)

2009年合肥工业大学《数学分析》考研真题(含答案分析)

2008年合肥工业大学《数学分析》考研真题(含答案分析)

2007年合肥工业大学《数学分析》考研真题(含答案分析)

2006年合肥工业大学《数学分析》考研真题(含答案分析)

2005年合肥工业大学《数学分析》考研真题(含答案分析)

2004年合肥工业大学《数学分析》考研真题(含答案分析)

2003年合肥工业大学《数学分析》考研真题(含答案分析)

2001年合肥工业大学《数学分析》考研真题(含答案分析)

本套资料中的真题答案由高分学长提供,每道题答案均配有详细的

分析过程,均为word打印版,清晰明了。

二、合肥工业大学《数学分析》考研复习笔记(考研必备)

本笔记由考上合工大的学长提供,本笔记为手写版笔记,字迹清晰,思路明确,考研必备资料,共194页。

三、合肥工业大学《数学分析》考研复习讲义

本复习讲义,学长极力推荐,每一个知识点都分析非常到位,考数

学分析必备材料,共400页左右。

以上资料均为纸质版资料。快递邮寄。

适用专业:

基础数学、计算数学、概率论和数理统计、使用数学、运筹学和控

制论

参考书目:

《数学分析》(第三版),复旦大学数学系欧阳光中、朱学炎、金

福临、陈传璋编,高等教育出版社,2007年版;

以下为截图及预览:

2014年数学分析真题及答案分析

2015年数学分析真题及答案分析

【篇三:学习数学分析的一些建议和书籍】

本帖最后由 ke.xigui 于 2009-5-21 21:49 编辑

首先,只是觉得这篇东西写得很好,对学习数学分析的人可能有帮助,所以粘上来。希望

作者莫见怪。

旧版网站里许多有用的东西,但是现在找不到了,实在很可惜。

数学专业参考书整理推荐

学数学要多看书,但是初学者很难知道那些书好,我从网上收集并结合自己的经验进行了

整理:

从数学分析开始讲起:

数学分析是数学系最重要的一门课,经常一个点就会引申出今后的一门课,并且是今后数学系大部分课程的基础。也是初学时比较难的一门课,这里的难主要是对数学分析思想和方法的不适应,其实随着课程的深入会一点点容易起来。当大四考研复习再看时会感觉轻松许多。数学系的数学分析讲三个学期共计15学分270学时。将《数学分析》中较难的一部分删去再加上常微分方程的一些最简单的内容就是中国非数学专业的《高等数学》,或

者叫数学一的高数部分。

记住以下几点:

1,对于数学分析的学习,勤奋永远比天分重要。

2,学数学分析不难,难得是长期坚持做题和不遗余力的博览群书。

3,别指望第一遍就能记住和掌握什么,请看第二遍,第三遍,…,第阿列夫遍。

4,看得懂的仔细看,看不懂的硬着头皮看。

5,课本一个字一个字的看完,至少再看一本参考书,尽量做一本习题集。

6,开始前三遍,一本书看三遍效果好于三本书看一遍;第四遍开始相反。

7,经常回头看看自己走过的路

数学分析(2)期末试题

数学分析(2)期末试题 课程名称 数学分析(Ⅱ) 适 用 时 间 试卷类别 1 适用专业、年级、班 应用、信息专业 一、单项选择题(每小题3分,3×6=18分) 1、 下列级数中条件收敛的是( ). A .1(1)n n ∞ =-∑ B . 1n n ∞ = C . 21(1)n n n ∞=-∑ D . 11(1)n n n ∞ =+∑ 2、 若f 是(,)-∞+∞内以2π为周期的按段光滑的函数, 则f 的傅里叶(Fourier )级数 在 它的间断点x 处 ( ). A .收敛于()f x B .收敛于1 ((0)(0))2f x f x -++ C . 发散 D .可能收敛也可能发散 3、函数)(x f 在],[b a 上可积的必要条件是( ). A .有界 B .连续 C .单调 D .存在原函 数 4、设()f x 的一个原函数为ln x ,则()f x '=( ) A . 1x B .ln x x C . 21 x - D . x e 5、已知反常积分2 (0)1dx k kx +∞ >+? 收敛于1,则k =( ) A . 2π B .22π C . 2 D . 24π 6、231ln (ln )(ln )(1)(ln )n n x x x x --+-+-+L L 收敛,则( ) A . x e < B .x e > C . x 为任意实数 D . 1e x e -<<

二、填空题(每小题3分,3×6=18分) 1、已知幂级数1n n n a x ∞ =∑在2x =处条件收敛,则它的收敛半径为 . 2、若数项级数1 n n u ∞ =∑的第n 个部分和21 n n S n = +,则其通项n u = ,和S = . 3、曲线1 y x = 与直线1x =,2x =及x 轴所围成的曲边梯形面积为 . 4、已知由定积分的换元积分法可得,1 ()()b x x a e f e dx f x dx =??,则a = ,b = . 5、数集(1) 1, 2 , 3, 1n n n n ?? -=??+?? L 的聚点为 . 6、函数2 ()x f x e =的麦克劳林(Maclaurin )展开式为 . 65

(数学分析教案)第八章

第八章 不定积分 (14学时) §1 不定积分概念与基本积分公式 教学目的要求: 掌握不定积分的概念和性质,会用初等数学中的公式和基本积分公式计算不定积分. 教学重点、难点:重点不定积分的定义,用初等数学中的公式和基本积分公式计算不定积分. 难点不定积分定义的理解. 学时安排: (2学时) 教学方法: 讲授法. 教学过程: 微分法的基本问题——从已知函数求出它的导数;但在某些实际问题中,往往需要考虑与之相反的问题——求一个已知函数,使其导数恰好是某一已知函数——这就是所谓的积分问题。 一 原函数与不定积分 (一) 原函数 定义1 设函数)(x f 与)(x F 在区间I 上有定义。若 )()(x f x F =', I x ∈, 则称)(x F 为)(x f 在区间I 上的一个原函数。 如:331x 是2 x 在R 上的一个原函数;x 2cos 21-, 12cos 21+x , x 2sin ,x 2cos -等都有是x 2sin 在R 上的原函数——若函数)(x f 存在原函数,则其原函数不是唯一的。 问题1 )(x f 在什么条件下必存在原函数?若存在,其个数是否唯一;又若不唯一,则 有多少个? 问题2 若函数)(x f 的原函数存在,如何将它求出?(这是本章的重点内容)。 定理1 若)(x f 在区间I 上连续,则)(x f 在I 上存在原函数)(x F 。 证明:在第九章中进行。 说明:(1)由于初等函数在其定义域内都是连续的,故初等函数在其定义域内必存在原函数(但其原函数不一定仍是初等函数)。(2)连续是存在原函数的充分条件,并非必要条件。 定理2 设)(x F 是)(x f 在在区间I 上的一个原函数,则(1)设C x F +)(是)(x f 在在区间I 上的原函数,其中C 为任意常量(若)(x f 存在原函数,则其个数必为无穷多个)。(2))(x f 在I 上的任何两个原函数之间,只可能相差上个常数(揭示了原函数间的关系)。 证明:由定义即可得。 (二) 不定积分 定义2 函数)(x f 在区间I 上的原函数的全体称为)(x f 在I 上的不定积分,记作: ?dx x f )( 其中 ?--积分号;--)(x f 被积函数; --dx x f )(被积表达式;--x 积分变量。 注1 ?dx x f )(是一个整体记号;

数学系第三学期数学分析期末考试题及答案

第三学期《数学分析》期末试题 一、 选择题:(15分,每小题3分) 1、累次极限存在是重极限存在的( ) A 充分条件 B 必要条件 C 充分必要条件 D 无关条件 2、 =??),(00|) ,(y x x y x f ( ) A x y x f y y x x f x ?-?+?+→?),(),(lim 00000 ; B x y x x f x ??+→?) ,(lim 000; C x y x x f y y x x f x ??+-?+?+→?),(),(lim 00000 ; D x y x f y x x f x ?-?+→?) ,(),(lim 00000。 3、函数f (x,y )在(x 0,,y 0)可偏导,则( D ) A f (x,y )在(x 0,,y 0)可微 ; B f (x,y )在(x 0,,y 0)连续; C f (x,y )在(x 0,,y 0)在任何方向的方向导数均存在 ; D 以上全不对。 4、2 222 2) (),(y x y x y x y x f -+=的二重极限和二次极限各为( B ) A 、0,0,0; B 、不存在,0,0,; C 、0,不存在,0; D 、0,0,不存在。 5、设y x e z =,则=??+??y z y x z x ( A ) A 、0; B 、1; C 、-1; D 、2。 二、计算题(50分,每小题10分) 1、 证明函数?? ? ??=+≠++=0 00),(22222 2y x y x y x xy y x f 在(0,0)点连续且可偏导, 但它在该点不可微; 2、 设 ??'=-x x t x f x f dt d e x f 0) (),(,)(2 求ττ; 3、 设有隐函数,0 x y F z z ??= ???,其中F 的偏导数连续,求z x ??、z y ??; 4、 计算 (cos sin ) x C e ydx ydy -? ,其中C 是任一条以为(0,0)A 起点、(,)B a b 为终点 的光滑曲线; 5、 计算 zdS ∑ ??,其中∑为22 z x y =+在 1 4z ≤ 的部分; 三、验证或解答(满分24分,每小题8分)

教案《数学分析》正项级数

§2 正 项 级 数 一 正项级数收敛性的一般判别原则 若级数各项的符号都相同,则称为同号级数。而对于同号级数,只须研究各项都由正数组成的级数——正项级数。因负项级数同正项级数仅相差一个负号,而这并不影响其收敛性。 定理12-2-1 正项级数∑∞=1n n u 收敛?部分和数列{}n S 有界。 证明:由于对n ?,0>n u ,故{}n S 是递增的,因此,有 ∑∞=1n n u 收敛?{}n S 收敛?{}n S 有界。 定理12-2-2(比较原则) 设 ∑∞=1n n u 和∑∞ =1n n v 均为正项级数,如果存在某个正数N ,使得对 N n >?都有 n n v u ≤, 则 (1)若级数∑∞=1 n n v 收敛,则级数∑∞=1n n u 也收敛; (2)若级数∑∞=1n n u 发散,则级数∑∞=1n n v 也发散。 证明:由定义及定理12-2-1即可得。 例1 考察∑∞ =+-1211n n n 的收敛性。 解:由于当2≥n 时,有 222) 1(1)1(1111-≤-=-≤+-n n n n n n n , 因正项级数∑∞=-22) 1(1n n 收敛,故∑∞=+-1211n n n 收敛。 推论(比较判别法的极限形式) 设 ∑∞=1n n u 和∑∞ =1n n v 是两个正项级数,若 l v u n n n =∞→lim , 则 (1) 当+∞<

(2)当0=l 且级数∑∞=1 n n v 收敛时,级数∑∞=1n n u 也收敛; (3)当+∞=l 且∑∞=1n n v 发散时,级数∑∞=1n n u 也发散。 证明:由比较原则即可得。 例2 讨论级数 ∑-n n 21 的收敛性。 解:利用级数∑n 2 1的收敛性,由推论可知级数∑-n n 21收敛。 例3 由级数∑n 1的发散性,可知级数∑n 1sin 是发散的。 二 比式判别法和根式判别法 定理12-2-3 (达朗贝尔判别法,或称比式判别法)设∑n u 为正项级数,且存在某个正整数0N 及常数 )1,0(∈q : (1) 若对0N n >?,有 q u u n n ≤+1,则级数∑n u 收敛 ; (2) 若对0N n >?,有 11≥+n n u u ,则级数∑n u 发散。 证明:(1)不妨设对一切n ,有q u u n n ≤+1成立,于是,有 q u u ≤12, ,23q u u ≤, ,1 q u u n n ≤-。 故 11 2312--≤???n n n q u u u u u u , 即 11-≤n n q u u ,由于,当)1,0(∈q 时,级数 ∑∞=-11n n q 收敛,由比较原则,可知级数∑n u 收敛。 (2) 因此时0lim ≠∞→n n u ,故级数∑n u 发散。 推论(比式判别法的极限形式)设∑n u 为正项级数,且 q u u n n n =+∞→1lim , 则(1)当1q (可为∞+)时,级数∑n u 发散;

数值分析2007第二学期期末考试试题与答案(A)

期末考试试卷(A 卷) 2007学年第二学期 考试科目: 数值分析 考试时间:120 分钟 学号 姓名 年级专业 一、判断题(每小题2分,共10分) 1. 用计算机求 1000 1000 1 1 n n =∑时,应按照n 从小到大的顺序相加。 ( ) 2. 为了减少误差,进行计算。 ( ) 3. 用数值微分公式中求导数值时,步长越小计算就越精确。 ( ) 4. 采用龙格-库塔法求解常微分方程的初值问题时,公式阶数越高,数值解越精确。( ) 5. 用迭代法解线性方程组时,迭代能否收敛与初始向量的选择、系数矩阵及其演变方式有 关,与常数项无关。 ( ) 二、填空题(每空2分,共36分) 1. 已知数a 的有效数为0.01,则它的绝对误差限为________,相对误差限为_________. 2. 设1010021,5,1301A x -????????=-=-????????-???? 则1A =_____,2x =______,Ax ∞ =_____. 3. 已知5 3 ()245,f x x x x =+-则[1,1,0]f -= ,[3,2,1,1,2,3]f ---= . 4. 为使求积公式 1 1231 ()((0)f x dx A f A f A f -≈++? 的代数精度尽量高,应使1A = ,2A = ,3A = ,此时公式具有 次的代数精度。 5. n 阶方阵A 的谱半径()A ρ与它的任意一种范数A 的关系是 . 6. 用迭代法解线性方程组AX B =时,使迭代公式(1) ()(0,1,2,)k k X MX N k +=+= 产 生的向量序列{ }() k X 收敛的充分必要条件是 . 7. 使用消元法解线性方程组AX B =时,系数矩阵A 可以分解为下三角矩阵L 和上三角矩

数学分析教案(华东师大版)第八章不定积分

第八章不定积分 教学要求: 1.积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 2.换元积分公式与分部积分公式在本章中处于十分重要的地位。要求学生:牢记换元积分公式和选取替换函数(或凑微分)的原则,并能恰当地选取替换函数(或凑微分),熟练地应用换元积分公式;牢记分部积分公式,知道求哪些函数的不定积分运用分部积分公式,并能恰当地将被积表达式分成两部分的乘积,熟练地应用分部积分公式;独立地完成一定数量的不定积分练习题,从而逐步达到快而准的求出不定积分。 3.有理函数的不定积分是求无理函数和三角函数有理式不定积分的基础。要求学生:掌握化有理函数为分项分式的方法;会求四种有理最简真分式的不定积分,知道有理函数的不定积分(原函数)还是初等函数;学会求某些有理函数的不定积分的技巧;掌握求某些简单无理函数和三角函数有理式不定积分的方法,从理论上认识到这些函数的不定积分都能用初等函数表示出来。 教学重点:深刻理解不定积分的概念;熟练地应用换元积分公式;熟练地应用分部积分公式; 教学时数:18学时

§ 1 不定积分概念与基本公式( 4学时)教学要求:积分法是微分法的逆运算。要求学生:深刻理解不定积分的概念,掌握原函数与不定积分的概念及其之间的区别;掌握不定积分的线性运算法则,熟练掌握不定积分的基本积分公式。 教学重点:深刻理解不定积分的概念。 一、新课引入:微分问题的反问题,运算的反运算. 二、讲授新课: (一)不定积分的定义: 1.原函数: 例1填空: ; ( ; ; ; ; . 定义. 注意是的一个原函数. 原函数问题的基本内容:存在性,个数,求法. 原函数的个数: Th 若是在区间上的一个原函数, 则对,都是在区间上的原函数;若也是在区间上的原函数,则必有. ( 证 )

数学分析下册期末考试卷及参考答案

第 1 页 共 5 页 数学分析下册期末模拟试卷及参考答案 一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、已 知u =则 u x ?=? ,u y ?=? ,du = 。 2、设22L y a +=2:x ,则L xdy ydx -=? 。 3、设L ?? ?x=3cost , :y=3sint.(02t π≤≤),则曲线积分ds ?22L (x +y )= 。 4、改变累次积分3 2 dy f dx ??3 y ( x ,y )的次序为 。 5、设1D x y +≤: ,则1)D dxdy ??= 。 二、判断题(正确的打“O ”;错误的打“×”;每题3分, 共15分) 1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y ) 点p 00(x ,y )必存在一阶偏导数。 ( ) 2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y ) 在点p 00(x ,y )连续。 ( ) 3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则 必有 0000(,)(,)xy yx f x y f x y =。 ( ) 4、 (,) (,) (,)(,)L A B L B A f x y dx f x y dx = ? ? 。 ( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y ) 在D 上可积。( )

第 2 页 共 5 页 三、计算题 ( 每小题9分,共45分) 1、用格林公式计算曲线积分 (sin 3)(cos 3)x x AO I e y y dx e y dy =-+-? , 其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。 、计算三重积分 2 2()V x y dxdydz +???, 是由抛物面22z x y =+与平面4z =围成的立体。

数学分析教案_(华东师大版)上册全集_1-10章

第一章实数集与函数 导言数学分析课程简介( 2 学时) 一、数学分析(mathematical analysis)简介: 1.背景: 从切线、面积、计算 sin、实数定义等问题引入. 32 2.极限( limit ) ——变量数学的基本运算: 3.数学分析的基本内容:数学分析以极限为基本思想和基本运算研究变实值函数.主要研究微分(differential)和积分(integration)两种特殊的极限运算,利用这两种运算从微观和宏观两个方面研究函数, 并依据这些运算引进并研究一些非初等函数. 数学分析基本上是连续函数的微积分理论. 微积运算是高等数学的基本运算. 数学分析与微积分(calculus)的区别. 二、数学分析的形成过程: 1.孕育于古希腊时期:在我国,很早就有极限思想. 纪元前三世纪, Archimedes就有了积分思想. 2.十七世纪以前是一个漫长的酝酿时期,是微积分思想的发展、成果的积累时期. 3.十七世纪下半叶到十九世纪上半叶——微积分的创建时期. 4.十九世纪上半叶到二十世纪上半叶——分析学理论的完善和重建时期:

三、数学分析课的特点: 逻辑性很强, 很细致, 很深刻; 先难后易, 是说开头四章有一定的难度, 倘能努力学懂前四章(或前四章的), 后面的学习就会容易一些; 只要在课堂上专心听讲, 一般是可以听得懂的, 但即便能听懂, 习题还是难以顺利完成. 这是因为数学分析技巧性很强, 只了解基本的理论和方法, 不辅以相应的技巧, 是很难顺利应用理论和方法的. 论证训练是数学分析课基本的,也是重要的内容之一, 也是最难的内容之一. 一般懂得了证明后, 能把证明准确、严密、简练地用数学的语言和符号书写出来,似乎是更难的一件事. 因此, 理解证明的思维方式, 学习基本的证明方法, 掌握叙述和书写证明的一般语言和格式, 是数学分析教学贯穿始终的一项任务. 有鉴于此, 建议的学习方法是: 预习, 课堂上认真听讲, 必须记笔记, 但要注意以听为主, 力争在课堂上能听懂七、八成. 课后不要急于完成作业, 先认真整理笔记, 补充课堂讲授中太简或跳过的推导, 阅读教科书, 学习证明或推导的叙述和书写. 基本掌握了课堂教学内容后, 再去做作业. 在学习中, 要养成多想问题的习惯. 四、课堂讲授方法: 1.关于教材及参考书:这是大学与中学教学不同的地方, 本课程主要从以下教科书中取材: [1]华东师范大学数学系编,数学分析,高等教育出版社,2001; [2]刘玉琏傅沛仁编,数学分析讲义,高等教育出版社,1992; [3]谢惠民,恽自求等数学分析习题课讲义,高等教育出版社,2003;

数学分析下册期末考试卷及参考答案

数学分析下册期末模拟试卷及参考答案 一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、已 知u =则u x ?=? ,u y ?=? ,du = 。 2、设22L y a +=2:x ,则L xdy ydx -=? 。 3、设L ???x=3cost ,:y=3sint.(02t π≤≤),则曲线积分ds ?22L (x +y )= 。 4、改变累次积分32dy f dx ??3 y (x ,y )的次序为 。 5、设1D x y +≤: ,则1)D dxdy ??= 。 二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分) 1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )点p 00(x ,y )必存在一 阶偏导数。 ( ) 2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。 ( ) 3、若函数f (x ,y ) 在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则

必有 0000(,)(,)xy yx f x y f x y =。 ( ) 4、 (,)(,)(,)(,)L A B L B A f x y dx f x y dx =??。 ( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y ) 在D 上可积。( ) 三、计算题 ( 每小题9分,共45分) 1、 用格林公式计算曲线积分 (sin 3)(cos 3)x x AO I e y y dx e y dy = -+-? , 其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。

(数学分析教案)第七章

第七章 实数的完备性 (9学时) §1 关于实数完备性的基本定理 教学目的要求: 掌握实数完备性的基本定理的内容,知道其证明方法. 教学重点、难点:重点实数完备性的基本定理. 难点是定理的证明,特别是柯西收敛准则和充分性的证明.. 学时安排: 4学时 教学方法: 讲授法. 教学过程如下: 一、区间套定理与柯西收敛准则 定义1 设闭区间列{[,]}n n a b 具有如下性质: (1)11[,][,],1,2,;n n n n a b a b n ++?= (2)lim ()0 n n n b a →∞ -= 则称{[,]}n n a b 为闭区间套,或简称区间套. 定理7.1(区间套定理) 若{[,]}n n a b 是一个区间套,则在实数系中存在唯一的一点ξ使得[,],1,2,n n a b n ξ∈= ,即 ,1,2,.n n a b n ξ≤≤= 证: 先证存在性 {[,]}n n a b 是一个区间套, 所以 1221,n n a a a b b b ≤≤≤≤≤≤≤≤ ∴可设 lim n n a ξ →∞ = 且由条件2有 lim lim ()lim n n n n n n n n b b a b a ξ →∞ →∞ →∞ =-+== 由单调有界定理的证明过程有,1,2,.n n a b n ξ≤≤= 再证唯一性 设ξ'也满足,1,2,.n n a b n ξ' ≤≤= 那么, ,1,2,.n n b a n ξξ'-≤-= 由区间套的条件2得 lim ()0 n n n b a ξξ→∞ '-≤-=故有ξξ'= 推论 若[,](1,2,)n n a b n ξ∈= 是区间套{[,]}n n a b 所确定的点,则对任给的0ε>,存在0N >,使得当 n N >时有 [,](,)n n a b U ξε? 柯西收敛准则 数列{}n a 收敛的充要条件是: 对任给的0ε>,存在0N >,使得对 ,m n N >有 ||m n a a ε-<. 证 [必要性] 略. [充分性] 已知条件可改为:对任给的0ε>,存在0N >,使得对,m n N ≥有 ||m n a a ε-≤.

数学分析教案 (华东师大版)第九章 定积分

第九章定积分 教学要求: 1知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题; 2.深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分; 3.理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 4.理解并熟练地应用定积分的性质; 5.熟练地掌握换元积分法和分部积分法,并能解决计算问题. 教学重点: 1.深刻理解并掌握定积分的思想,能够熟练地应用牛顿-莱布尼兹公式计算定积分; 2.掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 3.理解并熟练地应用定积分的性质; 4.熟练地掌握换元积分法和分部积分法,并能解决计算问题. 教学时数:14学时 § 1 定积分概念(2学时) 教学要求:知道定积分的客观背景——曲边梯形的面积和变力所作的功等,以及解决这些实际问题的数学思想方法;深刻理解并掌握定积分的思想:分割、近似求和、取极限,进而会利用定义解决问题;

教学重点:深刻理解并掌握定积分的思想. 一、问题背景: 1. 曲边梯形的面积: 2. 变力所作的功: 二、不积分的定义: 三、举例: 已知函数在区间上可积 .用定义求积分 例1 . 等分区间作为分法, . 取 解取 .= . 上可积 ,每个特殊积分和之极限均为该积分值 . 由函数在区间 例2已知函数在区间上可积 ,用定义求积分. 解分法与介点集选法如例1 , 有 .

上式最后的极限求不出来 , 但却表明该极限值就是积分. 讨论Dirichlet函数在区间上的可积性 . 例3 四、小结:指出本讲要点 § 2 Newton — Leibniz公式(2学时) 教学要求:深刻理解微积分基本定理的意义,能够熟练地应用牛顿-莱布尼兹公式计算定积分. 教学重点:能够熟练地应用牛顿-莱布尼兹公式计算定积分. Th9.1 (N — L公式)( 证 ) 例1求ⅰ> ; ⅱ> ; 例2 求. §3可积条件(4学时) 教学要求:理解可积的必要条件以及上和、下和的性质,掌握可积的充要条件及可积函数类,能独立地证明可积性的问题. 教学重点:掌握可积的充要条件及可积函数类,能独立地证明可积性的问题; 一、必要条件: 在区间上有界. Th 9.2 , 二、充要条件:

《数学分析下册》期末考试卷

数学分析下册期末考试卷 一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、已知xy u e =,则u x ?=? ,u y ?=? ,du = 。 2、设:L 224x y +=,则L xdy ydx -=?? 。 3、设 :L 229x y +=,则曲线积分ds ?22L (x +y )= 。 4、改变累次积分b a dy f dx ??b y (x ,y )的次序为 。 5、设2D y ax +≤2:x ,则 D dxdy ??= 。 二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分) 1、若函数f (x ,y ) 在区域D 上连续,则函数f (x ,y )在D 上的二重积分必存 在。 ( ) 2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y )在点p 00(x ,y )连续。 ( ) 3、若函数f (x ,y )在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则 必有 0000(,)(,)xy yx f x y f x y =。 ( ) 4、第二型曲线积分与所沿的曲线L (A ,B )的方向有关。 ( ) 5、若函数f (x ,y )在点00(,)x y 连续,则函数f (x ,y ) 在点00(,)x y 必存在一阶偏导数 。 ( )

三、计算题 ( 每小题9分,共45分) 1、用格林公式计算曲线积分 22()L I x y dx xy dy =-+?? , 其中 L 是圆周222x y a += 2、计算三重积分 222()V x y z dxdydz ++???, 其中2222:V x y z a ++≤。

数学分析教案-(华东师大版)第六章-微分中值定理及其应用

第六章微分中值定理及其应用 教学目的: 1.掌握微分学中值定理,领会其实质,为微分学的应用打好坚实的理论基 础; 2.熟练掌握洛比塔法则,会正确应用它求某些不定式的极限; 3.掌握泰勒公式,并能应用它解决一些有关的问题; 4.使学生掌握运用导数研究函数在区间上整体性态的理论依据和方法,能根据函数的整体性态较为准确地描绘函数的图象; 5.会求函数的最大值、最小值,了解牛顿切线法。 教学重点、难点: 本章的重点是中值定理和泰勒公式,利用导数研究函数单调性、极值与凸性;难点是用辅助函数解决问题的方法。 教学时数:14学时 § 1 中值定理(4学时) 教学目的:掌握微分学中值定理,领会其实质,为微分学的应用打下坚实的理论基础。 教学要求:深刻理解中值定理及其分析意义与几何意义,掌握三个定理的证明方法,知道三者之间的包含关系。 教学重点:中值定理。 教学难点:定理的证明。 教学难点:系统讲解法。

一、引入新课: 通过复习数学中的“导数”与物理上的“速度”、几何上的“切线”之联系,引导学生从直觉上感到导数是一个非常重要而有用的数学概念。在学生掌 握了“如何求函数的导数”的前提下,自然提出另外一个基本问题:导数有什 么用?俗话说得好:工欲善其事,必先利其器。因此,我们首先要磨锋利导数 的刀刃。我们要问:若函数可导,则它应该有什么特性?由此引入新课——第 六章微分中值定理及其应用§1 拉格朗日定理和函数的单调性(板书课题) 二、讲授新课: (一)极值概念: 1.极值:图解,定义 ( 区分一般极值和严格极值. ) 2.可微极值点的必要条件: Th ( Fermat ) ( 证 ) 函数的稳定点, 稳定点的求法. (二)微分中值定理: 1. Rolle中值定理: 叙述为Th1.( 证 )定理条件的充分但不必要性. https://www.sodocs.net/doc/1819205867.html,grange中值定理: 叙述为Th2. ( 证 ) 图解 . 用分析方法引进辅助函数, 证明定理.用几何直观引进辅助函数的方法参 阅[1]P157. Lagrange中值定理的各种形式. 关于中值点的位置. 推论1 函数在区间I上可导且为I上的常值函数. (证)

《数学分析下册》期末考试卷及参考答案

. 数学分析下册期末模拟试卷及参考答案 一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、已 知u =则 u x ?=? ,u y ?=? ,du = 。 2、设22L y a +=2:x ,则L xdy ydx -=? 。 3、设L ?? ?x=3cost , :y=3sint.(02t π≤≤),则曲线积分ds ?22L (x +y )= 。 4、改变累次积分3 2 dy f dx ??3 y ( x ,y )的次序为 。 5、设1D x y +≤: ,则1)D dxdy ??= 。 二、判断题(正确的打“O ”;错误的打“×”;每题3分, 共15分) 1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y ) 点p 00(x ,y )必存在一阶偏导数。 ( ) 2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y ) 在点p 00(x ,y )连续。 ( ) 3、若函数f (x ,y ) 在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则 必有 0000(,)(,)xy yx f x y f x y =。 ( ) 4、 (,) (,) (,)(,)L A B L B A f x y dx f x y dx = ? ? 。 ( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y ) 在D 上可积。( )

. 三、计算题 ( 每小题9分,共45分) 1、用格林公式计算曲线积分 (sin 3)(cos 3)x x AO I e y y dx e y dy =-+-? , 其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。 、计算三重积分 2 2()V x y dxdydz +???, 是由抛物面22z x y =+与平面4z =围成的立体。

13数学分析期末复习题03

数学分析(三)复习题 一、计算题 1.求二重极限y x x a y x x +→∞→? ?? ?? +2 11lim ; 2.求椭球面3x 2+y 2+z 2=16上点(-1,-2,3)处的切平面与平面z=1的交角; 3.求函数z=xy 在条件x+y=1下的极值点。 4.求函数z=x 2+xy+y 2-4lnx-10lny 的极值。 5. 求函数z=4(x-y)-x 2-y 2的极值。 6.求函数z=x 4+y 4-x 2-2xy-y 2的极值。 7. 求函数z=x 3y 2(6-x-y),(x>0,y>0)的极值。 8.求函数z=x 2+(y-1)2的极值。 9. 设u(x,y)=e 3x-y ,x 2+y=t 2,x-y=t+2,求 =t dt du 。 10.求e z -z+xy=3在点(2,1,0)处的切平面与法线方程。 11. 设f(x,y,z)=x+y 2+xz ,求f 在(1,0,1)点沿方向C =(2,-2,1)的方向导数。 12.求函数u=xyz 在点(5,1,2)处沿从点(5,1,2)到点(9,4,14)的方向的方向导数。 13. 求函数u=x 2+y 2-z 2在点M(1,0,1)及P(0,1,0)的梯度之间的夹角。 14.在椭球面2x 2+2y 2+z 2=1上求一点,使得函数f(x,y,z)=x 2+y 2+z 2在该点沿着点A(1,1,1)到点B(2,0,1)方向的方向导数具有最大值(不要求判别)。 15.设函数f(x,y,z)=cos 2(xy)+2z y ,试问它在点(0,2,1)处的什么方向上的变化率最大?求出这个方向上的单 位向量及函数在点(0,2,1)的最大变化率。 16. 求函数z=arctg x y 在位于圆x 2+y 2-2x=0上一点(21 ,2 3)处沿这圆周切线方向的方向导数(设切线的倾角α 的范围为:0≤α<π)。 17. 设数量场u= 2 2 2 z y x z ++,试求:(1)gradu ;(2)在域1

数学分析下册》期末考试卷及参考答案

数学分析下册期末模拟试卷及参考答案 一、填空题(第1题每空2分,第2,3,4,5题每题5分,共26分) 1、已 知u =则u x ?=? ,u y ?=? ,du = 。 2、设22L y a +=2:x ,则L xdy ydx -=? 。 3、设L ???x=3cost ,:y=3sint.(02t π≤≤),则曲线积分ds ?22L (x +y )= 。 4、改变累次积分32dy f dx ??3 y (x ,y )的次序为 。 5、设1D x y +≤: ,则1)D dxdy ??= 。 二、判断题(正确的打“O ”;错误的打“×”;每题3分,共15分) 1、若函数f (x ,y )在点p 00(x ,y )连续,则函数f (x ,y )点p 00(x ,y )必存在一阶偏导数。 ( ) 2、若函数f (x ,y )在点p 00(x ,y ) 可微,则函数f (x ,y ) 在点p 00(x ,y )连续。 ( ) 3、若函数f (x ,y ) 在点p 00(x ,y )存在二阶偏导数00(,)xy f x y 和00(,)yx f x y ,则 必有 0000(,)(,)x y y x f x y f x y =。 ( ) 4、(,)(,)(,)(,)L A B L B A f x y dx f x y dx =??。 ( ) 5、若函数f (x ,y )在有界闭区域D 上连续,则函数f (x ,y ) 在D 上可积。( ) 三、计算题 ( 每小题9分,共45分) 1、用格林公式计算曲线积分 (sin 3)(cos 3)x x AO I e y y dx e y dy =-+-? , 其中AO 为由(,0)A a 到(0,0)O 经过圆22x y ax +=上半部分的路线。 、计算三重积分 22()V x y dxdydz +???, 是由抛物面22z x y =+与平面4z =围成的立体。 、计算第一型曲面积分

数学分析1-期末考试试卷(B卷)

数学分析1 期末考试试卷(B 卷) 一、填空题(本题共5个小题,每小题4分,满分20分) 1、设011 1,1n n x x x +== +, 则 lim n n x →∞ = 。 2、(归结原则)设0()(;)o f x U x δ在内有定义,0 lim ()x x f x →存在的充要条件是: 3、设)1ln(2x x y ++=,则=dy 。 4、当x = 时,函数()2x f x x =取得极小值。 5、已知)(x f 的一个原函数是 cos x x ,则()xf x dx '=? 。 二、单项选择题(本题共5个小题,每小题4分,满分20分) 1、设()232x x f x =+-,则当0x →时( )。 (A )()f x x 与是等价无穷小。 (B )()f x x 与是同阶但非等价无穷小。 (C )()f x x 为的高阶无穷小量。 (D )()f x x 为的低阶无穷小量。 2、设函数()f x x a =在点处可导,则函数()f x 在x a =处不可导的充分条件是( )。 (A )()0()0.f a f a '==且 (B )()0()0.f a f a '>>且

(C )()0()0.f a f a '=≠且 (D )()0()0.f a f a '<<且 3、若),() ()(+∞<<-∞=-x x f x f 在)0(,-∞内0)(,0)(<''>'x f x f , 则)(x f 在),0(+∞内有( )。 (A )0)(,0)(<''>'x f x f 。 (B )0)(,0)(>''>'x f x f 。 (C )0)(,0)(<''<'x f x f 。 (D )0)(,0)(>''<'x f x f 。 4、设)(x f 的导数在x a =处连续,又() lim 1x a f x x a →'=--,则( ) 。 (A )x a =是)(x f 的极小值。 (B )x a =是)(x f 的极大值。 (C )(,())a f a 是曲线()y f x =的拐点。 (D )x a =不是)(x f 的极 值点, (,())a f a 也不是曲线()y f x =的拐点。 5、下述命题正确的是( ) (A )设)(x f 和()g x 在0x 处不连续,则()()f x g x 在0x 处也不连续; (B )设()g x 在0x 处连续,0()0f x =,则0 lim ()()0x x f x g x →=; (C )设存在0δ>,使当00(,)x x x δ∈-时, ()() f x g x <,并设 lim (),x x f x a - →= lim (),x x g x b - →=,则必有a b <; (D )设 lim (),lim ()x x x x f x a g x b - - →→==,a b <,则存在0δ>,使当 00(,)x x x δ∈-时,()()f x g x <。

数学分析期末考试试题(第二学期)[1]

数学分析第二学期试题库 一、单项选择题 1、设?+=C x F dx x f )()(,则? =--dx e f e x x )(( ). A. C e F x +--)(; B. C e F x +-)(; C. C e F x +-)(; D. C e F x +)(. 2、已知函数? +=x t dt y 02 )1(,则='')1(y ( ). A . 21 -; B. 41- ; C. 41; D. 21. 3、设常数0≠k ,则∑∞ =-12)1(n n n k 是( ). A. 发散; B. 条件收敛; C. 绝对收敛; D. 收敛 性与k 有关. 4、级数∑∞ =1n n n x n 的收敛域为( ). A. (-1, 1) ; B. [-1, 0] ; C. ,0( 1] ; D. {0} . 5、2 1arcsin d xdx dx ?等于( ) A . arcsin x ; B. ; C. arcsin 2arcsin1-; D. 0. 6、= '? dx x f x xf )()(22 ( ). A. C x f +)(4122; B. C x f +)(2122; C. C x f +)(412 ; D. C x f +)(41 2. 7、设)(x f 在[a ,b ]上连续,)(x F 是)(x f 的一个原函数,则 = ?-?+→?x x F x x F x ) ()(lim 0( ). A. )(x F ; B. )(x f ; C. )(x F '; D. )(x f '. 8、已知正项级数 ∑∞ =1 n n u 收敛,则下列级数收敛的是( ).

数学分析教案华东师大第三版

§6 重积分的应用 (一) 教学目的:学会用重积分计算曲面的面积,物体的重心,转动惯量与引力. (二) 教学内容: 曲面面积的计算公式;物体重心的计算公式;转动惯量的计算公式;引力的计算公式. 基本要求:掌握曲面面积的计算公式,了解物体重心的计算公式,转动惯量的计算公式 和引力的计算公式. (三) 教学建议: 要求学生必须掌握曲面面积的计算公式,物体重心的计算公式,转动惯量的计算公式和引力的计算公式,并且布置这方面的的习题. ________________________________________ 一 曲面的大面积 设D 为可求面积的平面有界区域函数在D 上具有连续一阶偏导数,讨论由方程 D y x y x f z ∈=),(,),( 所确定的曲面S 的面积i σ? ==i i i i 1 1当 0||||→T 时,可用和式∑=?n i i A 1的极限作为S 的面积 首先计算i A ?的面积,由于切平面的法线向量就是曲面S 在),,(i i i i M ζηξ处的法线向量,记它与z 轴的夹角为i γ,则

),(),(11 cos 22 i i y i i x i f f ηξηξγ++= i i i y i i x i i i f f A σηξηξγσ?++=?= ?),(),(1cos 22 ∑∑==?++=?n i i i i y i i x n i i f f A 1 221),(),(1σηξηξ 是连续函数),(),(122i i y i i x f f ηξηξ++在有界闭域上的积分和,所以当0||||→T 时,就得 到 ∑=→?++=?n i i i i y i i x T f f S 1220||||),(),(1lim σηξηξ dxdy y x f y x f D i i y i i x ??++=),(),(122 或 ∑??=→=?=?n i D i i T z n dxdy S 10|||||),cos(||)cos |lim γσ 例 1 求圆锥 22y x z += 在圆柱体 x y x ≤+22内那一部分的面积 解 dxdy y x z y x z S D i i y i i x ??++= ?),(),(122 x y x D ≤+22: 所求曲面方程为 ?+= 22y x z 2222,y x y z y x x z y x +=+=

相关主题