搜档网
当前位置:搜档网 › 高考物理总复习:第九章 磁场 综合检测

高考物理总复习:第九章 磁场 综合检测

高考物理总复习:第九章 磁场 综合检测
高考物理总复习:第九章 磁场 综合检测

《磁场》综合检测

(时间:90分钟满分:100分)

一、选择题(本题共12小题,每小题4分,共48分.在每小题给出的四个选项中,第1~7小题只有一个选项正确,第8~12小题有多个选项正确,全部选对的得4分,选对但不全的得2分,有选错或不选的得0分)

1.地球的地理两极与地磁两极并不完全重合,它们之间存在磁偏角,首先观测到磁偏角的是( D )

A.意大利航海家哥伦布

B.葡萄牙航海家麦哲伦

C.我国的航海家郑和

D.中国古代科学家沈括

解析:世界上第一个清楚地、准确地论述磁偏角的是沈括.沈括是中国历史上最卓越的科学家之一,他发现了地磁偏角的存在,比欧洲发现地磁偏角早了四百多年,选项D正确.

2.如图,一个环形电流的中心有一根通电直导线,则环受到的磁场力( D )

A.沿环半径向外

B.沿环半径向内

C.沿通电直导线水平向左

D.等于零

解析:通电直导线产生的磁场是以导线上各点为圆心的同心圆,而环形电流的方向与磁场方向平行,即B平行I,所以通电圆环不受磁场力的作用,即F=0,选项D正确,A,B,C错误.

3.在匀强磁场中,一个原来静止的原子核,由于放出射线,结果得到一张两个相切圆的径迹照片(如图所示),今测得两个相切圆半径之比R1∶R2=a,新核与射线质量之比为b,则下列说法正确的是( B )

A.放出的射线为高速电子流

B.半径为r2的圆为放出射线的运动轨迹

C.射线与新核动能之比为a

D.射线与新核质子数之比为b

解析:根据动量守恒可以知道,放出射线后的粒子动量大小相等,方向相反,则根据左手定则可以知道,放出的粒子均带正电,选项A错误;放射出粒子在磁场中做匀速圆周运动,则qvB=m,即R=,由于动量守恒,而且放出的粒子电荷量小,则半径R大,故半径为r2的圆为放出射线的运动轨迹,选项B正确;根据动量与动能的关系E k=,则动能之比等于质量的反比,故射线与新核动能之比为b,选项C错误;射线与新核质子数之比即为电荷量之比,由于R=,则q=,即射线与新核质子数之比等于半径的反比,射线与新核质子数之比为a,选项D错

误.

4.如图所示,用两根相同的细绳水平悬挂一段均匀载流直导线MN,电流I方向从M到N,绳子的拉力均为F.为使F=0,可能达到要求的方法是( C )

A.加水平向右的磁场

B.加水平向左的磁场

C.加垂直纸面向里的磁场

D.加垂直纸面向外的磁场

解析:根据左手定则可知,在MN中通入电流,在空间加上垂直于纸面向里的磁场,可以使MN受到向上的安培力,这样可以使MN受到绳子拉力为零,选项A,B,D错误,C正确.

5.将一块长方体形状的半导体材料样品的表面垂直磁场方向置于磁场中,当此半导体材料中通有与磁场方向垂直的电流时,在半导体材料与电流和磁场方向垂直的两个侧面会出现一定的电压,这种现象称为霍尔效应,产生的电压称为霍尔电压,相应的将具有这样性质的半导体材料样品就称为霍尔元件.如图所示,利用电磁铁产生磁场,毫安表检测输入霍尔元件的电流,毫伏表检测霍尔元件输出的霍尔电压.已知图中的霍尔元件是P型半导体,与金属导体不同,它内部形成电流的“载流子”是空穴(空穴可视为能自由移动带正电的粒子).图中的1,2,3,4是霍尔元件上的四个接线端.当开关S1,S2闭合后,电流表A 和电表B,C都有明显示数,下列说法中正确的是( C )

A.电表B为毫伏表,电表C为毫安表

B.接线端4的电势高于接线端2的电势

C.若调整电路,使通过电磁铁和霍尔元件的电流与原电流方向相反,但大小不变,则毫伏表的示数将保持不变

D.若适当减小R1、增大R2,则毫伏表示数一定增大

解析:由题图可知,电表B串联在电源E2的电路中,故它是电流表,即毫安表,而电表C是并联在2,4两端的,它是测量霍尔电压的,故它是电压表即毫伏表,选项A错误;由于霍尔元件的载流子是带正电的粒子,磁场方向向下,电流方向由1到3,由左手定则可知,带正电的粒子受到的洛伦兹力的方向指向极板2,即接线端2的电势高于接线端4的电势,选项B错误;稳定时,粒子受到的洛伦兹力与电场力相平衡,即Bqv=Eq=,解得U=Bvd,当电流方向都相反,但大小不变时,粒子的偏转方向与原来相同,但仍存在如上的平衡关系式,由于电流的大小不变,由电流的微观表达式I=neSv可知,其粒子的定向移动速度也不变,故霍尔电压的大小不变,即毫伏表的示数将保持不变,选项C正确;若减小R1,则会让B增大,若增大R2,会让电流I减小,粒子的定向移动速率v也变小,则不能确定霍尔电压的变化情况,故毫伏表的示数不一定增大,选项D错误.

6.如图(甲)所示,a,b两平行直导线中通有相同的电流,当两通电导线

垂直圆平面放置于圆周上,且两导线与圆心连线的夹角为60°时,圆心处的磁感应强度大小为B.如图(乙)所示,c导线中通有与a,b导线完全相同的电流,a,b,c垂直圆平面放置在圆周上,且a,b两导线与圆心连线的夹角为120°,b,c两导线与圆心连线的夹角为30°,则此时圆心处的磁感应强度大小为( A )

A. B

B.B

C.0

D. B

解析:当a,b两导线与圆心连线的夹角为60°时,它们在圆心处的磁感应强度如图(甲)所示,设B a=B b=B1,则有B=B1.当a,b两导线与圆心连线夹角为120°时,如图(乙)所示,它们在圆心处的磁感应强度矢量和为B′=B1,再与c导线在圆心处产生的磁场叠加后磁感应强度矢量和为B1,因此圆心处的磁感应强度大小为B,选项A正确.

7.如图所示为一种质谱仪的工作原理示意图,此质谱仪由以下几部分构成:离子源、加速电场、静电分析器、磁分析器、收集器.静电分析器通道中心线半径为R,通道内有均匀辐射电场,在中心线处的电场强度大小为E;磁分析器中分布着方向垂直于纸面,磁感应强度为B的匀强磁场,其左边界与静电分析器的右边界平行.由离子源发出一个质

量为m、电荷量为q的正离子(初速度为零,重力不计),经加速电场加速后进入静电分析器,沿中心线MN做匀速圆周运动,而后由P点进入磁分析器中,最终经过Q点进入收集器.下列说法中正确的是( B )

A.磁分析器中匀强磁场方向垂直于纸面向内

B.加速电场中的加速电压U=

C.磁分析器中圆心O2到Q点的距离d=

D.任何离子若能到达P点,则一定能进入收集器

解析:进入静电分析器后,正离子顺时针转动,所受洛伦兹力指向圆心,根据左手定则,磁分析器中匀强磁场方向垂直于纸面向外,选项A错误;离子在静电分析器中做匀速圆周运动,根据牛顿第二定律有Eq=m,设离子进入静电分析器时的速度为v,离子在加速电场中加速的过程中,由动能定理有qU=mv2,解得U=,选项B正确;由B项解析可知R=,与离子质量、电荷量无关.离子在磁分析器中做匀速圆周运动,由牛顿第二定律有qvB=m,得R==,即d=,选项C错误;圆周运动的轨道半径与电荷的质量和电荷量有关,能够到达P点的不同离子,半径不一定都等于d,不一定都能进入收集器,选项D错误.

8.如图所示,回旋加速器D形盒的半径为R,所加磁场的磁感应强度为B,被加速的质子从D形盒中央由静止出发,经交变电场加速后进入磁场.设质子在磁场中做匀速圆周运动的周期为T,若忽略质子在电场中的加速时间,则下列说法正确的是( AD )

A.如果只增大交变电压U,则质子在加速器中运行时间将变短

B.如果只增大交变电压U,则电荷的最大动能会变大

C.质子在电场中加速的次数越多,其最大动能越大

D.交变电流的周期应为T

解析:如果只增大交变电压U,则质子在加速器中加速次数减少,因此质子的运行时间将变短,选项A正确;根据qv m B=m,得v m=,电荷的最大动能与加速的电压和加速的次数无关,选项B,C错误.回旋加速器粒子在磁场中运动的周期和高频交变电流的周期相等,选项D正确.

9.如图所示,一个带正电荷的小球从a点出发水平进入正交垂直的匀强电场和匀强磁场区域,电场方向竖直向上,某时刻小球运动到了b 点,则下列说法正确的是( CD )

A.从a到b,小球可能做匀速直线运动

B.从a到b,小球可能做匀加速直线运动

C.从a到b,小球动能可能不变

D.从a到b,小球机械能增加

解析:带电小球的初速度是水平的,从a运动到b点的过程中小球在竖直方向上发生位移,说明小球做的是曲线运动,所以小球受力不为零,即小球不可能做匀速直线运动,选项A错误;从以上分析可知小球做曲线运动,即变速运动,故小球受到磁场的洛伦兹力也是变化的,故小球受到的合力是变力,所以小球不可能做匀加速直线运动,选项B错误;当小球的重力和电场力平衡时,小球受到的洛伦兹力只改变小球的速度方向,小球的动能不变,选项C正确;从a到b,电场方向竖直向上,电场力一定做正功,故机械能增加,选项D正确.

10.如图所示,在一个等腰直角三角形ACD区域内有垂直纸面向外的匀强磁场,磁场的磁感应强度大小为B.一质量为m、电荷量为q的带正电粒子(不计重力)从AC边的中点O垂直于AC边射入该匀强磁场区域,若该三角形的两直角边长均为2l,则下列关于粒子运动的说法中正确的是( ACD )

A.若该粒子的入射速度为v=,则粒子一定从CD边射出磁场,且距点C的距离为l

B.若要使粒子从CD边射出,则该粒子从O点入射的最大速度应为v=

C.若要使粒子从AC边射出,则该粒子从O点入射的最大速度应为v=

D.该粒子以大小不同的速度入射时,在磁场中运动的最长时间为

解析:当v=时,根据洛伦兹力充当向心力可知Bqv=m,解得R=l,根据几何关系可知,粒子一定从距C点为l的位置离开磁场,选项A正确;根据洛伦兹力充当向心力可知v=,因此半径越大,速度越大;根据几何关系可知,使粒子与AD边相切时速度最大,由于AD=2l,则由几何关系可知,最大半径一定大于l,则若要使粒子从CD边射出,则该粒子从O点入射的最大速度应大于,选项B错误;若要使粒子从AC边射出,则该粒子从O点入射的最大半径为l,因此最大速度应为v=,选项C正确;粒子运行周期为,根据几何关系可知,粒子在磁场中最大圆心角为180°,故最长时间为,选项D正确.

11.如图所示,等腰直角三角形abc区域内存在方向垂直纸面向外的匀强磁场,磁感应强度大小为B.三个相同的带电粒子从b点沿bc方向分别以速度v1,v2,v3射入磁场,在磁场中运动的时间分别为t1,t2,t3,且t1∶t2∶t3=3∶3∶1.直角边bc的长度为L,不计粒子的重力,下列说法正确的是( BD )

A.三个粒子的速度大小关系可能是v1=v2>v3

B.三个粒子的速度大小关系可能是v1

C.粒子的比荷=

D.粒子的比荷=

解析:速度为v1,v2的粒子从ab边穿出,则偏转角为90°,但两者的速度大小关系不定,但其半径一定比速度为v3的粒子半径小,由半径公式R=,则v3一定大于v1,v2,选项A错误,B正确;由于速度为v1的粒子偏转90°,则t1=×,于是=,选项D正确;对速度为v3的粒子偏转30°,画出运动轨迹如图所示,由几何关系知R3tan 15°+R3tan 15°cos 30°=L,所以R3=,而R3=,联立得到=≠,选项C错误.

12.图中的虚线为半径为R、磁感应强度大小为B的圆形匀强磁场的边界,磁场的方向垂直圆平面向里.大量的比荷均为的相同粒子由磁场边界的最低点A向圆平面内的不同方向以相同的速度v0射入磁场,粒子在磁场中做半径为r的圆周运动,经一段时间的偏转,所有的

粒子均由圆边界离开,所有粒子的出射点的连线为虚线边界的,粒子在圆形磁场中运行的最长时间用t m表示,假设,R,v0为已知量,其余的量均为未知量,忽略粒子的重力以及粒子间的相互作用.则下列表达式正确的是( ACD )

A.B=

B.B=

C.r=

D.t m=

解析:设从A点射入的粒子与磁场边界的最远交点为B,则B点是轨迹圆的直径与磁场边界圆的交点,的长是边界圆周长的,则∠AOB= 120°,sin 60°=,得r=,粒子在磁场中运动时,洛伦兹力提供向心力,有qv0B=m,所以B==,选项A,C正确,B错误;粒子在磁场中运动的最长时间为t m===,选项D正确.

二、非选择题(共52分)

13.(4分)某同学用图中所给器材进行与安培力有关的实验.两根金属导轨ab和a1b1固定在同一水平面内且相互平行,足够大的电磁铁(未画出)的N极位于两导轨的正上方,S极位于两导轨的正下方,一金属

棒置于导轨上且与两导轨垂直.

(1)在图中画出连线,完成实验电路.要求滑动变阻器以限流方式接入电路,且在开关闭合后,金属棒沿箭头所示的方向移动.

(2)为使金属棒在离开导轨时具有更大的速度,有人提出以下建议:

A.适当增加两导轨间的距离

B.换一根更长的金属棒

C.适当增大金属棒中的电流

其中正确的是(填入正确选项前的标号).

解析:(1)实验电路连线如图所示.

(2)为使金属棒离开导轨时具有更大的速度,则金属棒运动时需要更大的加速度,即应受到更大的安培力,根据F=ILB可知,应使I,L变大,即选项A,C正确.

答案:(1)见解析(2)AC

评分标准:每问2分.

14.(8分)物体的带电荷量是一个不易测得的物理量,某同学设计了如下实验来测量带电物体所带电荷量.如图(a)所示,他将一由绝缘材料制成的小物块A放在足够长的木板上,打点计时器固定在长木板末端,物块靠近打点计时器,一纸带穿过打点计时器与物块相连,操作步骤如下,请结合操作步骤完成以下问题.

(1)为消除摩擦力的影响,他将长木板一端垫起一定倾角,接通打点计时器,轻轻推一下小物块,使其沿着长木板向下运动.多次调整倾角θ,直至打出的纸带上点迹,测出此时木板与水平面间的倾角,记为θ0.

(2)如图(b)所示,在该装置处加上一范围足够大的垂直纸面向里的匀强磁场,用细绳通过一轻小定滑轮将物块A与物块B相连,绳与滑轮摩擦不计.给物块A带上一定量的正电荷,保持倾角θ0不变,接通打点计时器,由静止释放小物块A,该过程可近似认为物块A带电荷量不变,下列关于纸带上点迹的分析正确的是.

A.纸带上的点迹间距先增加后减小至零

B.纸带上的点迹间距先增加后减小至一不为零的定值

C.纸带上的点迹间距逐渐增加,且相邻两点间的距离之差不变

D.纸带上的点迹间距逐渐增加,且相邻两点间的距离之差逐渐减少,直至间距不变

(3)为了测定物体所带电荷量q,除θ0、磁感应强度B外,本实验还必须测量的物理量有.

A.物块A的质量M

B.物块B的质量m

C.物块A与木板间的动摩擦因数μ

D.两物块最终的速度v

(4)用重力加速度g,磁感应强度B,θ0和所测得的物理量可得出q的表达式为q= .

解析:(1)此实验平衡摩擦力后,确定滑块做匀速直线运动的依据是,看打点计时器在纸带上所打出点的分布应该是等间距的.

(2)设A的质量为M,B的质量为m,没有磁场时,对A受力分析,A受到重力Mg、支持力、摩擦力.根据平衡条件可知f=Mgsin θ0,F N=Mgcos θ0,又因为f=μF N,所以μ===tan θ0;当存在磁场时,以A,B 整体为研究对象,由牛顿第二定律可得(mg+Mgsin θ0)-μ(Bqv+Mgcos θ0)=(M+m)a

由此式可知,v和a是变量,其他都是不变的量,所以A,B一起做加速度减小的加速运动,直到加速度减为零后做匀速运动,即速度在增大,加速度在减小,最后速度不变.所以纸带上的点迹间距逐渐增加,说明速度增大;根据Δx=at2,可知,加速度减小,则相邻两点间的距离之差逐渐减小;匀速运动时,间距不变,选项D正确,A,B,C错误.

(3)(4)根据(mg+Mgsin θ0)-μ(Bqv+Mgcos θ0)=(M+m)a,可得当加速度减为零时,速度最大,设最大速度为v,则(mg+Mgsin θ0)-μ(Bqv+

Mgcos θ0)=0

化简得q=,把μ=tan θ0代入,得q=,由此可知为了测定物体所带电荷量q,除θ0、磁感应强度B外,本实验还必须测量的物理量有物块B的质量m和两物块最终的速度v.

答案:(1)间距相等(或均匀) (2)D (3)BD (4)

评分标准:每问2分.

15.(7分)如图所示,两个同心圆,半径分别为r和2r,在两圆之间的环形区域内存在垂直纸面向里的匀强磁场,磁感应强度为B.圆心O处有一放射源,放出粒子的质量为m、带电荷量为q,假设粒子速度方向都和纸面平行.

(1)图中箭头表示某一粒子初速度的方向,OA与初速度方向夹角为60°,要想使该粒子经过磁场后第一次通过A点,则初速度的大小是多少?

(2)要使粒子不穿出环形区域,则粒子的初速度不能超过多少?

解析:(1)如图(甲)所示,设粒子在磁场中的轨道半径为R1,则由几何关系得R1=,(1分)

又qv1B=m,

得v1=.(2分)

(2)如图(乙)所示,设粒子轨迹与磁场外边界相切时,粒子在磁场中的轨道半径为R2,则由几何关系有

(2r-R2)2=+r2,(1分)

可得R2=(1分)

又qv2B=m,(1分)

可得v2=,(1分)

故要使粒子不穿出环形区域,粒子的初速度不能超过.

答案:(1)(2)

16.(8分)如图所示,在平面直角坐标系xOy中的第一象限内存在磁感应强度大小为B、方向垂直于坐标平面向内的有界圆形匀强磁场区域(图中未画出);在第二象限内存在沿x轴负方向的匀强电场,一粒子源固定在x轴上的A点,A点坐标为(-L,0).粒子源沿y轴正方向释放出速度大小为v的电子,电子恰好能通过y轴上的C点,C点坐标为

(0,2L),电子经过磁场偏转后恰好垂直通过第一象限内与x轴正方向成15°角的射线ON(已知电子的质量为m,电荷量为e,不考虑粒子的重力和粒子之间的相互作用).求:

(1)第二象限内电场强度E的大小;

(2)电子离开电场时的速度方向与y轴正方向的夹角θ;

(3)圆形磁场的最小半径R min.

解析:(1)从A到C的过程中,电子做类平抛运动,

有L=t2(1分)

2L=vt,(1分)

联立解得E=.(1分)

(2)设电子到达C点的速度大小为v C,方向与y轴正方向的夹角为θ.由动能定理,有

m-mv2=eEL(1分)

解得v C=v,cos θ==,

解得θ=45°.(1分)

(3)电子的运动轨迹图如图,电子在磁场中做匀速圆周运动的半径R==,(1分)

电子在磁场中偏转120°后垂直于ON射出,则磁场圆最小半径

R min==Rsin 60°(1分)

由以上两式可得

R min=.(1分)

答案:(1)(2)45°(3)

17.(11分)如图(甲)所示,在平行边界MN,PQ之间存在宽度为d的匀强电场,电场周期性变化的规律如图(乙)所示,取竖直向下为电场正方向;在平行边界PQ右侧和MN左侧存在如图(甲)所示的两个长为2d、宽为d的匀强磁场区域Ⅰ和Ⅱ,其边界点分别为PQCD和MNFE.已知区域Ⅱ内匀强磁场的磁感应强度大小是区域Ⅰ内匀强磁场的磁感应强度大小的3倍.在区域Ⅰ右边界中点A处,有一质量为m、电荷量为q、重力不计的带正电粒子以初速度v0沿竖直方向从磁场区域Ⅰ开始运动,以此作为计时起点,再经过一段时间粒子又恰好回到A点,如此循环,粒子循环一周,电场恰好变化一个周期,已知粒子离开区域Ⅰ进入电场时,速度恰好与电场方向垂直,sin 53°=0.8,cos 53°=0.6.求:

(1)区域Ⅰ的磁感应强度大小B;

(2)电场强度大小E及电场的周期T.

解析:(1)粒子在区域Ⅰ做圆周运动的半径r=d,(1分)

由洛伦兹力提供向心力知

qv0B=,

联立得B=.(1分)

(2)画出粒子运动的轨迹示意图如图所示,粒子在区域Ⅰ做匀速圆周运动,圆心为O1,粒子从区域Ⅰ进入电场,在电场中做类平抛运动,在区域Ⅱ做匀速圆周运动,圆心为O2,半径记为R,在区域Ⅱ做匀速圆周运动圆心O2与区域Ⅰ做匀速圆周运动的圆心O1的连线必须与边界垂直才能完成上述运动.粒子从区域Ⅰ进入电场做类平抛运动,水平方向d=v0t(1分)

竖直方向y=at2=t2(1分)

离开电场时沿电场方向的速度v y=at=,

离开电场时速度方向与边界MN的夹角为θ,离开电场时速度为v,v0=vsin θ

粒子在区域Ⅱ做匀速圆周运动由洛伦兹力提供向心力,知3qvB= (1分)

由几何关系有2y+2Rsin θ=2d(1分)

联立以上各式得E=(1分)

由tan θ===,

得θ=37°

粒子在区域Ⅰ中运动的时间t1=(1分)

粒子在区域Ⅱ中运动的时间

t2==(1分)

粒子在电场中运动的时间t3=(1分)

电场变化的周期等于粒子运动的周期,所以电场周期

物理高考复习专题11 磁场选择题(解析版)

2020年全国大市名校高三期末一模物理试题全解全析汇编(第七期) 磁场选择题 1、(2020·福建省厦门六中高三测试三)1932年美国物理学家劳伦斯发明了回旋加速器,如图所示,磁感应强度为B 的匀强磁场与D 形盒面垂直,两盒间的狭缝很小,粒子穿过的时间可忽略,它们接在电压为U 、周期为T 的交流电源上,中心A 处粒子源产生的粒子飘人狭缝中由初。速度为零开始加速,最后从出口处飞出。D 形盒的半径为R ,下列说法正确的是( ) A .粒子在出口处的最大动能与加速电压U 有关 B .粒子在出口处的最大动能与D 形盒的半径无关 C .粒子在 D 形盒中运动的总时间与交流电的周期T 有关 D .粒子在D 形盒中运动的总时间与粒子的比荷无关 【答案】D 【解析】 AB .根据回旋加速器的加速原理,粒子不断加速,做圆周运动的半径不断变大,最大半径即为D 形盒的半径R ,由 2 m m v qBv m R = 得 m qBR v m =

最大动能为 222 km 2q B R E m = 故AB 错误; CD .粒子每加速一次动能增加 ΔE km =qU 粒子加速的次数为 22 km k 2E qB R N E mU ==? 粒子在D 形盒中运动的总时间 2 T t N =? ,2πm T qB = 联立得 2 π22T BR t N U =?= 故C 错误,D 正确。 故选D 。 2、(2020·福建省厦门六中高三测试三)如图所示,质量为m 、电阻为r 的“U”字形金属框abcd 置于竖直平面内,三边的长度ad =dc =bc =L ,两顶点a 、b 通过细导线与M 、N 两点间的电源相连,电源电动势为E 。内阻也为r 。匀强磁场方向垂直金属框向里,金属框恰好处于静止状态。不计其余电阻和细导线对a 、b 点的作用力,重力加速度为g 。下列说法正确的是( )

2018年上海市高考物理试卷

2018年上海市高考物理试卷 关于这篇2013上海市高考物理试卷,希望大家认真阅读,好好感受,勤于思考,多读多练,从中吸取精华。 一.单项选择题(共16分,每小题2分。每小题只有一个正确选项。) 1.电磁波与机械波具有的共同性质是 (A)都是横波(B)都能传输能量 (C)都能在真空中传播(D)都具有恒定的波速 2.当用一束紫外线照射锌板时,产生了光电效应,这时 (A)锌板带负电(B)有正离子从锌板逸出 (C)有电子从锌板逸出(D)锌板会吸附空气中的正离子 3.白光通过双缝后产生的干涉条纹是彩色的,其原因是不同色光的

(A)传播速度不同(B)强度不同(C)振动方向不同(D)频率不同 4.做简谐振动的物体,当它每次经过同一位置时,可能不同的物理量是 (A)位移(B)速度(C)加速度(D)回复力 5.液体与固体具有的相同特点是 (A)都具有确定的形状(B)体积都不易被压缩 (C)物质分子的位置都确定(D)物质分子都在固定位置附近振动 6.秋千的吊绳有些磨损。在摆动过程中,吊绳最容易断裂的时候是秋千 (A)在下摆过程中(B)在上摆过程中 (C)摆到最高点时(D)摆到最低点时

7.在一个原子核衰变为一个原子核的过程中,发生衰变的次数为 (A)6次(B)10次(C)22次(D)32次 8.如图,质量mAmB的两物体A、B叠放在一起,靠着竖直墙面。让它们由静止释放,在沿粗糙墙面下落过程中,物体B 的受力示意图是 二.单项选择题(共24分,每小题3分。每小题只有一个正确选项。) 9.小行星绕恒星运动,恒星均匀地向四周辐射能量,质量缓慢减小,可认为小行星在绕恒星运动一周的过程中近似做圆周运动。则经过足够长的时间后,小行星运动的 (A)半径变大(B)速率变大(C)角速度变大(D)加速度变大 10.两异种点电荷电场中的部分等势面如图所示,已知A点电势高于B点电势。若位于a、b处点电荷的电荷量大小分别为qa和qb,则

高考物理易错题解题方法大全 (3)

高考物理易错题解题方法大全(6) 碰撞与动量守恒 例76:在光滑水平面上停放着两木块A和B,A的质量大,现同时施加大小相等的恒力F 使它们相向运动,然后又同时撤去外力F,结果A和B迎面相碰后合在一起,问A和B合在一起后的运动情况将是() A.停止运动 B.因A的质量大而向右运动 C.因B的速度大而向左运动 D.运动方向不能确定 【错解分析】错解:因为A的质量大,所以它的惯性大,所以它不容停下来,因此应该选B;或者因为B的速度大,所以它肯定比A后停下来,所以应该选C。 产生上述错误的原因是没有能够全面分析题目条件,只是从一个单一的角度去思考问题,失之偏颇。 【解题指导】碰撞问题应该从动量的角度去思考,而不能仅看质量或者速度,因为在相互作用过程中,这两个因素是一起起作用的。 【答案】本题的正确选项为A。 由动量定理知,A和B两物体在碰撞之前的动量等大反向,碰撞过程中动量守恒,因此碰撞之后合在一起的总动量为零,故选A。 练习76:A、B两球在光滑水平面上相向运动,两球相碰后有一球停止运动,则下述说法中正确的是() A.若碰后,A球速度为0,则碰前A的动量一定大于B的动量 B.若碰后,A球速度为0,则碰前A的动量一定小于B的动量 C.若碰后,B球速度为0,则碰前A的动量一定大于B的动量 D.若碰后,B球速度为0,则碰前A的动量一定小于B的动量 例77:质量为M的小车在水平地面上以速度v0匀速向右运动。当车中的砂子从底部的漏斗中不断流下时,车子的速度将() A. 减小 B. 不变 C. 增大 D. 无法确定 【错解分析】错解:因为随着砂子的不断流下,车子的总质量减小,根据动量守恒定律总动量不变,所以车速增大,故选C。 产生上述错误的原因,是在利用动量守恒定律处理问题时,研究对象的选取出了问题。因为,此时,应保持初、末状态研究对象的是同一系统,质量不变。 【解题指导】利用动量守恒定律解决问题的时候,在所研究的过程中,研究对象的系统一定不能发生变化,抓住研究对象,分析组成该系统的各个部分的动量变化情况,达到解决问题的目的。 【答案】本题的正确选项为B。

高三物理高考第一轮专题复习——电磁场(含答案详解)

高三物理第一轮专题复习——电磁场 在以坐标原点O 为圆心、半径为r 的圆形区域内,存在磁感应强度大小为B 、方向垂直于纸面向里的匀强磁场,如图所示。一个不计重力的带电粒子从磁场边界与x 轴的交点A 处以速度v 沿-x 方向射入磁场,恰好从磁场边界与y 轴的交点C 处沿+y 方向飞出。 (1)请判断该粒子带何种电荷,并求出其比荷q/m ; (2)若磁场的方向和所在空间范围不变,而磁感应强度的大小变为B ’,该粒子仍从A 处以相同的速度射入磁场,但飞出磁场时的速度方向相对于入射方向改变了60°角,求磁感应强度B ’多大?此次粒子在磁场中运动所用时间t 是多少? 电子自静止开始经M 、N 板间(两板间的电压 为U )的电场加速后从A 点垂直于磁场边界射入宽度为d 的匀强磁场中, 电子离开磁场时的位置P 偏离入射方向的距离为L ,如图所示.求匀强磁 场的磁感应强度.(已知电子的质量为m ,电量为e ) 高考)如图所示,abcd 为一正方形区域,正离子束从a 点沿ad 方向以0 =80m/s 的初速度射入,若在该区域中加上一个沿ab 方向的匀强电场,电场强度为E ,则离子束刚好从c 点射出;若撒去电场,在该区域中加上一个垂直于abcd 平面的匀强磁砀,磁感应强度为B ,则离子束刚好从bc 的中点e 射出,忽略离子束中离子间的相互作用,不计离子的重力,试判断和计算: (1)所加磁场的方向如何?(2)E 与B 的比值B E /为多少?

制D 型金属扁盒组成,两个D 形盒正中间开有一条窄缝。两个D 型盒处在匀强磁场中并接有高频交变电压。图乙为俯视图,在D 型盒上半面中心S 处有一正离子源,它发出的正离子,经狭缝电压加速后,进入D 型盒中。在磁场力的作用下运动半周,再经狭缝电压加速。如此周而复始,最后到达D 型盒的边缘,获得最大速度,由导出装置导出。已知正离子的电荷量为q ,质量为m ,加速时电极间电压大小为U ,磁场的磁感应强度为B ,D 型盒的半径为R 。每次加速的时间很短,可以忽略不计。正离子从离子源出发时的初速度为零。 (1)为了使正离子每经过窄缝都被加速,求交变电压的频率; (2)求离子能获得的最大动能; (3)求离子第1次与第n 次在下半盒中运动的轨道半径之比。 如图甲所示,图的右侧MN 为一竖直放置的荧光屏,O 为它的中点,OO’与荧光屏垂直,且长度为l 。在MN 的左侧空间内存在着方向水平向里的匀强电场,场强大小为E 。乙图是从甲图的左边去看荧光屏得到的平面图,在荧光屏上以O 为原点建立如图的直角坐标系。一细束质量为m 、电荷为q 的带电粒子以相同的初速度 v 0从O’点沿O’O 方向射入电场区域。粒子的重力和粒子间的相互作用都可忽略不计。 (1)若再在MN 左侧空间加一个匀强磁场,使得荧光屏上的亮点恰好位于原点O 处,求这个磁场的磁感强度的大小和方向。 (2)如果磁感强度的大小保持不变,但把方向变为与电场方向相同,则荧光屏上的亮点位于图中A 点处,已知A 点的纵坐标 l y 3 3 ,求它的横坐标的数值。 E 、方向水平向右,电场宽度为L ;中间区域匀强磁场的磁感应强度大小为B ,方向垂直纸面向里。一个质量为m 、电量为q 、不计重力的带正电的粒子从电场的左边缘的O 点由静止开始运动,穿过中间磁场区域进入右侧磁场区域后,又回到O 点,然后重复上述运动过程。求: (1)中间磁场区域的宽度d ; (2)带电粒子从O 点开始运动到第一次回到O 点所用时间t 。 如下图所示,PR 是一块长为L= 4m 的绝缘平板,固定在水平地面上,整个空间有一个平行 B B l O 甲 乙

高考物理磁场知识点

2019高考物理磁场知识点 2019高考物理磁场知识点 1.磁场 (1)磁场:磁场是存在于磁体、电流和运动电荷周围的一种物质。永磁体和电流都能在空间产生磁场。变化的电场也能产生磁场。 (2)磁场的基本特点:磁场对处于其中的磁体、电流和运动电荷有力的作用。 (3)磁现象的电本质:一切磁现象都可归结为运动电荷(或电流) 之间通过磁场而发生的相互作用。 (4)安培分子电流假说------在原子、分子等物质微粒内部,存在着一种环形电流即分子电流,分子电流使每个物质微粒成为微小的磁体。 (5)磁场的方向:规定在磁场中任一点小磁针N极受力的方向(或者小磁针静止时N极的指向)就是那一点的磁场方向。 2.磁感线 (1)在磁场中人为地画出一系列曲线,曲线的切线方向表示该位置的磁场方向,曲线的疏密能定性地表示磁场的弱强,这一系列曲线称为磁感线。 (2)磁铁外部的磁感线,都从磁铁N极出来,进入S极,在内部,由S极到N极,磁感线是闭合曲线;磁感线不相交。 (3)几种典型磁场的磁感线的分布: ①直线电流的磁场:同心圆、非匀强、距导线越远处磁场越弱。

②通电螺线管的磁场:两端分别是N极和S极,管内可看作匀强磁场,管外是非匀强磁场。 ③环形电流的磁场:两侧是N极和S极,离圆环中心越远,磁场越弱。 ④匀强磁场:磁感应强度的大小处处相等、方向处处相同。匀强磁场中的磁感线是分布均匀、方向相同的平行直线。 3.磁感应强度 (1)定义:磁感应强度是表示磁场强弱的物理量,在磁场中垂直于磁场方向的通电导线,受到的磁场力F跟电流I和导线长度L的乘积IL的比值,叫做通电导线所在处的磁感应强度,定义式B=F/IL。单位T,1T=1N/(A·m)。 (2)磁感应强度是矢量,磁场中某点的磁感应强度的方向就是该点的磁场方向,即通过该点的磁感线的切线方向。 (3)磁场中某位置的磁感应强度的大小及方向是客观存在的,与放入的电流强度I的大小、导线的长短L的大小无关,与电流受到的力也无关,即使不放入载流导体,它的磁感应强度也照样存在,因此不能说B与F成正比,或B与IL成反比。 (4)磁感应强度B是矢量,遵守矢量分解合成的平行四边形定则,注意磁感应强度的方向就是该处的磁场方向,并不是在该处的电流的受力方向。 4.地磁场:地球的磁场与条形磁体的磁场相似,其主要特点有三个:

高考物理易错题专题三物理动能与动能定理(含解析)及解析

高考物理易错题专题三物理动能与动能定理(含解析)及解析 一、高中物理精讲专题测试动能与动能定理 1.如图所示,在娱乐节目中,一质量为m=60 kg的选手以v0=7 m/s的水平速度抓住竖直绳下端的抓手开始摆动,当绳摆到与竖直方向夹角θ=37°时,选手放开抓手,松手后的上升过程中选手水平速度保持不变,运动到水平传送带左端A时速度刚好水平,并在传送带上滑行,传送带以v=2 m/s匀速向右运动.已知绳子的悬挂点到抓手的距离为L=6 m,传送带两端点A、B间的距离s=7 m,选手与传送带间的动摩擦因数为μ=0.2,若把选手看成质点,且不考虑空气阻力和绳的质量.(g=10 m/s2,sin 37°=0.6,cos 37°=0.8)求: (1)选手放开抓手时的速度大小; (2)选手在传送带上从A运动到B的时间; (3)选手在传送带上克服摩擦力做的功. 【答案】(1)5 m/s (2)3 s (3)360 J 【解析】 试题分析:(1)设选手放开抓手时的速度为v1,则-mg(L-Lcosθ)=mv12-mv02, v1=5m/s (2)设选手放开抓手时的水平速度为v2,v2=v1cosθ① 选手在传送带上减速过程中 a=-μg② v=v2+at1③④ 匀速运动的时间t2,s-x1=vt2⑤ 选手在传送带上的运动时间t=t1+t2⑥ 联立①②③④⑤⑥得:t=3s (3)由动能定理得W f=mv2-mv22,解得:W f=-360J 故克服摩擦力做功为360J. 考点:动能定理的应用 2.如图所示,小滑块(视为质点)的质量m= 1kg;固定在地面上的斜面AB的倾角 =37°、长s=1m,点A和斜面最低点B之间铺了一层均质特殊材料,其与滑块间的动摩擦因数μ可在0≤μ≤1.5之间调节。点B与水平光滑地面平滑相连,地面上有一根自然状态下的轻弹簧一端固定在O点另一端恰好在B点。认为滑块通过点B前、后速度大小不变;最大静摩擦力等于滑动摩擦力。取g=10m/s2,sin37° =0.6,cos37° =0.8,不计空气阻力。(1)若设置μ=0,将滑块从A点由静止释放,求滑块从点A运动到点B所用的时间。(2)若滑块在A点以v0=lm/s的初速度沿斜面下滑,最终停止于B点,求μ的取值范围。

高考物理一轮复习磁场专题

第十一章、磁场 一、磁场: 1、基本性质:对放入其中的磁极、电流有力的作用。 磁极间、电流间的作用通过磁场产生,磁场是客观存在的一种特殊形态的物质。 2、方向:放入其中小磁针N极的受力方向(静止时N极的指向) 放入其中小磁针S极的受力的反方向(静止时S极的反指向) 3、磁感线:形象描述磁场强弱和方向的假想的曲线。 磁体外部:N极到S极;磁体内部:S极到N极。 磁感线上某点的切线方向为该点的磁场方向;磁感线的疏密表示磁场的强弱。 4、安培定则:(右手四指为环绕方向,大拇指为单独走向) 二、安培力: 1、定义:磁场对电流的作用力。 2、计算公式:F=ILBsinθ=I⊥LB式中:θ是I与B的夹角。 电流与磁场平行时,电流在磁场中不受安培力;电流与磁场垂直时,电流在磁场中受安培力最大:F=ILB 0≤F≤ILB 3、安培力的方向:左手定则——左手掌放入磁场中,磁感线穿过掌心,四指指向电流方向,大拇指指向为通电导线所受安培力的方向。 三、磁感应强度B: 1、定义:放入磁场中的电流元与磁场垂直时,所受安培力F跟电流元IL的比值。

qB m v r =2、公式: 磁感应强度B是磁场的一种特性,与F、I、L等无关。 注:匀强磁场中,B与I垂直时,L为导线的长度; 非匀强磁场中,B与I垂直时,L为短导线长度。 3、国际单位:特斯拉(T)。 4、磁感应强度B是矢量,方向即磁场方向。 磁感线方向为B方向,疏密表示B的强弱。 5、匀强磁场:磁感应强度B的大小和方向处处相同的磁场。磁感线是分布均匀的平行直线。例:靠近的两个异名磁极之间的部分磁场;通电螺线管内的磁场。 四、电流表(辐向式磁场) 线圈所受力矩:M=NBIS ∥=k θ 五、磁场对运动电荷的作用: 1、洛伦兹力:运动电荷在磁场中所受的力。 2、方向:用左手定则判断——磁感线穿过掌心,四指所指为正电荷运动方向(负电荷运动的反方向),大拇指所指方向为洛伦兹力方向。 3、大小:F=qv ⊥B 4、洛伦兹力始终与电荷运动方向垂直,只改变电荷的运动方向,不对电荷做功。 5、电荷垂直进入磁场时,运动轨迹是一个圆。 IL F B =

2018上海高中合格考物理试题(含答案)

2018年上海高中物理合格考试试题 1.如图所示,重为G 的书本置于水平桌面上,桌面对书本的支持力为1F ,书本对桌面的压力为2F ,下列说法正确的是 A. 1F 大于2F B. G 与2F 是一对平衡力 C. G 与1F 是一对作用力与反作用力 D. 1F 与2F 是一对作用力与反作用力 2.以下划线上的数字指时间(即时间间隔)的是( ) A. 午休从11:30开始 B. 刘翔跨栏记录为12.91s C. 某中学的作息表上写着,第四节:10:50-11:30 D. 中央电视台《新闻联播》栏目每晚7:00准时与您见面 3.下列关于惯性的说法正确的是( ) A .战斗机战斗前抛弃副油箱,是为了增大战斗机的惯性 B .物体的质量越大,其惯性就越大 C .火箭升空时,火箭的惯性随其速度的增大而增大 D .做自由落体运动的物体没有惯性 4.跳水运动员从10m 高的跳台上跳下(不计一切阻力),在下落的过程中( ) A. 运动员克服重力做功 B. 运动员的机械能在减少 C. 运动员的动能减少,重力势能增加 D. 运动员的动能增加,重力势能减少 5.伽利略在研究力和运动的关系的时候,用两个对接的斜面,一个斜面固定,让小球从斜面上滚下,又滚上另一个倾角可以改变的斜面,斜面倾角逐渐改变至零,如图所示。伽利略设计这个实验的目的是为了说明( ) A. 如果没有摩擦,小球将运动到与释放时相同的高度 B. 如果没有摩擦,物体运动过程中机械能守恒 C. 维持物体做匀速直线运动并不需要力 D. 如果物体不受到力,就不会运动 6.如图所示,在“研究影响通电导体所受磁场力的因素”的实验中,要使导体棒的悬线向右的摆角增大。以下操作中可行的是 ( )

高考物理:专题9-磁场(附答案)

专题9 磁场 1.(15江苏卷)如图所示,用天平测量匀强磁场的磁感应强度,下列各选项所示的载流线圈匝数相同,边长NM 相等,将它们分别挂在天平的右臂下方,线圈中通有大小相同的电流,天平处于平衡状态,若磁场发生微小变化,天平最容易失去平衡的是 答案:A 解析:因为在磁场中受安培力的导体的有效长度(A)最大,所以选A. 2.(15海南卷)如图,a 是竖直平面P 上的一点,P 前有一条形磁铁垂直于P ,且S 极朝向a 点,P 后一电子在偏转线圈和条形磁铁的磁场的共同作用下,在水平面内向右弯曲经过a 点.在电子经过a 点的瞬间.条形磁铁的磁场对该电子的作用力的方向() A .向上 B.向下 C.向左 D.向右 答案:A 解析:条形磁铁的磁感线方向在a 点为垂直P 向外,粒子在条形磁铁的磁场中向右运动,所以根据左手定则可得电子受到的洛伦兹力方向向上,A 正确. 3.(15重庆卷)题1图中曲线a 、b 、c 、d 为气泡室中某放射物质发生衰变放出的部分粒子的经迹,气泡室中磁感应强度方向垂直纸面向里.以下判断可能正确的是 A.a 、b 为粒子的经迹 B. a 、b 为粒子的经迹 C. c 、d 为粒子的经迹 D. c 、d 为粒子的经迹 答案:D 解析:射线是不带电的光子流,在磁场中不偏转,故选项B 错误.粒子为氦核带正电,由左手定则知受到向上的洛伦兹力向上偏转,故选项A 、C 错误;粒子是带负电的电子流,应向下偏转,选项D 正确. 4.(15重庆卷)音圈电机是一种应用于硬盘、光驱等系统的特殊电动机.题7图是某音圈电机的原理示意图,它由一对正对的磁极和一个正方形刚性线圈构成,线圈边长为,匝数为,磁极正对区域内的磁感应强度方向垂直于线圈平面竖直向下,大小为,区域外的磁场忽略不计.线圈左边始终在磁场外,右边始终在磁场内,前后两边在磁场内的长度始终相等.某时刻线圈中电流从P 流向Q,大小为. βγαβγαβL n B I

高考物理易错题专题复习-临界状态的假设解决物理试题练习题含答案

高考物理易错题专题复习-临界状态的假设解决物理试题练习题含答案 一、临界状态的假设解决物理试题 1.如图所示,用长为L =0.8m 的轻质细绳将一质量为1kg 的小球悬挂在距离水平面高为H =2.05m 的O 点,将细绳拉直至水平状态无初速度释放小球,小球摆动至细绳处于竖直位置时细绳恰好断裂,小球落在距离O 点水平距离为2m 的水平面上的B 点,不计空气阻力,取g =10m/s 2求: (1)绳子断裂后小球落到地面所用的时间; (2)小球落地的速度的大小; (3)绳子能承受的最大拉力。 【答案】(1)0.5s(2)6.4m/s(3)30N 【解析】 【分析】 【详解】 (1)细绳断裂后,小球做平抛运动,竖直方向自由落体运动,则竖直方向有2 12 AB h gt =,解得 2(2.050.8) s 0.5s 10 t ?-= = (2)水平方向匀速运动,则有 02m/s 4m/s 0.5x v t = == 竖直方向的速度为 5m/s y v gt == 则 22 22045m/s=41m/s 6.4m/s y v v v =+=+≈ (3)在A 点根据向心力公式得 2 v T mg m L -= 代入数据解得 2 4(1101)N=30N 0.8 T =?+?

2.火车以速率v 1向前行驶,司机突然发现在前方同一轨道上距车为s 处有另一辆火车,它正沿相同的方向以较小的速率v 2做匀速运动,于是司机立即使车做匀减速运动,该加速度大小为a ,则要使两车不相撞,加速度a 应满足的关系为 A . B . C . D . 【答案】D 【解析】 试题分析:两车速度相等时所经历的时间:12 v v t a -= ,此时后面火车的位移为:22 12 12v v x a -= 前面火车的位移为:2 12222v v v x v t a -==,由12x x s =+解得:2 12()2v v a s -=,所以加速 度大小满足的条件是:2 12()2v v a s -≥,故选项D 正确. 考点:匀变速直线运动的位移与时间的关系、匀变速直线运动的速度与时间的关系 【名师点睛】速度大者减速追速度小者,速度相等前,两者距离逐渐减小,若不能追上,速度相等后,两者距离越来越大,可知只能在速度相等前或相等时追上.临界情况为速度相等时恰好相碰. 3.如图所示,一根长为L 的轻杆一端固定在光滑水平轴O 上,另一端固定一质量为m 的小球,小球在最低点时给它一初速度,使它在竖直平面内做圆周运动,且刚好能到达最高点P ,重力加速度为g 。关于此过程以下说法正确的是( ) A gL B .小球在最高点时对杆的作用力为零 C .若减小小球的初速度,则小球仍然能够到达最高点P D .若增大小球的初速度,则在最高点时杆对小球的作用力方向可能向上 【答案】D 【解析】 【分析】 【详解】

2019年上海市高考物理试卷

2019年上海市高考物理试卷 一、选择题(共40分.第1-8小题,每小题3分,第9-12小题,每小题3分.每小题只 有一个正确答案. ) 1. (3分)(2019?上海)以下运动中加速度保持不变的是( B .匀速圆周运动 C ?竖直上抛运动 D ?加速直线运动 2. (3分)(2019?上海)原子核内部有() A .质子 B . a粒子 C .电子 D .光电子 4. (3分)(2019?上海)泊松亮斑是光的( A .干涉现象,说明光有波动性 B .衍射现象,说明光有波动性 C.干涉现象,说明光有粒子性 D .衍射现象,说明光有粒子性 5. (3分)(2019?上海)将相同质量,相同温度的理想气体放入相同容器,体积不同,则这 两部分气体() A .简谐振动 3. (3 分)(2019 ?上 海) 间变化的图象应为( 一个做简谐振动的弹簧振子, t=0时位于平衡位置,其机械能随时

A ?平均动能相同,压强相同 B?平均动能不同,压强相同 C?平均动能相同,压强不同 D?平均动能不同,压强不同 6 ? (3分)(2019?上海)以A、B为轴的圆盘,A以线速度v转动,并带动B转动,A、B之 间没有相对滑动则() A ? A、B转动方向相同,周期不同 B ? A、B转动方向不同,周期不同 C ? A、B转动方向相同,周期相同 D ? A、B转动方向不同,周期相同 7? (3分)(2019?上海)一只甲虫沿着树枝缓慢地从A点爬到B点,此过程中树枝对甲虫 作用力大小() A .变大 B .变小 C .保持不变 D ? ? & (3分)(2019?上海)两波源I、n在水槽中形成的波形如图所示,其中实线表示波峰,虚线表示波谷,则以下说法正确的是()

高考物理物理学史知识点易错题汇编附解析

高考物理物理学史知识点易错题汇编附解析 一、选择题 1.万有引力的发现实现了物理学史上第一次大统一:“地上物理学”和“天上物理学”的统一.它表明天体运动和地面上物体的运动遵从相同的规律.牛顿发现万有引力定律的过程中将行星的椭圆轨道简化为圆轨道,还应用到了其他的规律和结论.下面的规律和结论没有被用到的是( ) A.开普勒的研究成果 B.卡文迪许通过扭秤实验得出的引力常量 C.牛顿第二定律 D.牛顿第三定律 2.下列说法正确的是 A.伽利略的理想斜面实验说明了“力是维持物体运动的原因” B.采用比值定义法定义的物理量有:电场强度 F E q =,电容Q C U =,加速度 F a m = C.库仑通过实验得出了库仑定律,并用扭秤实验最早测量出了元电荷e的数值 D.放射性元素发生一次β衰变,新核原子序数比原来原子核序数增加1 3.2014年,我国在实验中发现量子反常霍尔效应,取得世界级成果。实验在物理学的研究中有着非常重要的作用,下列关于实验的说法中正确的是() A.在探究求合力的方法的实验中运用了控制变量法 B.密立根利用油滴实验发现电荷量都是某个最小值的整数倍 C.牛顿运用理想斜面实验归纳得出了牛顿第一定律 D.库仑做库仑扭秤实验时采用了归纳的方法 4.在物理学发展过程中, 很多科学家做出了巨大的贡献,下列说法中符合史实的是()A.伽利略通过观测、分析计算发现了行星的运动规律 B.卡文迪许用扭秤实验测出了万有引力常量 C.牛顿运用万有引力定律预测并发现了海王星和冥王星 D.开普勒利用他精湛的数学经过长期计算分析,最后终于发现了万有引力定律 5.电闪雷鸣是自然界常见的现象,古人认为那是“天神之火”,是天神对罪恶的惩罚,下面哪位科学家()冒着生命危险在美国费城进行了著名的风筝实验,把天电引了下来,才使人类摆脱了对雷电现象的迷信。 A.库仑 B.安培 C.富兰克林 D.伏打 6.下列说法正确的是() A.牛顿提出了万有引力定律,并通过实验测出了万有引力常量 B.经典力学只适用微观、高速、强引力场 C.库仑在前人研究的基础上,通过扭秤实验研究得出了库仑定律 D.哥白尼提出了日心说并发现了行星沿椭圆轨道运行的规律 7.物理学中最早使用理想实验方法、发现万有引力定律、最早引入了电场概念并提出用电场线表示电场和发现电流磁效应分别由不同的物理学家完成,他们依次是()

10_2013高考物理真题分类汇编 专题十 磁场

专题十磁场 1.(2013高考上海物理第13题)如图,足够长的直线ab 靠近通电螺线管,与螺线管平行。用磁传感器测量ab 上各点的磁感应强度B,在计算机屏幕上显示的大致图像是 答案:C 解析:通电螺线管外部中间处的磁感应强度最小,所以用磁传感器测量ab 上各点的磁感应强度B,在计算机屏幕上显示的大致图像是C。 2.(2013高考安徽理综第15题)图中a,b,c,d为四根与纸面垂直的长直导线,其横截面位于正方形的四个顶点上,导线中通有大小相同的电流,方向如图所示。一带正电的粒 子从正方形中心O点沿垂直于纸面的方向向外运动,它所受洛 伦兹力的方向是 A.向上B.向下C.向左 D.向右 【答案】B 【解析】在O点处,各电流产生的磁场的磁感应强度在O点叠加。d、b电流在O点产生的磁场抵消,a、c电流在O点产生的磁场合矢量方向向左,带正电的粒子从正方形中心O点沿垂直于纸面的方向向外运动,由左手定则可判断出它所受洛伦兹力的方向是向下,B选项正确。 3. (2013全国新课标理综II第17题)空间有一圆柱形匀强磁场区域,该区域的横截面的半径为R,磁场方向垂直于横截面。一质量为m、电荷量为q(q>0)的粒子以速率v0沿横截面的某直径射入磁场,离开磁场时速度方向偏离入射方向60°。不计重力。该磁场的

磁感应强度大小为 A B .qR m v 0 C .qR mv 03 D .qR m v 03 答案.A 【解题思路】画出带电粒子运动轨迹示意图,如图所示。设带电粒子 在匀强磁场中运动轨迹的半径为r ,根据洛伦兹力公式和牛顿第二定律, qv 0B=m 2 v r ,解得r=mv 0/qB 。由图中几何关系可得:tan30°=R/r。联立解 得:该磁场的磁感应强度B= 3qR ,选项A 正确。 4. (2013全国新课标理综1第18题)如图,半径为R 的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B ,方向垂直于纸面向外,一电荷量为q (q>0)。质量为m 的粒子沿平行于直径ab 的方向射入磁场区域, 射入点与ab 的距离为R/2,已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力) A . m qBR 2 B .m qBR C .m qBR 23 D .m qBR 2 答案:B 解析:画出粒子运动轨迹,由图中几何关系可知,粒子运动的轨迹半径等于R ,由qvB=mv 2 /R 可得:v= m qBR ,选项B 正确。 5.(2013高考广东理综第21题)如图9,两个初速度大小相同的同种离子a 和b ,从O 点沿垂直磁场方向进入匀强磁场,最后打到屏P 上,不计重力,下列说法正确的有 A.a ,b 均带正电 B.a 在磁场中飞行的时间比b 的短 C. a 在磁场中飞行的路程比b 的短 D.a 在P 上的落点与O 点的距离比b 的近 5.考点:运动电荷在磁场中的运动,圆周运动,洛伦兹力,

2018年上海市高考物理试卷范文

2018年上海市高考物理试卷范文

2011年上海市高考物理试卷 一.单项选择题(共16分,每小题2分.每小题只有一个正确选项.答案涂写在答题卡上.)1.(2分)(2011?上海)电场线分布如图所示,电场中a,b两点的电场强度大小分别为已知E a 和E b,电势分别为φa和φb,则() A.E a>E b,φa>φb B.E a>E b,φa<φb C.E a<E b,φa>φb D.E a<E b,φa<φb 2.(2分)(2011?上海)卢瑟福利用α粒子轰击金箔的实验研究原子结构,正确反映实验结果的示意图是() A.B.C.D.

3.(2分)(2011?上海)用一束紫外线照射某金属时不能产生光电效应,可能使该金属产生光电效应的措施是() A.改用频率更小的紫外线照射 B.改用X射线照射 C.改用强度更大的原紫外线照射 D.延长原紫外线的照射时间 4.(2分)(2011?上海)如图,一定量的理想气体从状态a沿直线变化到状态b,在此过程中,其压强() A.逐渐增大B.逐渐减小C.始终不变D.先增大后减小 5.(2分)(2011?上海)两个相同的单摆静止于平衡位置,使摆球分别以水平初速v1、v2(v1>v2)在竖直平面内做小角度摆动,它们的频率与振幅分别为f1,f2和A1,A2,则() A.f1>f2,A1=A2 B.f1<f2,A1=A2 C.f1=f2,A1>A2 D.f1=f2,A1<A2 6.(2分)(2011?上海) 输入输出

0 0 1 0 1 1 1 0 1 1 1 0 表中是某逻辑电路的真值表,该电路是()A.B.C. D. 7.(2分)(2011?上海)在存放放射性元素时,若把放射性元素①置于大量水中;②密封于铅盒中;③与轻核元素结合成化合物.则()A.措施①可减缓放射性元素衰变 B.措施②可减缓放射性元素衰变 C.措施③可减缓放射性元素衰变 D.上述措施均无法减缓放射性元素衰变8.(2分)(2011?上海)某种气体在不同温度下的气体分子速率分布曲线如图所示,图中f(v)表示v处单位速率区间内的分子数百分率,所对应的温度分别为T I,T II,T III,则()

高中物理磁场知识点汇总

高中物理磁场知识点汇总 一、磁场 磁体是通过磁场对铁一类物质发生作用的,磁场和电场一样,是物质存在的另一种形式,是客观存在。小磁针的指南指北表明地球是一个大磁体。磁体周围空间存在磁场;电流周围空间也存在磁场。电流周围空间存在磁场,电流是大量运动电荷形成的,所以运动电荷周围空间也有磁场。静止电荷周围空间没有磁场。磁场存在于磁体、电流、运动电荷周围的空间。磁场是物质存在的一种形式。磁场对磁体、电流都有磁力作用。与用检验电荷检验电场存在一样,可以用小磁针来检验磁场的存在。如图所示为证明通电导线周围有磁场存在? ?奥斯特实验,以及磁场对电流有力的作用实验。 1.地磁场地球本身是一个磁体,附近存在的磁场叫地磁场,地磁的南极在地球北极附近,地磁的北极在地球的南极附近。 2.地磁体周围的磁场分布与条形磁铁周围的磁场分布情况相似。 3.指南针放在地球周围的指南针静止时能够指南北,就是受到了地磁场作用的结果。 4.磁偏角地球的地理两极与地磁两极并不重合,磁针并非准确地指南或指北,其间有一个交角,叫地磁偏角,简称磁偏角。说明:①地球上不同点的磁偏角的数值是不同的。 ②磁偏角随地球磁极缓慢移动而缓慢变化。③地磁轴和地球自转轴的夹角约为11°。 二、磁场的方向 在电场中,电场方向是人们规定的,同理,人们也规定了磁场的方向。规定:在磁场中的任意一点小磁针北极受力的方向就是那一点的磁场方向。确定磁场方向的方法是:将一不受外力的小磁针放入磁场中需测定的位置,当小磁针在该位置静止时,小磁针 N 极的指向即为该点的磁场方向。磁体磁场:可以利用同名磁极相斥,异名磁极相吸的方法来判定磁场方向。 电流磁场:利用安培定则(也叫右手螺旋定则)判定磁场方向。 三、磁感线

高考物理最新物理方法知识点易错题汇编及解析

高考物理最新物理方法知识点易错题汇编及解析 一、选择题 1.如图所示,两质量相等的物体A、B叠放在水平面上静止不动,A与B间及B与地面间的动摩擦因数相同.现用水平恒力F拉物体A,A与B恰好不发生相对滑动;若改用另一水平恒力拉物体B,要使A与B能发生相对滑动,设最大静摩擦力等于滑动摩擦力,则拉物体B的水平恒力至少应大于 A.F B.2F C.3F D.4F 2.如图所示,bc为固定在小车上的水平横杆,物块M穿在杆上,靠摩擦力与杆保持相对静止,M又通过轻细线悬吊着一个小铁球m,此时小车以大小为a的加速度向右做匀加速运动,而M、m均相对小车静止,细线与竖直方向的夹角为小车的加速度逐渐增大,M 始终和小车保持相对静止,当加速度增加到2a时 A.细线与竖直方向的夹角增加到原来的2倍 B.细线的拉力增加到原来的2倍 C.横杆对M弹力增大 D.横杆对M的摩擦力增加到原来的2倍 3.如图所示,三个重均为100N的物块,叠放在水平桌面上,各接触面水平,水平拉力F=20N作用在物块2上,三条轻质绳结于O点,水平绳与物块3连接,竖直绳悬挂重物B,倾斜绳通过定滑轮与物体A连接,已知倾斜绳与水平绳间的夹角为120o,A物体重 40N,不计滑轮质量及摩擦,整个装置处于静止状态。则物块3受力个数为() A.3个 B.4个 C.5个 D.6个 4.如图所示,物体A和B叠放并静止在固定粗糙斜面C上,A、B的接触面与斜面平行。以下说法正确的是()

A.A物体受到四个力的作用 B.B物体受到A的作用力的合力方向竖直向上 C.A物体受到B的摩擦力沿斜面向上 D.斜面受到B的压力作用,方向垂直于斜面向下 5.如图所示,粗糙程度均匀的绝缘空心斜面ABC放置在水平面上,∠CAB=30°,斜面内部O点(与斜面无任何连接)固定有一正点电荷,一带负电的小物体(可视为质点)可以分别静止在M、N、MN的中点P上,OM=ON,OM∥AB,则下列判断正确的是() A.小物体分别在三处静止时所受力的个数一定都是4个 B.小物体静止在P点时受到的支持力最大,静止在M、N点时受到的支持力相等 C.小物体静止在P点时受到的摩擦力最大 D.当小物体静止在N点时,地面给斜面的摩擦力为零 6.两个质量均为m的A、B小球用轻杆连接,A球与固定在斜面上的光滑竖直挡板接触,B球放在倾角为θ的斜面上,A、B均处于静止,B球没有滑动趋势,则A球对挡板的压力大小为 A.mg tanθB.2 tan mg θ C. tan mg θ D.2mg tan θ 7.如图所示,相互垂直的固定绝缘光滑挡板PO、QO竖直放置在重力场中,a、b为两个带有同种电荷的小球(可以近似看成点电荷),当用水平向左的作用力F作用于b时,a、b 紧靠挡板处于静止状态.现若稍改变F的大小,使b稍向左移动一段小距离,则当a、b重新处于静止状态后 ()

2018上海物理高考题(含答案)(Word版)

2018年上海市普通高中学业水平等级性考试 物理 试卷 一、选择题 1.α粒子是( ) A. 原子核 B. 原子 C. 分子 D. 光子 2.用来解释光电效应的科学家的理论是( ) A. 爱因斯坦的光子说 B. 麦克斯韦电磁场理论 C. 牛顿的微粒说 D. 惠更斯的波动说 3.查德威克用α粒子轰击铍核,核反应方程式是4912246He Be X C +→+,其中X 是 A. 质子 B. 中子 C. 电子 D. 正电子 4.4(T )乘以2(A )乘以3(m )是 ( ) A. 24N B. 24J C. 24V D. 24N 5.一个人拿着一个绳子,在上下振动,绳子产生波,问人的手频率加快,则( ) A. 波长变大 B. 波长不变 C. 波速变大 D. 波速不变 6.有些物理量是过程量,有的是状态量,下面哪个是过程量( ) A. 热量 B. 内能 C. 压强 D. 体积 7.如图P 沿着速度方向运动,且P 中通如图所示电流,则眼睛看到的L 和R 的电流方向是( ) A. 都是顺时针

B. 都是逆时针 C. L顺时针,R逆时针 D. L逆时针,R顺时针 8.行星绕着恒星做圆周运动,则它的线速度与()有关 A. 行星的质量 B. 行星的质量与行星的轨道半径 C. 恒星的质量和行星的轨道半径 D. 恒星的质量和恒星的半径 9.已知物体受三个力,其中两个力垂直,三个力大小相等,问 是否可以三力平衡() A. 一定不能平衡 B. 若能平衡则,平衡条件和力的大小有关 C. 若能平衡则平衡条件仅和角度有关 D. 以上说法都不对10.沿x轴方向,电场为正,则正电荷从x1运动到x2,电势能的变化是() A. 电势能一直增大 B. 电势能先增大再减小 C. 电势能先减小再增大 D. 电势能先减小再增大再减小 11.撑杆运动员借助撑杆跳跳到最高点后放开撑杆,并水平越过撑杆,若以地面处重力势能为零,在运动员放手瞬间,撑杆的弹性势能、运动员的重力势能和动能相对大小是() A. 运动员和撑杆既具有动能又具有弹性势能 B. 运动员具有动能和重力势能,撑杆具有弹性势能和动能

(完整)高考物理磁场经典题型及其解题基本思路

高考物理系列讲座——-带电粒子在场中的运动 【专题分析】 带电粒子在某种场(重力场、电场、磁场或复合场)中的运动问题,本质还是物体的动力学问题 电场力、磁场力、重力的性质和特点:匀强场中重力和电场力均为恒力,可能做功;洛伦兹力总不做功;电场力和磁场力都与电荷正负、场的方向有关,磁场力还受粒子的速度影响,反过来影响粒子的速度变化. 【知识归纳】一、安培力 1.安培力:通电导线在磁场中受到的作用力叫安培力. 【说明】磁场对通电导线中定向移动的电荷有力的作用,磁场对这些定向移动电荷作用力的宏观表现即为安培力. 2.安培力的计算公式:F=BILsinθ;通电导线与磁场方向垂直时,即θ = 900,此时安培力有最大值;通电导线与磁场方向平行时,即θ=00,此时安培力有最小值,F min=0N;0°<θ<90°时,安培力F介于0和最大值之间. 3.安培力公式的适用条件; ①一般只适用于匀强磁场;②导线垂直于磁场; ③L为导线的有效长度,即导线两端点所连直线的长度,相应的电流方向沿L由始端流向末端; ④安培力的作用点为磁场中通电导体的几何中心; ⑤根据力的相互作用原理,如果是磁体对通电导体有力的作用,则通电导体对磁体有反作用力. 【说明】安培力的计算只限于导线与B垂直和平行的两种情况. 二、左手定则 1.通电导线所受的安培力方向和磁场B的方向、电流方向之间的关系,可以用左手定则来判定. 2.用左手定则判定安培力方向的方法:伸开左手,使拇指跟其余的四指垂直且与手掌都在同一平面内,让磁感线垂直穿入手心,并使四指指向电流方向,这时手掌所在平面跟磁感线和导线所在平面垂直,大拇指所指的方向就是通电导线所受安培力的方向. 3.安培力F的方向既与磁场方向垂直,又与通电导线方向垂直,即F总是垂直于磁场与导线所决定的平面.但B与I的方向不一定垂直. 4.安培力F、磁感应强度B、电流I三者的关系 ①已知I、B的方向,可惟一确定F的方向; ②已知F、B的方向,且导线的位置确定时,可惟一确定I的方向; ③已知F、I的方向时,磁感应强度B的方向不能惟一确定. 三、洛伦兹力:磁场对运动电荷的作用力. 1.洛伦兹力的公式:F=qvBsinθ; 2.当带电粒子的运动方向与磁场方向互相平行时,F=0; 3.当带电粒子的运动方向与磁场方向互相垂直时,F=qvB; 4.只有运动电荷在磁场中才有可能受到洛伦兹力作用,静止电荷在磁场中受到的磁场对电荷的作用力一定为0; 四、洛伦兹力的方向 1.运动电荷在磁场中受力方向可用左手定则来判定; 2.洛伦兹力f的方向既垂直于磁场B的方向,又垂直于运动电荷的速度v的方向,即f

备战高考物理易错题专题复习-电磁感应现象的两类情况练习题附答案解析

备战高考物理易错题专题复习-电磁感应现象的两类情况练习题附答案解析 一、电磁感应现象的两类情况 1.如图所示,水平放置的两根平行光滑金属导轨固定在平台上导轨间距为1m ,处在磁感应强度为2T 、竖直向下的匀强磁场中,平台离地面的高度为h =3.2m 初始时刻,质量为2kg 的杆ab 与导轨垂直且处于静止,距离导轨边缘为d =2m ,质量同为2kg 的杆cd 与导轨垂直,以初速度v 0=15m/s 进入磁场区域最终发现两杆先后落在地面上.已知两杆的电阻均为r =1Ω,导轨电阻不计,两杆落地点之间的距离s =4m (整个过程中两杆始终不相碰) (1)求ab 杆从磁场边缘射出时的速度大小; (2)当ab 杆射出时求cd 杆运动的距离; (3)在两根杆相互作用的过程中,求回路中产生的电能. 【答案】(1) 210m/s v =;(2) cd 杆运动距离为7m ; (3) 电路中损耗的焦耳热为100J . 【解析】 【详解】 (1)设ab 、cd 杆从磁场边缘射出时的速度分别为1v 、2v 设ab 杆落地点的水平位移为x ,cd 杆落地点的水平位移为x s +,则有 2h x v g =2h x s v g +=根据动量守恒 012mv mv mv =+ 求得: 210m/s v = (2)ab 杆运动距离为d ,对ab 杆应用动量定理 1BIL t BLq mv ==V 设cd 杆运动距离为d x +?

22BL x q r r ?Φ?= = 解得 1 22 2rmv x B L ?= cd 杆运动距离为 1 22 27m rmv d x d B L +?=+ = (3)根据能量守恒,电路中损耗的焦耳热等于系统损失的机械能 222 012111100J 222 Q mv mv mv =--= 2.某科研机构在研究磁悬浮列车的原理时,把它的驱动系统简化为如下模型;固定在列车下端的线圈可视为一个单匝矩形纯电阻金属框,如图甲所示,MN 边长为L ,平行于y 轴,MP 边宽度为b ,边平行于x 轴,金属框位于xoy 平面内,其电阻为1R ;列车轨道沿 Ox 方向,轨道区域内固定有匝数为n 、电阻为2R 的“ ”字型(如图乙)通电后使 其产生图甲所示的磁场,磁感应强度大小均为B ,相邻区域磁场方向相反(使金属框的 MN 和PQ 两边总处于方向相反的磁场中).已知列车在以速度v 运动时所受的空气阻力 f F 满足2f F kv =(k 为已知常数).驱动列车时,使固定的“ ”字型线圈依次通 电,等效于金属框所在区域的磁场匀速向x 轴正方向移动,这样就能驱动列车前进. (1)当磁场以速度0v 沿x 轴正方向匀速移动,列车同方向运动的速度为v (0v <)时,金属框MNQP 产生的磁感应电流多大?(提示:当线框与磁场存在相对速度v 相时,动生电动势E BLv =相) (2)求列车能达到的最大速度m v ; (3)列车以最大速度运行一段时间后,断开接在“ ” 字型线圈上的电源,使线圈 与连有整流器(其作用是确保电流总能从整流器同一端流出,从而不断地给电容器充电)的电容器相接,并接通列车上的电磁铁电源,使电磁铁产生面积为L b ?、磁感应强度为 B '、方向竖直向下的匀强磁场,使列车制动,求列车通过任意一个“ ”字型线圈

相关主题