搜档网
当前位置:搜档网 › 高炉炉缸冻结的原因与处理

高炉炉缸冻结的原因与处理

高炉炉缸冻结的原因与处理
高炉炉缸冻结的原因与处理

附件二高炉炉缸冻结的原因与处理

炉缸冻结是高炉生产中的严重事故,它将给炼铁生产造成巨大的经济损失。因此在高炉生产操作中必须尽量避免发生这种事故。由于炉温大幅度下降导致渣铁不能从铁口自动流出时,就表明炉缸已经处于冻结状态。

炉缸冻结是炉缸工作严重失常的表现,包括炉缸凝结和冻结。炉缸凝结是炉缸冻结的先导,此时风口和渣口工作已失常,但铁口仍可放出铁水,而大量粘稠的熔渣仍然留在炉缸内。炉缸凝结进一步发展,不仅风口、渣口工作都已失常,而且铁口也不能放出铁水时,就形成炉缸冻结。炉缸冻结的根源是炉况大凉和冶炼行程的失常。

炉况严重失常造成炉缸剧冷,如果处理不当将造成冻结,表现为风口不进风,放不出渣铁。此时,争取从铁口出铁是将炉缸逐渐熔化转为正常的关键。高炉炉缸冻结的原因很多,一般说来,都是由几个因素汇合而成的。

1、炉缸冻结的原因

(1)、冻结是剧冷的发展,及时制止炉冷引起的下料过快,是防止冻结事故的关键,但经常被操作人员所忽视。炉冷形成后,势必下部直接还原增加,在风量不变的条件下,因单位时间内固体碳消耗量增加,更使下料加快。炉冷时炉缸压力下降,风量不将自动增加,促使下料过快,进一步加剧了炉冷的发展。这是一个恶性循环,此时如不及时处理,将导致炉温剧降,直到冻结。

(2)、高炉长时间连续塌料、悬料、发生管道且未能有效制止。严重的管道行程、连续大崩料等,也能导致炉缸剧冷和冻结。

(3)、由于外围影响造成长期亏料线。原燃料质量突然恶化,装料制度有误,导致煤气利用严重恶化,没能及时发现和处理。

(4)、炉渣稳定性差是造成炉缸冻结的另一个重要因素。碱度高,或含AL

2O

3

、MgO高的炉

渣稳定性差,当炉温下降时,炉渣流动性急剧降低,致使已熔化的物质再凝结而导致冻结。(5)、冷却设备损坏大量漏水流入炉内,没有及时发现和处理,能使用权炉缸迅速致冷,尤其是热容量小时的中、小高炉。

(6)、长期发展边缘煤气流或洗炉时,瘤滑落进入炉缸,而计划中所减轻的焦炭负荷不足,不能弥补巨大的额外热支出,致使炉缸剧冷发展为炉缸冻结。

(7)、开炉不当以及无计划或超计划休风时间过长,造成炉缸逐渐下降逐渐凝结,开炉送风后,又不断熔化流向炉缸。在这种情况下,如不及时排出冷渣铁,既妨碍炉况的恢复,又极易产生风口灌渣事故。因此,尽快从铁口放出铁水和熔渣,是开炉炉前操作的关键。(8)、其它操作错误,如上料系统称量有误或装料有误,造成焦炭负荷过重。

如果在高炉日常生产操作中,出现以上情况,高炉操作者必须引起高度的重视,避免炉缸冻结事故的发生。

2、炉缸冻结的处理

2.1 处理高炉炉缸冻结要比开炉更加困难,其原因是:

(1)炉内炉料的焦炭负荷分布与热量需求不匹配;

(2)料柱透气性显著恶化,气流分布失常。不仅煤气能量利用恶化,而且炉料偏行;

(3)炉缸及高炉下部堆积了大量凝结物功半熔的中间产品;

(4)风口和渣铁口不能正常状态作业,渣铁排出困难;

(5)极易烧坏风口等冷却设备。

2.2高炉炉缸冻结事故的处理原则和主要措施:

(1)炉缸冻结是高炉冶炼生产中的重大事故,必须尽快排除。既要求缩短时间,更应避免事态扩大。必须加强领导,统一指挥,分工负责,慎密研究措施步骤,避免失误

和走弯路。

(2)果断、及时、量足地区性采取加净焦的措施,是迅速恢复炉况和顺行的关键,净焦,数量须等于大于炉缸(炉腹)容积。同时应停止喷吹,改全倒装及缩小批重,并把风温用到高水平。

(3)保持下部铁口通畅,是处理炉缸冻结的关键。能出铁,就能及时熔化并排出冷铁冷渣,继续鼓风,使焦炭燃烧,保证热量来源,并有利于上部轻负荷料和空焦及早下至炉缸,从根本上扭转被动局面。如果铁口已冻死,就要争取用最邻近铁口的渣口出铁,以利于熔化区逐渐扩大,及早打通铁口。如果渣口也冻死,就用最邻近该渣口的风口出铁,从其它风口鼓风,争取逐步打开渣口和铁口。如果渣口已通,不要急于堵住,应进行空吹,将热煤气导向炉缸,保证有较大量的焦炭燃烧,逐步扩大通路,直至打开铁口。

(4)炉缸冻结时出铁口的选择,可分为铁口出铁、渣口出铁、风口出铁三种方式。选做临时出铁口的风口应尽量靠近渣口或铁口,以利于改用渣口或铁口出铁。

送风风口的个数及位置的选择:铁口出铁时,应选择邻近铁口的风口3~5个;渣口出铁时,应选择邻近渣口的风口2~3个,最多不超过4个;风口出铁时,应选择邻近渣、铁口的风口1~2个,最多不超过3个。在出渣铁顺利后逐渐增加送风风口个数,开风口时向渣口方向推进,一次开风口不超过2个。在炉缸尚未贯通之前,开风口时一定要挨着打,不能彼此间隔,否则易发生烧出。渣口出铁次数不宜过多,一般不超过10次,必要时可关闭二套冷却水坚持出铁,但要注意安全。

(5)改善炉渣性能,降低炉渣碱度,可加入白云石或萤石。处理炉缸冻结时,应采取较低的炉渣碱度,0.95——1.0%为宜。

(6)尽量避免风口灌渣及烧出情况发生,杜绝临时紧急休风,尽力增加出铁次数,千方百计及时排净渣铁。

(7)发现冷却设备漏水,应及时更换,不能更换应断水。加强冷却设备检查,坚决杜绝处理过程中向炉内漏水。

(8)处理炉缸冻结,有一个熔化冷凝的过程,开风口切不可过急。铁口正常出铁后,可视炉况逐步恢复风量。风压,风量的调整与控制应按等于或稍大于正常时的原则来选取,保持顺行压差操作。

(9)炉缸冻结和顽固悬料并发时,处理比较困难,只要有料的可能,应尽早集中加入大量空焦,经疏松料柱防止继续悬料,并从根本上改变热量收支状况。下部要大幅度减风,制止继续炉冷,也防止悬料,同时减少下批数和渣铁量,给渣铁品处理争取更充足的条件和时间。

(10)炉前工作的快速有效性在炉缸冻结事故处理过程中至关重要。如果不能及时排除渣铁,将妨碍炉况的恢复并极易产生灌渣、烧出等事故。

炉前工具和设备必须准备充分、使用可靠,安装或处理风口、渣口、吹管、弯头等冷却设备既要保证质量又要尽量缩短时间。氧烧、清理、烘烤等事项要提高责任心和操作技能。

由于炉前劳动强度大且现场人员密集,应合理组织与搭配,重视安全监护,防止次生事故。

静态路由设置实例解析

静态路由设置实例解析 随着宽带接入的普及,很多家庭和小企业都组建了局域网来共享宽带接入。而且随着局域 网规模的扩大,很多地方都涉及到2台或以上路由器的应用。当一个局域网内存在2台以 上的路由器时,由于其下主机互访的需求,往往需要设置路由。由于网络规模较小且不经 常变动,所以静态路由是最合适的选择。 本文作为一篇初级入门类文章,会以几个简单实例讲解静态路由,并在最后讲解一点 关于路由汇总(归纳)的知识。由于这类家庭和小型办公局域网所采用的一般都是中低档 宽带路由器,所以这篇文章就以最简单的宽带路由器为例。(其实无论在什么档次的路由 器上,除了配置方式和命令不同,其配置静态路由的原理是不会有差别的。)常见的 1WAN口、4LAN口宽带路由器可以看作是一个最简单的双以太口路由器+一个4口小交换机,其WAN口接外网,LAN口接内网以做区分。 路由就是把信息从源传输到目的地的行为。形象一点来说,信息包好比是一个要去某 地点的人,路由就是这个人选择路径的过程。而路由表就像一张地图,标记着各种路线, 信息包就依靠路由表中的路线指引来到达目的地,路由条目就好像是路标。在大多数宽带 路由器中,未配置静态路由的情况下,内部就存在一条默认路由,这条路由将LAN口下所 有目的地不在自己局域网之内的信息包转发到WAN口的网关去。宽带路由器只需要进行 简单的WAN口参数的配置,内网的主机就能访问外网,就是这条路由在起作用。本文将 分两个部分,第一部分讲解静态路由的设置应用,第二部分讲解关于路由归纳的方法和作用。 下面就以地瓜这个网络初学者遇到的几个典型应用为例,让高手大虾来说明一下什么 情况需要设置静态路由,静态路由条目的组成,以及静态路由的具体作用。 例一:最简单的串连式双路由器型环境 这种情况多出现于中小企业在原有的路由器共享Internet的网络中,由于扩展的需要,再接入一台路由器以连接另一个新加入的网段。而家庭中也很可能出现这种情况,如用一 台宽带路由器共享宽带后,又加入了一台无线路由器满足无线客户端的接入。 地瓜:公司里原有一个局域网LAN 1,靠一台路由器共享Internet,现在又在其中添加 了一台路由器,下挂另一个网段LAN 2的主机。经过简单设置后,发现所有主机共享Internet没有问题,但是LAN 1的主机无法与LAN 2的主机通信,而LAN 2的主机却能Ping通LAN 1下的主机。这是怎么回事? 大虾:这是因为路由器隔绝广播,划分了广播域,此时LAN 1和LAN 2的主机位于两 个不同的网段中,中间被新加入的路由器隔离了。所以此时LAN 1下的主机不能“看”到LAN 1里的主机,只能将信息包先发送到默认网关,而此时的网关没有设置到LAN 2的路

高炉炉况的判断和失常炉况处理概要

高炉炉况的判断和失常炉况处理 要保持高炉优质、高产、低耗、长寿,首先就是维持高炉炉况的稳定顺行。从操作方面来看,维持高炉炉况的稳定顺行主要是协调好各种操作制度的关系,做好日常调剂。正确判断各种操作制度是否合理,并准确地进行调剂,掌握综合判断高炉行程的方法与调剂规律,显得尤为重要。观察炉况的内容主要就是判断高炉炉况变化的方向与变化的幅度。这两者相比,首先要掌握变化的方向,使调剂不发生方向性的差错。其次,要掌握各种参数波动的幅度。只有正确掌握高炉炉况变化的方向和各种资料,调剂才能恰如其分。 常见的炉况判断方法有直接判断法和利用仪器仪表进行判断。 一.直接观测法 高炉炉况的直接判断包括看出铁、看渣、看风口、看料速和探尺运动状态等,这是判断炉况的主要手段之一,尤其是对监测仪表不足的小型高炉更为重要。虽然直接判断法缺乏全面性,并且在时间上有一定的滞后性,但由于其具有直观和可靠的特点,因此是一项十分重要的观察方法,也是高炉工长必须掌握的技能。 (一)看出铁 主要看铁中含硅与含硫情况,它的变化能反映炉缸热制度、造渣制度、送风制度、装料制度的变化情况。判断生铁含硅高低,主要以铁水流动过程中火花大小、多少,以及试样冷却后的断口颜色为依据。 铁水含硅低时,在出铁过程中,火花矮而多;铁水流动性好,不粘铁沟,铁样断口为白色。随着铁水含硅量的提高,火花逐渐变大、变少,当含硅量超过3.0%时就没有火花了,同时铁水流动性也越来越差,粘铁沟现象越来越严重,铁样断口逐渐由白变灰,结晶颗粒加粗。 看火花估计含硅量要综合看出铁的全过程。既要看主沟火花的多少,又要看小坑出口及其它地方的火花情况,同时还要注意铁水的流速对火花的影响,一般流速快时火花多,这要与硅过低的情况区分开来。目前大型高炉铁沟都加沟盖,很难通过看火花来判断含硅量,这时可以通过看铁样断口来判断炉温。 看生铁含硫情况是以铁水表面“油皮”多少和凝固过程中表面裂纹的变化及铁样断口来观察。铁水表面“油皮”多,凝固时表面颤动,裂纹大,形成凸起状,并有一层黑皮,铁样断口为白色,呈放射状针形结晶,铁样质脆易断时生铁含硫高。随着生铁“油皮”减少,凝固时裂纹变小,形状下凹,铁质坚硬,断口白色减少则生铁含硫降低。高硅高硫时铁样断口虽然是灰色的,但布满白色星点。生铁含硅含硫量直接反映了炉缸热制度与造渣制度是否合理。 高炉炉温充足时,生铁中[Si]升高而[S]降低。炉凉时,生铁中[Si]降低而[S]升高;当炉缸温度发生变化时,生铁中[S]的波动幅度比[Si]大。在炉渣成分基本不变的条件下,生铁含[Si]量增加,炉缸温度也相应增加。因此,在其它条件相同时可以用生铁含[Si]量来判断炉缸温度,生铁中含[S]量的变动成为判断炉缸温度变化趋势的标志。

高炉软水密闭循环冷却水系统调试中的不足及对策

高炉软水密闭循环冷却水系统调试中的不足及对策 1 工程概况 某钢铁公司新建 1 座 2 650 m3高炉,高炉炉体冷却壁、炉底、热风阀均采用了软水密闭循环冷却水系统。循环冷却水由循环供水泵组供至高炉风口平台下分成 3 路,一路供炉底水冷管使用,炉底水冷管出水串級供给热风阀使用; 第二路、第三路供炉体冷却壁使用,炉体冷却壁采用分段冷却。设计循环冷却水量为6 220 ~7 070 m3/ h,供水压力为0.99 MPa (泵出口),回水压力为0.40 MPa (泵入口),供水温度为40 ℃,回水温度为48 ℃。 新建高炉软水密闭循环冷却水系统在通水调试初期出现了循环供水泵及补水泵大量集气、水泵出口手动阀门开启角度偏小、水泵泵壳破裂、水泵振动超标等现象,针对通水调试初期出现的一系列问题,逐一研究分析,对系统进行了全面调整,保证了高炉正常投产运行。 2 运行调试出现的问题 (1)系统内大量集气。设计密闭循环冷却水供水泵共计 3 台, 2 用 1 备,初期运行过程中有 1 台水泵电流突然减小到额定电流的30% 左右,水泵响声异常,系统循环水量迅速下降。停泵后将泵壳顶端放气阀打开,发现泵壳内集存了大量的气体。系统设计有 2 台补水泵,1 用 1 备,运行一段时间后也出现了集气现象。 (2)循环供水泵出口蝶阀开启角度小、供水压力平衡数值与设计出入较大。按设计要求的循环水量对系统进行了初调,系统循环水量为7 070 m3/h,供水压力为0.9 MPa,膨胀罐定压为0.26 MPa,泵站回水管压力0.66 MPa,供水泵组出口蝶阀仅开启30°,阀门前后压差为0.2 MPa,系统不能按照设计压力平衡图的参数运行。 (3)水泵泵壳破裂。在初期运行的过程中 2 号循环供水泵泵壳破裂,漏水严重,不能正常运行。 (4)水泵振动超标。在初期运行的过程中 3 号循环供水泵振动超标,且发出异常响声,而且随着泵出口阀门开启角度的加大而变大。 3 问题分析及处理措施 3.1系统中大量集气现象的分析及处理措施 查看设计图纸,系统在高炉炉顶平台上、热风炉炉顶平台上均设有脱气罐,而且综合管廊内还设有 4 台自动排气阀,基本满足系统排气要求,正常情况下不会在循环供水泵内集存大量气体。而经过对系统全线排气设施的检查发现,

4高炉炉缸热流强度控制标准[1]1

邯钢4#高炉炉底炉缸热流强度控制标准 (试行) 随着高炉的强化,维护炉缸的重要性和迫切性日益突出,高炉炉缸状态已经成为高炉一代寿命的关键,因此从高炉投产之日起就应加强对炉缸的监测与维护,对炉缸状况做到预知与可控,以实现安全生产和高炉长寿。为此特制定本标准。 一、控制标准 1、热流强度(单位:kcal/m2.h) (1)正常值:≤7000 (2)报警值:7000~10000 (3)警戒值:10000~12000 (4)危险值:>12000 (5)极度危险:15000 2、水温差(℃) 根据上述热流强度控制界限,确定相应各部位水温差(此表水量为2005年3月3日实测全部出水头分段取各自的平均值,水压0.4Mpa)控制界限如下: 一段二段二段铁口三段 三段铁口 3-1,3-3 三段铁口 3-4,3-20 三段铁口 3-2 三段渣口 3-10,3-11 四段 连接方式双联双联单联双联单联单联单联双联双联冷却面积 m2 3.646 2.82 1.41 3.256 1.367 1.702 1.628 3.138 3.006 水量m3/h 12.1 12.9 12.9 12.9 12.9 12.9 12.9 12.9 12.1 正常值℃≤2.1 ≤1.5 ≤0.8 ≤1.8 ≤0.8 ≤0.9 ≤0.9 ≤1.7 ≤1.7 报警值℃ 2.1~3.0 1.5~2.2 0.8~1.1 1.8~2.5 0.8~1.1 0.9~1.3 0.9~1.3 1.7~2.4 1.7~2.5 警戒值℃ 3.0~3.6 2.2~2.6 1.1~1.3 2.5~3.0 1.1~1.3 1.3~1.6 1.3~1.5 2.4~2.9 2.5~3.0 危险值℃>3.6 >2.6 >1.3 >3.0 >1.3 >1.6 >1.5 >2.9 >3.0 极危险℃ 4.5 3.3 1.6 3.8 1.6 2.0 1.9 3.7 3.7

高炉炉况管理规定

高炉炉况管理规定 1.目的 因料制宜,实施精细化、数据化炉况管理,实现高炉长期“均衡、稳定、高效”的生产理念。 2.适用范围 龙钢公司炼铁高炉生产工序。 3.定义 炉况管理内容包括炉况分级管理、原燃料质量管理、高炉操作管理、炉型管理、数据化管理、高炉休/复风管理、预案管理。 正常炉况:全风作业、压量稳定、下料顺畅、渣铁热量充沛、流动性好、生铁质量良好,对冶炼条件有较强的适应能力,休减风后容易恢复到正常水平。 失常炉况:采用日常调整炉况失效,不能在短期内恢复正常的炉况,通常可分煤气流失常和热制度失常两大类。 4.职责 4.1总工程师办公室(以下简称“总工办”) 4.1.1负责入炉原燃料内控标准的制、修定。 4.1.2负责入炉原燃料质量监控和相关事宜的协调。 4.1.3负责炉料结构调整的审批。 4.1.4负责配料方案的审批。 4.1.5负责高炉炉况重点参数的检查、纠偏。 4.2炉料优化办公室(以下简称“炉料优化办”) 4.2.1负责配料方案的制定。 4.2.2负责炉料结构的制定。 4.2.3负责入炉原燃料达到内控标准要求及配料要求。 4.3炼铁厂 4.3.1负责高炉操作方针的制定、执行。 4.3.2负责入炉原燃料质量的跟踪。 4.3.3负责炉料配比的执行。 4.3.4负责高炉操作预案的制定、执行。 4.3.5负责高炉休、复风方案的制定、执行。 4.3.6负责炉况信息的传递工作。 4.3.7负责日常炉况的操作管理工作。

4.3.8负责按要求召开炉况分析会,并严格落实所定操作要求。 4.4生产部 负责生产信息及重大工艺信息的传递工作。 4.5质量保证部 4.5.1负责按检验计划对入炉原燃料检验分析。 4.5.2负责按检验计划要求及时上传检验数据、并将不达标数据进行通报。 5.管理程序 5.1炉况管理 5.1.1炉况管理分为公司级、分厂级、车间级三级管理。 a.公司级 a)当原燃料质量(炉料结构)出现较大幅度波动(需调整),可能引起各炉炉况波动时。总工办确认后报公司主管副总批准,炼铁厂启动高炉原、燃料理化指标变化预案;同时总工办组织相关部门/单位人员分析原因,制定措施,使原燃料质量限期达到内控标准要求,原燃料质量达至内控标准要求二日后,预案解除,高炉在二日内操作参数调整控制到正常水平(核心为产量、炉温、风温、喷煤、焦比、炉料结构达到计划控制要求)。 b)当外部条件或内部炉况等原因需调整风口配置时。炼铁厂提出调整计划(方案和分厂炉况组组长组织的,成员参加的,主管厂长审批的专题会分析材料),经总工办审核,报公司主管副总批准后,炼铁厂利用修风或检修机会执行,总工办负责监督。 c)正常生产中需调整炉况:布料矩阵需增减环带或调整角度,或矿石批重1、2需大于27吨,3、4需大于48吨时。由炼铁厂提出(方案和分厂炉况组组长组织的,成员参加的,主管厂长审批的专题会分析材料),总

高炉炉缸长寿的智能化控制

高炉炉缸长寿的智能化控制 王刚邹忠平许俊李爱锋 近十来年,高炉炉缸烧穿的事故频发。据不完全统计,在2000年以后,国内外有数十座高炉炉缸被烧穿。而另有大量高炉出现炉缸侧壁温度升高,事故安全隐患给生产单位带来减产甚至停产的巨大经济损失,给生产管理人员和技术人员带来身心上的无尽折磨。如果有一套在线系统,能够对炉缸长寿状况进行准确全面的监控、对凝铁层减薄原因进行智能诊断、针对长寿状况恶化给出准确的建议措施,从而避免炉缸的异常侵蚀,对提高高炉长寿管理的准确性、及时性和便捷性将大有帮助。在此背景下,本研究将高炉炉缸工艺设计、传热学理论与高炉操作工艺相结合,开发了一套炉缸长寿智能管理系统,在炉缸长寿管理方面取得了良好的效果。 1炉缸长寿机制研究 经过多座1000m3级、2000m3级、3000m3级和4000m3级高炉的炉缸解剖调查发现,炉缸炭砖热面存在一层凝铁层,它阻断了炭砖与铁水的直接接触。炭砖的铁水熔蚀指数也表明,如果炭砖直接暴露在高温的铁水中,40min内炭砖被侵蚀掉15%-30%。因此,炭砖热面形成稳定的凝铁层,是炉缸长寿的关键所在。经过试验研究,凝铁层的主要成分是Fe和C的化合物,通常C能达到10%-30%甚至更高,过饱和的C析出来,以石墨碳的形式存在,另有少量的CaO、SiO2等熔渣凝结物。凝铁层的导热系数在2-10w/(m?K)左右,一般低于炭砖导热系数,这为降低炭砖的温度,防止温度过高而失效发挥了重要作用。 凝铁层稳定形成的条件是炉缸建立稳定有效的传热体系。只要传热体系有效,炭砖受到冷却壁的冷却保护,其热面就会形成凝铁层。有凝铁层的炉缸传热体系如图1所示。 凝铁层的厚度可以通过傅里叶一维传热公式进行计算,通过铁水与1150℃凝固线之间的热流强度与插入炭砖的两支热电偶之间的热流强度相等建立方程。 2炉缸长寿智能管理系统的工艺架构 炉缸长寿智能管理系统由炭砖残厚和凝铁层在线监控模块、炉缸气隙判断模块、炉缸长寿状况判断模块、凝铁层减薄原因诊断模块、长寿状况恶化的智能建议模块组成,5个模块呈递进关系,如图2所示。 3炭砖残厚和凝铁层在线监控 在本系统开发之前,已成功开发基于二维有限元算法的炉缸侵蚀模型,凝铁层的计算是在炉缸侵蚀模型中一并进行计算的。侵蚀模型通过推定炭砖侵蚀线和1150℃等温线,两条线之间区域为凝铁层。 由于侵蚀模型通过对炉缸仪表传回的数据进行在线计算,本系统可对炉缸各个标高和方位的炭砖残厚和凝铁层厚度进行在线动态跟踪,极大地方便了高炉操作者及时了解炉缸的残厚及凝铁层状况。 4炉缸气隙判断 炉缸气隙往往产生于冷却壁与碳素捣打料之间,气隙是破坏炉缸传热体系的重要因素。气隙的导热系数为0.0285w/(m?K),仅约相当于炭砖的1/500,铸铁冷却壁的1/1200,一旦形成气隙,整个传热体系的热阻大大增加,热流密度下降,热量导出减少,大量热量在炭砖积聚,引起炭砖温度升高,凝铁层减薄甚至脱落,最终炭砖遭到侵蚀。因此,判断炉缸是否存在气隙非常重要。气隙一般是由于碳素捣打料捣打不密实、烘炉不彻底等建设期的因素造成的,因此很难彻底治理,一般应结合炭砖

多个路由器里的静态路由设置不同网段上网

随着宽带接入的普及,很多家庭和小企业都组建了局域网来共享宽带接入。而且随着局域网规模的扩大,很多地方都涉及到2台或以上路由器的应用。当一个局域网内存在2台以上的路由器时,由于其下主机互访的需求,往往需要设置路由。由于网络规模较小且不经常变动,所以静态路由是最合适的选择。 本文作为一篇初级入门类文章,会以几个简单实例讲解静态路由,并在最后讲解一点关于路由汇总(归纳)的知识。由于这类家庭和小型办公局域网所采用的一般都是中低档宽带路由器,所以这篇文章就以最简单的宽带路由器为例。(其实无论在什么档次的路由器上,除了配置方式和命令不同,其配置静态路由的原理是不会有差别的。)常见的1WAN口、4LAN口宽带路由器可以看作是一个最简单的双以太口路由器+一个4口小交换机,其WAN口接外网,LAN口接内网以做区分。 路由就是把信息从源传输到目的地的行为。形象一点来说,信息包好比是一个要去某地点的人,路由就是这个人选择路径的过程。而路由表就像一张地图,标记着各种路线,信息包就依靠路由表中的路线指引来到达目的地,路由条目就好像是路标。在大多数宽带路由器中,未配置静态路由的情况下,内部就存在一条默认路由,这条路由将LAN口下所有目的地不在自己局域网之内的信息包转发到WAN口的网关去。宽带路由器只需要进行简单的WAN口参数的配置,内网的主机就能访问外网,就是这条路由在起作用。本文将分两个部分,第一

部分讲解静态路由的设置应用,第二部分讲解关于路由归纳的方法和作用。 下面就以地瓜这个网络初学者遇到的几个典型应用为例,让高手大虾来说明一下什么情况需要设置静态路由,静态路由条目的组成,以及静态路由的具体作用。 例一:最简单的串连式双路由器型环境 这种情况多出现于中小企业在原有的路由器共享Internet的网络中,由于扩展的需要,再接入一台路由器以连接另一个新加入的网段。而家庭中也很可能出现这种情况,如用一台宽带路由器共享宽带后,又加入了一台无线路由器满足无线客户端的接入。 地瓜:公司里原有一个局域网LAN 1,靠一台路由器共享Internet,现在又在其中添加了一台路由器,下挂另一个网段LAN 2的主机。经过简单设置后,发现所有主机共享Internet没有问题,但是LAN 1的主机无法与LAN 2的主机通信,而LAN 2的主机却能Ping通LAN 1下的主机。这是怎么回事? 大虾:这是因为路由器隔绝广播,划分了广播域,此时LAN 1和LAN 2的主机位于两个不同的网段中,中间被新加入的路由器隔离了。所以此时LAN 1下的主机不能“看”到LAN 1里的主机,只能将信息

高炉炉缸传热体系的探讨

高炉炉缸传热体系的探讨 摘要:通过建立炉缸传热体系,结合理论计算,分析了炉缸冷却水、气隙对炉缸传热的影响规律,并对炉缸配置,设计提出了参考建议。 关键词:炉缸传热体系冷却水气隙炉缸配置设计 Discussion of Hearth Thermal Conductivity System Abstract :With setting up hearth heat transfer system, together with theoretical calculation, the cooling water, gas gap affecting hearth conductivity are analyzed in the article, and some suggestions about hearth configuration design are made in the article. Key words: hearth heat transfer system, cooling water, gas gap, hearth configuration design . 1 引言 在高炉强化冶炼的条件下,炉缸寿命已经成为高炉长寿技术的一个限制性环节,而炉缸的组成主包括耐材和冷却系统。炉缸耐材在一代炉役中,需要抵抗铁水的侵蚀,因此其对炉缸寿命有着重要的影响;而冷却水系统主要作用是带走炉缸传出的热量,使炉壳在正常温度下工作,保护炉壳。下面主要对冷却水以及气隙在炉缸传热体系中的影响进行一些探讨。 2 炉缸传热体系分析 各种冷却形式的炉缸传热体系,简单地都可以如图1 所示,炉缸传出热流为: q=(Tm-Tw)/(1/hw+L1/K1+L2/K2+L3/K3+ 1/hm) 炉缸传热体系总热阻为: R=1/hw+L1/K1+L2/K2+L3/K3+1/hm 下面仅从冷却形式和气隙的角度探讨炉缸传热的影响因素。

高炉炉况失常及处理

第二节高炉炉况失常及处理 三、失常炉况的标志及处理 1. 失常炉况的概念 由于某种原因造成的炉况波动,调节得不及时、不准确和不到位,造成炉况失常,甚至导致事故产生。采用一般常规调节方法,很难使炉况恢复,必须采用一些特殊手段,才能逐渐恢复正常生产。 2.炉况失常原因 ◆基本操作制度不相适应。 ◆原燃料的物理化学性质发生大的波动。 ◆分析与判断的失误,导致调整方向的错误。 ◆意外事故。包括设备事故与有关环节的误操作两个方面。 3.失常炉况的种类 低料线、悬料、炉墙结厚、炉缸堆积、炉冷、炉缸冻结、高炉结瘤等。 4.低料线 高炉用料不能及时加入到炉内,致使高炉实际料线比正常料线低0.5m或更低时,即称低料线。 ◆低料线的原因: ①上料设备及炉顶装料设备发生故障。 ②原燃料无法正常供应。 ③崩料、坐料后的深料线。 ◆低料线的危害: ①破坏炉料的分布,恶化了炉料的透气性,导致炉况不顺。 ②炉料分布被破坏,引起煤气流分布失常,煤气的热能和化学能利用变差,导致炉凉。 ③低料线过深,矿石得不到正常预热,势必降低焦炭负荷,使焦比升高。

④炉缸热量受到影响,极易发生炉冷,风口灌渣等现象,严重时会造成炉缸冻结。 ⑤炉顶温度升高,超过正常规定,烧坏炉顶设备。 ⑥损坏高炉炉衬,剧烈的气流波动会引起炉墙结厚,甚至结瘤现象发生。 ⑦低料线时,必然采取赶料线措施,使供料系统负担加重,操作紧张。 ◆低料线的处理: ①由于上料设备系统故障不能拉料,引起顶温高,开炉顶喷水或炉顶蒸汽控制顶温,必要时减风。 ②不能上料时间较长,要果断停风。造成的深料线(大于4 m),可在炉喉通蒸汽情况下在送风前加料到4m以上。 ③由于冶炼原因造成低料线时,要酌情减风,防止炉凉和炉况不顺。 ④低料线1 h以内应减轻综合负荷5%~l0%。若低料线l h以上和料线超过3 m在减风同时,应补加净焦或减轻焦炭负荷,以补偿低料线所造成的热量损失。 ⑤当装矿石系统或装焦炭系统发生故障时,为减少低料线,在处理故障的同时,可灵活地先上焦炭或矿石,但不宜加入过多。一般而言集中加焦不能大于4批;集中加矿不能大于2批,而后再补回大部分矿石或焦炭。当低料线因素消除后应尽快把料线补上。 ⑥赶料线期间一般不控制加料,并且采取疏导边沿煤气的装料制度。当料线赶到3 m 以上后、逐步回风。当料线赶到2.5 m以上后,根据压量关系情况可适当控制加料,以防悬料。 ⑦低料线期间加的炉料到达软熔带位置时,要注意炉温的稳定和炉况的顺行。 ⑧当低料线不可避免时,一定要果断减风,减风的幅度要取得尽量降低低料线的效果,必要时甚至停风。 5.悬料 炉料停止下降,延续超过正常装入两批料的时间,即为悬料;经过3次以上坐料未下,称顽固悬料。 ◆悬料的原因: 悬料主要原因是炉料透气性与煤气流运动不相适应。

高炉软水密闭循环及不同冷却方式的经济效益分析

高炉软水密闭循环及不同冷却方式的经济效益分析 [提要] 本文介绍重钢6#高炉冷却水系统的工艺流程、运行工艺条件,并结合重钢5#高炉运行的相关能耗情况,对高炉常用的不同冷却方式进行经济效益分析比较,结果表明采用软水密闭循环冷却方式及蒸发空冷方式综合效益明显,认为采用软水密闭循环冷却方式和蒸发空冷方式是重大的技术进步,各单位应结合各自条件进一步总结研究,推广采用,以提高我国高炉冷却技术水平,达到节约用水,降低能耗,取得更大经济效益和社会效益的目的。 关键词高炉密闭循环蒸发空冷器经济效益 1 前言 目前我国经济正处于高速发展阶段,钢材的市场需求也平稳增长,钢铁产品依然呈现供不应求态势,导致价格连续上涨,企业销售收入、利润等指标大幅提高。国内钢铁业在高价格的刺激下加大了对钢铁的投资力度,在建或准备新建高炉数量急剧增加,为此正确、合理选择高炉的冷却方式对提高我国炼铁工业的节水降耗水平,延长高炉寿命具有重要的指导作用和现实意义,将对我国的钢铁业产生深远影响。 重钢6#高炉容积为750m3,2003.9月开始供水,2003.11月初高炉投产。分设三个独立的循环子系统对高炉的不同部位冷却设备进行冷却。其中冷却壁、热风阀及风渣口采用软水密闭循环系统,而风口和渣口小套采用高压敞开式循环系统(水泵出口压力140米),其中软水密闭循环系统见工艺流程及管网图。软水密闭循环的二次冷却系统采用技术先进、节能效果好的蒸发空冷器。系统运行4 个多月来,运行可靠,各项功能及工艺参数达到了设计要求,整个水系统没有发生任何设备事故,满足了高炉的生产要求,与敞开式循环系统和非蒸发空冷器冷却方式相比,能耗指标低,经济效益明显,充分显示其优越性,因此掌握和推广该项技术具有重要意义。 2 高炉敞开循环与软水密闭循环的分析比较 高炉工业净化水敞开循环系统和软水密闭循环系统是高炉最常用的冷却方式,在此只比较这两种冷却方式的优缺点。 2.1 敞开循环冷却方式由于实现了工业水的循环使用,较直流冷却方式有明显的节约用水作用,由于水质较好,通过化学或物理处理方法,能够保证高炉对水质的要求。但由于水的蒸发浓缩,含盐量将逐步增加,同时由于水站地处高炉附近,空气中的尘埃较大,水冷却时把空气中的灰尘、泥砂及微生物等洗涤带入循环水中,使水中的浊度及有害物质增加,使循环系统易发生结垢,滋生菌藻和泥垢沉积等问题,从而影响高炉的热交换,对高炉的冷却不利。 2.2 高炉软水密闭循环系统在上世纪90年代逐步在国内采用,在近几年的新建高炉水系统中运用较多。软水密闭循环系统的软水在使用过程中不与大气接触,软水把从高炉传来的热量通过二次冷却系统带走。与敞开循环冷却系统相比,主要有如下优点: (1)便于调节水泵出水压力,延长水泵使用寿命。由于软水密闭循环系统可以通过调节系统回水压力来提高或降低水泵的出水水压,满足高炉对水压的要求,目前重钢6#高炉的出水水压可以上下变化达30多米。而敞开式循环系统水泵一般从水池吸水,压力基本恒定,不能调节水泵进口压力,当水泵因叶轮磨损而导致扬程降低时,就只能更换水泵,而软水密闭循环系统可以提高水泵进水压力来解决扬程降低的问题。

[史上完整]H3C路由器NAT典型配置案例解析

H3C路由器NAT典型配置案列(史上最详细) 神马CCIE,H3CIE,HCIE等网络工程师日常实施运维必备,你懂的。 1.11 NAT典型配置举例 1.11.1 内网用户通过NAT地址访问外网(静态地址转换) 1. 组网需求 内部网络用户10.110.10.8/24使用外网地址202.38.1.100访问Internet。 2. 组网图 图1-5 静态地址转换典型配置组网图 3. 配置步骤 # 按照组网图配置各接口的IP地址,具体配置过程略。 # 配置内网IP地址10.110.10.8到外网地址202.38.1.100之间的一对一静态地址转换映射。 system-view [Router] nat static outbound 10.110.10.8 202.38.1.100 # 使配置的静态地址转换在接口GigabitEthernet1/2上生效。 [Router] interface gigabitethernet 1/2 [Router-GigabitEthernet1/2] nat static enable [Router-GigabitEthernet1/2] quit 4. 验证配置 # 以上配置完成后,内网主机可以访问外网服务器。通过查看如下显示信息,可以验证以上配置成功。 [Router] display nat static Static NAT mappings: There are 1 outbound static NAT mappings. IP-to-IP: Local IP : 10.110.10.8 Global IP : 202.38.1.100 Interfaces enabled with static NAT: There are 1 interfaces enabled with static NAT. Interface: GigabitEthernet1/2 # 通过以下显示命令,可以看到Host访问某外网服务器时生成NAT会话信息。 [Router] display nat session verbose Initiator: Source IP/port: 10.110.10.8/42496 Destination IP/port: 202.38.1.111/2048 VPN instance/VLAN ID/VLL ID: -/-/-

高炉炉缸安全的几个问题探讨资料

高炉炉缸安全的几个问题探讨 前言 近年来,为数不少的高炉在投产不久即出现炉缸耐材温度异常升高,有的高炉甚至短时间被烧穿。导致高炉炉缸快速侵蚀的原因见仁见智。炉缸安全涉及到设计、施工、设备及耐材、操作维护等方面,任何一个环节都能对炉缸安全产生重大影响。本文针对涉及炉缸安全的陶瓷杯结构、炉墙气隙、炭素捣打料、冷却强度、碱金属、烘炉,以及操作维护等热点问题予以了初步探讨,并提出了相应的改进建议。 1. 陶瓷杯对炉缸安全的影响 尽管高炉炉缸有全炭砖和炭砖加陶瓷杯两种不同的结构形式,但获得炉缸长寿的根本机理是相同的,都是为了保护炭砖免遭铁水的侵蚀,而采取不同的措施避免铁水与炭砖的直接接触。全炭砖炉墙通过炭砖的高导热性能使热面温度降到1150℃以下,依靠炭砖热面温度较低的、流动性较小的“粘滞保护层”来隔离铁水,陶瓷杯结构则是人为采用陶瓷质砖衬来隔离铁水,避免炭砖与铁水的直接接触。 有观点将炉缸砖衬温度异常甚至烧穿的主要原因归咎于炭砖热面的陶瓷杯,认为陶瓷杯阻碍了炉渣在炭砖表面形成保护层、铁水会渗透到炭砖热面,对炭砖产生所谓的“熔洞”侵蚀。长期的高炉实践中,全炭砖炉缸、炭砖加陶瓷杯炉缸这两种结构均有长寿实例,也均有炉缸砖衬温度异常甚至烧穿的事故发生。这些客观实例证明这两种形式的炉缸结构都是可行的,但要实现有效隔离铁水进而获得高炉长寿,都是需要条件的。 陶瓷杯存在时,其对炭砖的保护作用是毋容置疑的;陶瓷杯侵蚀后,即转变为全炭砖炉缸结构。只要炭砖质量好,炉墙传热体系有效,炉缸仍是安全的。采用炭砖加陶瓷杯结构的炉缸,其关键点是陶瓷杯必须具有稳定性和密封性的合理结构[1],尽可能提高陶瓷杯的寿命。 陶瓷杯材质、结构不合理,以及陶瓷杯热应力过大都会导致陶瓷杯破损甚至垮塌。在结构设计方面,小块陶瓷杯设计、制造与施工均比较简便,砖缝能够吸收一定的膨胀以释放热应力,但需防止砖缝钻铁,并提高其结构稳定性。大块陶瓷杯的互锁结构,以及较少的砖缝等使其具有较好的稳定

九号高炉快速恢复炉况操作实践

九号高炉快速恢复炉况操作实践 刘建民顾爱军 (宣钢炼铁厂) 摘要:九号高炉开炉快速达产达效后,各项经济技术指标逐步好转,由于煤比提高,焦比不断降低,料柱透气性变差,給休风后的炉况复原带来一定的困难,要紧表现为前期加风吃力,热平稳操纵不行,复原时刻长等。针对这种情形,通过对复风的研究并大胆探究,逐步摸索并总结快速复风的方法,复原时刻大大缩短,取得了较好的冶炼成效。 关键词:高炉焦比快速复风 1概述 宣钢九号高炉(1800m3)于2005年10月24日点火开炉,通过炉内积极调整,快速达产。2006年3月份以来炉内不断强化冶炼,先后在风温、富氧、煤比上取得了长足的进步,经济技术指标取得了较好名次。由于煤比的提高,焦比的不断降低,使批料的焦炭层变薄,料柱的骨架作用削弱,透气性变差。反映在休风后的复风时带来了专门大的困难,复原炉况时前期加风困难,后期加风较顺,但炉温滑势过快,甚至显现铁水物理热不足,铁水含硫过高,严峻阻碍了铁水的质量。为防止炉温滑的过快,适当操纵加风速度,阻碍了复原炉况的进程,一样隔10~12小时,才能实现全风操作。 为了提高复原炉况的速度,又能保证渣铁的温度充足,进而减少产量的缺失,通过对复原炉况的分析研究,并大胆探究,对加风量与加风速度进行有效的操纵,取得了专门好的成效,复原炉况进程大大缩短,且渣铁温充足,减少了因休风造成的产量缺失。 2低焦比高炉炉况复原的制约因素 近年来,随着工艺设备的不断更新,专门是高风温顺富氧的使用,高炉的焦比不断降低,煤比不断提高,大大降低了生产成本,然而随着焦比得不断降低,焦炭的骨架作用越来越弱,高炉的透气性透液性变差,給炉况的复原带来了专门大的难度。9炉焦比操纵在360kg/t左右,风温1200℃,富氧3.0%,焦炭负荷最重5.10.O/C重,具体表现休风复风上:加风困难,易显现崩料、滑料等,甚至显现悬料;再者由于休风及复原炉况前期有大约2小时不能喷煤,及休风过程中的热量缺失,在炉况复原过程中,停煤料下达导致炉温下滑太快,在一定程度上制约了加风速度,延误了炉况的复原。 3快速复原炉况的具体操作 3.1 休风前的预备工作 炉况能否在休风后快速复原一定程度上取决于休风前的炉况顺行程度,休风前炉况的稳固顺行是快速复原炉况的前提和基础。为此必须做好以下工作: 3.1.1 休风前确保炉况顺行良好,煤气流分布合理

高炉软水密闭循环冷却系统检漏技术

高炉软水密闭循环冷却系统检漏技术 【摘要】本文对高炉软水密闭循环冷却系统的检漏技术进行的简要介绍,并分析了冷却系统管道发生破坏的原因。 【关键词】高炉软水密闭循环冷却系统;检漏;破坏原因 前言 高炉软水密闭循环冷却系统是当前国内外较为广泛使用的一种高炉冷却设备,利用软水循环进行冷却可以有效清除结垢,冷却效果良好,可以有效满足提高高炉使用寿命和冷却设备的使用寿命。然而,如果该系统出现泄漏或者由于局部过热而出现气塞现象而发现得又不够及时的时候,通常容易造成冷却设施破损程度加大,同时会影响高炉的寿命和生产能力,造成经济损失和安全隐患。因此,人们进一步研究并发展出了高炉软水密闭循环系统的检漏技术。 1 冷却系统水流特征 高炉软水密闭循环系统在结构上可以看做是将一定数量的阻损条件相同的管道并联到两个等压位之间,在正常条件下,每个管道的入口流量相同,但是一旦某个管道出现泄漏或者气塞是就会出现异常现象。当某一管道发生气塞时,该管道入口流量将会大幅减少,而且流量大小和气塞程度成正比,气塞的阻力足够大时会出现管道断水显现,即该入口的流量降为零。如果不能及时检测到这种情况并且进行处理,就会造成设备损坏,发生泄漏事故,可以说,气塞故障是设备设备出现烧坏和泄漏的根本原因。而当管道发生泄漏故障时,管道入口的流量就会大幅增加,并且出口流量大幅降低。在漏阻一定的条件下,出、入口水流量的变化也会随着泄漏点位置的改变而不同。试验结果显示,泄漏点越往下游,入口流量增加越快,而出口流量减少越慢。泄漏点位置保持不变的条件下,烧坏情况越严重,漏阻越小,出、入口水流量的减小都会更加明显,相反,漏阻越大,出、入口水流量的变化越小。另外,高炉内的压力或者是热风压力也会对泄漏事故造成很大影响。炉压减小则泄漏量增大,炉压为零时泄漏量就会出现明显增加,并且泄漏量会随着泄漏位置的下移和炉压的降低变化幅度出现增大的趋势。因此,当系统出现泄漏并且需要进行休风处理时应当关闭泄漏管道或者是降低水压,减少泄漏到高炉内的水流量,否则会造成泄漏流量大幅增加,给高炉的生产和安全性带来极大威胁。 2 检测探头和显示仪器 专用的检测探头内设有一微型铂热电阻片用来测量温度。由于理论上尚且很难做到准确确定管道中的平均流速点,但是满流的管道中流速关于管周线对称,所以采取在同一截面直径上取两个平均流速点的方法,并将毕托管改为匀速毕托管,从而得到管道内流量的理论公式。这种探头称为复合式探头,其有几个明显优点,简单、高效、稳定,有比较高的测量精度和重现性,并且抗热和抗电磁干

Cisco路由器静态路由配置实例

Cisco路由器静态路由配置实例 初学路由器的配置,下面就用Boson NetSim for CCNP 6.1模拟软件进行配置…这篇文章主要是对路由表进行静态路由配置… 拓扑结构图如下: 下面开始: 1.对Router1进行配置,配置命令如下: Router>enable进入特权模式 Router#configure terminal 进入配置模式 Enter configuration commands, one per line. End with CNTL/Z. Router(config)#interface ethernet0 进入E0端口模式

Router(config-if)#ip address 192.168.1.1 255.255.255.0 配置IP地址Router(config-if)#no shutdown 激活该端口 %LINK-3-UPDOWN: Interface Ethernet0, changed state to up Router(config-if)#exit 返回上一级 Router(config)#interface serial0 进入S0 端口模式 Router(config-if)#ip address 192.168.2.1 255.255.255.0 Router(config-if)#no shutdown %LINK-3-UPDOWN: Interface Serial0, changed state to up %LINK-3-UPDOWN: Interface Serial0, changed state to down %LINEPROTO-5-UPDOWN: Line protocol on Interface Serial0, changed state to down Router(config-if)#clock rate 6400 注意这里是设置时钟..如有不明白,可以打”?”.但是系统给的参数是 64000 .而我们要配置成 6400 ..可能是模拟软件的一个小BUG 吧!现在是在模拟软件中,如果是真实环境,我们要参照说 明书..按照说明书来配置参数…. Router(config-if)#exit Router(config)#ip route 192.168.3.0 255.255.255.0 192.168.2.2 配置路由表

450m3高炉炉缸侵蚀分析

450m3高炉炉缸侵蚀分析 东帅 ( 北满特殊钢有限责任公司161041 ) 摘要:国高炉长寿近年不断提高,出现了一批寿命高达15年以上的长寿高炉,国外有的高炉寿命甚至超过25年。高炉一代炉役不中修连续生产20年,单位炉容产铁15000t以上,应成为我国大中型高炉长寿的目标[1]。近年来,随着高炉上燃料条件改善,铜冷却壁,软水密闭循环等先进冷却而技术的应用,以及耐火材料的进步,高炉炉腹以上冷却壁寿命大幅度提高,值得重视的是,迄今我国有些高炉炉缸、炉底寿命还存在不少问题,炉缸、炉底烧穿事故时有发生,仅在2010年8月,国就有2座1250m3高炉、1座2500m3高炉发生炉缸烧穿事故,2012年3月~2012年10月短短7个月至少有3座450m3高炉、1座750m3,1000m3以上高炉烧穿以及即将烧穿紧急停产护炉大修高炉不少于5座以上,仅此高炉进入了高频率大修中,且造成重大损失,因此要很好的分析高炉炉缸、炉底烧穿原因,从中吸取经验教训,不断改进创新,增强监测手段,进一步提高炉缸、炉底寿命,并提高预防、应变、处理此类事故的能力! Abstract:Domestic blast furnace longevity in recent years, the emergence of a number of life expectancy of 15 years or more of the long life of blast furnace, foreign country has a blast furnace life even more than 25 years. In the furnace, the furnace of a furnace for 20 years of continuous production, the unit furnace capacity of more than 15000t, should be the goal of China's large and medium blast furnace [1]. In recent years, with the improvement of fuel condition of blast furnace, copper cooling wall, closed loop soft water cooling and other advanced technology, and the progress of refractory materials, above the bosh cooling wall and greatly improving the service life, it is worth paying attention to, so far in China, some blast furnace hearth furnace bottom life there are a lot of problems, hearth, furnace bottom burn accidents have occurred, only in August 2010, China had 2 seat, 1 seat 2500m3 1250m3 blast furnace blast furnace hearth burning accident occurred in March 2012, ~2012 in October just 7 months at least 3 450m3 blast furnace, 1 750m31000m3 above the blast furnace burning through and will burn furnace blast furnace overhaul emergency shutdown of not less than 5 above, only the high frequency into blast furnace overhaul, and caused heavy losses, so be a good analysis of blast furnace hearth, furnace burning Word 资料

高炉炉况管理规定第三版

高炉炉况管理规定 1.目的因料制宜,实施精细化、数据化炉况管理,实现高炉长期“均衡、稳定、高效”的生产理念。 2.适用范围龙钢公司炼铁高炉生产工序。 3.定义 炉况管理内容包括炉况分级管理、原燃料质量管理、高炉操作管理、炉型管理、数据化管理、高炉休 /复风管理、预案管理。 正常炉况:全风作业、压量稳定、下料顺畅、渣铁热量充沛、流动性好、生铁质量良好,对冶炼条件有较强的适应能力,休减风后容易恢复到正常水平。 失常炉况:采用日常调整炉况失效,不能在短期内恢复正常的炉况,通常可分煤气流失常和热制度失常两大类。 4.职责 4.1总工程师办公室(以下简称“总工办”) 4.1.1负责入炉原燃料内控标准的制、修定。 4.1.2负责入炉原燃料质量监控和相关事宜的协调。 4.1.3负责炉料结构调整的审批。 4.1.4负责配料方案的审批。 4.1.5负责高炉炉况重点参数的检查、纠偏。 4.2炉料优化办公室(以下简称“炉料优化办”) 4.2.1负责配料方案的制定。 4.2.2负责炉料结构的制定。 4.2.3负责入炉原燃料达到内控标准要求及配料要求。 4.3炼铁厂 4.3.1负责高炉操作方针的制定、执行。 4.3.2负责入炉原燃料质量的跟踪。 4.3.3负责炉料配比的执行。 4.3.4负责高炉操作预案的制定、执行。 4.3.5负责高炉休、复风方案的制定、执行。 4.3.6负责炉况信息的传递工作。 4.3.7负责日常炉况的操作管理工作。 4.3.8负责按要求召开炉况分析会 ,并严格落实所定操作要求。 4.4生产部负责生产信息及重大工艺信息的传递工作。

4.5质量保证部 4.5.1负责按检验计划对入炉原燃料检验分析。 4.5.2负责按检验计划要求及时上传检验数据、并将不达标数据进行通报。 5.管理程序 5.1炉况管理 5.1.1炉况管理分为公司级、分厂级、车间级三级管理。 5.1.3 三级炉况管理职责界定 a.公司级 a)当原燃料质量(炉料结构)出现较大幅度波动(需调整),可能引起各炉炉况波动时。总工办确认后报公司主管副总批准,炼铁厂启动高炉原、燃料理化指标变化预案;同时总工办组织相关部门 /单位人员分析原因,制定措施,使原燃料质量限期达到内控标准要求,原燃料质量达至内控标准要求二日后,预案解除,高炉在二日内操作参数调整控制到正常水平(核心为产量、炉温、风温、喷煤、焦比、炉料结构达到计划控制要求)。 b)当外部条件或内部炉况等原因需调整风口配置时。炼铁厂提出调整计划(方案和分厂炉况组组长组织的,成员参加的,主管厂长审批的专题会分析材料),经总工办审核,报公司主管副总批准后,炼铁厂利用修风或检修机会执行,总工办负责监督。 c)正常生产中需调整炉况:布料矩阵需增减环带或调整角度,或矿石批重 1BF 、2BF 需大于 27 吨,3BF、4BF 需大于 48 吨时。由炼铁厂提出(方案和分厂炉况组组长组织的,成员参加的,主管厂长审批的专题会分析材料),总工办组织公司级炉况管理人员召开炉况分析会,形成统一意见,报公司主管副总批准后实施,总工办跟踪监督。 d)当高炉炉后筛孔需调整时。总工办不定期对入炉粉末( 5mm 以 3% 界)进行数据统计,入炉料粉末超标严重时,总工办组织相关人员制定调整方案,经生产副总审批后,物资供应部、炼铁厂落实,总工办监督按期执行。

相关主题