搜档网
当前位置:搜档网 › 专题3.4 目标范围与最值,函数处理最相宜 高考数学解答题压轴题突破讲义(解析版)

专题3.4 目标范围与最值,函数处理最相宜 高考数学解答题压轴题突破讲义(解析版)

专题3.4 目标范围与最值,函数处理最相宜  高考数学解答题压轴题突破讲义(解析版)
专题3.4 目标范围与最值,函数处理最相宜  高考数学解答题压轴题突破讲义(解析版)

【题型综述】

圆锥曲线中的目标取值范围与最值问题关键是选取合适的变量建立目标函数,转化函数的取值范围与最值问题,其求解策略一般有以下几种:①几何法:若目标函数有明显几何特征和意义,则考虑几何图形的性质求解;②代数法:若目标函数的几何意义不明显,利用基本不等式、导数等方法求函数的值域或最值,注意变量的范围,在对目标函数求最值前,常要对函数进行变换,注意变形技巧,若一个函数式的分母中含有一次式或二次式、分子中含有一次式或二次式的二次根

式,则可以通过换元的方法把其转化为分母为二次式、分子为一次式的函数式,这样便于求解此函数式的最值.学@

【典例指引】

类型一 角的最值问题

例1 【2017山东,理21】在平面直角坐标系xOy 中,椭圆E :22221x y a b +=()0a b >>的离心率为22,焦

距为2.

(Ⅰ)求椭圆E 的方程; (Ⅱ)如图,动直线l :13

2

y k x =-

交椭圆E 于,A B 两点,C 是椭圆E 上一点,直线OC 的斜率为2k ,且122

4

k k =

,M 是线段OC 延长线上一点,且:2:3MC AB =,M 圆的半径为MC ,,OS OT 是M 圆的两条切线,切点分别为,S T .求SOT ∠的最大值,并求取得最大值时直线l 的斜率.

【解析】(I )由题意知 2c e a =

=,22c =,所以 2,1a b ==,

因此 椭圆E 的方程为2

212

x y +=.

(Ⅱ)设()(

)1122,,,A x y B x y ,联立方程2

211,2

3,

2

x y y k x ?+=????=-??

得()2211424310k x k x +--=,由题意知0?>,且()

11212

221231

,21221k x x x x k k +=

=-++, 所以 22

112

112211812

21

k k AB k

x x k ++=+-=+.

由题意可知圆M 的半径r 为22

11

2

11822321

k k r k ++=+ 由题设知1224

k k =

,所以224k k =因此直线OC 的方程为2

4y x k =.

因此

22212221121119224

OC r t t t t t =

==≥+-??+---+ ???,

当且仅当112t =,即2t =时等号成立,此时12k =,所以 1sin 22SOT ∠≤,因此26SOT π

∠≤,

所以 SOT ∠最大值为

3

π

.综上所述:SOT ∠的最大值为

3

π

,取得最大值时直线l 的斜率为12

k =. 类型二 距离的最值问题

例2.【2017浙江,21】(本题满分15分)如图,已知抛物线2

x y =,点A 11()24-,,39()24

B ,,抛物线

上的点

)

2

3

2

1

)(

,

(<

<

-x

y

x

P.过点B作直线AP的垂线,垂足为Q.

(Ⅰ)求直线AP斜率的取值范围;

(Ⅱ)求|

||

|PQ

PA?的最大值.

【解析】(Ⅰ)设直线AP的斜率为k,则

2

1

2

1

4

1

2

-

=

+

-

=x

x

x

k,∵

13

22

x

-<<,∴直线AP斜率的取值范围是)1,1

(-.

令3)1

)(1

(

)

(+

-

-

=k

k

k

f,因为2)1

)(

2

4(

)

('+

-

-

=k

k

k

f,所以f(k)在区间)

2

1

,1

(-上单调递增,)1,

2

1

(上单调递减,因此当k=

1

2

时,|

||

|PQ

PA?取得最大值27

16

类型三几何图形的面积的范围问题

例3【2016高考新课标1卷】(本小题满分12分)设圆222150

x y x

++-=的圆心为A,直线l过点B(1,0)且与x轴不重合,l交圆A于C,D两点,过B作AC的平行线交AD于点E.学*

(I )证明EA EB +

为定值,并写出点E 的轨迹方程;

(II )设点E 的轨迹为曲线C 1,直线l 交C 1于M ,N 两点,过B 且与l 垂直的直线与圆A 交于P ,Q 两点,求四边形MPNQ 面积的取值范围.

【解析】(Ⅰ)因为||||AC AD =,AC EB //,故ADC ACD EBD ∠=∠=∠, 所以||||ED EB =,故||||||||||AD ED EA EB EA =+=+.

又圆A 的标准方程为16)1(2

2

=++y x ,从而4||=AD ,所以4||||=+EB EA . 由题设得)0,1(-A ,)0,1(B ,2||=AB ,由椭圆定义可得点E 的轨迹方程为:

13

42

2=+y x (0≠y ). (Ⅱ)当l 与x 轴不垂直时,设l 的方程为)0)(1(≠-=k x k y ,),(11y x M ,),(22y x N .

由?????=+-=134

)1(22y x x k y 得01248)34(2222=-+-+k x k x k .

可得当l 与x 轴不垂直时,四边形MPNQ 面积的取值范围为)38,12[.

当l 与x 轴垂直时,其方程为1=x ,3||=MN ,8||=PQ ,四边形MPNQ 的面积为12. 综上,四边形MPNQ 面积的取值范围为)38,12[.

类型四 面积的最值问题

例4.【2016高考山东理数】(本小题满分14分)平面直角坐标系xOy 中,椭圆C :()2

2

2210x y a b a b

+=>> 的

离心率是

32

,抛物线E :2

2x y =的焦点F 是C 的一个顶点. (I )求椭圆C 的方程;

(II )设P 是E 上的动点,且位于第一象限,E 在点P 处的切线l 与C 交与不同的两点A ,B ,线段AB 的中点为D ,直线OD 与过P 且垂直于x 轴的直线交于点M .学# (i )求证:点M 在定直线上;

(ii )直线l 与y 轴交于点G ,记PFG △的面积为1S ,PDM △的面积为2S ,求1

2S S

的最大值及取得最大值时点P 的坐标.

【解析】(Ⅰ)由题意知2

3

22=-a b a ,可得:b a 2=. 因为抛物线E 的焦点为)21,0(F ,所以2

1,1==b a , 所以椭圆C 的方程为142

2

=+y x .

(Ⅱ)(i )设)0)(2

,(2

>m m m P ,由y x 22=可得x y =/,

所以直线l 的斜率为m ,

因此直线l 的方程为)(22m x

m m y -=-,即2

2

m mx y -

=. 设),(),,(),,(002211y x D y x B y x A ,联立方程2

22241m y mx x y ?=-

???+=?

得014)14(4

3

2

2

=-+-+m x m x m ,

由0>?,得520+<

442

3

21+=+m m x x ,

(ii )由(i )知直线l 方程为22

m mx y -=,

令0=x 得22m y -=,所以)2

,0(2

m G -,

又21

(,),(0,),22m P m F D ))

14(2,142(222

3+-+m m m m , 所以)1(4

1

||2121+==

m m m GF S , )

14(8)12(||||2122

202++=-?=m m m x m PM S ,

所以2

22221)

12()1)(14(2+++=m m m S S , 令122

+=m t ,则

21

1)1)(12(2221++-=+-=t

t t t t S S , 当

211=t ,即2=t 时,21S S 取得最大值4

9

,此时22=

m ,满足0>?, 所以点P 的坐标为)41,22(

,因此12S S 的最大值为4

9

,此时点P 的坐标为)41,22(.

【扩展链接】

1.过椭圆22

221x y a b

+= (a >0, b >0)上任一点00(,)A x y 任意作两条倾斜角互补的直线交椭圆于B,C 两点,则

直线BC 有定向且20

20

BC

b x k a y =(常数). 2.若椭圆22

221x y a b

+= (a >0, b >0)与直线m kx y l +=:交于),(),,(2211y x B y x A ,则

(1)02

2

2

2

>-+=?m k a b

(2)???????+-=++-=+2222222212222212k a b b a a m x x k a b kma x x ,???

????+-=++=+2222

2222212

222212k a b b a k b m x x k a b mb y y ,

(3)2

2222222))(1(2||k

a b m k a b k ab AB +-++=,2222

222||k a b m k a b m ab S OAB +-+=?. 【新题展示】

1.【2019福建莆田质检】已知椭圆:的左,右焦点分别为

,离心率为,是

上的一个动点。当为的上顶点时,的面积为

(1)求的方程; (2)设斜率存在的直线与的另一个交点为。若存在点,使得,求的取值范围。

【思路引导】

(1)结合椭圆性质,计算a,b的值,得到椭圆方程,即可。(2)设出直线PQ的方程,代入椭圆方程,利用韦达定理,建立等式,用k表示t,结合函数的性质,计算范围,即可。

【解析】

(1)设椭圆的半焦距为c。

因为,所以,,

又,

所以.

所以C得方程为

(2)设直线PQ的方程为,PQ的中点为.

当k=0时,t=0符合题意.

当k≠0时,由

所以

因为,所以TN⊥PQ,则K TN·k=-1,

所以

因为,所以.

综上,t的取值范围为.

2.【2019山东日照一模】已知左、右焦点分别为的椭圆过点,且

椭圆C关于直线x=c对称的图形过坐标原点.

(I)求椭圆C的离心率和标准方程。

(II)圆与椭圆C交于A,B两点,R为线段AB上任一点,直线交椭圆C 于P,Q两点,若AB为圆的直径,且直线的斜率大于1,求的取值范围.

【思路引导】

(Ⅰ)利用椭圆C过点,∵椭圆C关于直线x=c对称的图形过坐标原点,推出a=2c,然后求解椭圆C的离心率,标准方程.

(Ⅱ)设A(),B(),利用中点坐标公式以及平方差法求出AB的斜率,得到直线AB的方程,代入椭圆C的方程求出点的坐标,设F1R:y=k(x+1),联立,设P(x3,y3),Q(x4,

y4),利用韦达定理,结合,,化简|PF1||QF1|,通过,求解|PF1||QF1|的取值范围.

【解析】

(Ⅰ)∵椭圆过点,∴,①

∵椭圆关于直线对称的图形过坐标原点,∴,

∵,∴,②

由①②得,,

∴椭圆的离心率,标准方程为.

(Ⅱ)因为为圆的直径,所以点为线段的中点,

设,,则,,又,

所以,则,故,则直线的方程为,即.代入椭圆的方程并整理得,

则,故直线的斜率.

设,由,得,

设,,则有,.

又,,

所以=,

因为,所以,

即的取值范围是.

3.【2019湖北部分重点中学联考】已知椭圆的左、右焦点为,离心率为,点在椭圆上,且的面积的最大值为.

(1)求椭圆的方程;

(2)已知直线与椭圆交于不同的两点,若在轴上存在点,使得,求实数的取值范围.

【思路引导】

(1)根据离心率得到,由的面积的最大值为得到,再结合椭圆中求出参数的值后可得方程.(2)将直线方程代入椭圆方程消去y得到关于x的二次方程,结合根据系数的关系求出线段的中点的坐标,由得,进而有,并由此得到,最后根据基本不等式得到所求范围.

【解析】

(1)由题意得,解得.

∴椭圆的方程为.

(2)由消去y整理得,

且.

设,线段的中点为,

则.

∴,

∴.

∵在轴上存在点,使得,

∴,

∴,即,

∴.

∵,

∴,当且仅当且,即时等号成立.

∴,故.

∴实数的取值范围为.

4.【2019广东韶关1月调研】已知椭圆的中心在原点,焦点在轴上,椭圆的一个顶点为,右焦点到直线的距离为.

(1)求椭圆的标准方程;

(2)若过作两条互相垂直的直线,且交椭圆于、两点,交椭圆于、两点,求四边形的面积的取值范围.

【思路引导】

(1)由题意布列关于a,b的方程组,解之即可;

(2)讨论直线的斜率,联立方程利用韦达定理表示弦长,进而得到四边形的面积,借助对勾函数的图像与性质即可得到结果.

【解析】

(1)依题意,设椭圆的方程为:,则,

设,由右焦点到直线的距离为,可得,

解得或(舍去).所以,.

故椭圆的方程为:.

(2)①当直线的斜率不存在时,此时的斜率为0,此时,

,则四边形的面积.

②当直线的斜率为0,此时的斜率不存在,同理可得四边形的面积.

③当直线的斜率存在,且斜率时,,则,将直线的方程代入椭圆方程中,并化简整理得,

可知,

设、,则有

同理可得

则的面积.

令,则

令,则有,则.

综上,.

5.【2019湖北黄冈元月调研】已知为坐标原点,椭圆:的左、右焦点分别为,,右顶点为,上顶点为,若,,成等比数列,椭圆上的点到焦点的距离的最大值为.求椭圆的标准方程;

过该椭圆的右焦点作两条互相垂直的弦与,求的取值范围.

【思路引导】

根据,,成等比数列,椭圆上的点到焦点的距离的最大值为.列出关于、、的方程组,求出、的值,即可得出椭圆的方程;对直线和分两种情况讨论:一种是两条直线与坐标轴垂直,可求出两条弦长度之和;二是当两条直线斜率都存在时,设直线的方程为,将直线方程与椭圆方程联立,列出韦达定理,利用弦长公式可计算出的长度的表达式,然后利用相应的代换可求出的长度表达式,将两线段长度表达式相加,利用函数思想可求出两条弦长的取值范围最后将两种情况的取值范围进行合并即可得出答案.

【解析】

易知,得,则,

而,又,得,,

因此,椭圆C的标准方程为;

当两条直线中有一条斜率为0时,另一条直线的斜率不存在,由题意易得;

当两条直线斜率都存在且不为0时,由知,

设、,直线MN的方程为,则直线PQ的方程为,

将直线方程代入椭圆方程并整理得:,

显然,,,

,同理得,

所以,,

令,则,,设,,所以,,所以,,则.

综合可知,的取值范围是.

6.【2019广西柳州1月模拟】已知点,直线为平面内的动点,过点作直线的垂线,垂足为点,且.

(1)求动点的轨迹的方程;

(2)过点作两条互相垂直的直线与分别交轨迹于四点.求的取值范围.【思路引导】

(1)设动点,则,由展开计算得到的关系式即可;(2)当直线的斜率不存在(或者为0)时,可求出四点坐标,即可得到;当直线的斜率存在且不为0时,设为,直线的方程为,与轨迹的方程联立,结合根与系数的关系可得到+

的表达式,然后利用函数与导数知识可求出的取值范围。

【解析】

(1)设动点,则,

由,则,

所以,

化简得.

故点的轨迹的方程为.

(2)当直线的斜率不存在时,轴,

可设,

当直线的斜率为0时,轴,同理得,

当直线的斜率存在且不为0时,设为,则直线的方程为:,设,由得:

所以

则,

直线的方程为:,

同理可得:,

所以

令,则

由,得;,得;

在上单调递减,在上单调递增

又,故.

综上所述,的取值范围是.

7.【2019江西九江一模】已知抛物线的焦点为,直线与相切于点,

(Ⅰ)求抛物线的方程;

(Ⅱ)设直线交于两点,是的中点,若,求点到轴距离的最小值及此时直线的方程。【思路引导】

(Ⅰ)设A(x0,y0),联立直线方程和抛物线方程,运用判别式为0,结合抛物线的定义,可得抛物线方程;

(Ⅱ)由题意可得直线l的斜率不为0,设l:x=my+n,M(x1,y1),N(x2,y2),联立抛物线方程,运用韦达定理和弦长公式,结合中点坐标公式和基本不等式可得所求直线方程.

【解析】

(Ⅰ)设,联立方程,得

由,得

,解得

故抛物线的方程为

(Ⅱ)由题意可得直线l的斜率不为0,设l:x=my+n,M(x1,y1),N(x2,y2),

联立抛物线方程可得y2﹣4my﹣4n=0,

△=16m2+16n>0,y1+y2=4m,y1y2=﹣4n,

|AB|?8,

可得n m2,

2m,2m2+n m2

m2+1﹣1≥21=3,

当且仅当m2+1,即m2=1,即m=±1,

T到y轴的距离的最小值为3,

此时n=1,直线的方程为x±y﹣1=0.

8.【2019广东广州一模】已知椭圆C:的离心率为,点P在C上.

(1)求椭圆C的方程;

(2)设分别为椭圆C的左右焦点,过的直线与椭圆C交于不同的两点A、B,求△的内切圆的半径的最大值.

【思路引导】

(1) 根据离心率为,点在椭圆上,结合性质,列出关于、、的方程组,求出、,即可得结果;(2)可设直线的方程为,与椭圆方程联立,可得,结合韦达定理、弦长公式,利用三角形面积公式可得,换元后利用导数可得的最大值为,再结可得结果.

【解析】

(1)依题意有,解得,

故椭圆的方程为.

(2)设,设的内切圆半径为,的周长为,

根据题意知,直线的斜率不为零,

可设直线的方程为,

由,得,

由韦达定理得,

,令,则,,

令,则当时,单调递增,

即当时,的最大值为,此时,

故当直线的方程为时,内切圆半径的最大值为.

【同步训练】

1.已知椭圆2222:1x y C a b +=(0a b >>)的离心率3

2

e =,椭圆过点()

22,0

(1)求椭圆C 的方程; (2)直线l 的斜率为

1

2

,直线l 与椭圆C 交于,A B 两点,已知()2,1P ,求PAB ?面积的最大值. 【思路点拨】(1)由椭圆的离心率得到a ,b 的关系,再由椭圆过定点P 得另一关系式,联立后求得a ,b 的值,则椭圆方程可求;学%

(2)设出直线l 的斜截式方程,和椭圆方程联立后化为关于x 的一元二次方程,利用根与系数关系及弦长公式求得弦长,由点到直线的距离公式求出AB 边上的高,代入面积公式后利用基本不等式求最值.

【详细解析】(1)∵2222

22

34

c a b e a a -===,∴22

4a b =, ∵椭圆过点()

22,0,∴22

8,2a b ==,

22

182

x y ∴+=

当且仅当2

=2m ,即2m =时取得最大值2.

[数学]数学高考压轴题大全

1、(本小题满分14分) 已知函数. (1)当时,如果函数仅有一个零点,求实数的取值范围; (2)当时,试比较与的大小; (3)求证:(). 2、设函数,其中为常数. (Ⅰ)当时,判断函数在定义域上的单调性; (Ⅱ)若函数的有极值点,求的取值范围及的极值点; (Ⅲ)当且时,求证:. 3、在平面直角坐标系中,已知椭圆.如图所示,斜率为且不过原 点的直线交椭圆于,两点,线段的中点为,射线交椭圆于点,交直 线于点. (Ⅰ)求的最小值; (Ⅱ)若?,(i)求证:直线过定点;

(ii )试问点,能否关于轴对称?若能,求出 此时 的外接圆方程;若不能,请说明理由. 二、计算题 (每空? 分,共? 分) 4 、设函数 的图象在点处的切线的斜率 为 ,且函数为偶函数.若函数 满足下列条件:①;② 对一切实数 ,不等式恒成立. (Ⅰ)求函数的表达式; (Ⅱ)求证: . 5 、已知函数: (1 )讨论函数的单调性; (2) 若函数 的图像在点 处的切线的倾斜角为,问:在什么范围取值 时,函数 在区间上总存在极值? (3)求证:.

6、已知函数=,. (Ⅰ)求函数在区间上的值域; (Ⅱ)是否存在实数,对任意给定的,在区间上都存在两个不同的, 使得成立.若存在,求出的取值范围;若不存在,请说明理由; (Ⅲ)给出如下定义:对于函数图象上任意不同的两点,如果对 于函数图象上的点(其中总能使得 成立,则称函数具备性质“”,试判断函数是不是具 备性质“”,并说明理由. 7、已知函数 (Ⅰ)若函数是定义域上的单调函数,求实数的最小值; (Ⅱ)方程有两个不同的实数解,求实数的取值范围; (Ⅲ)在函数的图象上是否存在不同两点,线段的中点的横坐标 为,有成立?若存在,请求出的值;若不存在,请说明理由. 8、已知函数: ⑴讨论函数的单调性;

函数应用题-(2009-2018)高考数学分类汇编含解析

【命题规律】 1. 根据待定系数法、几何公式、解三角形确定函数解析式 2. 利用导数、基本不等式或解三角形求最值或范围. 【真题展示】 1【2009江苏,19】按照某学者的理论,假设一个人生产某产品单件成本为a 元,如果他卖出该产品的单价为m 元,则他的满意度为 m m a +;如果他买进该产品的单价为n 元,则他的满意度为 n n a +.如果一个人对两种交易(卖 出或买进)的满意度分别为 1h 和2h .现假设甲生产A 、B 两种产品的 单件成本分别为12元和5元,乙生产A 、B 两种产品的单件成本分别为3元和20元,设产品A 、B 的单价分别为 A m 元和 B m 元,甲买进A 与卖出B 的综合满意度为h 甲,乙卖出A 与买进B 的综合满意度为 h 乙(1)求h 甲和h 乙 关于 A m 、 B m 的表达式;当 35A B m m =时,求证:h 甲=h 乙;(2)设35 A B m m =,当A m 、B m 分别为多少时, 甲、乙两人的综合满意度均最大?最大的综合满意度为多少?(3)记(2)中最大的综合满意度为0h ,试问能否适当 选取 A m 、 B m 的值,使得0h h ≥甲和0h h ≥乙同时成立, 但等号不同时成立?试说明理由.【答案】(1)详见解析; (2) 20,12B A m m == 时,甲乙两人同时取到最大的综合满意度为5 (3) 不能

故当1120 B m =即20,12B A m m ==时, (3)由(2)知:0h 由05 h h ≥=甲得: 12552A B A B m m m m ++?≤,

所以不能否适当选取A m 、B m 的值,使得0h h ≥甲和0h h ≥乙同时成立,但等号不同时成立. 2【2015江苏高考,17】(本小题满分14分) 某山区外围有两条相互垂直的直线型公路,为进一步改善山区的交通现状,计划修建一条连接两条公路的山区边 界的直线型公路,记两条相互垂直的公路为12l l , ,山区边界曲线为C ,计划修建的公路为l ,如图所示,M ,N 为C 的两个端点,测得点M 到12l l , 的距离分别为5千米和40千米,点N 到12l l ,的距离分别为20千米和2.5千米,以12l l , 所在的直线分别为x ,y 轴,建立平面直角坐标系xOy ,假设曲线C 符合函数2a y x b =+(其中a ,b 为常数)模型. (1)求a ,b 的值; (2)设公路l 与曲线C 相切于P 点,P 的横坐标为t . ①请写出公路l 长度的函数解析式()f t ,并写出其定义域; ②当t 为何值时,公路l 的长度最短?求出最短长度.

高考数学专题练习--函数图像

高考数学专题练习--函数图像 1. 【江苏苏州市高三期中调研考试】已知函数()2 21,0 ,0 x x f x x x x ->?=? +≤?,若函数()()g x f x m =-有三个零点,则实数m 的取值范围是__________. 【答案】1 ,04 ?? - ??? 【解析】 2. 【江苏省苏州市高三暑假自主学习测试】已知函数31 1, ,()11,, x f x x x x ?>?=?-≤≤??若关于x 的方程 ()(1)f x k x =+有两个不同的实数根,则实数k 的取值范围是 ▲ . 【答案】1 (0,)2 【解析】 试题分析:作函数()y f x =及(1)y k x =+图像,(11), (1,0)A B -,,由图可知要使关于x 的方程()(1)f x k x =+有两个不同的实数根,须满足1 (0,)(0,).2 AB k k ∈=

3. 【江苏省南通市如东县、徐州市丰县高三10月联考】设幂函数()f x kx α=的图象经过点 ()4,2,则k α+= ▲ . 【答案】 32 【解析】 试题分析:由题意得11,422 k α α==?=∴32k α+= 4. 【泰州中学第一学期第一次质量检测文科】已知幂函数()y f x =的图象经过点1 (4,)2 ,则 1 ()4 f 的值为 . 【答案】2 【解析】 试题分析:设()y f x x α ==,则11422α α=?=-,因此1 211()()244 f -== 5. 【江苏省南通中学高三上学期期中考试】已知函数2 +1, 1, ()(), 1, a x x f x x a x ?-?=?->??≤ 函数 ()2()g x f x =-,若函数()()y f x g x =- 恰有4个零点,则实数的取值范围是 ▲ . 【答案】23a <≤ 【解析】

高考数学复习点拨 巧解函数模型应用题

去伪存真 巧解函数模型应用题 新课标加大了对应用问题的考查,而函数的应用问题也是训练同学们建立模型的好素材,因此也成为了高考命题的热点,本文通过比较建立不同的数学模型,来探讨如何建立效果最好的函数模型。 例:某皮鞋厂,从今年1月份开始投产,并且前4个月的产量分别为1万双,1.2万双, 1.3万双,1.37万双。由于产品质量好,款式新颖,前几个月的产品销售情况良好。为了推销员在推销产品时,接受定单不至于过多或过少,需要估测以后几个月的产量,厂里分析,产量的增加是由于工人生产熟练和理顺了生产流程。厂里也暂时不准备增加设备和工人。假如你是厂长,将会采用什么办法估算以后几个月的产量。 分析:本题是通过数据验证,确定系数,然后分析确定函数变化情况,最终找出与实际最接近的函数模型。 解:由题意知:可以得到四个点()()()()1,1,2,1.2,3,1.3,4,1.37A B C D 。 解法一:用一次函数模拟 设模拟函数为y ax b =+,以,B C 两点的坐标代入函数式,有2 1.23 1.3 a b a b +=??+=? 解得 0.11a b =??=? ,所以得0.11y x =+。 评价:此法的结论是:在不增加工人和设备的条件下,产量会月月上升1000双,这是不可能的。 解法二:用二次函数模拟 设2 y ax bx c =++,将,,A B C 三点的坐标代入,有 1,42 1.2,93 1.3,a b c a b c a b c ++=??++=??++=? 解得0.05,0.35,0.7,a b c =-??=??=? 所以2 0.050.350.7y x x =-++。 评价:有此法计算4月份产量为1.3万双,比实际产量少700双。而且,由二次函数性质可知,产量自4月份开始将月月下降(图象开口向下,对称轴方程是 3.5x =),这显然不符合实际情况。 解法三:用幂函数模拟 设y b =,将,A B 两点的坐标代入,有1 1.2 a b b +=??+=解得0.48,0.52.a b =??=? 所以0.52y =。 评价:以3,4x x ==代入,分别得到 1.35, 1.48y y ==,与实际产量差距较大。这是因为

(完整版)高中数学三角函数历年高考题汇编(附答案)

三角函数历年高考题汇编 一.选择题1、(2009)函数 22cos 14y x π? ?=-- ?? ?是 A .最小正周期为π的奇函数 B .最小正周期为π的偶函数 C .最小正周期为 2π的奇函数 D .最小正周期为2 π 的偶函数 2、(2008)已知函数 2()(1cos 2)sin ,f x x x x R =+∈,则()f x 是( ) A 、最小正周期为π的奇函数 B 、最小正周期为2π 的奇函数 C 、最小正周期为π的偶函数 D 、最小正周期为2 π 的偶函数 3.(2009浙江文)已知a 是实数,则函数()1sin f x a ax =+的图象不可能... 是( ) 4.(2009山东卷文)将函数 sin 2y x =的图象向左平移 4 π 个单位, 再向上平移1个单位,所得图象的函数解析式是 A. 22cos y x = B. 2 2sin y x = C.)4 2sin(1π++=x y D. cos 2y x = 5.(2009江西卷文)函数()(13)cos f x x x =的最小正周期为 A .2π B . 32π C .π D . 2 π 6.(2009全国卷Ⅰ文)如果函数3cos(2)y x φ=+的图像关于点4( ,0)3 π 中心对称,那么φ的最小值为 A. 6π B.4π C. 3π D. 2π 7.(2008海南、宁夏文科卷)函数 ()cos 22sin f x x x =+的最小值和最大值分别为( ) A. -3,1 B. -2,2 C. -3, 3 2 D. -2, 32 8.(2007海南、宁夏)函数 πsin 23y x ??=- ???在区间ππ2?? -???? ,的简图是( )

高考数学压轴题专题训练20道

高考压轴题专题训练 1. 已知点)1,0(F ,一动圆过点F 且与圆8)1(2 2 =++y x 内切. (1)求动圆圆心的轨迹C 的方程; (2)设点)0,(a A ,点P 为曲线C 上任一点,求点A 到点P 距离的最大值)(a d ; (3)在10<

历年高考数学压轴题集锦

高考数学压轴题集锦 1.椭圆的中心是原点O ,它的短轴长为(,)0F c (0>c )的准线l 与x 轴相交于点A ,2OF FA =,过点A 的直线与椭圆相交于P 、Q 两点。 (1)求椭圆的方程及离心率; (2)若0OP OQ ?=,求直线PQ 的方程; (3)设AP AQ λ=(1λ>),过点P 且平行于准线l 的直线与椭圆相交于另一点M ,证 明FM FQ λ=-. (14分) 2. 已知函数)(x f 对任意实数x 都有1)()1(=++x f x f ,且当]2,0[∈x 时,|1|)(-=x x f 。 (1) )](22,2[Z k k k x ∈+∈时,求)(x f 的表达式。 (2) 证明)(x f 是偶函数。 (3) 试问方程01 log )(4=+x x f 是否有实数根?若有实数根,指出实数根的个数;若没有实数根,请说明理由。 3.(本题满分12分)如图,已知点F (0,1),直线L :y=-2,及圆C :1)3(2 2 =-+y x 。 (1) 若动点M 到点F 的距离比它到直线L 的距离小1,求动点M 的轨迹E 的方程; (2) 过点F 的直线g (3) 过轨迹E 上一点P 点P 的坐标及S

4.以椭圆2 22y a x +=1(a >1)短轴一端点为直角顶点,作椭圆内接等腰直角三角形,试 判断并推证能作出多少个符合条件的三角形. 5 已知,二次函数f (x )=ax 2 +bx +c 及一次函数g (x )=-bx ,其中a 、b 、c ∈R ,a >b >c ,a +b +c =0. (Ⅰ)求证:f (x )及g (x )两函数图象相交于相异两点; (Ⅱ)设f (x )、g (x )两图象交于A 、B 两点,当AB 线段在x 轴上射影为A 1B 1时,试求|A 1B 1|的取值范围. 6 已知过函数f (x )=12 3++ax x 的图象上一点B (1,b )的切线的斜率为-3。 (1) 求a 、b 的值; (2) 求A 的取值范围,使不等式f (x )≤A -1987对于x ∈[-1,4]恒成立; (3) 令()()132 ++--=tx x x f x g 。是否存在一个实数t ,使得当]1,0(∈x 时,g (x )有 最大值1? 7 已知两点M (-2,0),N (2,0),动点P 在y 轴上的射影为H ,︱PH ︱是2和→ → ?PN PM 的等比中项。 (1) 求动点P 的轨迹方程,并指出方程所表示的曲线; (2) 若以点M 、N 为焦点的双曲线C 过直线x+y=1上的点Q ,求实轴最长的双曲线C 的方程。 8.已知数列{a n }满足a a a a b a a a a a a a n n n n n n +-=+=>=+设,2),0(322 11 (1)求数列{b n }的通项公式; (2)设数列{b n }的前项和为S n ,试比较S n 与 8 7 的大小,并证明你的结论. 9.已知焦点在x 轴上的双曲线C 的两条渐近线过坐标原点,且两条渐近线与以点)2,0(A 为圆心,1为半径的圆相切,又知C 的一个焦点与A 关于直线x y =对称. (Ⅰ)求双曲线C 的方程; (Ⅱ)设直线1+=mx y 与双曲线C 的左支交于A ,B 两点,另一直线l 经过M (-2,0)及AB 的中点,求直线l 在y 轴上的截距b 的取值范围; (Ⅲ)若Q 是双曲线C 上的任一点,21F F 为双曲线C 的左,右两个焦点,从1F 引21QF F ∠的平分线的垂线,垂足为N ,试求点N 的轨迹方程. 10. )(x f 对任意R x ∈都有.2 1)1()(= -+x f x f

指数函数对数函数应用题

与指数函数、对数函数相关的应用题较多,如人口的增长(1981年、1996年高考题)、环保等社会热点问题,国民生产总值的增长、成本的增长或降低、平均增长率等经济生活问题,放射性物质的蜕变、温度等物理学科问题等. 一、人口问题 例1、某城市现有人口总数为100万人,如果年自然增长率为1.2%,试解答下面的问题: ⑴写出该城市人口数y(万人)与年份x(年)的函数关系式; ⑵计算10年以后该城市人口总数(精确到0.1万人); ⑶计算大约多少年以后该城市人口将达到120万人(精确到1年). 二、增长率问题 例2、按复利计算利息的一种储蓄,本金为a元,每期利率为r,设本利和为y,存期为x,写出本利和y 随存期x 变化的函数关系式.如果存入本金1000元,每期利率为2.25%,试计算5期后本利和是多少?(注:“复利”,即把前一期的利息和本金加在一起算作本金,再计算下一期利息.) 例3、某乡镇现在人均一年占有粮食360千克,如果乡镇人口平均每年增长1.2%,粮食总产量平均每年增长4%,那么x年后若人均一年占有y千克粮食,求出函数y关于x的解析式.

三、环保问题 例4、一片森林面积为a ,计划每年砍伐一批木材,每年砍伐的百分比相等,则砍伐到面积一半时,所用时间是T 年,为保护生态环境,森林面积至少要保留原面积的 14,已知到今 年为止,森林剩余面积为原来的2 . ⑴到今年为止,该森林已砍伐了多少年? ⑵今后最多还能砍伐多少年? 四、物理问题 例5、牛顿冷却定律描述一个物体在常温环境下的温度变化:如果物体的初始温度是T 0,则 经过一定时间h 后的温度T 将满足T -T a = 2 1(T 0-T a ),其中T a 是环境温度,使上式成立所需要的时间h 称为半衰期.在这样的情况下,t 时间后的温度T 将满足T -T a =h t )21((T 0-T a ). 现有一杯ο195F 用热水冲的速溶咖啡,放置在ο75F 的房间中,如果咖啡降温到ο 105F 需20分钟,问欲降到ο95F 需多少时间? 例6、设在海拔x m 处的大气压强是y Pa ,y 与x 之间的函数关系式是kx ce y =,其中c,k 为常量.已知某地某天在海平面的大气压为 1.01×105Pa ,1000m 高空的大气压为0.90×105Pa ,求600m 高空的大气压强(结果保留3个有效数字).

2020高考数学专项复习《三角函数大题压轴题练习》

3 三角函数大题压轴题练习 1. 已知函数 f (x ) = cos(2x - ) + 2 s in(x - ) sin(x + ) 3 4 4 (Ⅰ)求函数 f (x ) 的最小正周期和图象的对称轴方程 (Ⅱ)求函数 f (x ) 在区间[- , ] 上的值域 12 2 解:(1)Q f (x ) = cos(2x - ) + 2 s in(x - ) sin(x + ) 3 4 4 = 1 cos 2x + 3 sin 2x + (sin x - cos x )(sin x + cos x ) 2 2 = 1 cos 2x + 3 sin 2x + sin 2 x - cos 2 x 2 2 = 1 cos 2x + 3 sin 2x - cos 2x 2 2 = sin(2x - ∴周 周 6 T = 2 = 2 k 由2x - = k + (k ∈ Z ), 周 x = + (k ∈ Z ) 6 2 2 3 ∴函数图象的对称轴方程为 x = k + ∈ Z ) 3 5 (2)Q x ∈[- , ],∴ 2x - ∈[- , ] 12 2 6 3 6 因为 f (x ) = sin(2x - ) 在区间[- , ] 上单调递增,在区间[ , ] 上单调 递减, 6 12 3 3 2 所以 当 x = 时, f (x ) 取最大值 1 3 1 又 Q f (- ) = - < f ( ) = ,当 x = - 时, f (x ) 取最小值- 12 2 2 2 12 2 所以 函数 f (x ) 在区间[- , ] 上的值域为[- 12 2 ,1] 2 2. 已知函数 f (x ) = sin 2 x + 3 sin x sin ?x + π ? (> 0 )的最小正周期为π . 2 ? ? ? (Ⅰ)求的值; 3 3 ) (k

历届高考数学压轴题汇总及答案

历届高考数学压轴题汇总及答案 一、2019年高考数学上海卷:(本题满分18分) 已知等差数列{}n a 的公差(0,]d π∈,数列{}n b 满足()sin n n b a =,集合 {}*|,n S x x b n N ==∈. (1)若120,3 a d π ==,求集合S ; (2)若12 a π = ,求d 使得集合S 恰好有两个元素; (3)若集合S 恰好有三个元素:n T n b b +=,T 是不超过7的正整数,求T 的所有可能的 值. 二、2019年高考数学浙江卷:(本小题满分15分) 已知实数0a ≠,设函数()=ln 0.f x a x x +> (Ⅰ)当34 a =-时,求函数()f x 的单调区间; (Ⅱ)对任意21[ ,)e x ∈+∞均有()2f x a ≤ 求a 的取值范围. 注: 2.71828e =为自然对数的底数.

设2 *012(1),4,n n n x a a x a x a x n n +=+++ +∈N .已知2 3242a a a =. (1)求n 的值; (2)设(1n a =+*,a b ∈N ,求223a b -的值. 四、2018年高考数学上海卷:(本题满分18分,第1小题满分4分,第2小题满分6分,第3小题满分8分) 给定无穷数列{}n a ,若无穷数列{}n b 满足:对任意*n N ∈,都有1n n b a -≤,则称{}n b 与{}n a “接近”。 (1)设{}n a 是首项为1,公比为1 2 的等比数列,11n n b a +=+,*n N ∈,判断数列{}n b 是否与{}n a 接近,并说明理由; (2)设数列{}n a 的前四项为:12341,248a a a a ====,,,{}n b 是一个与{}n a 接近的数列,记集合1,2,|,4{3,}i M x x b i ===,求M 中元素的个数m ; (3)已知{}n a 是公差为d 的等差数列,若存在数列{}n b 满足:{}n b 与{}n a 接近,且在 2132201200,,,b b b b b b ﹣﹣﹣中至少有100个为正数,求d 的取值范围.

高考数学-应用题专题

1 高考数学-应用题 应用题类型: 1.代数型(1)函数型(2)不等式型(3)数列型(4)概率统计型 2.几何型(1)三角型(2)解析几何型(3)立体几何型 1. 某渔业公司年初用98万元购买一艘捕鱼船,第一年各种费用为12万元,以后每年都增加4万元,每年捕鱼收益50万元. (1)问第几年开始获利? (2)若干年后,有两种处理方案: 方案一:年平均获利最大时,以26万元出售该渔船 方案二:总纯收入获利最大时,以8万元出售该渔船.问哪种方案合算. 解析. (1)由题意知,每年的费用以12为首项,4为公差的等差数列. 设纯收入与年数n 的关系为f (n ),则 ++-=1612[50)(n n f …9840298)]48(2-+-=-++n n n . 由题知获利即为f (n )>0,由0984022>-+-n n ,得-10511051+<

2 2. 提高过江大桥的车辆通行能力可改善整个城市的交通状况.在一般情况下,大桥上的车流速度v (单位:千米/小时)是车流密度x (单位:辆/千米)的函数.当桥上的车流密度达到200辆/千米时,造成堵塞,此时车流速度为0;当车流密度不超过20辆/千米时,车流速度为60千米/小时.研究表明:当20020≤≤x 时,车流速度v 是车流密度x 的一次函数. (Ⅰ)当2000≤≤x 时,求函数()x v 的表达式; (Ⅱ)当车流密度x 为多大时,车流量(单位时间内通过桥上某观测点的车辆数,单位:辆/小时)()()x v x x f ?=可以达到最大,并求出最大值.(精确到1辆/小时) 解析:(Ⅰ)由题意:当200≤≤x 时,()60=x v ;当20020≤≤x 时,设()b ax x v +=,显然 ()b ax x v +=在[]200,20是减函数,由已知得???=+=+60200200b a b a ,解得??? ????=-=320031b a 故函数()x v 的表达式为()x v =()?? ???≤≤-<≤.20020,20031,200,60x x x (Ⅱ)依题意并由(Ⅰ)可得()=x f ()?????≤≤-<≤.20020,2003 1,200,60x x x x x 当200≤≤x 时,()x f 为增函数,故当20=x 时,其最大值为12002060=?; 当20020≤≤x 时,()()()310000220031200312 =??????-+≤-=x x x x x f , 当且仅当x x -=200,即100=x 时,等号成立. 所以,当100=x 时,()x f 在区间[]200,20上取得最大值 3 10000. 综上,当100=x 时,()x f 在区间[]200,0上取得最大值3333310000≈, 即当车流密度为100辆/千米时,车流量可以达到最大,最大值约为3333辆/小时.

高考全国卷三角函数大题训练

三角函数及数列大题训练 1.设数列{}n a 满足21112,32n n n a a a -+=-= (1) 求数列{}n a 的通项公式;令n n b na =,求数列的前n 项和n S 2.等比数列{}n a 的各项均为正数,且212326231,9.a a a a a +== (1)求数列{}n a 的通项公式.(2)设 31323log log ......log ,n n b a a a =+++ 求数列1n b ?? ???? 的前项和. 3.已知,,a b c 分别为ABC ?三个内角,,A B C 的对边,cos 3sin 0a C a C b c +--= (1)求A (2)若2a =,ABC ?的面积为3;求,b c 。 4.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知a =b cos C +c sin B . (1)求B ;(2)若b =2,求△ABC 面积的最大值. 5.已知数列{}n a 满足11a =,131n n a a +=+. ⑴证明1{}2 n a +是等比数列,并求{}n a 的通项公式;(2)证明:1231112 n a a a ++<…+. 6.ABC ?的内角A 、B 、C 的对边分别为a 、b 、c ,已知cos()cos 1A C B -+=,2a c =,求C 。

7.ABC ?的内角A 、B 、C 的对边分别为,,a b c 。已知90,2A C a c b -=+= ,求C 8.如图,在△ABC 中,∠ABC =90°,AB= 3 ,BC=1,P 为△ABC 内一点,∠BPC =90° (1)若PB=1 2,求PA ;(2)若∠APB =150°,求tan ∠PBA 9.在△ABC 中,a, b, c 分别为内角A, B, C 的对边, 且2sin (2)sin (2)sin .a A a c B c b C =+++ (Ⅰ)求A 的大小;(Ⅱ)求sin sin B C +的最大值. 10.已知等差数列{a n }满足a 2=0,a 6+a 8= -10 (I )求数列{a n }的通项公式;(II )求数列? ? ????-1 2 n n a 的前n 项和。 11. 在ABC ?中,角A 、B 、C 的对边分别为a ,b ,c 。角A ,B ,C 成等差数列。 (Ⅰ)求cos B 的值;(Ⅱ)边a ,b ,c 成等比数列,求sin sin A C 的值。 12.设向量a =(3sin x ,sin x ),b =(cos x ,sin x ),x ∈π0,2 ?? ???? . (1)若|a |=|b |,求x 的值;(2)设函数f (x )=a ·b ,求f (x )的最大值. 13.在△ABC 中,内角A 、B 、C 的对边分别为a ,b ,c ,且a >c ,已知? =2,cosB=, b=3,求:(Ⅰ)a 和c 的值;(Ⅱ)cos (B ﹣C )的值. A B C P

2019-2020年高考数学压轴题集锦——导数与其应用(五)

2019-2020 年高考数学压轴题集锦——导数及其应用(五) 46.已知函数f ( x)x2ax 4 ( aR)的两个零点为x1, x2 , 设 x1 x2. (Ⅰ)当 a0 时,证明:2x1 0. (Ⅱ)若函数g (x)x2| f ( x) |在区间 (, 2)和(2,) 上均单调递增,求 a 的取值范围. 47.设函数 f ( x)2 R ).x ax ln x (a (Ⅰ)若 a 1时,求函数 f (x)的单调区间; (Ⅱ)设函数 f ( x) 在[1 , ] 有两个零点,求实数 a 的取值范围. e e 48.已知函数 f ( x) ln( ax b) x ,g (x)x2ax ln x . (Ⅰ)若 b 1,F ( x) f ( x) g (x) ,问:是否存在这样的负实数 a ,使得 F ( x) 在x1处存在切线且该切线与直线y 1 x 1平行,若存在,求a的值;若不存在,请说明理 23 由. (Ⅱ)已知 a 0 ,若在定义域内恒有 f (x) ln( ax b) x 0 ,求 a(a b) 的最大值.

49.设函数 f ( x) x ln x b(x 1 )2(b R),曲线y f x在1,0处的切线与直线 2 y3x 平行.证明: (Ⅰ)函数 f ( x) 在 [1,) 上单调递增; (Ⅱ)当 0 x 1 时, f x1. 50.已知 f( x) =a( x-ln x)+2 x 1 , a∈ R. x 2(I )讨论 f( x)的单调性; (II )当 a=1 时,证明f( x)> f’( x) + 3 对于任意的x∈ [1,2] 恒成立。 2 2 51.已知函数f(x) =x +ax﹣ lnx, a∈ R. (1)若函数f(x)在 [1, 2]上是减函数,求实数 a 的取值范围; (2)令 g( x) =f( x)﹣ x2,是否存在实数a,当 x∈( 0, e] ( e 是自然常数)时,函数g (x)的最小值是 3,若存在,求出 a 的值;若不存在,说明理由; (3)当 x∈( 0, e]时,证明: e2x2-5 x> (x+1)ln x.2

高三数学三角函数经典练习题及答案精析

1.将函数()2sin 2x f x =的图象向右移动象如右图所示,则?的值为( ) A 2.为了得到()sin 2g x x =的图象,则只需将()f x 的图象( ) A C 3 ,则sin cos αα=( ) A 1 D -1 4 ) A 5.记cos(80),tan 80k -?=?那么= ( ). A . C .21k k -- 6 .若sin a = -a ( ) (A )(B (C (D 7,则α2tan 的值为( )

A 8.已知函数)sin(cos )cos(sin )(x x x f +=,则下列结论正确的是( ) A .)(x f 的周期为π B .)(x f 在 C .)(x f 的最大值为.)(x f 的图象关于直线π=x 对称 9.如图是函数y=2sin (ωx+φ),φ A.ωφ B.ωφ C.ω =2,φ D.ω=2,10的图象,只需要将函数sin 4y x =的图象( ) A B C D 11.要得到12cos -=x y 的图象,只需将函数x y 2sin =的图象( ) A 个单位,再向上平移1个单位 B 个单位,再向下平移1个单位 C 个单位,再向上平移1个单位 D 个单位,再向下平移1个单位 12.将函数()cos f x x =向右平移个单位,得到函数()y g x =

于() A 13.同时具有性质①最小正周期是π; 增函数的一个函数为() A C 14则tanθ=() A.-2 D.2 15) A 16.已知tan(α﹣)=,则的值为() A. B.2 C.2 D.﹣2 17) A.1 D.2 18.已知角α的终边上一点的坐标为(,则角α值为 19) A 20) A..

(完整)2019-2020年高考数学大题专题练习——三角函数(一)(含解析).doc

2019-2020 年高考数学大题专题练习 —— 三角函数(一) 1. 【山东肥城】 已知函数 f ( x) 2sin 2 x 2sin 2 ( x) , x R . ( 1)求函数 y f ( x) 的对称中心; 6 ( 2)已知在 △ABC 中,角 A 、B 、C 所对的边分别为 a , b , c ,且 f ( B 6 ) b c , ABC 的外接圆半径为 3 ,求 △ABC 周长的最大值 . 2 2a 【解析】 f ( x) 1 cos2 x 1 cos2( x ) cos(2 x ) cos2 x 6 3 1 3 sin 2x cos 2x cos2x 2 2 3 sin 2x 1 cos2x sin(2 x 6 ) . 2 2 (1)令 2x k ( k Z ),则 x k ( k Z ), 6 2 12 所以函数 y f ( x) 的对称中心为 ( k ,0) k Z ; 2 12 (2)由 f ( B ) b c ,得 sin( B ) b c ,即 3 sin B 1 cos B b c , 2 6 2a 6 2a 2 2 2a 整理得 3a sin B a cos B b c , 由正弦定理得: 3 sin A sin B sin A cos B sin B sin C , 化简得 3 sin A sin B sin B cos Asin B , 又因为 sin B 0 , 所以 3 sin A cos A 1 ,即 sin( A 1 , 6 ) 2 由 0 A ,得 A 5 , 6 6 6 所以 A ,即 A 3 , 6 6 又 ABC 的外接圆的半径为 3 , 所以 a 2 3 sin A 3 ,由余弦定理得

高中数学经典高考难题集锦解析版

2015年10月18日姚杰的高中数学组卷 一.解答题(共10小题) 1.(2012?宣威市校级模拟)设点C为曲线(x>0)上任一点,以点C为圆心的圆与x 轴交于点E、A,与y轴交于点E、B. (1)证明多边形EACB的面积是定值,并求这个定值; (2)设直线y=﹣2x+4与圆C交于点M,N,若|EM|=|EN|,求圆C的方程.2.(2010?江苏模拟)已知直线l:y=k(x+2)与圆O:x2+y2=4相交于A、B两点,O是坐标原点,三角形ABO的面积为S. (Ⅰ)试将S表示成的函数S(k),并求出它的定义域; (Ⅱ)求S的最大值,并求取得最大值时k的值. 3.(2013?越秀区校级模拟)已知圆满足:①截y轴所得弦长为2;②被x轴分成两段圆弧,其弧长的比为3:1;③圆心到直线l:x﹣2y=0的距离为.求该圆的方程. 4.(2013?柯城区校级三模)已知抛物线的顶点在坐标原点,焦点在y轴上,且过点(2,1).(Ⅰ)求抛物线的标准方程; (Ⅱ)是否存在直线l:y=kx+t,与圆x2+(y+1)2=1相切且与抛物线交于不同的两点M,N,当∠MON为钝角时,有S△MON=48成立?若存在,求出直线的方程,若不存在,说明理由. 5.(2009?福建)(1)已知矩阵M所对应的线性变换把点A(x,y)变成点A′(13,5),试求M的逆矩阵及点A的坐标. (2)已知直线l:3x+4y﹣12=0与圆C:(θ为参数)试判断他们的公共 点个数; (3)解不等式|2x﹣1|<|x|+1. 6.(2009?东城区一模)如图,已知定圆C:x2+(y﹣3)2=4,定直线m:x+3y+6=0,过A (﹣1,0)的一条动直线l与直线相交于N,与圆C相交于P,Q两点,M是PQ中点.(Ⅰ)当l与m垂直时,求证:l过圆心C; (Ⅱ)当时,求直线l的方程; (Ⅲ)设t=,试问t是否为定值,若为定值,请求出t的值;若不为定值,请说明理 由. 7.(2009?天河区校级模拟)已知圆C:(x+4)2+y2=4,圆D的圆心D在y 轴上且与圆C 外切,圆D与y 轴交于A、B两点,定点P的坐标为(﹣3,0). (1)若点D(0,3),求∠APB的正切值; (2)当点D在y轴上运动时,求∠APB的最大值; (3)在x轴上是否存在定点Q,当圆D在y轴上运动时,∠AQB是定值?如果存在,求出Q点坐标;如果不存在,说明理由. 8.(2007?海南)在平面直角坐标系xOy中,已知圆x2+y2﹣12x+32=0的圆心为Q,过点P (0,2)且斜率为k的直线与圆Q相交于不同的两点A,B.

SXA179高考数学必修_函数模型应用题例析3

函数模型应用题例析3 函数模型应用问题,是常见的数学知识的应用题,经常涉及物价、路程、产值、环保等现实生活中的实际问题,也可涉及角度、面积、体积、造价的最优化问题.在解此类问题的过程中,首先需要在实际的情境中去理解、分析所给的一系列数据,舍弃与解题无关的因素,抽象转化为数学模型. 一、二次函数模型问题 例1 某租赁公司拥有汽车100辆.当每辆车的月租金为3000元时,可全部租出.当每辆车的月租金每增加50元时,未租出的车将会增加一辆.租出的车每辆每月需要维护费150元,未租出的车每辆每月需要维护费50元. (Ⅰ)当每辆车的月租金定为3600元时,能租出多少辆车? (Ⅱ)当每辆车的月租金定为多少元时,租赁公司的月收益最大?最大月收益是多少? 解:(Ⅰ)当每辆车的月租金定为3600元时,未租出的车辆数为 50 30003600-= 12,所以这时租出了88辆车. (Ⅱ)设每辆车的月租金定为x 元,则租赁公司的月收益为: )(x f = (100-503000-x )(x -150)-503000-x ×50 =-502x + 162x -21000 =-50 1(x -4050)2+ 307050. 所以,当x = 405时,)(x f 最大,最大值为)4050(f =307050,即当每辆车的月租金定为4050元时,租赁公司的月收益最大,最大月收益为307050元. 评析:此例主要考查一元二次函数等知识综合解答实际问题的能力,以函数为主线的联系实际的应用问题正是近几年高考的热点和重点题型. 二、分段函数模型问题 例2 某厂生产某种零件,每个零件的成本为40元,出厂单价定为60元.该厂为鼓励销售商订购,决定当一次订购量超过100个时,每多订购一个,订购的全部零件的出厂单价就降低0.02元,但

高考数学-三角函数大题综合训练

三角函数大题综合训练 1.(2016?白山一模)在△ABC中,角A,B,C所对的边分别为a,b,c,已知= (1)求角C的大小, (2)若c=2,求使△ABC面积最大时a,b的值. 2.(2016?广州模拟)在△ABC中,角A、B、C对应的边分别是a、b、c,已知3cosBcosC+2=3sinBsinC+2cos2A.(I)求角A的大小; (Ⅱ)若△ABC的面积S=5,b=5,求sinBsinC的值. 3.(2016?成都模拟)已知函数f(x)=cos2x﹣sinxcosx﹣sin2x. (Ⅰ)求函数f(x)取得最大值时x的集合; (Ⅱ)设A、B、C为锐角三角形ABC的三个内角,若cosB=,f(C)=﹣,求sinA的值. 4.(2016?台州模拟)已知a,b,c分别是△ABC的三个内角A,B,C所对的边,且c2=a2+b2﹣ab. (1)求角C的值; (2)若b=2,△ABC的面积,求a的值. 5.(2016?惠州模拟)如图所示,在四边形ABCD中,∠D=2∠B,且AD=1,CD=3,cosB=. (Ⅰ)求△ACD的面积; (Ⅱ)若BC=2,求AB的长. 6.(2015?山东)△ABC中,角A,B,C所对的边分别为a,b,c,已知cosB=,sin (A+B)=,ac=2,求sinA和c的值. 7.(2015?新课标I)已知a,b,c分别是△ABC内角A,B,C的对边,sin2B=2sinAsinC. (Ⅰ)若a=b,求cosB; (Ⅱ)设B=90°,且a=,求△ABC的面积. 8.(2015?湖南)设△ABC的内角A,B,C的对边分别为a,b,c,a=btanA. (Ⅰ)证明:sinB=cosA; (Ⅱ)若sinC﹣sinAcosB=,且B为钝角,求A,B,C. 10.(2015?湖南)设△ABC的内角A、B、C的对边分别为a、b、c,a=btanA,且B为钝角. (Ⅰ)证明:B﹣A=; (Ⅱ)求sinA+sinC的取值范围. 11.(2015?四川)已知A、B、C为△ABC的内角,tanA,tanB是关于方程x2+px﹣p+1=0(p∈R)两个实根.(Ⅰ)求C的大小 (Ⅱ)若AB=3,AC=,求p的值.

相关主题