搜档网
当前位置:搜档网 › 微波辅助过氧化氢催化氧化降解壳聚糖

微波辅助过氧化氢催化氧化降解壳聚糖

微波辅助过氧化氢催化氧化降解壳聚糖
微波辅助过氧化氢催化氧化降解壳聚糖

1.实验题目

微波辅助过氧化氢催化氧化降解壳聚糖

2.实验目的

在非均相体系中弱酸性条件下,双氧水氧化降解壳聚糖制备低分子量壳聚糖的过程

考察了双氧水用量、微波温度、时间等条件对壳聚糖降解的影响

3.实验原理

在弱酸性条件下非均相体系中,微波辅助双氧水催化氧化降解法是壳聚糖制备的一种高效的方法,通过正交试验得到了制备窄分子量低聚壳聚糖影响顺序为:反应温度>H2O2用量>反应时间。降解各条件对分布指数的影响顺序是:H2O2用量>反应温度>反应时间。从分布指数角度考虑最优条件是2g壳聚糖,双氧水用量4mL,微波温度90℃和微波时间50 min。

核磁共振波谱分析和红外光谱分析证明,低分子量壳聚糖的结构相对于壳聚糖原料并未发生变化。双氧水氧化降解壳聚糖的过程是β-1, 4糖苷键的断裂过程。

4.实验器材

实验仪器

仪器型号生产单位双向磁力加热搅拌器78-2 金坛市杰瑞尔电器有限公司

微波催化合成/萃取仪XH100B 北京祥鹄科技有限公司循环水式真空泵SHZ-D(Ⅲ)巩义市予华仪器有限责任公司

旋转蒸发器RE52CS 上海亚荣生化仪器厂

恒温水浴锅B-220 上海亚荣生化仪器厂电热恒温鼓风干燥箱DHG-9140A 上海一恒科学仪器有限公司电子天平BS110S 北京赛多利斯天平有限公司荧光分光光度计970CRT 上海精密科学仪器有限公司

超级恒温槽NTT-2100 EYELA,日本pH计320-S 上海梅特勒-托利多仪器有限公司

高效液相色谱仪P3000 自组装

色谱柱G4000/6000 PWXL TSK-GEL 示差检测器RI K-2301 KMAUER

5.实验步骤及实验现象

5.1 0.5%醋酸溶液的配制

用5mL吸量管取冰乙酸5mL,转移至1000mL容量瓶,定容,待用。

5.2 2mol/LKOH溶液的配制

用电子天平称取28.0000g氢氧化钾固体,倒入小烧杯中,加入适量蒸馏水使其溶解,边加边搅拌,待溶解后,将溶液转移至250mL容量瓶中,将烧杯洗涤2~3次,也转移至容量瓶,定容,待用。

5.3 正交实验因素水平的确定

本实验采用正交试验法安排整个实验过程。正交试验法又叫正交试验设计法,它是用“正交表”来安排和分析多因素问题试验的一种数理统计方法。这种方法的优点是试验次数少,方法简单,使用方便,效率高,并且在将实验次数降至最低的情况下,不影响实验结果的准确性。

5.3.1 降解反应温度的选择

当温度低于50℃时,氧化降解壳聚糖的反应非常缓慢,水溶性壳聚糖的产率非常低,因此本实验反应温度下限选择为50℃。较高的反应温度有利于制备水溶性低聚糖,随着反应温度的升高,水溶性产物的收率大大增加,但是随着反应温度的升高,水溶性壳聚糖的颜色逐渐变深,当温度升至90℃时,水溶性低分子量壳聚糖固体的颜色已经是棕黄色。鉴于对低分子量壳聚糖的质量要求,反应温度不能太高,以免影响色泽。所以降解反应的最高温度在正交设计时以选择70~90℃为宜。

5.3.2 降解反应时间的选择

低分子量壳聚糖的制备要实现工业化生产,生产效率是一个不容忽视的因素,在不影响低分子量壳聚糖的产率的情况下,应该尽量缩短反应时间,所以选择降解反应时间的各水平为30分钟、50分钟、70分钟。

5.3.3 双氧水用量的选择

按照生产过程中成本最低化的原则,反应过程中应该使双氧水的用量最少。根据实验

测定,H2O2的用量少于2mL时,壳聚糖反应率较低,不能满足本实验的要求,因此选择H2O2的用量为2mL、4mL、6mL。

表2.3 微波辅助H2O2催化氧化降解壳聚糖因素水平表Table 2.3 The factors level of H2O2 catalytic degradate chitosan by microwave assistant 因素1水平2水平3水平

H2O2/mL (A) 2 4 6

反应温度/℃(B) 70 80 90

反应时间/min (C) 30 50 70

5.4 低聚合度壳聚糖的制备

制备窄分子量分布的低聚合度壳聚糖,实验步骤如下:

(1)称取2.00g壳聚糖,加到三颈烧瓶内;

(2)在三口烧瓶中加入配制好的0.5%的醋酸溶液,用磁力搅拌器搅拌约10分钟;

(3)再往其中加入一定量的30%双氧水,搅拌约3分钟;

(4)将溶液放入微波催化合成仪中进行微波处理,设置一定的参数,处理一定的时间后取出,冷却;

(5)向冷却后的溶液中加入配制好的2mol/L的KOH溶液调节PH值至7.0;

(6)抽滤,将滤液倒入大烧瓶内旋转蒸发浓缩至适量体积,加入乙醇,醇沉静置,抽滤,用乙醇洗涤大烧瓶2~3次,再加入乙醚洗涤,吸收水分,即得低聚壳聚糖。6.数据处理

6.1 正交分析

L9(33)试验结果分析

实验号H2O2/mL(A) 反应温度(B)反应时间(C)

平均分子

量a 分布指数b

1 1 1 1 6977 1933.96

2 1 2 2 5390 15.531

3 1 3 3 2218 17.89

4 2 1 2 738

5 9.63

5 2 2 3 1673 2.88

6 2 3 1 1595 2.51

7 3 1 3 2589 9.36

8 3 2 1 2661 9.67

9 3 3 2 1747 2.73

Ta114585 16951 11233

Ta210653 9724 14522

Ta36997 5560 6480

Xa13241 3767 2496

Xa22367 2161 3227

Xa31555 1236 1440

Ra 1686 2531 1056

Tb11967.38 1952.95 1946.14

Tb215.02 28.08 27.89

Tb321.76 23.13 30.13

X b1437.20 433.99 432.48

X b2 3.34 6.24 6.20

X b3 4.84 5.14 6.70

Rb 433.86 428.85 426.28

注:a表示降解后的低聚壳聚糖的平均分子量,b表示降解后的低聚壳聚糖分子量的分布指数

上表中,Ta1 、Ta2 、Ta3分别表示各水平三次平均分子量之和,Ra 为Xa1、Xa2 、Xa3中的最大差;Tb1、Tb2、Tb3分别表示各水平三次分布指数之和,Rb 为Xb1、Xb2、Xb3中的最大差。

分析极差数据Ra 可知,各降解条件对低聚壳聚糖的平均分子量的影响大小为:反应温度>H2O2用量>反应时间,所以反应中反应温度对壳聚糖降解产物的平均分子量大小的影响至关重要。分析极差数据Rb 可知,降解各条件对分布指数的影响大小是:H2O2用量>反应温度>反应时间。所以H2O2用量越大,则产物分布指数随之发生较大的改变。

6.2 低聚壳聚糖分子量的测算

6.2.1 标准曲线的绘制

测定分子量分别为2500,7100, 21400,41100,84400和133800的标准分子量样品及氨基葡萄糖盐酸盐的分子量分布,所得曲线如图6.1,各样品平均保留时间列于表6.2,由平均保留时间得到的标准曲线及相关系数见图6.2。求得相关系数为0.9970,说明所测数据非常可靠。

图6.1 不同标样的平均保留时间 表6.3 标样的平均保留时间

Mole weight of standard samples Average of t a

133800 84400 41100 21400 7100 2500

18.949 19.610 20.853 22.561 23.960 25.354

6.2.2 低聚壳聚糖分子量的测定

表6.4 低聚壳聚糖分子量的测定结果

样品编号

数均分子量(M n ) 重均分子量(M w )

保留时间(t ) 分布指数 B 6977 13493206 22.417 1933.96 C 5390 83714 24.849 15.531 D 2218 39688 25.633 17.89 E 7385 71094 24.001 9.63 F 1673 4812 25.672 2.88 G

1595

4000

25.681

2.51

H 2589 24231 25.141 9.36

I 2661 25728 25.074 9.67

J 1747 4777 25.778 2.73

图6.3 降解所得窄分子量低聚壳聚糖的GFC色谱图

7.结果与讨论

红外光谱结果与分析讨论

壳聚糖在H2O2氧化降解过程中除发生β-1, 4糖苷键的断裂外,还可以存在开环等副反应,如果副反应过多而最终影响了壳聚糖的基本结构,那么将无法保持壳聚糖的原有性质,则降解过程是不可行的。图7.1和图7.2是壳聚糖原料和降解后壳聚糖所制得的水溶性低分子量壳聚糖的红外光谱图。从图中可见,两谱图主要峰位置未发生变化,表明在降解反应前后,壳聚糖的化学结构并未发生大的改变。

648.11

1074.48

1315.32

1375.10

1418.49

1621.95

2880.36

2924.91

3364.43

40 45

50

55

60

65

70

75

80

85

%T

500

1000

1500

2000

2500

3000

3500

4000

Wavenumbers (cm-1)

图7.1 壳聚糖原料的红外光谱图

404.83

497.73

564.88

659.47

1072.83

1381.71

1607.59

2366.38

3418.54

3800.41

3883.10

78

80

82

84

86

88

90

92

94

96

%T

500

1000 1500 2000 2500 3000 3500

4000 Wavenumbers (cm-1)

图7.2 低聚壳聚糖的红外谱图

图7.2中3418cm -1左右是形成氢键缔合的-OH 伸缩振动吸收峰与-NH 的伸缩振动吸收峰重叠而增宽的多重吸收峰。壳聚糖分子中存在着大量的链内、链间氢键,因氢键的长短和强弱不等,使其伸缩峰出现在一较宽的频率范围内。在2880 cm -1左右处为C-H 的伸缩振动吸收峰,1607cm -1处有较强的酰胺吸收峰。1381cm -1附近为—CH 3变形吸收峰,指纹区中,1072cm -1附近为C-O 伸缩振动的强吸收峰。

结论

1. 实验表明在弱酸性条件下非均相体系中,通过正交试验得到了制备窄分子量低聚壳聚糖影响顺序为:反应温度>H2O2用量>反应时间。降解各条件对分布指数的影响顺序是:H2O2用量>反应温度>反应时间。从分布指数角度考虑最优条件是2g壳聚糖,双氧水用量4mL,微波温度90℃和微波时间50 min。

2. 通过红外光谱图和核磁共振谱图对制备的低聚壳聚糖进行表征,可以得出所制备低聚壳聚糖与壳聚糖原料结构相符,低分子量壳聚糖的结构相对于壳聚糖原料并未发生变化。双氧水氧化降解壳聚糖的过程是β-1, 4糖苷键的断裂过程。

3. 微波辅助双氧水催化氧化降解法是壳聚糖制备的一种高效的方法,其反应时间较常规的双氧水催化氧化降解法要短很多。

8.参考文献

[1]谢雅明.可溶性甲壳质的制造和用途[J].化学世界,1983,(4):118-121.

[2]严俊.甲壳素的化学和应用[J].化学通报,1984,(11):26-31.

[3]魏新林,夏文水.甲壳低聚糖的生理活性研究进展[J].中国药理学通报,2003,19 (6) :614 – 617.

[4]刘晓,石瑛,白雪芳等.甲壳低聚糖的酸水解[J] .中国水产科学,2003,10(1):69—72.

[5]Keisuke Kurita.Chemistry and application of chiti and chitosan[J].Polymer Degradation and Stability,1998,59:117—120

[6]郑连英.壳聚糖水解酶的筛选[J].材料科学与工程.1999,17(3):159- 176.

[7]覃彩芹,肖玲,杜予民等.过氧化氢氧化降解壳聚糖的可控性研究[J].武汉大学学报.2000,46(2):196-198

[8]刘大同,许敏,余学海.异相法降解制备低分子量壳聚糖[M].高分子材料与工程,2002,18(6):51-54

[9]张文清.壳寡糖的制备及其对黄瓜的促生长作用[D]功能高分子学报.2002,15(2):199-202

[10]黄群增,王世铭,王琼生.UV/H_2O_2降解壳聚糖的研究[J]福建师范大学学报,2004,20(4):63- 67

[11]王伟,秦汶.脱乙酸基甲壳素的超声波降解[J].化学通报,1989,9:41 - 44

过氧化氢的催化分解

过氧化氢分解氧气 成员:罗玉洁、何瑾、徐丽、胡艳、骆磊、申林 一、 实验目的 1、掌握实验室用双氧水制备氧气的原理、装置和操作。 2、了解影响双氧水制备氧气反应速率的因素。 3、能认识催化剂在化学反应中的作用及化学反应前后质量的变化。 二、 实验原理 过氧化氢不稳定,在常温下就能缓慢分解放出氧气。但速度较慢,不易察觉。在过氧化氢溶液中加入适量二氧化锰后,能立即有氧气迅速放出。在此反应中,二氧化锰是催化剂,能加速该反应的发生。 过氧化氢 水+氧气→ 二氧化锰 ↑+??→?2222O O H O H 2MnO 三、 实验药品与仪器 实验药品:5%、30%的双氧水、二氧化锰、氧化铜。 仪 器:注射器(20ml )、锥形瓶、导管、软木塞、恒温水浴锅、 集气瓶、橡皮管、钥匙。 四、 实验步骤 1、实验室制备氧气 ①连接仪器,检查装置的气密性; ②在锥形瓶中加入少量二氧化锰粉末,旋紧软木塞,用注射器在双氧水瓶里吸取10ml 5%双氧水,将注水器里的双氧水按需要的量缓慢注入加入装有少量二氧化锰粉末的锥形瓶中; ③等气泡连续均匀冒出时,开始收集; ④等集气瓶中液面下降至瓶口,瓶外有气泡产生时,实验结束。并用带火星的木条进行检验。实验装置如下:

改进装置原因: (1)因锥形瓶中的二氧化锰不易收集。所以将锥形瓶换成试管,便于收集二氧化锰,好做称量,证明二氧化锰作为一种催化 剂时,在反应前后质量不变。 (2)用分液漏斗来控制反应的速率,收集装置采用向下排水法。 (3)通过改变浓度、温度、催化剂来探究对双氧水催化分解氧气速率的影响。 2、探究影响双氧水分解速率的因素 (1)浓度对反应的影响 分别将10ml 5%双氧水溶液与10ml 30%双氧水溶液与等量的MnO2混合于试管中,分别观察实验现象。 (2)温度对反应的影响 分别观察:室温下10ml 30%双氧水溶液,发生装置浸入80℃的水浴加热的10ml 30%双氧水的现象。 (3)催化剂对反应的影响 10mL5%双氧水溶液加入少许氧化铜作为催化剂,10 ml 5%双氧水溶液加入少许二氧化锰作为催化剂。且氧化铜与二氧化锰等量,分别观察实验现象。 五、注意事项 1、在做实验之前,必须检查装置的气密性。气密性检查:用止水夹 关闭,打开分液漏斗活塞,向漏斗中加入水,水面不持续下降,就说明气密性良好。 2、双氧水的浓度不能过大,并且不适宜加多过氧化锰,容易造成反 应太剧烈。 3、刚开始出现气泡时,混有空气,此时不易收集氧气,待气泡增多 时,再进行收集。 六、思考题 1、实验中分液漏斗的作用? 2、二氧化锰在实验中的作用? 3、与高锰酸钾相比,双氧水分解制取氧气有哪些优点? 答:1、分液漏斗可以控制反应物的量,从而控制反应的速率。 2、二氧化锰在该反应中做催化剂,能改变反应的速率,而本身 在反应前后质量和化学性质不变,对于生成物的量是没有影响 的。 3、双氧水分解不需要加热,操作简单方便,且可以通过分液漏 斗控制反应物的量,从而控制反应的速率。

过氧化氢分解制氧气不同催化剂的探究

过氧化氢分解制氧气不同催化剂的探究 过氧化氢通常被保存在棕色瓶中以避开光照,原因是过氧化氢会自发地(缓慢地)分解成氧气和水。当有二氧化锰催化剂存在时,该分解过程大大加快。除二氧化锰外哪些物质还可以催化分解过氧化氢? 【思考与设计】请你设计实验方案探究 1. 不同催化剂对过氧化氢分解反应速率的影响 2. 同一催化剂存在下,过氧化氢的浓度对分解速率的影响。写出实验的各个步骤和应 注意的安全事项,写一份详细的实验计划。 请老师批准你的实验方案,按计划完成实验并记录实验现象和数据。 【实验材料】锥型瓶、分液漏斗、带刻度的玻璃量气管(或碱式滴定管)、玻璃三通、乳胶 头、导管、秒表、30%的过氧化氢、二氧化锰、0.2mol ·L -1 CuSO 4溶液、0.2mol ·L -1FeSO 4溶液、碘水、肥皂水(或洗发香波) 【实验案例】 1.不同催化剂对过氧化氢分解反应速率的影响 ● 把30%过氧化氢稀释成2%、4%、6%过 氧化氢溶液。 ● 按图综2-2连接装置来测量氧气生成 的体积。 ● 把肥皂水装满玻璃三通,在锥型瓶中加 入催化剂,从分液漏斗向锥型瓶中加入20mL 过氧化氢溶液。 ● 用乳胶头来制造肥皂泡,用秒表测量生 成固定体积(例如20mL )氧气所需要的时间,平均反应速率可以用单位时间内所产生的氧气体积来表示。认真观察实验现象并记录数据。 不同催化剂对同一浓度过氧化氢分解实验的对比表 编号 实 验 实验现象 时间 反应速率 1 20ml 4% 的双氧水+0.1克二氧化锰 2 20ml 4% 的双氧水+1mL 0.2mol ·L -1 CuSO 4溶液 3 20ml 4% 的双氧水+1mL 0.2mol ·L -1 FeSO 4溶液 4 20ml 4% 的双氧水+1mL 碘水 结论 图综2-2过氧化氢分解制氧气不同催化剂的探究

过氧化氢的催化分解

过氧化氢的催化分解 一、实验目的 1、了解不同催化剂对过氧化氢(H2O2)催化分解速率的影响。 2、认知能催化分解H2O2的不同催化剂。 二、实验原理 过氧化氢催化分解是一级反应:H2O2→H2O+1/2O2.。(凡是反应速度只与反应浓度的一次方成正比的反应称为一级反应。)实验证明,过氧化氢的反应机理为一级反应.化学反应速度取决于反应物的浓度、温度、反应压力、催化剂、搅拌速度等许多因素。许多催化剂如Pt、Ag、Cr、MnO2、FeCl3、CuO、血液、铁丝、炭粉、土豆丝等都能加速H2O2分解。用土豆丝来催化分解H2O2溶液,说明生物体内不断产生的过氧化氢酶,可促使H2O2迅速分解,这种酶广泛存在于动植物组织中。 三、实验仪器与药品 仪器:试管(2个)、具支试管(1个)、锈铁丝、气球、土豆丝、 药品:H2O2溶液, 四、实验步骤 1,过氧化氢溶液的制备 用移液管吸取30℅H2O2溶液5ml,置于50ml容量瓶中,稀释至刻度线,摇匀定容,即得实验用的H2O2溶液。 2,酶催化作用的验证实验 取两只试管,在一支试管中放入切成细条状的土豆丝。分别向两支试管中注入3%的H2O2 5ml,注意观察现象(放入土豆丝的试管中迅速产生大量的气泡,泡沫很快充满试管;用玻璃棒桶开泡沫,)插入带火星的木条,则木条立即复燃,而另一支试管中无明显现象。 3,用抽动法做“催化剂对H2O2分解速度的影响”的实验 ①取一支具支试管,在具支试管中加入10ml浓度30%H2O2溶液,在支管上装上小气球,通过橡皮塞插入一根已生锈的绕成螺旋状的粗铁丝。 ②将螺旋状的锈铁丝向下插入H2O2溶液中是,注意观察现象的变化。(H2O2迅速分解,锈铁丝表面上,有大量气泡产生。气球鼓起;把铁丝向上拉,离开H2O2溶液,则反应不明显。) ③取下塞子,用带火星木条放在试管口,注意观察现象变化。(则木条立即复燃,说明有O2生成。) 五、注意事项 1、实验过程中注意安全 2、玻璃仪器轻拿轻放 六、思考题 1,催化剂对反应速度有何影响? 2,常用催化剂有哪些?

课题∶对过氧化氢分解速率影响因素的探究

课题: 对过氧化氢分解速 率影响因素的探究

课题:对过氧化氢分解速率影响因素的探究 教学设计 本课题教学设计思想 化学是一门以实验为基础的科学,化学变化创造了千变万化的物质世界,化学反应的速率受诸多因素的影响更使化学带来神奇,学生有强烈探究欲望。虽然实验操作有一定难度以及受条件的影响致使课堂组织有一定困难,但通过对第二单元“对蜡烛及其燃烧的探究”和“对人体吸入的空气和呼出气体的探究”的学习,学生有一定的基础和能力。相信通过本课题的学习,会激发学生对科学探究的兴趣和原动力,更加热爱化学,同时提高学生的实验操作能力、记录与表述能力,培养学生合作精神。 三维目标 (1)知识与技能 了解外界因素影响过氧化氢分解速率。 学习对比实验的设计,初步了解从量方面设计实验。提高实验操作能力以及 对实验报告的记录和交流能力。 (2)过程与方法 重视培养学生科学探究的基本方法,提高科学探究能力。 通过实验探究分析影响化学反应速率的因素。 (3)情感、态度、价值观 培养学生积极参与科学探究的热情,体验成功的快乐,培养学生相互配合 师生配合的情感。 教学重难点 重点:体验以实验为核心的科学探究过程。 难点:探究方案的设计、实验装置的确定、实验过程的实施与评价。 学习方法 以实验为核心的自主、合作、探究学习 教具准备 试管、橡皮塞、导气管、量筒、水槽、秒表、胶头滴管等; 红砖粉、二氧化锰、不同浓度的过氧化氢溶液、蒸馏水等。 教学过程

教学流程简图: 课题导入探究一(反 应物浓度) ①设计实验 ②分组实验 ③交流 探究二(催 化剂种类) 探究小结①学生发言交流 ②教师总结 课堂 小结 ①学生谈感受 ②教师激励 ①播放视频 ②教师激发 ③学生猜想 ①设计实验 ②分组实验 ③交流 课题导入 教师活动学生活动 教师语:请同学们先观看一段视频: 这是我们一个月之前上课的场景,其中有同学讲到二氧化锰能加快过氧化氢的分解速率,其实影响过氧化氢分解速率的因素还很多,今天这节课我们就来对过氧化氢分解速率影响因素进行探究(展示课题) 1、启发学生大胆猜想,哪些因素可能影响过氧化氢分解产生氧气的速率。 2、小组交流猜想,教师作出评价积极鼓励。 观看思考 倾听 小组讨论,将猜想填入探究报告单。 倾听交流,积极补充。 设计意图与教学预测留心观察与大胆猜想是科学探究的源泉,教师旨在用激励性的语言唤起学生对化学的兴趣,对科学探究的兴趣,对探究什么的兴趣。 探究一:浓度对反应速率的影响 教师活动学生活动 教师语:同学们的猜想很多也很好,有大胆 的猜想就成功的迈出了科学探究的第一步。今天由于时间和条件的限制,我们选择其中的两个因素进行探究。(课件展示两个探究实验并板书) 1、教师引导学生设计实验方案,并请各组提出自己的实验设计方案 关注老师的表述,知道本节课探究内容。 积极思考,交流讨论

过氧化氢的催化分解

过氧化氢的催化分解 一、实验原理 过氧化氢水溶液在室温下,没有催化剂存在时,分解反应进行得很慢,但在含有催化剂I –的中性溶液中,其分解速率大大加快,反应式为:2H 2O 2 == 2H 2O + O 2(g) 反应机理为: H 2O 2 + I – → H 2O + IO – k 1 (慢) (1) H 2O 2 + IO – → H 2O + O 2(g) + I – k 2 (快) (2) 整个分解反应的速率由慢反应(1)决定,速率方程为: 22 -22H O 1H O I dc k c c dt -= 因反应(2)进行得很快且很完全,I –的浓度始终保持不变,故上式可写成: 22 22H O H O dc kc dt -= 式中,-1I k k c =,k 为表观反应速率常数。将上式积分得 0ln c kt c = 此式表明,反应速率与H 2O 2浓度的一次方成正比,故称为一级反应。将上式积分得: 01ln ln c t k c t +-= 式中c 0、c t 分别为反应物过氧化氢在起始时刻和t 时刻的浓度。 反应半衰期为: 1 12/1693.02ln k k t == 设H 2O 2完全分解时放出O 2的体积为V ∞,反应t 时放出O 2的体积为V , 则c 0∝V ∞,c ∝(V ∞ – V ),故 ln V kt V V ∞∞=- ln -V V kt V ∞∞-= ln -+ln V V kt V ∞∞-=() 以ln(V ∞ – V )对t 作图应得一直线,从直线斜率(– k )即可求得H 2O 2分解反应的速率常数。故实验需测定反应不同时刻O 2的体积V 及H 2O 2完全分解时O 2的体积V ∞。V ∞可用下法之一求出。 (a) 加热法 在测定若干个V 数据后,将H 2O 2溶液加热至50~60 ℃ 约15 min ,可以认为H 2O 2已分解完全,待冷却至室温后,记下量气管的读数,即为V ∞。

过氧化氢催化分解反应速率常数的测定

过氧化氢催化分解反应速率常数的测定 分类:药学资料 标签: 化学 实验报告 过氧化氢 反应速率常数 教育 一、实验目的 (1)了解过氧化氢催化分解反应速率常数的测定方法。 (2)熟悉一级反应的特点,了解催化剂对反映速率的影响。 (3)掌握用图解计算法求反应速率常数。 二、实验用品 1、仪器 玻璃反应容器1个、水准瓶1个、50mL量气管1个、超级恒温槽1套、三通活塞1个、秒表1块、10mL量筒1个、5mL吸量管2支、胶管3m。 2、药品 质量分数为2%的H2O2溶液(新鲜配制)、0.1mol·L-1KI溶液。 三、实验原理与技术

过氧化氢很不稳定,在常温下的分解反应式为: H2O2→H2O+1/2O2(Ⅰ) 在KI作用下的分解反应机理为: H2O2+KI→KIO+ H2O (慢)(Ⅱ) KIO→KI+1/2O2 (快)(Ⅲ) (Ⅱ)式是H2O2分解的速控步骤,H2O2分解反应的反应速率方程为: -dc H2O2/d t=k′c H2O2·c KI (Ⅳ) 因为c KI近似不变,(Ⅳ)式可简化为: -dc H2O2/d t=k c H2O2 (Ⅴ) (其中k=k′c KI)。 H2O2的催化分解反应为一级反应,对(Ⅴ)式积分可得:ln(c/ c0)=-kt (Ⅵ) (其中c0为H2O2的初始浓度;c为反应至t时刻H2O2的浓度;k为H2O2的催化分解反应的速率常数)。 反应的半衰期为: t1/2= ln2/k=0.693/k (Ⅶ) 在等温等压条件下,在H2O2的分解反应中,氧气体积增长速率反映了H2O2的分解速率,本实验就是通过测定不同时刻放出的氧气的体积,间接地求出H2O2在相应时刻的浓度,这种方法称为物理法。 令ⅴ∞表示H2O2全部分解放出的O2的体积;ⅴt表示反应至t时刻放出的O2的体积;则由(Ⅰ)式可看出:

利用手持技术探究过氧化氢的分解

60广东教育学院学报第27卷 【药品】 即发高活性干酵母(12g装,珠海紫英生物科技公司),新鲜马铃薯,蒸馏水,高真空硅脂.分析纯试剂:Mn02、30%H20z、H2SO。、MnS04、草酸钠、高锰酸钾. 2.2实验准备 (1)量取41.75mL浓H。sO。于100mL的烧杯中,稀释后溶液全部转移入250mL容量瓶中,定容配成3.om01/L的H2S0。溶液.另外称取MnS0。溶解并配成1.Omol/L的溶液. (2)用电子天平称取1.71g的KMno。溶解于100mI。的烧杯中;盖上表面皿。加热至沸并保持微沸状态1h,冷却后,用玻璃砂芯漏斗过滤,滤液转移到500mI。棕色容量瓶中定容.配成浓度约为o.02mol/L的KMnO。的溶液。 将草酸钠放于电热干燥器中在65C下干燥3h,在玻 璃干燥器中放置室温后,准确称取o.13~o.15g草酸钠于 200 mL锥型瓶中,加入40mL的水使其溶解,再加入10mL3.0mol/L的H。SO。溶液,加热到75~80℃.用配好的 KMn04溶液进行滴定.滴定到溶液微红,30s不退色即为终 点,记录数据[引.重复滴定两次取平均值,得到浓度为o.0209 mol/L的KMn04溶液. (3)将Mn02固体放在研钵中研成细粉末,密封装好 图1实验装置图待用. (4)如图1连接好仪器,用高真空硅脂密封好橡皮塞及 打孔处,确保气密性良好。实验在室温(26。5~28.5℃)下 进行. 2.3实验过程 2.3.1实验方法 (1)取5mL30%H20z与45mL蒸馏水混合配制浓度约为1mol/L的Hzoz溶液.称取一定量研细的MnO。,放人50mL锥型瓶中,再加人8mL蒸馏水和搅拌磁子,将两注射器筒中的空气全部排空,塞上胶塞,用高真空硅脂密封好.拔出其中一支注射器的塑料部分,吸入2mL配好的H。O。溶液,安装备用. (2)开启和设置数据采集器:端口1连接气压传感器;数据采集速率:1/s;采集总量:500,显示模式:table. (3)开启磁力搅拌器,用中速搅拌.用另一注射器从锥型瓶抽出2mL气体,同时注入2mLH。O。溶液,反应马上开始,采集数据.待反应完全,数据稳定后,停止实验.不加入催化剂重复实验一次作为对比实验. (4)标定H。Oz溶液的浓度.用移液管取o.5mL配好的H。O。溶液,放人200mL锥型瓶中,依次加入25mL的蒸馏水、5mL3.omol/LH2SO。溶液及1mol/L的MnSO。溶液2~3滴.用已标定的KMnO。溶液滴定到溶液呈微红,1min内不褪色即为终点. 2.3.2实验项目和数据处理 【实验1】Mn02对Hz02的催化分解实验 (1)Mn02的用量分别为o.020g、o.041g、o.083g,H202溶液的浓度为o.920m01/L. (2)Mn02的用量为o.04g,H202溶液的浓度分别为o.638mol/L、o.920mol/L、1.536mol/L. 【数据处理】将采集到的数据导入电脑,用Origin6.o软件处理数据,得到反应前后压力随时间的变化曲线图(图2和图3).扣除对比实验中H。Oz自然分解的部分,取开始反应到气压基本不变一段的数据进行线性拟合处理,可求得各分解反应的动力学方程(见表1和表2).

过氧化氢的分解

实验 过氧化氢的分解 一、 实验目的 1.测定H 2O 2分解反应的速率系数和半衰期。 2.熟悉一级反应的特点,了解温度和催化剂等因素对一级反应的影响。 3.学会用图解法求一级反应的速率系数。 二、 实验原理 过氧化氢是很不稳定的化合物,在没有催化剂作用时也能分解,但分解速度很慢。但加入催化剂时能促使H 2O 2较快分解,分解反应按下式进行: H 2O 2→H 2O+ 2 1O 2 (1) 在催化剂KI 作用下,H 2O 2分解反应的机理为: H 2O 2+KI →KIO+ H 2O (慢) (2) KIO →KI+ 2 1O 2 (快) (3) KI 与H 2O 2生成了中间产物KIO ,改变了反应的机理,使反应的活化能降低,反应加快。反应(2)较(3)慢得多,成为H 2O 2分解的控制步骤。 H 2O 2分解反应速率表示为: r = dt dc ) O H (22 反应速率方程为: dt dc ) O H (22=k ’c(H 2O 2)c(KI) (4) KI 在反应中不断再生,其浓度近似不变,这样(4)式可简化为: dt dc ) O H (22=kc(H 2O 2) (5) 其中,k=k ’c (KI),k 与催化剂浓度成正比。 由(5)式看出H 2O 2催化分解为一级反应,积分(5)式得:ln 0 c c = - kt (6) 式中:c 0——H 2O 2的初始浓度;c ——t 时刻H 2O 2的浓度。 一级反应半衰期t 2 1为: t 2 1= k 2ln = k 693.0 (7) 可见一级反应的半衰期与起始浓度无关,与反应速率系数成反比。本实验通过测定H 2O 2 分解时放出O 2的体积来求反应速率系数k 。从H 2O 2=== H 2O+ 2 1O 2中可看出在一定温度、一定 压力下反应所产生O 2的体积V 与消耗掉的H 2O 2浓度成正比,完全分解时放出O 2的体积V ∞与H 2O 2溶液初始浓度c 0成正比,其比例常数为定值,则c 0∝V ∞、c 0∝(V ∞-V)

高二实验化学专题课题模块练习及答案解析2:催化剂对过氧化氢分解反应速率的影响

课题2催化剂对过氧化氢分解反应速率的影响 1.完成下列各题空格 ⑴分子或离子间的是发生化学反应的先决条件,但不是每次碰撞都会引发反应。能够引起反应的分子(或离子)间的相互碰撞叫做,能够发生有效碰撞的分子叫做。活化分子具有的能量,因此活化分子所占分数的大小决定的快慢。活化分子的平均能量与所有分子的平均能量的差称为。 ⑵催化剂能使反应的活化能(如图Ea、Ea’分别代表有、无催化剂时正反应的活化能),使得具有平均能量的反应物分子只要吸收较少的能量就能变成,活化分子所占分数增大,可以成千上万倍地加快反应速率。催化剂能增大化学反应速率,但是它改变反应进行的方向,也使那些不可能发生的化学反应得以发生。 ⑶影响过氧化氢分解的因素有溶液的、光、热及遇到大多数。 ⑷分解反应的化学方程式为。 ⑸催化剂对化学反应速率的影响 一般选用MnO2作催化剂,其以及均会影响H2O2分解的速率。通过观察比较H2O2溶液中的快慢程度,或测定H2O2分解放出的O2的体积判断H2O2分解速率的大小。 ⑹保存H2O2溶液时要注意:从安全角度考虑,易分解产生气体的试剂不宜放在密封的中,双氧水通常盛放在干净的中。 2.下列关于催化剂的说法,正确的是() A.催化剂能使不起反应的物质发生反应 B.催化剂在化学反应前后,化学性质和质量都不变 C.催化剂不能改变化学反应速率 D.任何化学反应都需要催化剂 3.能够增加反应物分子中活化分子百分数的是() A.升高温度 B.减小压强 C.增大压强 D.增大浓度 4.亚氯酸盐(如NaClO2)可用作漂白剂,在常温下不见光时可保存一年,但在酸性溶液中因生成亚氯酸而发生分解:5HClO2===4ClO2↑+H++Cl-+2H2O。分解时,刚加入硫酸,反应缓慢,随后突然反应释放出大量ClO,这是因为()

一级反应 过氧化氢分解反应速率测定

过氧化氢催化分解反应速率常数的测定 一、实验目的 (1)了解过氧化氢催化分解反应速率常数的测定方法。 (2)熟悉一级反应的特点,了解催化剂对反映速率的影响。 (3)掌握用图解计算法求反应速率常数。 二、实验用品 1、仪器 玻璃反应容器1个、水准瓶1个、50mL量气管1个、超级恒温槽1套、三通活塞1个、秒表1块、10mL量筒1个、5mL吸量管2支、胶管3m。 2、药品 质量分数为2%的H2O2溶液(新鲜配制)、0.1mol·L-1KI溶液。 三、实验原理与技术 过氧化氢很不稳定,在常温下的分解反应式为: H2O2→H2O+1/2O2(Ⅰ) 在KI作用下的分解反应机理为: H2O2+KI→KIO+ H2O (慢)(Ⅱ) KIO→KI+1/2O2(快)(Ⅲ) (Ⅱ)式是H2O2分解的速控步骤,H2O2分解反应的反应速率方程为: -dcH2O2/d t=k′cH2O2·cKI(Ⅳ) 因为cKI近似不变,(Ⅳ)式可简化为: -dcH2O2/d t=k cH2O2 (Ⅴ) (其中k=k′cKI)。

H2O2的催化分解反应为一级反应,对(Ⅴ)式积分可得:ln(c/ c0)=-kt (Ⅵ) (其中c0为H2O2的初始浓度;c为反应至t时刻H2O2的浓度;k为H2O2的催化分解反应的速率常数)。 反应的半衰期为: t1/2= ln2/k=0.693/k (Ⅶ) 在等温等压条件下,在H2O2的分解反应中,氧气体积增长速率反映了H2O2的分解速率,本实验就是通过测定不同时刻放出的氧气的体积,间接地求出H2O2在相应时刻的浓度,这种方法称为物理法。 令ⅴ∞表示H2O2全部分解放出的O2的体积;ⅴt表示反应至t时刻放出的O2的体积;则由(Ⅰ)式可看出: 定温定压下反应产生的O2的体积ⅴt与被消耗的H2O2的浓度成正比,而 ⅴ∞则与H2O2的初始浓度成正比,且两者比例系数为定值,则:c。∝ⅴ∞;c∝(ⅴ∞-ⅴt)。 代入(Ⅵ)式可得:ln[(ⅴ∞-ⅴt)/ⅴ∞]=-kt (Ⅷ) →ln(ⅴ∞-ⅴt)=-kt+lnⅴ∞(Ⅸ) (其中ⅴ∞可以通过外推法或加热法求得)。 四、实验步骤 (1)组装仪器(实验室工作人员已经装好)。 (2)先用量筒量10mL蒸馏水和用吸量管吸取5mL 0.1mol·L-1KI溶液注入反应器的一室;再用另一支吸量管吸取5mL质量分数为2%的H2O2溶液于另一室。(注:此过程中各室的溶液都不能滴漏于另一边)。接着,盖好瓶塞,查漏。方法如下: 水准瓶装入一定量蒸馏水,旋转三同活塞,使体系与外界相通;高举水准瓶,使量气管的水平面达到0.00mL(即ⅴ0)刻度处,然后再旋转三通活塞,使体系与外界隔绝,水准瓶放回实验台面。2min内保持不变,则表示不漏气;否则,要找出原因,排除它。 (3)倾斜反应器,使KI溶液流入H2O2溶液中,立即开启秒表,混合溶液两室中反复转移3-4次,最后全部停留在一室,平稳且力度适中地摇匀。(注:反应器必须与量气管相通)

中考化学经典实验例析 过氧化氢的分解

中考经典实验例析------过氧化氢分解 VCM仿真实验——过氧化氢分解 过氧化氢制取氧气被称为“绿色制取氧气”的方法,在近年的中考中反复出现,仔细研究历年真题,探究考试的重点和方向,把握2010的中考出题方向。下面对过氧化氢的分解进行例析。 例1、(2008山东)如图所示,老师在演示用过氧化氢和二氧化锰制取氧气的实验中,收集完氧气后,反应还在继续进行。小明同学认为,这个装置的缺点是不能控制反应随时发生、随时停止,造成了药品的浪费。为了解决小明提出的问题,请你对原实验装置加以改进,或设计新的简易实验装置,以便有效地控制过氧化氢的分解反应。

方案一: ; 方案二: . 答案:(1)将长颈漏斗改为分液漏斗 (2)将长颈漏斗改为注射器 (3)将长颈漏斗改用胶头滴管 (4)选用盛装二氧化锰的小布袋,将连在小袋子上的铁丝穿过橡皮塞并上下抽动。 (5)仿照启普发生器原理的简易实验装置等。 解析:要想控制反应则要控制双氧水与二氧化锰的接触。 例2、(08沈阳)在2008年沈阳市化学实验操作考查中,我们认真完成了用双氧水和二氧化锰制取氧气的实验,请据此实验回答下列问题。 (1)要检查A装置的气密性是否良好,通常是把导管口插入水中,然后双手紧握锥形瓶外壁,观察导管口是否有气泡产生。请你回答这种做法的依据是什么?(用微粒的观点解释)。 (2)A装置内发生反应的化学方程式为,二氧化锰在该反应中做剂。实验后回收二氧化锰的最佳方案是。 (3)在实验过程中,某同学由于动作太慢,氧气还没有收集满,锥形瓶内的反应就已经停止(如图所示)。若想集满这瓶氧气,在不拆卸装置的前提下,请你帮他想出两种方法。 ① ② 答案:(1)手握锥形瓶,使瓶内气体受热,微粒运动速率增大,间隔变大,气体体积膨胀,能从导管逸出 (2)2H2O22H2O+O2↑催化过滤 (3)①再加入适量的双氧水使反应继续进行 ②从分液漏斗向锥形瓶内加水,将锥形瓶内的氧气压入集气瓶中 例3、(2008黄冈)根据下列实验装置图,回答问题:

实验2 过氧化氢分解反应动力学-不标定浓度

实验二 过氧化氢分解反应动力学 一、实验目的: 1.熟悉一级反应特点,了解反应物浓度、温度、催化剂等因素对一级反应速度的影响。 2.用静态法测定H 2O 2分解反应的速度常数和半衰期。 3.掌握量气技术,学会用图解计算法求出一级反应的速度常数。 二、实验原理: 凡是反应速度只与反应浓度的一次方成正比的反应称为一级反应。实验证明,过氧化氢的反应机理为一级反应。 化学反应速度取决于反应物的浓度、温度、反应压力、催化剂、搅拌速度等许多因素。 过氧化氢在没有催化剂存在时,分解反应进行的很慢。许多催化剂如Pt 、Ag 、MnO 2、FeCl 3、碘化物等都能加速H 2O 2分解。 过氧化氢分解反应的化学计量式如下: H 2O 2(l) = H 2O(l) + 1/2O 2(g) 若以KI 为催化剂,在KI 作用下催化分解步骤为: KI(l) + H 2O 2(l) = KIO + H 2O(l) (慢) KIO = KI(l) + 1/2O 2(g) 由于第一步的速率比第二步慢得多,所以,第一步为反应的控制步骤。因而可以假定其反应的速率方程式为: -dc A /dt =k ’c KI c A 式中,c A 为反应系统中反应到t 时刻H 2O 2浓度,因KI 在反应过程中浓度不变,故上式可简化为 - dc A /dt = kc A (2.1) 式中k=k ’c KI , 将上式分离变量积分: 当 t=0 时, C A =C 0 ; t=t 时, C A =C t ; 定积分式为: ? ?=-t C C t A A k d t c dc 00 (2.2)

积分结果: 0ln ln c kt c t +-= (2.3) 式是t c t ~ln 的直线方程。反应进行过程中,测定不同时刻 t 时反应系统中H 2O 2的浓度c t ,取得若干组c t 、t 的数据后,以lnc t 对t 作图,得一直线,表明该反应为一级反应(准一级反应),直线斜率为-k 。 在H 2O 2催化分解过程中t 时刻H 2O 2的浓度可通过测量相应的时间内分解放出的氧气的体积得出。放出的氧气的体积与分解了的H 2O 2的量成正比,其比例系数为定值。令V f 表示H 2O 2全部分解放出的氧气的体积,V t 表示H 2O 2在t 时刻分解放出的氧气体积,则: f O H O O H V RTV P V n c ?= = 2 2 002222 ; ()t f O H O O H t t t V V RTV P V n n c c c -?=-= -=2 2' 0'02222 c o ∝V f , c t ∝ (V f -V t ) 将上述关系代入(14.3)式,得: ln (V f -V t )= - kt + ln V f (2.4) 如果以ln (V f -V t )对t 作图得一直线,即验证是一级反应;由直线斜率m 可求出速率常数k ,m = - k 。 (2.4)为ln (V f -V t )~ t 的直线方程,式中V f 为H 2O 2全部分解放出的氧气体积,反应温度及KI 浓度一定时,它不随时间改变。实验过程中只需要测定反应进行的不同时刻t 时H 2O 2分解放出的氧气体积V t (若干个数据)和反应终了时H 2O 2全部分解放出的氧气体积V f (一个数据),以ln (V f -V t )对t 作图得一直线,直线斜率为-k ,用作图法可求出反应速率常数k 。 V f 可采用下面两种方法来求得: (a )外推法:以1/t 为横坐标,对V t 作图,将直线外推至1/t =0,其截距即V f 。 (b )加热法:在测定若干个V t 数据后,将H 2O 2加热至50—60℃约15分钟,可认为H 2O 2已基本分解完毕,待溶液冷却到实验温度时,读出量气管读数即为V f ,同学们可自择二者之一,与滴定结果作对照。 当02 1 c c t =时,t 可用t 1/2表示,即为反应的半衰期. 由(2.3)式变换得:

实验报告探究不同条件下过氧化氢的分解

实验:比较过氧化氢在不同条件下的分解 目的要求:通过比较过氧化氢在不同条件下分解的快慢,了解过氧化氢酶的作用和意义。 实验材料:新鲜的质量分数为20%的肝脏(如猪肝、鸡肝)研磨液。 新配制的体积分数为3%的过氧化氢溶液,质量分数为3.5%的FeCl3溶液。 量筒、试管、滴管、试管架、卫生香、火柴、酒精灯、试管夹、大烧杯、三脚架、 石棉网、温度计 实验原理:新鲜肝脏中有较多的过氧化氢酶。经计算,质量分数为3.5%的FeCl3溶液和质量分数为20%的肝脏研磨液相比,每滴FeCl3溶液的Fe3+数,大约是每滴研磨液中过氧化氢酶分子数的25万倍。比较过氧化氢在常温、加热、滴加FeCl3溶液和肝脏研磨液的条件下,比较过氧化氢的分解产生的气泡数或者观察带火星的木条复燃的情况,来分析不同条件下的过氧化氢的分解情况。 变量控制:自变量因变量 方法步骤: 1、取4支洁净的试管,分别编上序号ABCD,向各试管中分别加入2ml过氧化氢溶液,按序号依次放置在试管架上。 2、设计实验组和对照组如下表,填写表中的空白位置, 3、填写你观察到的实验结果

4、实验现象分析 (1) B、C、D号试管与A号试管对比说明。 (2)C号试管和D号试管对比说明。 (3)CD号试管和B号试管对比说明。 说明:对照实验中的自变量应具有单一性,即遵循单一变量原则,只有这样才能保证实验结果的正确性,增强实验结论的说服力。 注意:①实验时要选用新鲜的肝脏作材料,否则肝细胞中的过氧化氢酶等有机物会部分分解,从而影响实验的准确性。 ②肝脏要制成研磨液。研磨后的肝脏能与试管中的过氧化氢充分接触,加速过氧化氢的

分解。 实验设置原则:单一变量原则、 、 。 巩固练习: 已知222222H O H O O =+↑,可以通过观察反应过程中O 2的生成速度(即气泡从溶液中释放的速度)来判断H 2O 2分解反应的速度。请用所给的实验材料和用具设计实验,使其能同时验证过氧化氢酶具有催化作用和高效性。要求写出实验步骤、预测实验结果、得出结论,并回答问题。 实验材料与用具:适宜浓度的H 2O 2溶液,蒸馏水,3.5%3FeCl 溶液,0.01%的过氧化氢酶溶液,恒温水浴锅,试管。 (1)实验步骤: ① ; ② ; ③ 。 (2)实验结果预测及结论: 整个实验中不同处理的试管中O 2的释放速度从快到慢依次是: 。由此可得出的结论是 。 (3)如果仅将实验中的恒温水浴改为80℃,重做上述实验,O 2释放的速度最快的是 ,原因是 。 1.使用酶作为催化剂,与一般的无机催化剂相比,反应速度提高107~13倍。这说明了酶具有 A.专一性 B.多样性 C.高效性 D.多变性

实验14--过氧化氢催化分解反应速率常数的测定

第次课 4 学时

实验14 过氧化氢催化分解反应速率常数的测定 一、实验目的 1. 测定过氧化氢催化分解反应速率常数; 2. 掌握通过测量反应系统的体积跟踪反应系统浓度从而研究反应速率的方法。 二、实验原理 过氧化氢在没有催化剂存在时,分解反应进行的很慢。加入催化剂能够提高分解速率。过氧化氢分解反应的化学计量式如下: H 2O 2(l) = H 2O(l) + 1/2O 2(g) 若以KI 为催化剂,在KI 作用下催化分解步骤为: KI(l) + H 2O 2(l) = KIO + H 2O(l) (慢) KIO = KI(l) + 1/2O 2(g) 由于第一步的速率比第二步慢得多,所以,第一步为反应的控制步骤。因而可以假定其反应的速率方程式为: -dc A /dt =k ’c KI c A 式中,c A 为反应系统中反应到t 时刻H 2O 2浓度,因KI 在反应过程中浓度不变,故上式可简化为 - d I c A /dt = k I c A (14.1) 式中k=k ’c KI , 将上式分离变量积分: 当 t=0 时, C A =C 0 ; t=t 时, C A =C t; 定积分式为: ??=-A A C C t A A kdt c dc 0 0 (14.2) 积分结果: 0ln ln c kt c t +-= (14.3) 式是t c t ~ln 的直线方程。反应进行过程中,测定不同时刻 t 时反应系统中氧气的浓度c t ,取得若干组c t 、t 的数据后,以lnc t 对t 作图,得一直线,表明该反应为一级反应(准一级反应),直线斜率为-k 。 物理化学的研究方法是采用物理的方法测定反应系统某组分的浓度,所谓物理的方法是利用反应系统某组分或各组分的某些物理性质(如体积、压力、电动势、折光率、

物理化学 量气法测定过氧化氢催化分解反应速率常数

实验 量气法测定过氧化氢催化分解反应速率常数 一、实验目的 1. 学习使用量气法研究过氧化氢的分解反应 2. 了解一级反应的特点,掌握用图解计算法求反应速率常数。 二、实验原理 H 2O 2在室温下,没有催化剂存在时,分解反应进行得很慢,但加入催化剂(如Pt 、Ag 、MnO 2、碘化物)时能促使其较快分解,分解反应按下式进行: H 2O 2H 2O + 1 2O 2→ (C2-1) 在催化剂KI 作用下,H 2O 2分解反应的机理为: H 2O 2H 2O ++KI KIO (慢)→ (C2-2) K IO K I + 1 2 O 2(快)→ (C2-3) 整个分解反应的速度由慢反应(C2-2)决定: 22222 2O H KI O H O H c c k dt dc =- (C2-4) 式中c 表示各物质的浓度(mol ?L -1),t 为反应时间(s ),2 2O H k 为反应速率常数,它的大小仅决定 于温度。 在反应中作为催化剂的KI 的浓度保持不变,令KI O H 12 2c k k ?=,则 222 2O H 1O H c k dt dc =- (C2-5) 式中k 1为表观反应速率常数。此式表明,反应速率与H 2O 2浓度的一次方成正比,故称为一级反应。将上式积分得: 1ln ln c t k c t +-= (C2-5) 式中c 0、c t 分别为反应物过氧化氢在起始时刻和t 时刻的浓度。反应半衰期为: 1 1 2/1693.02ln k k t == (C2-6) 由反应方程式可知,在常温下,H 2O 2分解的反应速度与氧气析出的速度成正比。析出的氧气体积可由量气管测量。令V ∞表示H 2O 2全部分解所放出的O 2体积,V t 表示H 2O 2在t 时刻放出的O 2体积,则)(t t V V c -∝∞。将该关系式带入(C2-5),得到 ∞ ∞+-=-V t k V V t ln )ln(1 (C2-7)

探究过氧化氢分解制取氧气中二氧化锰的作用

探究过氧化氢分解制取氧气中二氧化锰的作用 一、提出问题: 探究过氧化氢分解制取氧气中二氧化锰的作用。 二、猜想与假设: 在过氧化氢制取氧气中二氧化锰是催化剂,加快过氧化氢的分解速率。 三、进行实验: 1、取三支试管编号成a、b、c,称取1g二氧化锰,木条4根,备用。 2、将5mL5%的过氧化氢溶液加入a试管中,用一根的带火星木条伸入a试管内,木条不能复燃,说明此时过氧化氢分解速度比较缓慢。 3、将称取好的1g二氧化锰加入b试管中,用一根的带火星木条伸入b试管内,木条不能复燃,说明二氧化锰不能产生氧气。 4、再将5mL5%的过氧化氢溶液加入b试管,用一根的带火星木条伸入b试管内,木条复燃,说明过氧化氢溶液在加入二氧化锰后的分解速率加快了。 5、将试管b中的试液过滤,将滤渣干燥后称重,发现质量还是1g。说明二氧化锰在反应过程中质量没有发生改变。 6、将干燥后的二氧化锰加入试管c中,再加入5mL5%的过氧化氢溶液,用一根的带火星木条伸入c试管内,木条复燃。说明此时的二氧化锰还是能加快过氧化氢溶液的分解速率,那么二氧化锰可以多次的重复使用,能加快过氧化氢溶液分解速率的化学性质在化学反应前后没有发生改变。 四、实验结论: 1、二氧化锰在过氧化氢溶液分解反应前后其质量和化学性质没有发生改变。 2、二氧化锰在过氧化氢溶液分解过程中加快其分解速率。 3、根据前面两点,可以得出二氧化锰是过氧化氢溶液分解的催化剂。 五、实验反思: 1、不能比较实验4和实验6氧气产生的速率,不知道两个实验产生氧气的速率到底是不是一样快。 2、不知道实验2中不加二氧化锰时过氧化氢是不是能分解产生氧气还是分解产生氧气的速率比较缓慢。 3、课堂上做这个实验所耗时间太长,最好能分为几个小组进行实验,然后让几个小组把实验结果进行比较,这样可以节约时间。 4、本实验现象比较明显,基本能说明二氧化锰在过氧化氢溶液分解过程中的作用。

探究不同催化剂对过氧化氢分解反应速率的影响_教案

课题:探究不同催化剂对过氧化氢分解反应速率的影响 一、教材依据 教材版本:苏教版普通高中课程标准实验教科书《实验化学》选修 课题名称:§4—2催化剂对过氧化氢分解反应速率的影响 二、设计思想 (一)教学指导思想、设计理念 应让学生成为学习的主体,一切教学活动都必须从学生出发,知识建构理论认为:每个学生都在积极主动的建构自我的知识体系。基于此,在本节教学中我以学生的求知要求为主 线,追求教师和学生面对知识共同探讨、平等对话。对于知识的建构,除了个体探究之外,我更倡导合作探究。在探究教学中,要根据学生的实际差异,提出不同的探究目标。最后利 用学生集思广益、思维互补、各抒己见的特点,使问题更清楚准确。因此作为教学的组织者、引领者的教师,要设计有层次的探究问题,充分挖掘学生的能动作用。这样的设计,能使学 生主动的探索,充分调动了学生善于发现问题、勇于解决问题的积极性,体现了“情景---- 发现”教学法的基本观点,整体思路为:情境创设→问题探索→交流反馈→形成结论并达成 共识→应用提高。 (二)教材分析 本节课从催化剂的概念出发,首先通过课本P49页的[课题方案设计],采取设计实验、讨论、交流的形式,归纳出不同催化剂对过氧化氢分解反应速率的影响。其次为了定量描述 反应速率的大小,提出了定量记时比较法,为深入学习催化剂对化学反应速率的影响做了丰 富的准备。 (三)学情分析 1、学生经过《化学必修2》的学习,化学反应速率的影响因素已经比较熟悉,但是对从定 量的角度认识化学反应速率,却很少思考。 2、另外学生对化学现象的观察比较熟悉,但定量记时比较法在化学实验中的应用还比较陌 生。 三、教学目标 (一)知识与能力: 1.探究不同催化剂对同一反应的催化效果,用比较法通过定性和定量实验, 来寻找实验的最佳方案。认识催化剂、有效碰撞、活化能等理论。 2.提高学生处理实验数据和分析实验结果的能力。

过氧化氢的催化分解实验

过氧化氢的催化分解 一实验目的 1. 熟悉一级反应特点,了解反应浓度、温度和催化剂等因素对一级反应速度的影响; 2. 用静态法测H2O2分解反应的反应速度常数和半衰期.并求反应活化能; 3. 学会用图解法求出一级反应的反应速度常数. 二实验原理 凡是反应速度只与反应浓度的一次方成正比的反应称为一级反应。实验证明,过氧化氢的反应机理为一级反应.化学反应速度取决于反应物的浓度、温度、反应压力、催化剂、搅拌速度等许多因素。许多催化剂如Pt、Ag、MnO2、FeCl3碘化物等都能加速H2O2分解。在催化剂KI作用下的分解反应,反应历程如下: H2O2+Iˉ→IOˉ+H2O H2O2+ IOˉ→H2O+O2+Iˉ 按此历程,可推导出总反应的速度公式: -=Kˊ[H2O2][ Iˉ] 当溶液体积不变时,[ Iˉ]是个常数,即: -=K[H2O2] 为一级反应。 一级反应的速度公式为: -=KCA (14一1) 式中:K为反应速度常数:CA为时间t时的反应物浓度.将(14一1)式积分得: lnCA=-kt+lnCA0 (14一2) 式中CA0为反应开始时(t=0)反应物的初始浓度。 从(14一2)式可见,一级反应的速度常数K与反应物的初始浓度无关。 由(14一2)式变换得: ln=-kt (14一3) 当CA=CA0时,t可用t1/2表示,即为反应的半衰期. t1/2== (14一4) 从式(14一4)可见,在温度一定时,一级反应的半衰期应与反应的速度常数成反比,而与反应物的初始浓度无关。 由反应方程式可知,在常温常压下,H2O2分解的反应速度与氧气的析出速度成正比。析出的氧气体积可由量气管测量。 若以Vt和CA表示时间t时量气管的读数和H2O2的浓度,Vf表示H2O2完全分解时量气管的读数,则CA∝(Vf-Vt). Vf值可由如下两种方法求取: (1) 外推法:以1/t为横坐标对Vt作图,将直线段外推至1/t=0,其截距即为Vf ; (2) 加热法:在测定若干个Vt的数据之后,将H2O2溶液加热至50~60℃约15分钟,可认为H2O2己基本分解。待完全冷却后,记下量气管的读数.即为Vt。 化学反应速度随温度的提高而加快。对一般反应及某些复杂反应,温度与反应速度的定量关系由阿仑尼乌斯经验公式表达: K=Ae 式中 E—反应的活化能,常以KJ/mol表示; T—绝对温度,K。

实验14过氧化氢催化分解反应速率常数的测定

第 次课 4 学时

实验14 过氧化氢催化分解反应速率常数的测定 一、实验目的 1. 测定过氧化氢催化分解反应速率常数; 2. 掌握通过测量反应系统的体积跟踪反应系统浓度从而研究反应速率的方法。 二、实验原理 过氧化氢在没有催化剂存在时,分解反应进行的很慢。加入催化剂能够提高分解速率。过氧化氢分解反应的化学计量式如下: H 2O 2(l) = H 2O(l) + 1/2O 2(g) 若以KI 为催化剂,在KI 作用下催化分解步骤为: KI(l) + H 2O 2(l) = KIO + H 2O(l) (慢) KIO = KI(l) + 1/2O 2(g) 由于第一步的速率比第二步慢得多,所以,第一步为反应的控制步骤。因而可以假定其反应的速率方程式为: -dc A /dt =k ’c KI c A 式中,c A 为反应系统中反应到t 时刻H 2O 2浓度,因KI 在反应过程中浓度不变,故上式可简化为 - d I c A /dt = k I c A () 式中k=k ’c KI , 将上式分离变量积分: 当 t=0 时, C A =C 0 ; t=t 时, C A =C t; 定积分式为: ??=-A A C C t A A kdt c dc 0 0 () 积分结果: 0ln ln c kt c t +-= () 式是t c t ~ln 的直线方程。反应进行过程中,测定不同时刻 t 时反应系统中氧气的浓度c t ,取得若干组c t 、t 的数据后,以lnc t 对t 作图,得一直线,表明该反应为一级反应(准一级反应),直线斜率为-k 。 物理化学的研究方法是采用物理的方法测定反应系统某组分的浓度,所谓物理的方法是利用反应系统某组分或各组分的某些物理性质(如体积、压力、电动势、折光率、旋光度等)与其有确定的单值函数关系的特征,通过测量系统中该物理性质的变化,间接测量浓度变化。此种物理化学的实验方法最大的优点是可以跟踪系统某组分或各组分的物理性质的变化,从而,不需要终止反应,便可以随时测定某一时刻反应系统某组分

相关主题