搜档网
当前位置:搜档网 › 超声波在纳米金属粉末制备中的应用与发展

超声波在纳米金属粉末制备中的应用与发展

超声波在纳米金属粉末制备中的应用与发展
超声波在纳米金属粉末制备中的应用与发展

纳米粉体制备方法

纳米粉体制备方法 纳米技术是当今世界各国争先发展的热点技术,纳米技术和材料的生产及其应用在中国已起步,可以产业化的只有为数不多的几个品种,纳米二氧化钛(TiO2)、纳米氧化锌(ZnO)、纳米碳酸钙(CaCO3)便是其中较具代表性的几个品种。纳米粉体的制备方法很多,可分为物理方法和化学方法。以下是对各种方法的分别阐述并举例。 1. 物理方法 (1)真空冷凝法 用真空蒸发、加热、高频感应等方法使原料气化或形成等离子体,然后骤冷。其特点纯度高、结晶组织好、粒度可控,但技术设备要求高。1。金属烟粒子结晶法是早期研究的一种实验室方法。将金属原料置于真空室电极处,真空室抽空(真空度1P a)导入102到103 P a压力的氩气或不活泼性气体,然后像通常的真空蒸发那样,用钨丝蓝蒸发金属。在气体中,通过蒸发、凝聚产生的金属蒸气形成金属烟粒子,像煤烟粒子一样沉积于真空室内壁上。在钨丝篮上方或下方位置可以预先放置格网收集金属烟粒子样品,以备各类测试所用。2。流动油面上的真空蒸发沉积法(VEROS),VEROS法是将物质在真空中连续的蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,从而实现在短时间制备大量纳米粉体。 (2)物理粉碎法 通过机械粉碎、电火花爆炸等方法得到纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,有一种制备纳米粉体材料新方法,最适用于碳化物、氮化物及部分金属粉体的制备。其方法是先对反应器抽真空,然后充入保护气体或反应气体,在反应器中设置石墨电极,在石墨电极与反应器坩埚中的金属之间通电,使之产生高温碳电弧,由高温电弧产生金属蒸汽。采用保护气体可以生产出由石墨原子包覆的纳米镍粉、铜粉、铝粉等不易团聚的金属纳米粉末;采用反应气体可以生产碳化物、氮化物纳米粉末。与现有技术相比,生产的纳米粉末不易团聚,具有成本低,电弧功率大,可以实现规模化生产,具有广泛的实用性。用冲击波处理共沉淀法制备的氧化铁与氧化锌混合物合成了铁酸锌,用XRD、TEM 和电子衍射法对这种产品进行了鉴定.与传统的高温焙烧法相比,这种产品的特点是其颗粒尺寸为纳米级.主要原因可能在于冲击波的作用时间极短,因此生成的铁酸锌不会生长成为完整的晶粒.由此可以认为,冲击波处理可能是一种制备复合金属氧化物的纳米粉体的新方法. (3)机械球磨法 采用球磨方法,控制适当的条件得到纯元素纳米粒子、合金纳米粒子或复合材料的纳米粒子。其特点操作简单、成本低,但产品纯度低,颗粒分布不均匀。例,一种钛合金纳米粉体制备方法,原料包括钛合金粗粉、助磨键合剂、分散剂、表面活性剂;制备方法是,将所述原料按配比投入反应釜,反应釜转速200-300mpr、温度50℃-60℃,反应釜旋转时间15-30分钟;反应釜转速升高至达1000mpr以上,维持该转速1.5-2.5小时,温度为180℃以上;反应釜转速降到300mrp以下,在0.5-1.0小时内降低温度至40℃-50℃,停机,即完成纳米粉体的制备。它稳定地对钛合金实现了纳米化加工;由此为利用纳米粉体的小尺寸效应、表面积效应而使它的耐蚀优点得到提升得以实现,使之可作为一种活性添加剂与各种优良树脂结合成一种新型复合材料。 2. 化学方法 (1)气相沉积法 利用金属化合物蒸气的化学反应合成纳米材料。其特点产品纯度高,粒度分布窄。例,TiCl4气相氧化法,其基本化学反应式为:TiCl4(g)+O2(g)=TiO2(s)+Cl2(g) 施利毅、李春忠等利用

激光法制备纳米粉体的原理

激光法制备纳米粉体的原理 激光制备纳米粉体的基本方法有激光诱导化学气相沉积法(LICVD)和激光烧蚀法(LAD)。激光诱导制备纳米粉体并不是仅仅以激光为加热源,而是利用激光的诱导作用和作用物质对特定激光波长的共振吸收制备出所要求的纳米粉体J。LICVD制备纳米粒子的基本原理是利用反应气体分子(或光敏分子)对特定波长激光的共振吸收,诱导反应气体分子的激光热解、激光离解(如紫外光解、红外多光子离解)、激光光敏化等化学反应,在一定工艺条件下(激光功率密度、反应池压力、反应气体配比、流速和反应温度等)反应生成物成核和生长,通过控制成核与生长过程,即可获得纳米粒子[ 。将反应气体混合后,经喷嘴喷入反应室形成高速稳定的气体射流,为防止射流分散并保护光学透镜,通常在喷嘴外加设同轴保护气体。如反应物的红外吸收带与激光振荡波波长相匹配,反应物将有效吸收激光光子能量,产生能量共振,温度迅速升高,形成高温、明亮的反应火焰,反应物在瞬间发生分解化合,形核长大。它们在气流惯性和同轴保护气体的作用下,离开反应区后,便快速冷却并停止生长,最后将获得的纳米粉体收集于收集器中]。激光烧蚀法是一个蒸发、分解合成、冷凝的过程,其基本原理是:将作为原料的耙材置于真空或充满氩等保护气体的反应室中,耙材表面经激光照射后,与入射的激光束相作用。耙材吸收高能量激光束后迅速升温、蒸发形成气态。气态物质可直接冷凝沉积形成纳米微粒,气态物质也可在激光作用下分解后再形成纳米微粒。若反应室中有反应气体,则蒸发物可与反应气体发生化学反应,经过形

核生长、冷凝后得到复合化合物的纳米粉体。激光烧蚀法同激光诱导化学气相法相比,其生产率更高,使用范围更广,并可合成更为细小的纳米粉体。由于激光的特殊作用,激光烧蚀法可制得在平衡态下不能得到的新相]。激光烧蚀法中,激光主要作用于固体一真空(气体)界面,随着对材料性能的新的要求,人们开始尝试激光烧蚀液一固界面。激光诱导液一固界面反应法与诱导固体一真空(气体)界面原理相似,只是反应或保护环境由真空或气体变为液体。首先,激光与液一固界面相互作用形成一个烧蚀区,再促使正负粒子、原子、分子以及其它粒子组成的等离子体的形成。等离子体形成后,因处于高温高压高密度绝缘膨胀态四处扩散,利用粒子间的相互作用和液体的束缚作用,在液一固界面附近形成纳米粉体。由于液体的作用促进了等离子体的重新形核生长,此方法在制备那些只有在极端条件下才能制备的亚稳态纳米晶具有很大的优越性J。为拓宽激光在纳米粉体制备中的应用,可采用激光一感应复合加热法制备纳米粉体。在激光作用之前,先将靶材用高频感应加热融化并达到较高温度,再引入激光作用于靶体。这可使靶体对激光的吸收大为加强,利于提高激光的利用率,并在耙区附近产生很大的温度和压力梯度,有利于提高粉末产率和降低粉体的平均粒径,故这种复合加热方法既具有感应加热制粉的优点又兼有激光制粉的优点。

纳米金属粉末制备方法综述

摘要纳米粉末具有特殊性质, 并在各个领域得到广泛应用。本文详细介绍了制备纳米粉末的方法, 如机械法、物理法和化学法,和这些方法的原理、技术特点、研究进展和局限性。最后提出目前仍需解决的一些问题并对纳米金属粉末新的制备方法做出展望。 关键词纳米粉末;制备方法;机械法;物理法;化学法 一.绪论 超细粉末的概念于20世纪60年代提出,粉末的粒度一般要求小0.1um( 100nm),即在1~ 100nm间,故超细粉末又称作纳米粉末。由于纳米微粒本身的结构与常规材料不同,所以具有许多新奇的特性。比如纳米金属粉末就具有不同普通材料的光、电、磁、热力学和化学反应等方面的奇异性能, 是一种重要的功能材料,具有广泛的应用前景。现已在国防、化工、轻工、航天、冶金等领域得到重要应用,因而引起了人们的注意。80年代以来, 纳米粉末作为一种新型材料,已引起了各国政府及科学家的极大重视,美国、日本、西欧等发达国家都将其列入发展高技术的计划中,投入了相当的人力和物力,例如美国的“星球大战”计划、西欧各国的“尤里卡”计划、日本 1981 年开始实施的“高技术探索研究”计划以及我国的“863”计划,都列入了纳米材料的研究和开发。目前一些纳米粉末,如钛酸钡、氮化硅、氧化锆等已经实现了商品化。我国在纳米粉末研究方面起步较晚,80年代后期才开始比较系统的研制开发。近年来取得一些成效,特别是一些大学和研究所在理论研究和实验室规模中试水平上有了较大的发展。但总的说来,我国在这一领域与世界先进水平相比, 仍有一定差距。本文将重点介绍目前已研究的纳米粉末的制备方法。 二.方法综述 2.1机械法 机械法就是借助于机械力将大块金属破碎成所需粒径粉末的一种加工方法。按照机械力的不同可将其分为机械冲击式粉碎法、气流磨粉碎法、球磨法和超声波粉碎法等。目前普遍使用的方法还是球磨法和气流磨粉碎法,其优点是工艺简单、产量大,可以制备一些常规方法难以得到的高熔点金属和合金的超细纳米粉末。 2. 1. 1球磨法 球磨法主要分为滚动球法和振动球磨法。该方法利用了金属颗粒在不同的应变速率下因产生变形而破碎细化的机理。其优点是对物料的选择性不强,可连续操作,生产效率高,适用于干磨、湿磨,可以进行多种金属及合金的粉末制备。缺点是在粉末制备过程中分级比较困难。 2. 1. 2气流磨粉碎法 气流磨粉碎法是目前制备磁性材料粉末应用最广的方法。具体的工艺过程为:压缩气体经过特殊设计的喷嘴后,被加速为超音速气流,喷射到研磨机的中心研磨区,从而带动研磨区内的物料互相碰撞,使粉末粉碎变细;气流膨胀后随物料上升进入分级区,由涡轮式分级器分选出达到粒度的物料,其余粗粉返回研磨区继续研磨, 直至达到要求的粒度被分出为止。整个生产过程可以连续自动运行,并通过分级轮转速的调节来控制粉末粒径大小(平均粒度在3~ 8 μ m)。气流磨粉碎法适于大批量工业化生产,工艺成熟。缺点是在金属粉末的生产过程中,必须使用连续不断的惰性气体或氮气作为压缩气源,耗气量较大;只适合脆性金属及合金的破碎制粉。

纳米粉体制备方法总结文档(最新版)

纳米粉体制备方法总结文档(最新版) Summary document on preparation methods of nano powder (latest edition) 汇报人:JinTai College

纳米粉体制备方法总结文档(最新版) 前言:本文档根据题材书写内容要求展开,具有实践指导意义,适用于组织或个人。便于学习和使用,本文档下载后内容可按需编辑修改及打印。 1、化学沉淀法: 沉淀法主要包括共沉淀法、均匀沉淀法、多元醇为介质 的沉淀法、沉淀转化化、直接沉淀法等。 共沉淀法 在含有多种阳离子的溶液中加入沉淀剂,使金属离子完 全沉淀的方法称为共沉淀法共沉淀法.可制备BaTiO3、PbTiO3等PZT系电子陶瓷及ZrO2等粉体.与传统的固相反应法相比,共沉淀法可避免引入对材料性能不利的有害杂质,生成的粉末具有较高的化学均匀性,粒度较细,颗粒尺寸分布较窄且具有一定形貌。 均匀沉淀法 在溶液中加入某种能缓慢生成沉淀剂的物质,使溶液中 的沉淀均匀出现,称为均匀沉淀法本法克服了由外部向溶液中直接加入沉淀剂而造成水热合成反应釜沉淀剂的局部不均匀性本法多数在金属盐溶液中采用尿素热分解生成沉淀剂NH4OH,

促使沉淀均匀生成制备的粉体有Al、Zr、Fe、Sn的氢氧化物[12-17]及Nd2(CO3)3等。 多元醇沉淀法 许多无机化合物可溶于多元醇,由于多元醇具有较高的 沸点,可大于100°C,因此可用高温强制水解反应制备纳米 颗粒[20]例如Zn(HAC)2·2H2O溶于一缩二乙醇(DEG),于100-220°C 下强制水解可制得单分散球形ZnO纳米粒子又如 使酸化的FeCl3—乙二醇—水体系强制水解可制得均匀的Fe (III)氧化物胶粒。 沉淀转化法 本法依据化合物之间溶解度的不同,通过改变沉淀转化 剂的浓度、转化温度以及表面活性剂来控制颗粒生长和防止颗粒团聚例如:以Cu(NO3)2·3H2ONi(NO3)2·6H2O为原料,分别以Na2CO3、NaC2O4为沉淀剂,加入一定量表面活性剂, 加热搅拌,分别以NaC2O3、NaOH为沉淀转化剂,可制得CuO、Ni(OH)2、NiO超细粉末。该法工艺流程短,操作简便,但 制备的化合物仅局限于少数金属氧化物和氢氧化物。 2、化学还原法 水溶液还原法

纳米金属用途简介

纳米金属用途简介 钴(Co) 高密度磁记录材料:利用纳米钴粉记录密度高、矫顽力高(可达119.4KA/m)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等。吸波材料:金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材 料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 铜(Cu) 金属和非金属的表面导电涂层处理:纳米铝、铜、镍粉体有高活化表面,在无氧条件下可以在低于粉体熔点的温度实施涂层。此技术可应用于微电子器件的生产。 高效催化剂:铜及其合金纳米粉体用作催化剂,效率高、选择性强,可用于二氧化碳和氢合成甲醇等反应过程中的催化剂。 导电浆料:用纳米铜粉替代贵金属粉末制备性能优越的电子浆料,可大大降低成本。此技术可促进微电子工艺的进一步优化。

铁 (Fe) 高性能磁记录材料:利用纳米铁粉的矫顽力高、饱和磁化强度大(可达1477km2/kg)、信噪比高和抗氧化性好等优点,可大幅度改善磁带和大容量软硬磁盘的性能。 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,可广泛应用于密封减震、医疗器械、声音调节、光显示等领域。 吸波材料:金属纳米粉体对电磁波有特殊的吸收作用。铁、钴、氧化锌粉末及碳包金属粉末可作为军事用高性能毫米波隐形材料、可见光--红外线隐形材料和结构式隐形材料,以及手机辐射屏蔽材料。 导磁浆料:利用纳米铁粉的高饱和磁化强度和高磁导率的特性,可制成导磁浆料,用于精细磁头的粘结结构等。 纳米导向剂:一些纳米颗粒具有磁性,以其为载体制成导向剂,可使药物在外磁场的作用下聚集于体内的局部,从而对病理位置进行高浓度的药物治疗,特别适于癌症、结核等有固定病灶的疾病。 镍(Ni) 磁流体:用铁、钴、镍及其合金粉末生产的磁流体性能优异,广泛应用于密封减震、医疗器械、声音调节、光显示等。 高效催化剂:由于比表面巨大和高活性,纳米镍粉具有极强的催化效果,可用于有机物氢化反应、汽车尾气处理等。

微纳米粉体表面包覆技术的应用研究

微纳米粉体表面包覆技术的应用研究 当前社会发展背景下,新的科学技术不断出现,新一代纳米技术的进步,使微/纳米颗粒以其特有的宏观量子隧道效应以及小尺寸效应等众多的应用优点引起人们的高度关注。 微/纳米粉体表面有机包覆技术的应用 有机包覆技术应用过程中的自组装技术分析。自组装技术是通过静电作用使溶液中的高分子单体自由吸附于胶体 颗粒以及将带有相反电荷的高分子过饱和溶液中的高分子 自由单体进行洗涤和离心分离。一般而言,可以采用高分子电解质对可分解的球形聚合物模板进行修饰,从而使其表面中带有静电,然后将二氧化硅粒子与吸附纳米级的金粒有效吸附,然后经过离心运动多次循环往复洗涤分离,最终获得致密而且均匀的多层包覆膜。另外,还可采用两步组装技术对聚合物中的电解质进行包覆组装,将经过有效组装包覆的基体置于悬浮溶液中,悬浮液中的粒子在受到表层聚合电解质作用就会不断下沉,从而制备成完整的多层超薄膜。该技术具有操作简便的优点,而且在实际的操作中不需过多特殊的操作设备。因此这种技术可以逐渐朝着实用化以及功能化方向发展。 有机包覆技术应用过程中的聚合物包裹技术分析。聚合物包裹法主要是将单体在纳米颗粒中的聚合物经过纳米颗

粒以及聚合物的作用使其成功得到包裹,这种包裹方式与自组装包裹技术相比,具有很好的分散性,而且相对于上一种包裹技术,操作过程更加简单,有广泛的适用面,不仅可以实现在无机粒子中进行包裹,而且可以实现在有机粒子中进行包裹。通常适用于一些形状不太规则的粒子包裹过程中,但是其也具有一定的包裹局限性,例如这种包裹法会导致核粒径在高分子的聚合物母体中产生严重的团聚现象。 有机包覆技术应用过程中的微胶囊化改性技术分析。微胶囊化改性技术是指在颗粒子的表层中覆盖一层厚膜,从而使颗粒表面受到良好的屏蔽作用和保护作用。主要的应用优点是具有良好的稳定性与吸光率。 微/纳米粉体表面无机包覆技术的应用 无机包覆技术应用过程中的气相包覆技术分析。这种技术是利用气体或者其它的手段使壳层物转化为一种气体,这种气体经过化学反应或者物理反应使纳米颗粒被有效包覆。这种包覆技术所制备的复合粉体尽管纯度高、组分易于控制、团聚少,但是这种包覆技术在实际应用过程中对包覆设备的要求很高,因此不利于其广泛推行应用。 无机包覆技术应用过程中的固相包覆技术分析。与有机包覆技术相比,无机包覆技术主要是采用其它机械设备以及混料设备、研磨设备对固相材料进行机械处理从而得到微/ 纳米包覆粉体,这一包覆技术可以有效缓解包覆电离子在充

纳米粉末的制备方法

. 化学制备法 1.1 化学沉淀法 沉淀法主要包括共沉淀法、均匀沉淀法、多元醇为介质的沉淀法、沉淀转化化、直接沉淀法[2]等。 1.11共沉淀法 在含有多种阳离子的溶液中加入沉淀剂,使金属离子完全沉淀的方法称为共 沉淀法。共沉淀法可制备BaTiO 3[3-5]、PbTiO 3 [6]等PZT系电子陶瓷及ZrO 2 [7,8]等粉体。 以CrO 2为晶种的草酸沉淀法,制备了La、Ca、Co、Cr掺杂氧化物[9]及掺杂BaTiO 3 等。以Ni(NO 3) 2 ·6H 2 O溶液为原料、乙二胺为络合剂,NaOH为沉淀剂,制得Ni(OH)2 超微粉,经热处理后得到NiO超微粉[10]。 与传统的固相反应法相比,共沉淀法可避免引入对材料性能不利的有害杂质[11],生成的粉末具有较高的化学均匀性,粒度较细,颗粒尺寸分布较窄且具有一定形貌。 1.12均匀沉淀法 在溶液中加入某种能缓慢生成沉淀剂的物质,使溶液中的沉淀均匀出现,称为均匀沉淀法。本法克服了由外部向溶液中直接加入沉淀剂而造成沉淀剂的局部不均匀性。 本法多数在金属盐溶液中采用尿素热分解生成沉淀剂NH 4 OH,促使沉淀均匀生 成。制备的粉体有Al、Zr、Fe、Sn的氢氧化物[12-17]及Nd 2(CO 3 ) 3 [18,19]等。 1.13多元醇沉淀法 许多无机化合物可溶于多元醇,由于多元醇具有较高的沸点,可大于100°C,因此可用高温强制水解反应制备纳米颗粒[20]。例如Zn(HAC)2·2H2O溶于一缩二乙醇(DEG),于100-220°C 下强制水解可制得单分散球形ZnO纳米粒子。又如使酸化的FeCl3---乙二醇---水体系强制水解可制得均匀的Fe(III)氧化物胶粒[21]。 1.14沉淀转化法 本法依据化合物之间溶解度的不同,通过改变沉淀转化剂的浓度、转化温度以及表面活性剂来控制颗粒生长和防止颗粒团聚。例如:以Cu(NO3)2·3H2O、Ni(NO3)2·6H2O为原料,分别以Na2CO3、NaC2O4为沉淀剂,加入一定量表面活性剂,加热搅拌,分别以NaC2O3、NaOH为沉淀转化剂,可制得CuO、Ni(OH)2、NiO超细粉末[22]。 该法工艺流程短,操作简便,但制备的化合物仅局限于少数金属氧化物和氢氧化物[23]。 1.2化学还原法 1.21水溶液还原法 采用水合肼、葡萄糖、硼氢化钠(钾)等还原剂,在水溶液中制备超细金属粉末或非晶合金粉末,并利用高分子保护PVP(剂聚乙烯基吡咯烷酮)阻止颗炷团聚及减小晶粒尺寸[24-26]。用水溶液还原法以KBH4作还原剂制得 Fe-Co-B(10-100nm)[27]、Fe-B(400nm)、Ni-P非晶合金[28-32]。 溶液还原法优点是获得的粒子分散性好,颗粒形状基本呈球形,过程也可控制。 1.22多元醇还原法 最近,多元醇还原法已被发展于合成细的金属粒子Cu[33]、Ni、Co[34]、Pd、Ag[35-37]。该工艺主要利用金属盐可溶于或悬浮于乙二醇(EG)、一缩二乙二醇

纳米复合材料制备

方法: 1.1溶胶一凝胶法 溶胶一凝胶法是一种制备纳米复合材料的重要方法,它是将无机相的前驱体(例如:正硅酸乙醋)和聚合单体、低聚物或高聚物在液态状态下相互混溶,实现分子级水平的均匀混合后,发生溶胶一凝胶反应,生成的纳米复合材料的各组分之间可以形成相互连接的范德华力、氢键或者是化学键,防止了相分离的发生。 溶胶凝胶法的特点在于,该方法反应条件温和,分散均匀,甚至可以达到“分子复合”的水平。目前溶胶一凝胶法是应用最多、也比较完善的方法之一。但它也有一些缺点,如前驱物大都是正硅酸烷基酷,价格昂贵而且有毒;干燥过程中由于溶剂、小分子的挥发,使材料内部产生收缩应力,致使材料脆裂,很难获得大面积或较厚的纳米复合材料等。 1.2原位聚合法 原位聚合,即在位分散聚合,是制备具有良好分散效果纳米复合材料的重要方法。该方法将纳米粒子在单体中均匀分散,然后在一定条件下就地聚合,形成纳米复合材料。 (由于这些原位生成的第二相与基体间的界面有着理想的原位匹配,能显着改善材料中两相界面的结合状况。而且,原位复合省去了第二相的预合成,简化了工艺。此外,原位复合还能够实现材料的特殊显微结构设计并获得特殊性能,同时避免因传统工艺制备材料时可能遇到的第二相分散不均匀,界面结合不牢固以及物理、化学反应使组成物相丧失某些特性等不足的问题。原位聚合法可在水相,也可在油相中发生,单体可进行自由基聚合,在油相中还可进行缩聚反应,适用于大多数聚合物基有机一无机纳米复合体系的制备。)原位聚合法反应条件温和,制备的复合材料中纳米粒子分散均匀,粒子的纳米特性完好无损。同时在聚合过程中,只经次聚合成型,不需热加工,避免了由此产生的降解,从而保持了基本性能的稳定。但其使用有较大的局限性,因为该方法仅适合于含有金属、硫化物或氢氧化物胶体粒子的溶液中使单体分子进行原位聚合制备纳米复合材料。 1.3插层法 插层复合法是将单体或插层剂插层于具有层状结构的硅酸盐(粘土、云母等)、石墨、金属氧化物等无机物中,然后单体在无机片层之间聚合。在此过程中,单体进入无机片层之间,并因聚合可使片层间距扩大甚至剥离,使层状填料在聚合物基体中达到纳米尺度的分散,从而获得纳米级复合材料。 1.3.1溶剂插层法(大分子或预聚物插层法) 该方法首先将层状硅酸盐在一种溶剂(可以是有机溶剂或水)中剥离成单片层,然后将聚合物(对于不溶解聚合物,可使用预聚物)溶解在该混合物中,由于聚合物与层状硅酸盐片层有一定的吸附作用,当除去溶剂后,层状硅酸盐发生聚集,将聚合物夹在层状硅酸盐之间,得到具有一定规整结构的纳米复合材料。 对于水溶性基体,如氧化聚乙烯PEo[聚乙烯醇PV A[s]都使用该方法得到了插层型纳米复合材料,而聚己酸内醋PCL和聚交酷PLA溶解在氯仿中也使用该方法得到了纳米复合材料件。对于不能溶解的一些聚合物,则将其预聚物溶解在含有剥离层状硅酸盐的溶液中,使预聚物吸附在层状硅酸盐上,然后采用物理或化学方法将预聚物转化为目标聚合物,如聚酞亚胺。 1.3.2原位插层聚合法 将层状硅酸盐在液体单体(或单体溶液)中溶胀,然后单体在层间引发聚合,引发可以采

纳米粉体的制备方法

纳米粉体的制备方法 一、纳米粉体应具备的特性 1、化学成分配比准确:尽量符合化学计量,避免烧结出现液相或阻碍烧结; 2、纯度高:出现液相或影响电性能; 3、成分分布均匀:尤其微量掺杂; 4、粒度要细,尺寸分布范围要窄;结构均匀,密度高; 5、无团聚体:软团聚,硬团聚。 二、制备方法分类 化学法 化学法是指通过适当的化学反应,从分子、原子、离子出发制备纳米物质,它包括化学气相沉积法、化学气相冷凝法、溶胶一凝胶法、水热法、沉淀法、冷冻干燥法等。 化学气相沉积(CVD)是迄今为止气相法制备纳米材料应用最为广泛的方法,该方法是在一个加热的衬底上,通过一种或几种气态元素或化合物产生的化学元素反应形成纳米材料的过程,该方法主要可分成热分解反应沉积和化学反应沉积。该法具有均匀性好,可对整个基体进行沉积等优点。其缺点是衬底温度高。随着其它相关技术的发展,由此衍生出来的许多新技术,如金属有机化学缺陷相沉积、热丝化学气相沉积、等离子体辅助化学气相沉积门、等离子体增强化学气相沉积及激光诱导化学气相沉积等技术。 化学气相冷凝法(CVC)主要通过有机高分子热解获得纳米粉体,具体过程是先将反应室抽到或更高真空度,然后注入惰性气体He,使气压达到几百帕斯卡,反应物和载气He从外部系统先进入前部分的热磁控溅射CVD装置由化学反应得到反应物产物的前驱体,然后通过对流达到后部分的转筒式骤冷器,用于冷却和收集合成的纳米微粒。 化学沉淀法是在金属盐类的水溶液中控制适当的条件使沉淀剂与金属离子反应,产生水合氧化物或难溶化合物,使溶液转化为沉淀,然后经分离、干燥或热分解而得到纳米级超微粒。化学沉淀法可分为直接沉淀法、均匀沉淀法、共沉淀法和醇盐水解沉淀法。 物理法 早期的物理制备方法是将较粗的物质粉碎,如低温粉碎法、超声波粉碎法、冲击波粉碎法、蒸气快速冷却法、蒸气快速油面法等等。近年来发展了一些新的物理方法,如旋转涂层法将聚苯乙烯微球涂敷到基片上,由于转速不同,可以得到不同的空隙度.然后用物理气相沉积法在其表面上抗积一层膜,经过热处理,即可得到纳米颗粒的阵列。这些方法我们统称为物理凝聚法,物理凝聚法主要分为: (1)真空蒸发靛聚法 将原料用电弧高频或等离子体等加热,使之气化或形成等离子体,然后骤冷,使之凝结成纳米微粒。其粒径可通过改变通入惰性气体的种类、压力、蒸发速率等加以控制,粒径可达1—100nm。具体过程是将待蒸发的材料放人容器中的柑锅中,先抽到或更高的真空度,然后注人少量的惰性气体或性2N、3NH等载气,使之形成一定的真空条件,此时加热,使原料蒸发成蒸气而凝聚在温度较低的钟罩壁上,形成纳米微粒。 (2)等离子体蒸发凝聚法 把一种或多种固体颗粒注人惰性气休的等离子体中,使之通过等离子体之间时完全蒸发,通过骤冷装置使蒸气奴聚制得纳米微粒。通常用于制备含有高熔点金属合金的纳米微粒,如Fe-A1,Nb-Si等。此法常以等离子体作为连续反应器制备纳米微粒。 综上所述,物理方法通常采用光、电等技术使材料在真空或惰性气氛中蒸发,然后使原子或分子形成纳米颗粒,它还包括球磨、喷雾等以力学过程为主的制备技术。物理法的特点是:操作简单,成本低,但产品纯度不高,颗粒分布不均匀,形状难以控制。 物理化学方法

纳米金属粉末在润滑油中的应用

纳米金属粉末在润滑油中的应用 将超细金属粉末(如纳米铜、纳米镍及其合金等)以适当方式加入润滑油中,可得到一种性能优异的新型润滑油。摩擦学实验表明,当铜粉的粒径大于100nm时,它是一种磨料,但当其粒径小于50nm时,可较大幅度提高润滑油的最大无卡咬负荷。复朗施纳米科技利用国际领先的技术制备的高纯度50nm金属铜粉,使纳米铜粉的这种性能使之在润滑油中具有重要的用途,国内科研机构通过对纳米铜粉的表面进行改性,克服了纳米铜粉在润滑油中的自憎现象,能均匀、稳定地分散在润滑油中并可防止纳米铜粉的二次积聚和沉淀,成功开发了纳米铜润滑油添加剂。将这种添加剂添加到汽车发动机润滑油中,可明显减小发动机的启动电流并明显增大压力。发动机使用这种添加剂一段时间后,缸套和活塞环上便形成一层保护膜,一旦润滑油系统发生故障,汽车还能安全行使一段时间。 纳米金属粉末在电子领域中的应用 随着金属粉末粒径的急剧减小,其物理性能会发生很大万方化。如金的常规熔点为1064度,当颗粒减小到10nm时,则降低27度,2nm尺寸金的熔点仅约327度;银的常规熔点为670度,而超微银颗粒的熔点可低于100度。因此用纳米粉末制成的导电浆料,可以显著降低陶瓷的烧结温度,能大大提高芯片的可靠性和成品率,降低生产成本。如超细银粉制成的导电浆料可以进行低温烧结,这种情况下元件的基片可不必采用耐高温的陶瓷材料,甚至可用塑料。纳米导电浆料可广泛应用于微电子工业中的布线、封装、连接等,对微电子器件的小型化起着重要的作用。 纳米金属粉末在磁性材料领域中的应用 纳米金属粉末广泛应用于制造纳米磁记录材料、磁性液体、纳米磁性颗粒膜材料等,如用纳米钴、纳米铁、纳米镍等磁性金属粉末制备的磁性液体,可应用于旋转密封、阻尼器件、磁性液体印刷、选矿分离、精密研磨和抛光、磁性药物、磁性液体刹车等。但这种技术对纳

超声波技术分散纳米粉体材料

纳米粒子粒径小,表面能高,具有自发团聚的趋势,而团聚的存在又将大大影响纳米粉体优势的发挥,因此如何改善纳米粉体在液相介质中的分散和稳定性是十分重要的研究课题。 颗粒分散是近年来发展起来的新兴边缘学科。所谓颗粒分散是指粉体颗粒在液相介质中分离散开并在整个液相中均匀分布的工程,主要包括润湿、解团聚及分散颗粒的稳定化3个阶段。润湿是指将粉体缓慢地加人混合体系中形成的涡流,使吸附在粉体表面的空气或其他杂质被液体取代的过程。解团聚是指通过机械或超生等方法,使较大粒径的聚集体分散为较小的颗粒。稳定化指保证粉体颗粒在液体中保持长期的均匀分散。根据分散方法的不同,可分为物理分散和化学分散。超声波分散是物理分散方法之一。 超声波分散法:超声波具有波长短、近似直线传播、能量容易集中等特点。超声波可以提高化学反应速率,缩短反应时间、提高反应的选择性;而且还能够激发在没有超声波存在时不能发生的化学反应。超声波分散是将需处理的颗粒悬浮体直接置于超生场中,用适当频率和功率的超声波加以处理,是一种强度很高的分散手段。超声波分散的作用机理目前普遍认为与空化作用有关。超声波的传播是以介质为载体的,超声波在介质中的传播过程中存在着一个正负压强的交变周期。介质在交替的正负压强下受到挤压和牵拉。当用足够大振幅的超声波来作用于液体介质保持不变的临界分子距离,液体介质就会发生断裂,形成微泡,微泡进一步长大成为空化气泡。这些气泡一方面可以重新溶解于液体介质中,也可能上浮并消失;也可能脱离超声场的共振相位而溃陷。实践证明,对于悬浮体的分散存在着最适宜的超生频率,它的值决定于被悬浮粒子的粒度。为此,最好在超生一段时间后,停止若干时间,再继续超生,可避免过热,超生中用空气或水进行冷却也是一个很好的方法。 超声波分散用于超细粉体悬浮液的分散虽可获得理想的分散效果,由于能耗大,大规模使用成本太高,因此目前在实验室使用较多,但随着超生技术的不断发展,超生分散在工业生产中应用是完全可能的。

2017年纳米金属粉体材料行业分析报告

2017年纳米金属粉体材料行业分析报告 2017年1月

目录 一、新材料行业发展概况 (8) 1、新材料的定义 (8) 2、纳米材料市场发展情况 (9) 二、行业管理 (11) 1、行业监管体制及主管部门 (11) 2、行业主要法律法规和标准 (12) (1)主要法律法规 (12) (2)国家标准 (12) 3、行业主要产业政策 (13) 三、主要产品细分行业概况 (15) 1、片式多层陶瓷电容器(MLCC)行业 (16) 2、表面封装行业 (19) 3、晶片电阻器行业 (21) 4、3D打印行业 (21) 四、行业上下游之间的关联性 (22) 1、上游行业对本行业的影响 (22) (1)上游行业价格波动的情况 (22) (2)上游行业对本行业的影响 (24) 2、下游行业对本行业的影响 (24) (1)片式陶瓷电容器(MLCC)领域 (24) (2)太阳能电池领域 (25) (3)锡膏领域 (25) (4)3D打印金属粉 (27)

五、行业竞争格局 (27) 1、技术进入门槛高 (28) 2、低端产品产业集中度低 (29) 3、国外企业处于第一阵营 (29) 4、国内企业迅速发展 (29)

纳米镍粉是一种灰黑色的粉体状产品,对金属碳化物(如WC、TiC、TaC等)及石墨等具有良好的润湿性和很好的压制性、烧结性能,是一种重要的硬质合金和金刚石胎体粘结金属粉体材料;纳米镍粉表面活性高,表面积大,也是一种良好的催化剂;纳米镍粉还具有良好的导电性,成本低,被广泛应用于制造片式多层陶瓷电容器(MLCC)(Multi-Layered Ceramic Capacitor片式多层陶瓷电容器英文缩写)的内部电极及其他电子组件的电子浆料、镍电池、蓄电池、催化剂、磁流体以及特种涂料、吸波材料等。作为高效助燃剂,纳米镍粉还可被应用在航空航天等高端领域,将纳米镍粉添加到火箭的固体燃料推进剂中可大幅度提高燃料的燃烧热、燃烧效率,改善燃烧的稳定性。 MLCC作为纳米镍粉重要的应用产品,其是由印好电极(内电极)的陶瓷介质膜片以错位的方式叠合起来,经过一次性高温烧结形成陶瓷芯片,再在芯片的两端封上金属层(外电极)而成;电极浆料作为制造MLCC 的关键材料,其主要成分是由金属粉体、玻璃相及有机载体3个部份组成,金属粉体在浆料中含量很高,它是决定电极性能的主要因素,经高温烧结形成金属网络结构实现导电功能。因此电极浆料所用的金属粉体材料要求纯度高、粉体颗粒近球形、粒径小及分散性好等特性,而纳米镍粉能够很好的满足这一要求。

纳米颗粒的制备方法

纳米颗粒的制备方法 一、纳米粒子的制备方法分类: 1、按照物质的原始状态,可分为固相法、液相法和气相法。 2、按照研究纳米粒子的学科分类,可分为物理方法、化学方法和物理化学方法。 3、按照制备的技术分类,可分为机械粉碎法、气体蒸发法、溶液法、等离子体合成法、激光合成法、溶胶凝胶法等。本文着重针对纳米粒子生成机理与制备过程,粗略地分为物理方法、化学方法。二、纳米颗粒的物理制备方法: (一)蒸发法制备纳米颗粒: 1、定义:直接利用气体或利用各种手段将物质变成气体,使之在气体状态下发生物理或化学变化,在冷却过程中凝聚长大形成纳米粒子。 2、气相蒸发法原理:在高真空室中冲入低压的纯净惰性气体或反应气体,预蒸发的物质置于坩埚,通过加热装置逐渐加热蒸发,产生原物质烟雾。由于惰性气体的对流,烟雾向上移动(与反应气体发生化学反应)并接近充液氮的冷却棒(77K)。在蒸发过程中原物质原子与惰性气体碰撞损失能量冷却,造成局域的过饱和,形成均匀的成核过程,然后形成原子簇,长大成纳米粒子。收集。 3、按照原料加热蒸发技术手段的不同,可将蒸发法分为: 1)电阻加热; 2)等离子喷射加热;

3)高频感应加热; 4)电子束加热; 5)激光加热; 6)电弧加热; 7)微波加热。 (二)流动油面上的真空蒸发沉积法(VEROS): 1、将物质在真空中连续地蒸发到流动着的油面上,然后把含有纳米粒子的油回收到贮存器内,再经过真空蒸馏、浓缩,制备纳米粒子。 2、优点:可以得到平均粒径小于10nm的各类金属粒子,粒子分布窄。 3、缺点:粒子太细,难以从油中分离。 (三)化学气相冷凝法(CVC): 1、原理:将反应室抽真空,冲入少量的惰性气体,形成数百帕的真空度,(通入反应气体),在加热的反应器内得到目标产物或其前驱体,然后在对流的作用下,到达后部的骤冷转筒器(加入液氮作为冷却介质),转筒后面有一刮刀不断的移去沉积的纳米颗粒,可以提供一个干净的金属表面来进行连续的收集操作。 2、特点:粒径小、分布窄、避免团聚。 三、纳米颗粒的化学合成方法: 1、定义:通过适当的化学反应,包括液相、气相和固相反应,从分子、原子出发制备纳米颗粒物质。 2、化学法包括气相法、液相法和固相法。

超声波辅助沉淀法制备纳米氧化铝粉体

Material Sciences 材料科学, 2020, 10(1), 24-30 Published Online January 2020 in Hans. https://www.sodocs.net/doc/1b13066229.html,/journal/ms https://https://www.sodocs.net/doc/1b13066229.html,/10.12677/ms.2020.101004 Preparation of Nano-Alumina Powders by Ultrasonic Assisted Precipitation Zhengguo Yan*, Hong Wang, Kun Jiang, Jingkun Yu School of Metallurgy, Northeastern University, Shenyang Liaoning Received: Dec. 14th, 2019; accepted: Dec. 27th, 2019; published: Jan. 3rd, 2020 Abstract Using aluminum nitrate and ammonium bicarbonate as starting materials, nano-alumina powders were prepared by ultrasonic-assisted precipitation method. The influence of drying method and bath temperature on the synthesized powders was investigated by X-ray diffraction (XRD) and scanning electron microscopy (SEM). The results show that the better dispersion and more uni-form powders were prepared by vacuum freeze drying than the traditional air blast drying. The particle size of alumina powder increases with the increase of bath reaction temperature, and the suitable reaction temperature is 25?C. Nano-alumina powders with narrow particle size distribu-tion and good dispersion were prepared by ultrasonic-assisted precipitation method. Keywords Ultrasonic, Precipitation, Freeze-Drying, Nano-Alumina 超声波辅助沉淀法制备纳米氧化铝粉体 颜正国*,王宏,蒋昆,于景坤 东北大学冶金学院,辽宁沈阳 收稿日期:2019年12月14日;录用日期:2019年12月27日;发布日期:2020年1月3日 摘要 以硝酸铝和碳酸氢铵为原料,采用超声波辅助沉淀法制备Al2O3粉体,利用XRD和SEM对所制备的粉体的物相和形貌进行表征,考察了干燥方式和水浴温度对粉体制备的影响。结果表明真空冷冻干燥较传统鼓*通讯作者。

纳米粉体制备方法的研究

纳米粉体制备方法地研究 辛辉,易贝贝 (平顶山工业职业技术学院化工系,河南平顶山) 摘要:纳米粉体具有独特地性能而被广泛应用.其制备方法地研究已经成为材料研究领域地重要内容.本文对纳米粉体地制备方法进行了研究,总结出各种方法地利弊.文档来自于网络搜索 关键词:纳米粉体制备方法团聚性质 (文档来自于网络搜索 ) : . . .文档来自于网络搜索 : ; ; ; 文档来自于网络搜索 引言 纳米粉体泛指粒径在范围内地粉末.由于纳米粉体地晶粒小,表面曲率大或表面积大,所以它在磁性、催化性、光吸收、热阻和熔点等方面与常规材料相比显示出奇特地性能,因而广泛应用于高性能结构与功能陶瓷材料、涂层材料、磁性材料、催化材料、气敏材料、医药和石油化工领域.纳米粉体制备方法地研究已经成为材料研究领域地一个重要内容.文档来自于网络搜索 激光法制备纳米粉体 激光法制备粉体是以激光为加热源,利用激光地诱导作用和作用物质对特定激光波长地共振吸收制备出所要求地纳米粉体[].激光法有激光诱导化学气相沉积法()和激光烧蚀法().文档来自于网络搜索 激光诱导化学气相沉积法 激光诱导化学气相沉积法是利用反应气体分子(或光敏分子)对特定波长激光地共振吸收,诱导反应气体分子地激光热解、激光离解(如紫外光解、红外多光子离解)、激光光敏化等化学反应,在一定工艺条件下(激光功率密度、反应池压力、反应气体配比、流速和反应温度等)反应生成物成核和生长,通过控制成核与生长过程,即可获得纳米粒子[].文档来自于网络搜索 激光烧蚀法 激光烧蚀法是将作为原料地耙材置于真空或充满氩等保护气体地反应室中,耙材表面经激光照射后,与入射地激光束相作用.耙材吸收高能量激光束后迅速升温、蒸发形成气态.气态物质可直接冷凝沉积形成纳米微粒,气态物质也可在激光作用下分解后再形成纳米微粒.若反应室中有反应气体,则蒸发物可与反应气体发生化学反应,经过形核生长、冷凝后得到复合化合物地纳米粉体.文档来自于网络搜索 激光烧蚀法与激光诱导化学气相法相比,生产率更高,使用范围更广,并可合成更为细小地纳米粉体. 溶剂蒸发法制备纳米粉体 常用地溶剂蒸发法有喷雾干燥法、喷雾热分解法.喷雾干燥法是将金属盐溶液喷入热风中,溶剂迅速蒸发从而析出金属盐地纳米颗粒.喷雾热分解法则是将溶液喷入高温气氛中,使溶剂蒸发和金属盐地热分解同时进行,从而用道工序制得氧化物纳米颗粒.文档来自于网络搜索 采用喷雾法生成地氧化物颗粒一般为球状,流动性好且易于处理,并且可以连续进行,因而

纳米Mn2O3粉末的制备及应用

纳米Mn2O3粉末的制备及应用 摘要:Mn2O3是两性氧化物之一,应用广泛。本文主要介绍了Mn2O3纳米粉末的制备方法,对纳米Mn2O3粉末的应用作了简单描述,并对其发展前景作出了展望。 关键词:Mn2O3;纳米材料;方铁锰矿;应用 引言 锰元素的氧化物,以其多样的电学、磁学及催化等方面的特性而倍受人们的关注,其中 方铁锰矿型Mn 2O 3 纳米粉体用作电极材料和催化剂时,其性能明显优于其它锰氧化物。Mn 2 O 3 作为催化剂被广泛应用于CO和有机污染物的氧化催化以及氮氧化物的还原反应中,同时也 是固相法合成锂离子二次电池正极材料LiMn 2O 4 的最佳原料之一。我国锰原料储备丰富,因 此Mn 2O 3 纳米材料的制备和应用研究具有重要意义。 1 纳米Mn2O3简介 1.1 纳米材料 纳米材料是近代科学上的一个重大发现,已成为材料科学研究的前沿热点领域,受到广泛重视。纳米材料是指在三维空间至少有一维处于纳米尺度范围或由它们组成基本单元构成的晶体、非晶体、准晶体以及界面层结构的材料。这大约相当于10—100个原子紧密排列在一起的尺度。通常材料的性能与其颗粒尺寸的关系极为密切,当小颗粒尺寸进入纳米量级时,其本身具有体积效应、表明效应、量子效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热血、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。 纳米材料大致可分为纳米粉末、纳米纤维、纳米膜、纳米块体四类。其中纳米粉末开发时间最长、技术最为成熟,是生产其它三类产品的基础。纳米粉末又称为超微粉或超细粉,一般指粒度在100纳米以下的粉末或颗粒,是一种介于原子、分子与宏观物体之间处于中间态的固体颗粒材料。纳米纤维指直径为纳米尺度而长度较大的线状材料。纳米膜分为颗粒膜与致密膜。颗粒膜是纳米颗粒粘在一起,中间有极为细小的间隙的薄膜。致密膜指膜层致密但晶粒尺寸为纳米级的薄膜。纳米块体是将纳米粉末高压成型或控制金属液体结晶而得到的纳米晶粒材料。 1.2 Mn 2O 3 纳米粉末 Mn 2O 3 属于过渡族金属元素氧化物,黑色晶体,有毒。相对密度4.50,难溶于水、醋酸, 不溶于冷盐酸,溶于热浓盐酸、热硝酸及热硫酸,1080℃脱氧,细粉尘可燃。氢气还原时在230℃生成四氧化三锰,300℃以上生成氧化亚锰(MnO)。由二氧化锰在空气中加热至530~940℃制得。 纳米Mn 2O 3 粉末是指颗粒尺寸在纳米尺度范围内的Mn 2 O 3 颗粒。Mn 2 O 3 有三种晶型:α,β 和γ型。自然界中只存在α—Mn 2O 3 ,Mn 2 O 3 是一种两性氧化物,是固相法合成锂离子二次电 池正极材料LiMn 2O 4 的最佳原料之一,此外,在降低环境污染分解N 2 O的研究中Mn 2 O 3 的催化 活性明显优于其它锰氧化物,并在对氯苯甲醛,对溴苯甲醛等有机物的合成工艺中,作为氧化

相关主题