搜档网
当前位置:搜档网 › 第三章 三角恒等变换复习(二)

第三章 三角恒等变换复习(二)

第三章    三角恒等变换复习(二)
第三章    三角恒等变换复习(二)

第三章 三角恒等变换复习(二)

教学目标:

1. 综合运用知识解决相关问题.

2. 培养学生分析问题,运用知识解决问题的能力.

教学重点:运用知识解决实际问题

教学难点:建立函数关系解决实际问题.

教学过程

一、作业讲评

《习案》作业P .196的第5、6题.

二、例题分析

,求证:,已知31

)sin(21

)sin(.1=-=+βαβα

βαβαsin cos 5cos sin )1(= .tan 5tan )2(βα=

.tan ).,0(51

cos sin .2的值求,已知βπβββ∈=+

.

32tan 2tan 322.3说明理由的度数;若不存在,请、求出同时成立?若存在,,使,、是否存在锐角βαβαπβαβα-==

+

4. 已知直线l 1∥l 2,A 是l 1,l 2之间的一定点,并且A 点到l 1,l 2的距离分别为h 1,h 2 . B 是直线l 2上一动点,作AC ⊥AB ,且使AC 与直线l 1交于点C ,求△ABC 面积的最小值.

5. 如图,正方形ABCD的边长为1,P,Q分别为边AB,DA上的点.当△ABC的周长为2时,求∠PCQ的大小.

本节主要讲运用公式解决有关问题:最值问题、存在性问题.

四、课后作业

《习案》作业三十六.

高中数学必修四第三章-三角恒等变换知识点总结

第三章 三角恒等变换 一、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= + ? ()()tan tan tan 1tan tan αβαβαβ-=-+ ⑹()tan tan tan 1tan tan αβ αβαβ ++=- ? ()()tan tan tan 1tan tan αβαβαβ+=+- 二、二倍角的正弦、余弦和正切公式: sin 22sin cos ααα =222)cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2222cos2cos sin 2cos 112sin α αααα=-=-=- ?2 2 1cos 2cos 1cos 2sin 2 2 α α αα+=-=, ?2 cos 21cos 2 αα+= ,2 1cos 2sin 2αα-=. ⑶22tan tan 21tan α αα =-. 三、辅助角公式: () 22sin cos sin α+=++a x b x a b x , 2 2 2 2 cos sin a b a b a b ???= = ++其中由,决定

四、三角变换方法: (1)角的变换:在三角化简,求值,证明中,表达式中往往出现较多的 相异角,可根据角与角之间的和差,倍半,互补,互余的关系,运用角的变换,沟通条件与结论中角的差异,使问题获解,对角的变形如: ①α2是α的二倍;α4是α2的二倍;α是2α的二倍;2α是4 α的二倍; ②2 304560304515o o o o o o =-=-=; ③()ααββ=+-;④ ()4 24 π π π αα+= --; ⑤2()()()()44 ππ ααβαβαα=++-=+--;等等 (2)函数名称变换:三角变形中,常常需要变函数名称为同名函数。如 在三角函数中正余弦是基础,通常化切为弦,变异名为同名。 (3)“1”的代换:在三角函数运算,求值,证明中,有时需要将常数转 化为三角函数值,例如常数“1”的代换变形有: 221sin cos sin90tan45o o αα=+== (4)幂的变换:降幂是三角变换时常用方法,对次数较高的三角函数式, 一般采用降幂处理的方法。降幂并非绝对,有时需要升幂,如对无理式αcos 1+常用升幂化为有理式。 (5)三角函数式的变换通常从:“角、名、形、幂”四方面入手; 基本原则是:见切化弦,异角化同角,倍角化单角,异名化同名, 高次降低次,特殊值与特殊角的三角函数互化等。

简单三角恒等变换典型例题

简单三角恒等变换复习 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )s i n (s i n c o s c o s s i n βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )c o s (s i n s i n c o s c o s βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )t a n t a n 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα22 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 c o s 2c o s 12αα=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2c o s 24c o s 12=+ 或 αα2c o s 24c o s 12 =+】 α α αααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2s i n 2c o s 12αα=- 或 2 s i n 2c o s 12αα=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2s i n 24c o s 12 =- 或 αα2s i n 2 4c o s 12=-】

第三章:三角恒等变换中角变换的技巧.

1 三角恒等变换中角变换的技巧 一、利用条件中的角表示目标中的角 例1 设a B为锐角,且满足cos a=, tan (a— 3= —,求cos B的值. 二、利用目标中的角表示条件中的角 例2 设a为第四象限的角,若=,贝U tan 2 a=___________________ . 三、注意发现互余角、互补角,利用诱导公式转化角 例3 已知sin=, 0

五、分子、分母同乘以2n sin a求COS acos 2 a cos 4 a ?os 8a??C0S 2n—1 a 的值 例 5 求值:sin 10 sin 30 sin 50 sin 70 ° 4聚焦三角函数最值的求解策略 一、化为y = Asin( 3x+(j)+ B的形式求解 例1求函数f(x =的最值. 例2 求函数y = sin2x + 2sin xcos x + 3cos2x的最小值,并写出y取最小值时x的集合. 二、利用正、余弦函数的有界性求解 例3求函数y =的值域. 例4求函数y =的值域. 三、转化为一元二次函数在某确定区间上求最值 例5 设关于x的函数y= cos 2x —2acos x—2a的最小值为f(a,写出f(a的表达式. 例 6 试求函数y = sin x + cos x + 2sin xcos x + 2 的最值. 四、利用函数的单调性求解 例7求函数y =的最值. 例8 在Rt A ABC内有一内接正方形,它的一条边在斜边BC上,设AB = a, / ABC = 0,△ ABC的面积为P,正方形面积为Q.求的最小值. 易错问题纠错 一、求角时选择三角函数类型不当而致错例1 已知sin话,sin护,a和B都是锐角,求a+ B的值.

三角恒等变换各种题型归纳分析

三角恒等变换 α/4

题型一:公式的简单运用 例1: 题型二:公式的逆向运用 例2: 题型三:升降幂功能与平方功能的应用 例3. 提高题型: 题型一:合一变换 例1 方法:角不同的时候,能合一变换吗? . cos sin ,,cos sin .cos sin cos sin ) (;cos sin cos sin ) (.cos )(;cos )(;sin )(;sin )(.x x x x x 2203 132212212221221121420131240111和求已知化简:化简下列各式: πθ θθθθ θθθαα<<=+--+-++-+-?+-?+).2tan(,21)tan(,,2,53sin ][).22tan(,2tan ,5 4 cos ][.tan ,cos ,sin ,,22,13122cos ][.4tan ,4cos ,4sin ,24,1352sin ][y x y x x B A B A ABC -=-??? ??∈=+==?? ? ??∈-=<<=求已知提高练习求中,在△课本例题求已知同型练习求已知课本例题πππαααππαααααπ απα? ?? ?? ? ? -??? ??---? -? -???72cos 36cos )2(;12 5cos 12 cos )1(.34cos 4sin )3(;2 3tan 23tan 1) 2(;2 cos 2 sin )1(.275sin 21)3(;15tan 115tan 2)2(;5.22cos 5.22sin )1(.12 4 4 2 2 ππ παα παα α α 求值:化简下列各式: 求下列各式的值:. )70sin(5)10sin(3.3. 2cos )31(2sin )31(,.212 cos 312 sin .1的最大值求大值有最大值?并求这个最 取何值时当锐角?++?+=- ++-x x y θθθπ π

简单的三角恒等变换(基础)

第20讲:简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理问题的能力. 【要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式:21cos 22cos αα+=, 21cos 22sin αα-= 降幂公式:21cos 2cos 2αα+=,21cos 2sin 2 α α-= 要点诠释: 利用二倍角公式的等价变形:2 1cos 2sin 2α α-=,2 1cos 2cos 2 α α+=进行“升、降幂”变 换,即由左边的“一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为“降幂”变换. 要点二:辅助角公式 1.形如sin cos a x b x +的三角函数式的变形: sin cos a x b x + x x ??? 令cos ??= = sin cos a x b x + )sin cos cos sin x x ??+ )x ?+ (其中?角所在象限由,a b 的符号确定,?角的值由tan b a ?= 确定, 或由sin ?= 和cos ?= 2.辅助角公式在解题中的应用 通 过 应 用 公 式 sin cos a x b x + = )x ?+(或 sin cos a x b x + =)α?-),将形如sin cos a x b x +(,a b 不同时为零)收缩为一

第三章 三角恒等变换(教案)

三角恒等变换 知识点精讲: 1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+; ⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-; ⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= +(()()tan tan tan 1tan tan αβαβαβ-=-+); ⑹()tan tan tan 1tan tan αβ αβαβ ++= -(()()tan tan tan 1tan tan αβαβαβ+=+-). 2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=. ⑵ 2222cos2cos sin 2cos 112sin ααααα =-=-=-( 2cos 21 cos 2 αα+= , 21cos 2sin 2 α α-= ). ⑶22tan tan 21tan α αα = -. 3、()sin cos ααα?A +B = +,其中tan ?B = A . 经典例题: 例 1.已知cos α-sin α=352,且π<α<32π,求sin2α+2sin 2 α 1-tan α的值.

例2.设x ∈[0,π3],求函数y =cos(2x -π3)+2sin(x -π 6)的最值. 例3.已知tan 2 θ=2tan 2 α+1,求证:cos2θ+sin 2 α=0. 例4.已知向量a =(cos 3x 2,sin 3x 2),b =(cos x 2,-sin x 2),c =( 3-1),其中x ∈R . (1)当a ⊥b 时,求x 值的集合; (2)求|a -c |的最大值. 例5.设函数f (x )=22cos(2x +π 4)+sin 2 x

必修四三角函数和三角恒等变换知识点与题型分类总结

三角函数知识点总结 1、任意角: 正角: ;负角: ;零角: ; 2、角α的顶点与 重合,角的始边与 重合,终边落在第几象限,则称α为第几象限角. 第一象限角的集合为 第二象限角的集合为 第三象限角的集合为 第四象限角的集合为 终边在x 轴上的角的集合为 终边在y 轴上的角的集合为 终边在坐标轴上的角的集合为 3、与角α终边相同的角的集合为 4、已知α是第几象限角,确定 ()* n n α ∈N 所在象限的方法:先把各象限均分n 等份,再从x 轴的正半轴的上方起,依次将各区域标上一、二、三、四,则α原来是第几象 限对应的标号即为n α 终边所落在的区域. 5、 叫做1弧度. 6、半径为r 的圆的圆心角α所对弧的长为l ,则角α的弧度数的绝对值是 . 7、弧度制与角度制的换算公式: 8、若扇形的圆心角为()αα为弧度制,半径为r ,弧长为l ,周长为C ,面积为S ,则l= .S= 9、设α是一个任意大小的角,α的终边上任意一点P 的坐标是(),x y ,它与原点的距 离是() 0r r =>,则sin y r α= ,cos x r α=,()tan 0y x x α=≠. 10、三角函数在各象限的符号:第一象限全为正,第二象限正弦为正,第三象限正切为正,第四象限余弦为正. 11、三角函数线:. 12、同角三角函数的基本关系:(1) ; (2) ;(3) 13、三角函数的诱导公式: ()()1sin 2sin k παα+=,()cos 2cos k παα+=,()()tan 2tan k k παα+=∈Z . ()()2sin sin παα+=-,()cos cos παα+=-,()tan tan παα+=. ()()3sin sin αα-=-,()cos cos αα-=,()tan tan αα-=-.

三角恒等变换知识点和例题

三角恒等变换基本解题方法 1、两角和与差的正弦、余弦、正切公式及倍角公式: ()sin sin cos cos sin sin 22sin cos 令αβαβαβαβααα=±=±???→= ()()2222222cos cos cos sin sin cos 2cos sin 2cos 112sin tan tan 1+cos2tan cos 1tan tan 2 1cos2sin 2 2tan tan 21tan 令 = = αβαβαβαβααα αα αβααβααβααααα =±=???→=-↓=-=-±±=?-↓=-m m 如(1)下列各式中,值为12 的是 A 、1515sin cos o o B 、221212cos sin ππ - C 、22251225tan .tan .-o o D (2)命题P :0tan(A B )+=,命题Q :0tan A tan B +=,则P 是Q 的 A 、充要条件 B 、充分不必要条件 C 、必要不充分条件 D 、既不充分也不必要条件 (3)已知35 sin()cos cos()sin αβααβα---=,那么2cos β的值为____ (4 )11080sin sin -o o 的值是______ (5)已知0tan110a =,求0tan 50的值(用a ,乙求得的结果是212a a -,对甲、乙求得的结果的正确性你的判断是______ 2. 三角函数的化简、计算、证明的恒等变形的基本思路是:一角二名三结构。即首先观察角与 角之间的关系,注意角的一些常用变式,角的变换是三角函数变换的核心!第二看函数名称之间的关系,通常“切化弦”;第三观察代数式的结构特点。基本的技巧有: (1)巧变角(已知角与特殊角的变换、已知角与目标角的变换、角与其倍角的变换、两角与其和差角的变换. 如()()ααββαββ=+-=-+,2()()ααβαβ=++-,2()()αβαβα=+--, 22αβαβ++=?,()() 222αββααβ+=---等),

三角恒等式证明9种基本技巧

三角恒等式证明9种基本技巧 三角恒等式的证明是三角函数中一类重要问题,这类问题主要以无条件和有条件恒等式出现。根据恒等式的特点,可采用各种不同的方法技巧,技巧常从以下各个方面表示出来。 1.化角 观察条件及目标式中角度间联系,立足于消除角间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是证明三角恒等式时一种常用技巧。 例1求证:tan 23x - tan 21x =x x x 2cos cos sin 2+ 思路分析:本题的关键是角度关系:x=23x -2 1 x ,可作以下证明: 2.化函数 三角函数中有几组重要公式,它们不仅揭示了角间的关系,同时揭示了函数间的相互关系,三角变换中,以观察函数名称的差异为主观点,以化异为为同(如化切为弦等)的思路,恰当选用公式,这也是证明三角恒等式的一种基本技巧。 例2 设A B A tan )tan(-+A C 22sin sin =1,求证:tanA 、tanC 、tanB 顺次成等比数列。 思路分析:欲证tan 2 C = tanA ·tanB ,将条件中的弦化切是关键。 3.化幂 应用升、降幂公式作幂的转化,以便更好地选用公式对面临的问题实行变换,这也是三角恒等式证明的一种技巧。 例3求证 cos4α-4cos2α+3=8sin 4 α 思路分析:应用降幂公式,从右证到左:

将已知或目标中的常数化为特殊角的函数值以适应求征需要,这方面的例子效多。如 1=sin 2 α+cos 2 α=sec 2 α-tan 2 α=csc 2 α-cot 2 α=tan αcot α=sin αcsc α=cos αsec α,1=tan450 =sin900 =cos00 等等。如何对常数实行变换,这需要对具体问题作具体分析。 例4 求证 αααα2 2sin cos cos sin 21--=α α tan 1tan 1+- 思路分析:将左式分子中“1”用“sin 2 α+cos 2 α”代替,问题便迎刃而解。 5.化参数 用代入、加减、乘除及三角公式消去参数的方法同样在证明恒等式时用到。 例5 已知acos 2 α+bsin 2 α=mcos 2 β,asin 2 α+bcos 2 α=nsin 2 β,mtan 2 α=ntan 2 β(β≠n π) 求证:(a+b)(m+n)=2mn 6.化比 一些附有积或商形式的条件三角恒等式证明问题,常可考虑应用比例的有关定理。用等比定理,合、分比定理对条件加以变换,或顺推出结论,或简化条件,常常可以为解题带来方便。 例6 已知(1+ cos α)(1- cos β)=1- 2 ( ≠0,1)。求证:tan 2 2α= -+11tan 22 β 思路分析:综观条件与结论,可考虑从条件中将 分离出来,以结论中 -+11为向导,应用合比定理即可达到论证之目的。

三角恒等变换知识点总结

、知识点总结 1、两角和与差的正弦、 ⑴cos cos ⑶sin si n 三角恒等变换专题 余弦和正切公式: cos sin si n :⑵ cos cos cos si n si n cos cos si n :⑷ sin si n cos cos si n ⑸tan tan tan 1 tan tan ⑹ta n tan tan 1 tan tan 2、二倍角的正弦、 余弦和正切公式: ⑴ sin 2 2si n cos 1 sin 2 ⑵ cos2 cos 2 ?2 sin 2cos 2 升幕公式 1 cos 2cos 2 — 2 降幕公式 2 cos cos2 1 (tan (tan 1 cos 2 ,1 sin 2 .2 sin tan tan 2 cos tan tan 2 sin cos tan tan tan tan (si n ) ; ). cos )2 1 2si n 2 2sin 2 — 2 1 cos2 ⑶tan2 1 2ta n tan 2 万能公式 半角公式 2 tan a cos - 2 a tan - 2 1 "一个三角函数,一个角,一次方”的y A sin ( x a 2 2 a tan — 2 2 a tan - 2 4、合一变形 把两个三角函数的和或差化为 形式。 sin 2 si n ,其中tan 5. (1)积化和差公式 1 cos = [sin( 2 1 cos =— [cos( 2 和差化积公式 si n cos (2) si n + )+sin( + )+cos( +sin = 2 sin ------ cos --- 2 2 )] )] cos si n si n 1 sin = [sin( + )-sin( 2 1 sin = - — [cos( + )-cos( 2 )] )] -sin = 2 cos ----- sin --- 2 2

知识讲解-三角恒等变换-基础

三角恒等变换 【考纲要求】 1、会用向量的数量积推导出两角差的余弦公式. 2、能利用两角差的余弦公式导出两角差的正弦、正切公式. 3、能利用两角差的余弦公式导出两角和的正弦、余弦、正切公式,导出二倍角的正弦、余弦、正切公式,了解它们的内在联系. 4、能运用上述公式进行简单的恒等变换(包括导出积化和差、和差化积、半角公式,但对这三组公式不要求记忆). 【知识网络】 【考点梳理】 考点一、两角和、差的正、余弦公式 ()sin()sin cos cos sin ()S αβαβαβαβ±±=± ()cos()cos cos sin sin ()C αβαβαβαβ±±=m ()tan tan tan()()1tan tan T αβαβ αβαβ ±±±= - 要点诠释: 1.公式的适用条件(定义域) :前两个公式()S αβ±,()C αβ±对任意实数α,β都成立,这表明该公式是R 上的恒等式;公式()T αβ±③中,∈,且R αβk (k Z)2 ±≠ +∈、、π αβαβπ 2.正向用公式()S αβ±,()C αβ±,能把和差角()±αβ的弦函数表示成单角α,β的弦函数;反向用,能把右边结构复杂的展开式化简为和差角()±αβ 的弦函数。公式()T αβ±正向用是用单角的正切值表示和差角 ()±αβ的正切值化简。 考点二、二倍角公式 1. 在两角和的三角函数公式()()(),,S C T αβαβαβαβ+++=中,当时,就可得到二倍角的三角函数公式 222,,S C T ααα: sin 22sin cos ααα= 2()S α;

ααα22sin cos 2cos -=2()C α; 22tan tan 21tan α αα = -2()T α。 要点诠释: 1.在公式22,S C αα中,角α没有限制,但公式2T α中,只有当)(2 24 Z k k k ∈+≠+ ≠ππ αππ α和时才成立; 2. 余弦的二倍角公式有三种:ααα2 2 sin cos 2cos -==1cos 22 -α=α2 sin 21-;解题对应根据不同函数名的需要,函数不同的形式,公式的双向应用分别起缩角升幂和扩角降幂的作用。 3. 二倍角公式不仅限于2α和α的二倍的形式,其它如4α是2α的二倍, 24α α是的二倍,332 α α是 的二倍等等,要熟悉这多种形式的两个角相对二倍关系,才能熟练地应用二倍角公式,这是灵活运用这些公 式的关键。 考点三、二倍角公式的推论 降幂公式:ααα2sin 21 cos sin = ; 22cos 1sin 2 αα-=; 22cos 1cos 2 αα+=. 万能公式:α α α2 tan 1tan 22sin +=; α α α2 2tan 1tan 12cos +-=. 半角公式:2cos 12 sin α α -± =; 2cos 12 cos α α +± =; α α α cos 1cos 12 tan +-± =. 其中根号的符号由2 α 所在的象限决定. 要点诠释: (1)半角公式中正负号的选取由 2 α 所在的象限确定; (2)半角都是相对于某个角来说的,如2 3α 可以看作是3α的半角,2α可以看作是4α的半角等等。 (3)正切半角公式成立的条件是α≠2k π+π(k ∈Z)

简单的三角恒等变换(讲义)

简单的三角恒等变换 【学习目标】 1.能用二倍角公式推导出半角的正弦、余弦、正切公式; 2.掌握公式应用的常规思路和基本技巧; 3.了解积化和差、和差化积公 式的推导过程,能初步运用公式进行互化; 4.通过运用公式进行简单的恒等变换,进一步提高运用联系的观点、化归的思想方法处理问题的自觉性,体会 换元思想的作用,发展推理能力和运算能力; 5.通过公式的推导,了解它们的内在联系和知识发展过程,体会特殊与一般的关系,培养利用联系的观点处理 问题的能力. 要点梳理】 要点一:升(降)幂缩(扩)角公式 升幂公式: 22 1 cos2 2cos , 1 cos2 2sin 降幂公式: 2 1 cos 2 2 1 cos2 cos , sin 22 要点诠释: 利用二倍角公式的等价变形: 1 cos 2sin 2 , 1 cos 2cos 2 进行“升、降幂”变换,即由左边的 22 “一次式”化成右边的“二次式”为“升幂”变换,逆用上述公式即为 “降幂”变换. 要点二:辅助角公式 1.形如 asinx b cosx 的三角函数式的变形: asin x bcosx asin x b cosx = a 2 b 2 sin x cos a 2 b 2 sin(x ) (其 中 角所在 象限由 a,b 的 符号确 定, 角的值 由 tan b 确定, 或由 sin b 和 a 确定, 或由 a 2 b 2 a cos 共同确定.) a 2 b 2 2.辅助角公式在解题中的应用 通过应用公式 asinx bcosx = a 2 b 2 sin (x )(或 asinx bcosx = a 2 b 2 cos ( ) ),将形如 asinx bcosx ( a, b 不同时为零)收缩为一个三角函数 a 2 b 2 sin (x )(或 a 2 b 2 cos ( )).这种 恒等变形实质上是将同角的正弦和余弦函数值与其他常数积的和变形为一个三角函数, 这样做有利于函数式的化 简、求值等. a a 2 b 2 sinx cosx 令 cos a a 2 b 2 ,sin cosxsin b a 2 b 2 b

三角恒等变换技巧

三角恒等变换技巧 三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具”.而且由于三角公式众多.方法灵活多变,若能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对发展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益 · 一、 切割化弦 “切割化弦”就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是”‘归一”思想. 【例1】 证明:ααααααααcot tan cos sin 2cot cos tan sin 22 +=++ 证明:左边ααα αααααcos sin 2sin cos cos cos sin sin 22 +?+?= ααααααααααααc o s s i n 1 c o s s i n )c o s (s i n c o s s i n c o s c o s s i n 2s i n 2224224=+=++= 右边α αααααααααcos sin 1 cos sin cos sin sin cos cos sin 22=+=+= ∴左边~右边.原等式得证. 点评“切割化弦”是将正切、余切、正割、余割函数均用正弦、余弦函数表示,这是一种常用的、有效的解题方法.当涉及多种名称的函数时,常用此法减少函数的种类. 【例2】 已知θ同时满足b a b a b a 2sec cos 2cos sec 22 =-=-θθθθ和, 且b a ,均不为零,试求“b a ,”b 的关系. 解:?????=-=-② ① b a b a b a 2sec cos 2cos sec 2 2 θθθθ 显然0cos ≠θ,由①×θ2 cos +②×θcos 得: 0cos 2cos 22=+θθb a ,即0cos =+b a θ 又0≠a ,∴a b -=θcos 代入①得a a b b a 2223=+ 0)(222=-?b a ∴22b a = 点评 本例是化弦在解有关问题时的具体运用,其中正割与余弦、余割与正弦之间的倒数关系是化弦的通径. 【例3】 化简)10tan 31(50sin 00+ 解:原式=000000 010cos ) 10sin 2310cos 21(250sin )10cos 10sin 31(50sin +?=+ 110 cos 80sin 10cos 10cos 40sin 210cos )1030sin(250sin 0 000000 00===+?= 点评 这里除用到化切为弦外,其他化异角函数为同角函数等也是常用技巧. 二、 角的拆变 在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角的相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为

人教A版数学必修四第三章三角恒等变换导学案

第三章 三角恒等变换 1.三角恒等变换中角的变换的技巧 三角函数是以角为自变量的函数,因此三角恒等变换离不开角之间的变换.观察条件及目标式中角度间联系,立足消除角之间存在的差异,或改变角的表达形式以便更好地沟通条件与结论使之统一,或有利于公式的运用,化角是三角恒等变换的一种常用技巧. 一、利用条件中的角表示目标中的角 例1.已知cos ? ????π6+α=33,求cos ? ??? ?5π6-α的值. 分析.将π6+α看作一个整体,观察π6+α与5π 6 -α的关系. 解.∵? ????π6+α+? ?? ? ?5π6-α=π, ∴ 5π6-α=π-? ?? ??π6 +α. ∴cos ? ????5π6-α=cos ???? ? ?π-? ????π6+α =-cos ? ????π6+α=-33,即cos ? ?? ??5π 6-α =-33. 二、利用目标中的角表示条件中的角 例 2.设 α 为第四象限角,若sin 3α sin α =13 5 ,则tan 2α= _______________________________. 分析.要求tan 2α的值,注意到sin 3α=sin(2α+α)=sin 2αcos α+cos 2αsin α,代入到sin 3αsin α=13 5中,首先求出cos 2α的值后,再由同角三角函数之间的关系求出tan 2α. 解析.由sin 3αsin α=sin (2α+α)sin α=sin 2αcos α+cos 2αsin α sin α =2cos 2 α+cos 2α=135 . ∵2cos 2 α+cos 2α=1+2cos 2α=135.∴cos 2α=45. ∵α为第四象限角,∴2k π+3π 2<α<2k π+2π(k ∈Z ), ∴4k π+3π<2α<4k π+4π(k ∈Z ),

简单三角恒等变换典型例题

简单三角恒等变换 一、公式体系 1、和差公式及其变形: (1)βαβαβαsin cos cos sin )sin(±=± ? )sin(sin cos cos sin βαβαβα±=± (2)βαβαβαsin sin cos cos )cos( =± ? )cos(sin sin cos cos βαβαβα±= (3)β αβ αβαtan tan 1tan tan )tan( ±= ± ? 去分母得 )tan tan 1)(tan(tan tan βαβαβα-+=+ )tan tan 1)(tan(tan tan βαβαβα+-=- 2、倍角公式的推导及其变形: (1)αααααααααcos sin 2sin cos cos sin )sin(2sin =+=+= ?ααα2sin 2 1 cos sin = ?2)cos (sin 2sin 1ααα±=± (2)ααααααααα2 2 sin cos sin sin cos cos )cos(2cos -=-=+= )sin )(cos sin (cos sin cos 2cos 22ααααααα-+=-=? 1 cos 2)cos 1(cos sin cos 2cos 22222-=--=-=?αααα αα?把1移项得αα2cos 22cos 1=+ 或 αα 2cos 2 2cos 1=+ 【因为α是 2α 的两倍,所以公式也可以写成 12cos 2cos 2-=αα 或 2cos 2cos 12αα=+ 或 2 cos 2cos 12α α=+ 因为α4是α2的两倍,所以公式也可以写成 12cos 24cos 2-=αα 或 αα2cos 24cos 12=+ 或 αα 2cos 2 4cos 12=+】 α ααααα22222sin 21sin )sin 1(sin cos 2cos -=--=-=? ?把1移项得αα2 sin 22cos 1=- 或 αα 2sin 2 2cos 1=- 【因为α是 2 α 的两倍,所以公式也可以写成 2sin 21cos 2αα-= 或 2sin 2cos 12αα=- 或 2 sin 2cos 12α α=- 因为α4是α2的两倍,所以公式也可以写成 αα2sin 214cos 2-= 或 αα2sin 24cos 12=- 或 αα 2sin 2 4cos 12=-】

第三章 三角恒等变换.

第三章三角恒等变换 密云县编写组 第一部分:第三章的教学设计 一、教材分析 1.教学内容 本章学习的主要内容是两角和与差的正弦、余弦、和正切公式,以及运用这些公式进行简单的恒等变换. 三角恒等变换位于三角函数与数学变换的结合点上.通过本章学习,要使学生在学习三角恒等变换的基本思想和方法的过程中,发展推理能力和运算能力,使学生体会三角恒等变换的工具性作用,学会它们在数学中的一些应用. 2.在模块内容体系中的地位和作用 在第一章三角函数的学习的基础上,学习简单的三角变换是对三角函数的进一步深化也是为必修5中的解三角形做铺垫. 3.总体教学目标 (1)了解用向量的数量积推导出两角差的余弦公式的过程,进一步体会向量方法的作用; (2)理解以两角差的余弦公式导出两角和与差的正弦、余弦、正切公式,二倍角的正弦、余弦、正切公式,了解它们的内在联系; (3)运用上述公式进行简单的恒等变换,以引导学生推导半角公式,积化和差、和差化积公 式(不要求记忆)作为基本训练,使学生进一步提高运用转化的观点去处理问题的自觉性, 体会一般与特殊的思想,换元的思想,方程的思想等数学思想在三角恒等变换中的应用. 4.重点、难点分析 本章内容的重点是两角差的余弦公式的推导及在推导过程中体现的思想方法,同时也是难点. 5.其他相关问题 本章内容安排贯彻“删减繁琐的计算、人为技巧化的难题和过分强调细枝末节的内容”的理念,严格控制了三角变换及应用的繁、难程度,尤其注意了不以半角公式,积化和差以及和差化积公式作为变换的依据,而只把这些公式的推导作为变换的基本练习. 二、教学方式概述 应以教师为主导学生为主体的启发式教学为主,以学生为主体探究式教学为辅. 三、教学资源概述 充分利用多媒体课件

三角恒等变换知识点总结详解

第三章 三角恒等变换 一、知识点总结 1、两角和与差的正弦、余弦和正切公式: ⑴()cos cos cos sin sin αβαβαβ-=+;⑵()cos cos cos sin sin αβαβαβ+=-; ⑶()sin sin cos cos sin αβαβαβ-=-;⑷()sin sin cos cos sin αβαβαβ+=+; ⑸()tan tan tan 1tan tan αβ αβαβ --= +? (()()tan tan tan 1tan tan αβαβαβ-=-+) ; ⑹()tan tan tan 1tan tan αβ αβαβ ++= -? (()()tan tan tan 1tan tan αβαβαβ+=+-) . 2、二倍角的正弦、余弦和正切公式: ⑴sin22sin cos ααα=.2 2 2 )cos (sin cos sin 2cos sin 2sin 1ααααααα±=±+=±? ⑵2 222cos2cos sin 2cos 112sin ααααα=-=-=- ?升幂公式2 sin 2cos 1,2cos 2cos 12 2 α αα α=-=+ ?降幂公式2cos 21cos 2αα+= ,2 1cos 2sin 2 αα-=. ⑶2 2tan tan 21tan α αα = -. 3、 ? (后两个不用判断符号,更加好用) 4、合一变形?把两个三角函数的和或差化为“一个三角函数,一个角,一次方”的 B x A y ++=)sin(??形式。()sin cos ααα?A +B = +,其中tan ?B = A . 5.(1)积化和差公式 sin α·cos β=21[sin(α+β)+sin(α-β)]cos α·sin β=21 [sin(α+β)-sin(α-β)] cos α·cos β=21[cos(α+β)+cos(α-β)]sin α·sin β= -2 1 [cos(α+β)-cos(α-β)] (2)和差化积公式 sin α+sin β= 2 cos 2 sin 2β αβ α-+sin α-sin β=2 sin 2 cos 2β αβ α-+ αααα ααα半角公式cos 1cos 12tan 2cos 12sin ;2cos 12cos : +-±=-± =+±=2 tan 12tan 1 cos ;2tan 12tan 2 sin : 2 2 2α α αααα万能公式+-=+=

简单的三角恒等变换(教案)

简单的三角恒等变换(一) 张掖中学 宋娟 一、教学目标 知识与技能:理解并掌握二倍角的正弦、余弦、正切公式,并会利用公式进行简单的恒等变形,体会三角恒等变形在数学中的应用; 过程与方法:通过二倍角的变形公式推导半角的正弦、余弦、正切公式,体会化归、方程、逆向使用公式的数学思想,提高学生推理能力; 情感、态度与价值观:通过例题的讲解,让学生体会化归、变形使用公式等数学思想方法的认识,从而加深理解变换思想,提高学生推理能力. 二、教学重、难点 教学重点:利用公式进行简单的恒等变换; 教学难点:利用倍角公式推出半角公式,并利用变形的方法解决问题. 三、教学方法:探究式教学法. 四、教学类型:新授课. 五、教学内容 复习引入(学生组织完成) 问题1:和差角的正弦、余弦、正切公式(六个); 问题2:二倍角的正弦、余弦、正切公式(三个); 问题3:二倍角的变形公式(四个). 新课讲解 思考1(学生组织完成):如何用cos α表示222sin cos tan 222 ααα、、? 分析:观察α与2 α 的关系是2倍的关系,所以我们要利用刚刚学过的二倍角的 变形公式. 解:α是2α的二倍角.在倍角公式2cos 212sin αα=-中,以α代替2α,以2 α 代 替α,即得2cos 12sin 2 α α=-, 所以21cos sin 22 αα -=; ① 在倍角公式2cos 22cos 1αα=-中,以α代替2α,以2 α 代替α,即得 2cos 2cos 12 α α=-, 所以21cos cos 22 αα +=. ② 将①②两个等式的左右两边分别相除,即得 21cos tan 21cos ααα-=+. 思考2:若已知cos α,如何计算sin cos tan 222 ααα、、?

高三数学9种常用三角恒等变换技巧总结

高中数学:9种常用三角恒等变换技巧总结 三角恒等变换不但在三角函数式的化简、求值和证明三角恒等式中经常用到,而且.由于通过三角换元可将某些代数问题化归为三角问题;立体几何中的诸多位置关系以其交角来刻画,最后又以三角问题反映出来;由于参数方程的建立,又可将解析几何中的曲线问题归结为三角问题.因此,三角恒等变换在整个高中数学中涉及面广.是常见的解题“工具”.而且由于三角公式众多.方法灵活多变,若能熟练地掌握三角恒等变换,不但能增强对三角公式的记忆,加深对诸多公式内在联系的理解,而且对发展学生的逻辑思维能力,提高数学知识的综合运用能力都大有裨益。 “切割化弦”就是把三角函数中的正切、余切、正割、余割都化为正弦和余弦,以有利于问题的解决或发现解题途径.其实质是”‘归一”思想. 在三角恒等变换中经常需要转化角的关系,在解题过程中必须认真观察和分析结论中是哪个角,条件中有没有这些角,哪些角发生了变化等等.因此角的拆变技巧,倍角与半角相对性等都十分重要,应用也相当广泛且非常灵活.常见的拆变方法有:α可变为(α+β)-β;2α可变为(α+β)+(α-β);2α-β可变为(α-β)+α;α可视为α/2的倍角等等.

遇平方可用“降次”公式,这是常用的解题策略.本题中首先化异角为同角,消除角的差异,然后化简求值.关于积化和差、和差化积公式,教材中是以习题形式给出的,望引起重视. 跟代数恒等变换一样.在三角变换时,有时适当地应用”‘加一项再减去这一项”. “乘一项再除以同一项”的方法常能使某些问题巧妙简捷地得以解决.

根据题目的特点,总体设元,然后构造与其相应的对偶式,运用方程的思想来解决三角恒等 变换,也是常用的方法,本题也可以采用降次、和积互化等方法。.目前高考中,纯三角函数式的化简与证明已不多见,取而代之的题目经常是化简某一三角函数,并综合考查这一函数的其他性质.但。凡是与三角函数有关的问题,都以恒等变形、条件变形为解题的基石,因此本专题内容的重要性不言而喻.至于在三角条件恒等证明中如何用三内角和的性质、正余弦定理进行边角关系转换等,我们就不另加赘述了.

相关主题