搜档网
当前位置:搜档网 › 上海高中数学数列的极限(完整资料)

上海高中数学数列的极限(完整资料)

上海高中数学数列的极限(完整资料)
上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】

7.6 数列的极限

课标解读:

1、理解数列极限的意义;

2、掌握数列极限的四则运算法则。

目标分解:

1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。

注:a 不一定是{}n a 中的项。

2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim

=∞→n n ;③

)

1|(|0lim <=∞

→q q n n ;

3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当

a

a n n =∞

→lim ,

b

b n n =∞

→lim 时,b

a b a n n n ±=±∞→)(lim ;

b

a b a n n n ?=?∞

→)(lim ;

)0(lim

≠=∞→b b a

b a n

n n

4、两个重要极限:

??

???<=>=∞→00100

1lim c c c n

c n 不存在

②??

???-=>=<=∞

→11||111||0

lim r r r r r n

n 或不存在

问题解析: 一、求极限:

例1:求下列极限: (1) 3

21

4lim 22

+++∞→n n n n

(2) 2

4323lim n n n

n n -+∞→ (3)

)(lim 2n n n n -+∞

例2:求下列极限:

(1) )23741(lim 2222n

n n n n n -++++∞→ ;

(2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n

例3:求下式的极限:

)2

,0(,sin cos sin cos lim πθθθθθ∈+-∞→n n n n n

二、极限中的分数讨论:

例4:已知数列{}

n a 是由正数构成的数列,31=a ,且满足c a a n n lg lg lg 1+=-,其中n 是大于1的整数,c 是正数。 (1) 求数列{}n a 的通项公式及前n 项和n S ;

(2) 求1

122lim +-∞→+-n n n

n n a a 的值。

三、极限的应用: 例

5:已知p 、q 是两个不相等的正整数,且2≥q ,求1

)11(1

)1

1(lim -+-+∞→q

p n n

n 的值。

知识内化:

1、=++++∞→n

n n 212

lim __________________。 2、=+-+++++∞→])

1(2

3)1(1)1(1[lim n n n n n n n n ______________。 3、=?-?---+∞→1113

232lim n n n

n n n n ___________________。 4、下列四个命题中正确的是( )

A 、若22

lim A a n n =∞→,则A a n n =∞

→lim

B 、若0>n

a ,A a n n =∞

→lim ,则0>A

C 、若A a n n =∞

→lim ,则22

lim A a n

n =∞→

D 、若0)(lim

=-∞→n n n b a ,则n n n n b a ∞

→∞→=lim lim 5、已知数列{}n a 、{}n b 都是由正数组成的等比数列,公比分别为p 、q ,

其中q p >且1≠p ,1≠q ,

设n n n b a c +=,n S 为数列{}n c 的前n 项和,求1

lim -∞→n n

n S S 。

能力迁移:

1、数列{}n a 、{}n b 都是无穷等差数列,其中31=a ,21=b ,2b 是2a 与3a 的等差中项,且21lim

=∞→n n n b a ,求极限)1

11(lim 2211n

n n b a b a b a +++∞→ 的值。

基本练习: 一、填空题: 1. =-+∞→3

22lim

22n b n

n n ___________________。 2. 若n n x )12(lim -∞

→的极限存在,则实数x 的取值范围__________________。

3. 1)1

1

(lim

2=---+∞→b an n n n ,则

a

=______________,

b =____________________。

4. 数列{}n a 中,31=a ,且对任意大于1的正整数n ,点)1,(-n n a a 在直线03=--y x 上,则=+∞→2

)1(lim

n a n

n __________________。 5. 已知

n n f +++= 21)(,则=∞→2

2)]([)

(lim n f n f n __________________。 6. 数列{}n a 的公差d 是

2,前

n

项的和为

n

S ,则

=-∞→n

n n S n a 2

lim _________________。 7. 设数列{}n a 、{}n b 都是公差不为0的等差数列,且2lim

=∞

→n

n

n b a ,则n

n n na b b b 3221lim

+++∞→ 等于

______________________。

8、将3

1

33)2(3lim 1=-?+-?+∞→n n n n n n x n n ,则实数

x

的取值范围是

__________________。

9、已知数列{}n a :2

1

,3

23

1+,4

34

24

1++,…,10

9

102101+++ ,…,那么数列

?

??????+11n n a a 的所有项的和为________________。 10、已知等比数列{}n a 的首项1a ,公比q ,且有2

1

)1(lim 1=-+∞

→n n q q a ,则首项1

a 的取值范围

是__________________。

二、选择题

11、已知a 、b 、c 是实常数,且3lim 22=--∞→b cn c bn n ,则a

cn c

an n ++∞→22lim 的值是( )

A 、2

B 、3

C 、2

1

D 、6

12、{}n a 中,???????≥-≤≤=1001,210001,1

222

n n

n n n n a n ,则数列{}n a 的极限值( )

A 、等于0

B 、等于1

C 、等于0或1

D 、不存在 13、)]2

11()511)(411)(311([lim +----∞

→n n n 等于( )

A 、0

B 、1

C 、2

D 、3 14、已知122lim

=+-∞→n

n n

n n a a ,R a ∈,则a 的取值范围是( )

A 、0

B 、2-a

C 、22<<-a

D 、2

2-≠a

三、解答题

15、已知等差数列前三项为a 、4、a 3,前n 项和为n S ,2550

=k S

(1)求a 及k 的值;

(2)求)111(lim 21n

n S S S +++∞

→ 16、曲线)0(1:>=x xy C 与直线x y l =:相交于1A ,作l B A ⊥11交

x 辆于1B ,作l A B //21交曲线C 于2A ……依此类推。 (1)求点1A ,2A ,3A 和1B ,2B ,3B 的坐标; (2)猜想n A 的坐标,并加以证明;

(3)求n

n n n n B B B B 11||lim -+∞

→ 17、已知数列}{n a 满足)1)(1()1(1-+=-+n n a n a n 且62=a ,设)(*∈+=N n n a b n n (1)求}{n b 的通项公式;

(2)求)2

1

212121(lim 432-++-+-+-∞

→n n b b b b 的值。 18、设n T 为数列}{n a 前n 项的和,))(1(2

3N n a T n n ∈-=。数列}{n b 的通项公式

为)(34N n n b n ∈+=

(1)求数列}{n a 的通项公式;

(2)若},,,,{},,,,{321321 n n b b b b a a a a c ∈,则c 称为数列}{n a ,}{n b 的公共项,将数列}{n a 与}{n b 的公共项按它们在原数列中的先后顺序排成一个新的数列,证明:数列}{n c 的通项公式为)(312N n c n n ∈=+;

(3)设数列}{n c 中的第n 项是数列}{n b 中的第m 项,m B 为数列}{n b 前m

项的和;n D 为数列}{n c 前n 项的和,且n m n D B A -=;求:4

)(lim n n n a A ∞

→。

上海市2020届高三数学试题分类汇编:数列(含解析)

高三上期末考试数学试题分类汇编 数列 一、填空、选择题 1、(宝山区2019届高三)如果无穷等比数列{}n a 所有奇数项的和等于所有项和的3倍,则 公比q = 2、(崇明区2019届高三)已知数列{}n a 满足:①10a =;②对任意的n ∈*N ,都有1n n a a +>成立. 函数1()|sin ()|n n f x x a n =-,1[,]n n x a a +∈满足:对于任意的实数[0,1)m ∈,()n f x m = 总有两个不同的根,则{}n a 的通项公式是 3、(奉贤区2019届高三)各项均为正数的等比数列{}n a 的前n 项和为n S ,若1 l i m 3n n n n n S a S a →∞-<+,则q 的取值范围 是( ) A. (0,1) B. (2,)+∞ C. (0,1] (2,)+∞ D. (0,2) 4、(虹口区2019届高三)已知7个实数1、2-、4、a 、b 、c 、d 依次构成等比数列,若成这7 个数中任取2个,则它们的和为正数的概率为 5、(金山区2019届高三)无穷等比数列{}n a 各项和S 的值为2,公比0q <,则首项1a 的取值范围是 6、(浦东新区2019届高三)已知数列{}n a 为等差数列,其前n 项和为n S . 若936S =,则348a a a ++= 7、(普陀区2019届高三)某人的月工资由基础工资和绩效工资组成,2010年每月的基础工资为2100元,绩效工资为2000元,从2011年起每月基础工资比上一年增加210元,绩效工资为上一年的110%, 照此推算,此人2019年的年薪为 万元(结果精确到0.1) 8、(青浦区2019届高三)已知无穷等比数列{}n a 各项的和为4,则首项1a 的取值范围是 9、(松江区2019届高三)已知等差数列{}n a 的前10项和为30,则14710a a a a +++= 10、(徐汇区2019届高三)若数列{} n a 的通项公式为* 2()111n n a n N n n =∈+,则 l i m n n a →∞ =___________. 11、(杨浦区2019届高三)在无穷等比数列{}n a 中,121 lim()2 n n a a a →∞ ++???+= ,则1a 的取值范围 是 12、(长宁区2019届高三) 已知数列{}n a 的前n 项和为n S ,且11 2 n n n a a ++= ,若数列{}n S 收敛于

数列的极限-高中数学知识点讲解

数列的极限 1.数列的极限 【知识点的知识】 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列{a n}的项a n 无限趋近于某个常数a(即|a n﹣a|无限地接近于 0), 那么就说数列{a n}以a 为极限,记作???a n=a.(注:a 不一定是{a n}中的项) ?→∞ 2、几个重要极限: 3、数列极限的运算法则: 4、无穷等比数列的各项和: (1)公比的绝对值小于 1 的无穷等比数列前n 项的和,当n 无限增大时的极限,叫做这个无穷等比数列各项的和,记做S =???S n. ?→∞ (2) 1/ 3

【典型例题分析】 典例 1:已知数列{a n}的各项均为正数,满足:对于所有n∈N*,有4??=(??+1)2,其中S n 表示数列{a n}的前n 项? 和.则??? ? ? =() ?→∞ 1 A.0 B.1 C. 2D.2 解:∵4S1=4a1=(a1+1)2, ∴a1=1.当n≥2 时,4a n=4S n﹣4S n﹣1=(a n+1)2﹣(a n﹣1+1)2, ∴2(a n+a n﹣1)=a n2﹣a n﹣12,又{a n}各项均为正数, ∴a n﹣a n﹣1=2.数列{a n}是等差数列, ∴a n=2n﹣1. ??1∴???2?―1= ???2―1 ? ? =??? ?→∞?→∞?→∞ ?= 1 2 . 故选:C. 典例 2:已知点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点,等差数列{a n}的公差为 1(n∈N*).(1)求数列{a n}、{b n}的通项公式; (2)设 c n = 1 ?|?1??|(?≥2),求???(?2+?3+?+ ? ? )的值; ?→∞ (3)若d n=2d n﹣1+a n﹣1(n≥2),且d1=1,求证:数列{d n+n}为等比数列,并求{d n}的通项公式.解:(1)∵点P n(a n,b n)在直线l:y=2x+1 上,P1 为直线l 与y 轴的交点, ∴b n=2a n+1,a1=0, ∵等差数列{a n}的公差为 1(n∈N*), ∴a n=0+(n﹣1)=n﹣1. b n=2(n﹣1)+1=2n﹣1. (2)解:由(1)可得a n﹣a1=n﹣1,b n﹣b1=2n﹣1﹣1=2n﹣2,

人教版高中数学必修5《数列》教案

m n a a d n a a d d n a a d m n a a d n a a d a a m n n n m n n n n --=--= --=-+=-+==-+1; )1()()1(1 111变式:推广:通项公式:递推关系:必修5 数列 二、等差数列 知识要点 1.数列的通项n a 与前n 项和n S 的关系 ∑==++++=n i i n n a a a a a S 1321 ?? ?≥-==-2 11 1 n S S n S a n n n 2.递推关系与通项公式 () 1(),(), ,n n a dn a d a f n kn b k b =+-==+特征:即:为常数 (),,n a kn b k b =+为常数?数列{}n a 成等差数列. 3.等差中项: 若c b a ,,成等差数列,则b 叫做c a 与的等差中项,且2 c a b += ;c b a ,,是等差数列?c a b +=2. 4.前n 项和公式:2 )(1n a a S n n += ; 2)1(1d n n na S n -+= 221(),()22 n n d d S n a n S f n An Bn = +-==+特征:即 2,(,)n S An Bn A B =+为常数?数列{}n a 成等差数列. 5.等差数列{}n a 的基本性质),,,(* ∈N q p n m 其中 ⑴q p n m a a a a q p n m +=++=+,则若,反之不成立; ⑵d m n a a m n )(-=-; ⑶m n m n n a a a +-+=2; ⑷n n n n n S S S S S 232,,--仍成等差数列. 6.判断或证明一个数列是等差数列的方法: ①定义法:( )() 1n n a a d n N * +-=∈常数 ?{}n a 是等差数列

高中数学复习――数列的极限

●知识梳理 1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限. 注:a 不一定是{a n }中的项. 2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n lim n 1 =0;③∞ →n lim q n =0(|q |<1). 3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞ →n lim a n =a , ∞ →n lim b n =b 时,∞ →n lim (a n ±b n )=a ±b ; ∞ →n lim (a n ·b n )=a ·b ; ∞ →n lim n n b a =b a (b ≠0). 特别提示 (1)a n 、b n 的极限都存在时才能用四则运算法则; (2)可推广到有限多个. 1.下列极限正确的个数是 ①∞→n lim αn 1 =0(α>0) ②∞→n lim q n =0 ③∞ →n lim n n n n 3232+-=-1 ④∞ →n lim C =C (C 为常数) A.2 B.3 C.4 D.都不正确 解析:①③④正确. 答案:B 2. ∞→n lim [n (1-31)(1-41)(1-51)…(1-21 +n )]等于 A.0 B.1 C.2 D.3 解析: ∞→n lim [n (1-31)(1-41)(1-51)…(1-2 1 +n )] =∞→n lim [n ×32×43×54×…×2 1 ++n n ] =∞→n lim 22+n n =2. 答案:C 3.下列四个命题中正确的是 A.若∞ →n lim a n 2=A 2,则∞ →n lim a n =A B.若a n >0,∞ →n lim a n =A ,则A >0 C.若∞ →n lim a n =A ,则∞ →n lim a n 2=A 2

高中数学必修五数列知识点

一、知识纲要 (1)数列的概念,通项公式,数列的分类,从函数的观点看数列. (2)等差、等比数列的定义. (3)等差、等比数列的通项公式. (4)等差中项、等比中项. (5)等差、等比数列的前n 项和公式及其推导方法. 二、方法总结 1.数列是特殊的函数,有些题目可结合函数知识去解决,体现了函数思想、数形结合的思想. 2.等差、等比数列中,1a 、n a 、n 、)(q d 、n S “知三求二”,体现了方程(组)的思想、整体思想,有时用到换元法. 3.求等比数列的前n 项和时要考虑公比是否等于1,公比是字母时要进行讨论,体现了分类讨论的思想. 4.数列求和的基本方法有:公式法,倒序相加法,错位相减法,拆项法,裂项法,累加法,等价转化等. 三、知识内容: 1.数列 数列的通项公式:?? ?≥-===-)2() 1(111n S S n S a a n n n 数列的前n 项和:n n a a a a S ++++= 321 1、数列:按照一定顺序排列着的一列数. 2、数列的项:数列中的每一个数. 3、有穷数列:项数有限的数列. 4、无穷数列:项数无限的数列. 5、递增数列:从第2项起,每一项都不小于它的前一项的数列. 6、递减数列:从第2项起,每一项都不大于它的前一项的数列. 7、常数列:各项相等的数列. 8、摆动数列:从第2项起,有些项大于它的前一项,有些项小于它的前一项的数列. 9、数列的通项公式:表示数列 {}n a 的第n 项与序号n 之间的关系的公式. 10、数列的递推公式:表示任一项n a 与它的前一项1n a -(或前几项)间的关系的公式. 例1.已知数列{}n a 的前n 项和为n n S n -=2 2,求数列{}n a 的通项公式. 当1=n 时,111==S a ,当2n ≥时,34)1()1(222 2-=-+---=n n n n n a n ,经检验 1=n 时 11=a 也适 合34-=n a n ,∴34-=n a n ()n N +∈ 2.等差数列 等差数列的定义:如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。 等差数列的判定方法: (1)定义法:对于数列 {}n a ,若d a a n n =-+1(常数),则数列{}n a 是等差数列。 (2)等差中项:对于数列{}n a ,若212+++=n n n a a a ,则数列{}n a 是等差数列。 等差数列的通项公式: 如果等差数列 {}n a 的首项是1a ,公差是d ,则等差数列的通项为d n a a n )1(1-+=。 说明:该公式整理后是关于n 的一次函数。 等差数列的前n 项和:①2)(1n n a a n S += ②d n n na S n 2 ) 1(1-+ = 说明:对于公式②整理后是关于n 的没有常数项的二次函数。 等差中项: 如果a , A ,b 成等差数列,那么A 叫做a 与b 的等差中项。即:2 b a A += 或b a A +=2 说明:在一个等差数列中,从第2项起,每一项(有穷等差数列的末项除外)都是它的前一项与后一项的等差中项;事实上等差数列中某一项是与其等距离的前后两项的等差中项。 等差数列的性质: (1)等差数列任意两项间的关系:如果n a 是等差数列的第n 项,m a 是等差数列的第m 项,且n m ≤,公差为d ,则有 d m n a a m n )(-+=

上海高中数学数列的极限(完整资料)

【最新整理,下载后即可编辑】 7.6 数列的极限 课标解读: 1、理解数列极限的意义; 2、掌握数列极限的四则运算法则。 目标分解: 1、数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{}n a 的项n a 无限地趋近于某个常数a (即||a a n -无限地接近于0),那么就说数列{}n a 以a 为极限。 注:a 不一定是{}n a 中的项。 2、几个常用的极限:①C C n =∞→lim (C 为常数);②01lim =∞→n n ;③ ) 1|(|0lim <=∞ →q q n n ; 3、数列极限的四则运算法则:设数列{}n a 、{}n b , 当 a a n n =∞ →lim , b b n n =∞ →lim 时,b a b a n n n ±=±∞→)(lim ; b a b a n n n ?=?∞ →)(lim ; )0(lim ≠=∞→b b a b a n n n 4、两个重要极限: ① ?? ???<=>=∞→00100 1lim c c c n c n 不存在

②?? ???-=>=<=∞ →11||111||0 lim r r r r r n n 或不存在 问题解析: 一、求极限: 例1:求下列极限: (1) 3 21 4lim 22 +++∞→n n n n (2) 2 4323lim n n n n n -+∞→ (3) )(lim 2n n n n -+∞ → 例2:求下列极限: (1) )23741(lim 2222n n n n n n -++++∞→ ; (2) ])23()13(11181851521[lim +?-++?+?+?∞→n n n 例3:求下式的极限:

高中数学必修5数列知识点总结

数列 1. 等差数列 通项公式:1(1),n a a n d n *=+-∈N 等差中项:如果2 a b A += ,那么A 是a 与b 的等差中项 前n 项和:11()(1)22n n n a a n n S na d +-==+ 若n a 是等差数列,且k l m n +=+,则k l m n a a a a +=+ ? 等差数列的通项求法应该围绕条件结合1,a d ,或是利用特殊项。 ? 等差数列的最值问题求使0(0)n n a a ≥≤成立的最大n 值即可得n S 的最值。 例1.{}n a 是等差数列,538,6a S ==,则9a =_________ 解析:513113248,33362 a a d S a d a d ?=+==+ =+=,解得10,2a d ==,916a = 例2.{}n a 是等差数列,13110,a S S >=,则当n 为多少时,n S 最大? 解析:由311S S =得1213 d a =- ,从而 21111(1)249()(7)2131313n a n n S na a n a -=+?-=--+,又10a >所以1013 a -< 故7n = 2. 等比数列 通项公式:11(0)n n a a q q -=≠ 等比中项:2G ab = 前n 项和:111(1)(1)(1)11n n n na q S a a q a q q q q =??=--?=≠?--? 若{}n a 是等比数列,且m n p q +=+,则m n p q a a a a ?=? 例.{}n a 是由正数组成的等比数列,2431,7a a S ==,则5S =__________

最新上海教材高中数学知识点总结(最全)

精品文档 目录 一、集合与常用逻辑 二、不等式 三、函数概念与性质 四、基本初等函数 五、函数图像与方程 六、三角函数 七、数 列 八、平面向量 九、复数与推理证明 十、直线与圆 十一、曲线方程 十二、矩阵、行列式、算法初步 十三、立体几何 十四、计数原理 十五、概率与统计 一、集合与常用逻辑 1.集合概念 元素:互异性、无序性 2.集合运算 全集U :如U=R 交集:}{B x A x x B A ∈∈=且 并集:}{B x A x x B A ∈∈=?或 补集:}{A x U x x A C U ?∈=且 3.集合关系 空集A ?φ 子集B A ?:任意B x A x ∈?∈ B A B B A B A A B A ??=??= 注:数形结合---文氏图、数轴 4.四种命题 原命题:若p 则q 逆命题:若q 则p 否命题:若p ?则q ? 逆否命题:若q ?则p ? 原命题?逆否命题 否命题?逆命题 5.充分必要条件 p 是q 的充分条件:q P ? p 是q 的必要条件:q P ? p 是q 的充要条件:p ?q 6.复合命题的真值 ①q 真(假)?“q ?”假(真) ②p 、q 同真?“p ∧q ”真 ③p 、q 都假?“p ∨q ”假 7.全称命题、存在性命题的否定 ?∈M, p(x )否定为: ?∈M, )(X p ? ?∈M, p(x )否定为: ?∈M, )(X p ?

精品文档 二、不等式 1.一元二次不等式解法 若0>a ,02 =++c bx ax 有两实根βα,)(βα<,则 02<++c bx ax 解集),(βα 02>++c bx ax 解集),(),(+∞-∞βα 注:若0a 情况 2.其它不等式解法—转化 a x a a x <<-?a x a x >或a x - 0) () (>x g x f ?0)()(>x g x f ?>)()(x g x f a a )()(x g x f >(a >1) ?>)(log )(log x g x f a a f x f x g x ()()() >--x x x f x f f(x)减函数:? 注:①判断单调性必须考虑定义域 ②f(x)单调性判断 定义法、图象法、性质法“增+增=增” ③奇函数在对称区间上单调性相同 偶函数在对称区间上单调性相反 3.周期性 T 是()f x 周期?()()f x T f x +=恒成立(常数0≠T )

高一数学必修五数列知识点

高一数学必修五数列知识点 1.数列的函数理解: ①数列是一种特殊的函数。其特殊性主要表现在其定义域和值域上。数列可以看作一个定义域为正整数集N*或其有限子集{1,2,3,…,n}的函数,其中的{1,2,3,…,n}不能省略。②用函数的 观点认识数列是重要的思想方法,一般情况下函数有三种表示方法,数列也不例外,通常也有三种表示方法:a.列表法;b。图像法;c.解 析法。其中解析法包括以通项公式给出数列和以递推公式给出数列。 ③函数不一定有解析式,同样数列也并非都有通项公式。 2.通项公式:数列的第N项an与项的序数n之间的关系可以用 一个公式an=f(n)来表示,这个公式就叫做这个数列的通项公式(注:通项公式不唯一)。 数列通项公式的特点: (1)有些数列的通项公式可以有不同形式,即不唯一。 (2)有些数列没有通项公式(如:素数由小到大排成一列2,3,5,7,11,...)。 3.递推公式:如果数列{an}的第n项与它前一项或几项的关系可以用一个式子来表示,那么这个公式叫做这个数列的递推公式。 数列递推公式特点: (1)有些数列的递推公式可以有不同形式,即不唯一。 (2)有些数列没有递推公式。 有递推公式不一定有通项公式。 注:数列中的项必须是数,它可以是实数,也可以是复数。 1、ABC的三边a,b,c既成等比数列又成等差数列,则三角 形的形状是()

A.直角三角形 B.等腰三角形 C.等腰直角三角形 D.等边三角形 2、在等比数列{an}中,a6a5a7a548,则S10等于() A.1023 B.1024 C.511 D.512 3、三个数成等比数列,其积为1728,其和为38,则此三数为() A.3,12,48 B.4,16,27 C.8,12,18 D.4,12,36 4、一个三角形的三内角既成等差数列,又成等比数列,则三内角的公差等于() A.0 B.15 C.30 D.60 5、等差数列{an}中,a1,a2,a4恰好成等比数列,则a1的值是()a4 A.1 B.2 C.3 D.4 6、某种电讯产品自投放市场以来,经过三年降价,单价由原来的174元降到58元,这种电讯产品平均每次降价的百分率大约是() A.29% B.30% C.31% D.32% 7、若log4(x+2y)+log4(x-2y)=1,则∣x∣-∣y∣的最小值是。 (1)记数学笔记,特别是对概念理解的不同侧面和数学规律,教师在课堂中拓展的课外知识。记录下来本章你觉得最有价值的思想方法或例题,以及你还存在的未解决的问题,以便今后将其补上。 (2)建立数学纠错本。把平时容易出现错误的知识或推理记载下来,以防再犯。争取做到:找错、析错、改错、防错。达到:能从反面入手深入理解正确东西;能由果朔因把错误原因弄个水落石出、以便对症下药;解答问题完整、推理严密。 (3)熟记一些数学规律和数学小结论,使自己平时的运算技能达到了自动化或半自动化的熟练程度。

高中数学教案:极限与导数极限的概念

极 限 的 概 念(4月27日) 教学目的:理解数列和函数极限的概念; 教学重点:会判断一些简单数列和函数的极限; 教学难点:数列和函数极限的理解 教学过程: 一、实例引入: 例:战国时代哲学家庄周所著的《庄子·天下篇》引用过一句话:“一尺之棰,日取其半,万世不竭。”也就是说一根长为一尺的木棒,每天截去一半,这样的过程可以无限制地进行下去。(1)求第n 天剩余的木棒长度n a (尺),并分析变化趋势;(2)求前n 天截下的木棒的总长度n b (尺),并分析变化趋势。 观察以上两个数列都具有这样的特点:当项数n 无限增大时,数列的项n a 无限趋近于某个常数A (即A a n -无限趋近于0)。n a 无限趋近于常数A ,意指“n a 可以任意地靠近A ,希望它有多近就有多近,只要n 充分大,就能达到我们所希望的那么近。”即“动点n a 到A 的距离A a n -可以任意小。 二、新课讲授 1、数列极限的定义: 一般地,如果当项数n 无限增大时,无穷数列}{n a 的项n a 无限趋近于..... 某个常数A (即A a n -无限趋近于0) ,那么就说数列}{n a 的极限是A ,记作 A a n n =∞ →lim 注:①上式读作“当n 趋向于无穷大时,n a 的极限等于A ”。“n →∞”表示“n 趋向于无穷大”,即n 无限增大的意思。A a n n =∞ →lim 有时也记作当n →∞时,n a →A ②引例中的两个数列的极限可分别表示为_____________________,____________________ ③思考:是否所有的无穷数列都有极限? 例1:判断下列数列是否有极限,若有,写出极限;若没有,说明理由 (1)1, 21,31,…,n 1,… ;(2)21,32,43,…,1 +n n ,…;

上海高二数学—数列单元测试卷

上海高二数学—数列单元测试卷 2013.10 班级 姓名 学号 一、填空题(每小题3分,共36分) 1.74 lim 35 n n n →∞+-= . 2.将0.2? 化为最简分数后,分子与分母之和为 . 3.已知等比数列{}n a 中,,81,341==a a 则该数列的通项=n a . 4.计算:22 342 lim (21)n n n n →∞+-+= . 5.已知数列{}n a 为等差数列,若169a a +=,47a =,则9a = . 6.等差数列{}n a 中,148121520a a a a a ++++=,则=15S . 7、在数列{}n a 和{}n b 中,21=a ,)(031*∈=-+N n a a n n ,n b 是n a 与1+n a 的等差中项,则=3b _________. 8.已知数列{}n a 的首项12a =,且121n n a a +=-,则通项公式n a = . 10.设()11112612 1n S n n = ++++ +,且13 4 n n S S +?=,则=n . 10.若221log (9)log ()13 x x +-=,则2 lim(1)n n x x x →∞ +++= . 11.若数列{}n a 是等差数列,则数列n a a a b n n +++= 21(*∈N n )也为等 差数列;类比上述性质,相应地,若数列{}n c 是等比数列,且0>n c ,则有 =n d 也是等比数列. 12.在数列{}n a 中,如果存在非零常数T ,使得m T m a a =+对于任意非零正整数m 均成立,那么就称数列{}n a 为周期数列,其中T 叫做数列{}n a 的周期.已知周期数列{}n x 满足 11n n n x x x +-=-(*2,n n N ≥∈)且11x =,2x a =(),0a R a ∈≠,当{}n x 的周期最小时, 该数列前2005项和是 .

高中数学--极限

高中数学-极 限 考试内容: 教学归纳法.数学归纳法应用. 数列的极限. 函数的极限.根限的四则运算.函数的连续性. 考试要求: (1)理解数学归纳法的原理,能用数学归纳法证明一些简单的数学命题. (2)了解数列极限和函数极限的概念. (3)掌握极限的四则运算法则;会求某些数列与函数的极限. (4)了解函数连续的意义,了解闭区间上连续函数有最大值和最小值的性质. §13. 极 限 知识要点 1. ⑴第一数学归纳法:①证明当n 取第一个0n 时结论正确;②假设当k n =(0,n k N k ≥∈+)时,结论正确,证明当1+=k n 时,结论成立. ⑵第二数学归纳法:设)(n P 是一个与正整数n 有关的命题,如果 ①当0n n =(+∈N n 0)时,)(n P 成立; ②假设当k n ≤(0,n k N k ≥∈+)时,)(n P 成立,推得1+=k n 时,)(n P 也成立. 那么,根据①②对一切自然数0n n ≥时,)(n P 都成立. 2. ⑴数列极限的表示方法: ①a a n n =∞ →lim ②当∞→n 时,a a n →. ⑵几个常用极限: ①C C n =∞ →lim (C 为常数) ②),(01 lim 是常数k N k n k n ∈=∞→ ③对于任意实常数, 当1|| a 时,0lim =∞ →n n a 当1=a 时,若a = 1,则1lim =∞→n n a ;若1-=a ,则n n n n a )1(lim lim -=∞ →∞→不存在 当1 a 时,n n a ∞ →lim 不存在 ⑶数列极限的四则运算法则: 如果b b a a b n n n ==∞ →∞→lim ,lim ,那么 ①b a b a n n n ±=±∞ →)(lim

2019年上海高考数学 拓展学习2 数列

2019年高中数学·拓展学习 数列 一、单调性: 1、已知数列{}n a 是首项为1,公差为2m 的等差数列,前n 项和为n S ,设2n n n S b n =?* ()n N ∈,若数列{}n b 是递减数列,则实数m 的取值范围是 2、等差数列{}n a 的通项公式为28n a n =-,下列四个命题.1α:数列{}n a 是递增数列;2α:数列{}n na 是递增数列;3α:数列n a n ?????? 是递增数列;4α:数列{}2 n a 是递增数列.其中真命题的是 3、已知定义在R 上的函数)(x f ,对任意实数21,x x 都有1212()1()()f x x f x f x +=++,且(1)1f =. (1)设对任意正整数n ,有1 () n b f n = .若不等式12226 log (1)35 n n n b b b x +++++> +对任意不小于2的正整数n 都成立,求实数x 的取值范围.

二、新定义型: 1、(运算型)已知各项均为正数的数列{}n a 满足11(2)(1)0n n n n a a a a ++--=*()n N ∈,且110a a =,则首项1a 所有可能取值中最大值为 2、(方法型)设1210x x x ,,,为1210,, ,的一个排列,则满足对任意正整数m n ,,且110m n ≤<≤,都有m n x m x n +≤+成立的不同排列的个数为( ) (A )512 (B )256 (C )255 (D )64 3、(运算型)已知等比数列1a 、2a 、3a 、4a 满足)1,0(1∈a ,)2,1(2∈a ,)4,2(3∈a ,则4a 的取值范围是( ) A. (3,8) B. (2,16) C. (4,8) D. 4、(运算型)对于数列{}n a ,规定{}n a ?为数列{}n a 的一阶差分数列,其中11()n n n a a a n N *+?=-∈.对于正整数k ,规定{}k n a ?为{}n a 的k 阶差分数列,其中111k n k n k n a a a -+-?=?-?.若数列{}n a 的通项1 3 n n a -=,则 2122232n a a a a ?+?+?++?= 5、(运算型)以()m ,0间的整数()N m m ∈>,1为分子,以m 为分母组成分数集合1A ,其所有元素和为1a ;以() 2 ,0m 间的整数()N m m ∈>,1为分子,以2 m 为分母组成不属于集合1A 的分数集合2A ,其所有元素和为2a ;……,依次类推以( )n m ,0间的整数()N m m ∈>,1为分子,以n m 为分母组成不属于121,,,n A A A -???的分数集合n A ,其所有 元素和为n a ;则12n a a a ???+++=________. 6、(概念型)已知二次函数2() ()f x x ax a x R =-+∈同时满足: ① 不等式()0f x ≤的解集有且只有一个元素; ② 在定义域内存在120x x <<,使得不等式12()()f x f x >成立.设数列{}n a 的前n 项和为n S ,且()n S f n =.规定:各项均不为零的数列{}n b 中,所有满足10i i b b +?<的正整数i 的个数称为这个数列{}n b 的变号数.若令1n n a b a =-(*n N ∈),则数列{}n b 的变号数等于 7、(概念型)设)2(log 1+=+n a n n )(* ∈N n ,称k a a a a 321为整数的k 为“希望数”,则在)2013,1(内所有“希 望数”的个数为 8、(匹配型)设数列{}n a 是公差不为零的等差数列,6,231==a a ,若自然数,...,...,21k n n n 满足 ......321<<<<

《数列极限的运算法则》教案(优质课)

《数列极限的运算法则》教案 【教学目标】:掌握数列极限的运算法则,并会求简单的数列极限的极限。 【教学重点】:运用数列极限的运算法则求极限 【教学难点】:数列极限法则的运用 【教学过程】: 一、复习引入: 函数极限的运算法则:如果,)(lim ,)(lim 0 B x g A x f x x x x ==→→则[]= ±→)()(lim 0 x g x f x x ___ []=→)().(lim 0 x g x f x x ____,=→) () (lim x g x f x x ____(B 0≠) 二、新授课: 数列极限的运算法则与函数极限的运算法则类似: 如果,lim ,lim B b A a n n n n ==∞ →∞ →那么 B A b a n n n +=+∞ →)(lim B A b a n n n -=-∞ →)(lim B A b a n n n .).(lim =∞ → )0(lim ≠=∞→B B A b a n n n 推广:上面法则可以推广到有限..多个数列的情况。例如,若{}n a ,{}n b ,{} n c 有极限,则:n n n n n n n n n n c b a c b a ∞ →∞ →∞ →∞ →++=++lim lim lim )(lim 特别地,如果C 是常数,那么CA a C a C n n n n n ==∞ →∞ →∞ →lim .lim ).(lim 三、例题: 例1.已知,5lim =∞ →n n a 3lim =∞→n n b ,求).43(lim n n n b a -∞ →

例2.求下列极限: (1))45(lim n n +∞→; (2)2)11 (lim -∞→n n 例3.求下列有限: (1)1312lim ++∞→n n n (2)1 lim 2-∞→n n n 分析:(1)(2)当n 无限增大时,分式的分子、分母都无限增大,分子、分母都没有极限,上面的极限运算法则不能直接运用。 例4.求下列极限: (1) )1 1 2171513( lim 2222+++++++++∞ →n n n n n n (2))39312421( lim 1 1 --∞→++++++++n n n

(word完整版)高中数学必修五数列测试题

必修五阶段测试二(第二章 数列) 时间:120分钟 满分:150分 一、选择题(本大题共12小题,每小题5分,共60分) 1.(2017·山西朔州期末)在等比数列{a n }中,公比q =-2,且a 3a 7=4a 4,则a 8等于( ) A .16 B .32 C .-16 D .-32 2.已知数列{a n }的通项公式a n =????? 3n +1(n 为奇数),2n -2(n 为偶数),则a 2·a 3等于( ) A .8 B .20 C .28 D .30 3.已知等差数列{a n }和等比数列{b n }满足a 3=b 3,2b 3-b 2b 4=0,则数列{a n }的前5项和S 5为( ) A .5 B .10 C .20 D .40 4.(2017·山西忻州一中期末)在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( ) A .102 B.9658 C.9178 D .108 5.等比数列{a n }中,a 2=9,a 5=243,则{a n }的前4项和为( ) A .81 B .120 C .168 D .192 6.等差数列{a n }中,a 10<0, a 11>0, 且a 11>|a 10|, S n 是前n 项的和,则( ) A .S 1, S 2, S 3, …, S 10都小于零,S 11,S 12,S 13,…都大于零 B .S 1,S 2,…,S 19都小于零,S 20,S 21,…都大于零 C .S 1,S 2,…,S 5都大于零,S 6,S 7,…都小于零 D .S 1,S 2,…,S 20都大于零,S 21,S 22,…都小于零 7.(2017·桐城八中月考)已知数列{a n }的前n 项和S n =an 2+bn (a ,b ∈R ),且S 25=100,则a 12+a 14等于( ) A .16 B .8 C .4 D .不确定 8.(2017·莆田六中期末)设{a n }(n ∈N *)是等差数列,S n 是其前n 项和,且S 5S 8,则下列结论错误的是( ) A .d <0 B .a 7=0 C .S 9>S 5 D .S 6和S 7均为S n 的最大值 9.设数列{a n }为等差数列,且a 2=-6,a 8=6,S n 是前n 项和,则( ) A .S 4<S 5 B .S 6<S 5 C .S 4=S 5 D .S 6=S 5 10.(2017·西安庆安中学月考)数列{a n }中,a 1=1,a 2=23,且1a n -1+1a n +1=2a n (n ∈N *,n ≥2),则a 6等于( )

最新上海数学高二知识点总结

?? ?无穷数列 有穷数列 按项数 2 221,21(1)2n n a a n a a n a n =??=+=??=-+??=-??n n n n n 常数列:递增数列:按单调性递减数列:摆动数列: 数列: 1.数列的有关概念: (1) 数列:按照一定次序排列的一列数。数列是有序的。数列是定义在自然数N*或它的有限子 集{1,2,3,…,n }上的函数。 (2) 通项公式:数列的第n 项a n 与n 之间的函数关系用一个公式来表示,这个公式即是该数列的 通项公式。如: 221n a n =-。 (3) 递推公式:已知数列{a n }的第1项(或前几项),且任一项a n 与他的前一项a n -1(或前几项) 可以用一个公式来表示,这个公式即是该数列的递推公式。 如: 121,2,a a ==12(2)n n n a a a n --=+>。 2.数列的表示方法: (1) 列举法:如1,3,5,7,9,… (2)图象法:用(n, a n )孤立点表示。 (3) 解析法:用通项公式表示。 (4)递推法:用递推公式表示。 3.数列的分类: 4.数列{a n }及前n 项和之间的关系: 123n n S a a a a =+++ + 11,(1),(2) n n n S n a S S n -=?=?-≥? 5.等差数列与等比数列对比小结:

(三)不等式 1、0a b a b ->?>;0a b a b -=?=;0a b a b -?<; ②,a b b c a c >>? >; ③a b a c b c >?+> +; ④,0a b c ac bc >>?>,,0a b c ac bc >>?+>+; ⑥0,0a b c d ac bd >>>>?>; ⑦()0,1n n a b a b n n >>?>∈N >; ⑧)0,1a b n n >>>∈N >. 小结:代数式的大小比较或证明通常用作差比较法:作差、化积(商)、判断、结论。 在字母比较的选择或填空题中,常采用特值法验证。 3、一元二次不等式解法: (1)化成标准式:2 0,(0)ax bx c a ++>>;(2)求出对应的一元二次方程的根; (3)画出对应的二次函数的图象; (4)根据不等号方向取出相应的解集。 线性规划问题: 1.了解线性约束条件、目标函数、可行域、可行解、最优解 2.线性规划问题:求线性目标函数在线性约束条件下的最大值或最小值问题. 3.解线性规划实际问题的步骤: (1)将数据列成表格;(2)列出约束条件与目标函数;(3)根据求最值方法:①画:画可行域;②移:移与目标函数一致的平行直线;③求:求最值点坐标;④答;求最值; (4)验证。 两类主要的目标函数的几何意义: ①z ax by =+-----直线的截距;②22()()z x a y b =-+------两点的距离或圆的半径; 4、均值定理: 若0a >,0b >,则a b +≥2 a b +≥. ()2 0,02a b ab a b +??≤>> ??? ;

(经典)高中数学最全数列总结及题型精选

高中数学:数列及最全总结和题型精选 一、数列的概念 (1)数列定义:按一定次序排列的一列数叫做数列; 数列中的每个数都叫这个数列的项。记作n a ,在数列第一个位置的项叫第1项(或首项),在第二个位置的叫第2项,……,序号为n 的项叫第n 项(也叫通项)记作n a ; 数列的一般形式:1a ,2a ,3a ,……,n a ,……,简记作 {}n a 。 (2)通项公式的定义:如果数列}{n a 的第n 项与n 之间的关系可以用一个公式表示,那么这个公式就叫 这个数列的通项公式。 例如:①:1 ,2 ,3 ,4, 5 ,… ②:5 14131211,,,,… 说明: ①{}n a 表示数列,n a 表示数列中的第n 项,n a = ()f n 表示数列的通项公式; ② 同一个数列的通项公式的形式不一定唯一。例如,n a = (1)n -=1,21 ()1,2n k k Z n k -=-?∈? +=?; ③不是每个数列都有通项公式。例如,1,1.4,1.41,1.414,…… (3)数列的函数特征与图象表示: 从函数观点看,数列实质上是定义域为正整数集N +(或它的有限子集)的函数()f n 当自变量n 从1开始 依次取值时对应的一系列函数值(1),(2),(3),f f f ……,()f n ,…….通常用n a 来代替()f n ,其图象是一群孤立点。 (4)数列分类:①按数列项数是有限还是无限分:有穷数列和无穷数列;②按数列项与项之间的大小关系分:递增数列、递减数列、常数列和摆动数列。 例:下列的数列,哪些是递增数列、递减数列、常数列、摆动数列? (1)1,2,3,4,5,6,… (2)10, 9, 8, 7, 6, 5, … (3) 1, 0, 1, 0, 1, 0, … (4)a, a, a, a, a,… (5)数列{n a }的前n 项和n S 与通项n a 的关系:1 1(1)(2) n n n S n a S S n -=?=? -?≥ 二、等差数列 (一)、等差数列定义:一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫等差数列,这个常数叫做等差数列的公差,公差通常用字母d 表示。用递推公式表示为1(2)n n a a d n --=≥或1(1)n n a a d n +-=≥ 例:等差数列12-=n a n ,=--1n n a a (二)、等差数列的通项公式:1(1)n a a n d =+-; 说明:等差数列(通常可称为A P 数列)的单调性:d 0>为递增数列,0d =为常数列,0d < 为递减数列。 例:1.已知等差数列{}n a 中,12497116 a a a a ,则,==+等于( ) A .15 B .30 C .31 D .64 2.{}n a 是首项11a =,公差3d =的等差数列,如果2005n a =,则序号n 等于 (A )667 (B )668 (C )669 (D )670 3.等差数列12,12+-=-=n b n a n n ,则n a 为 n b 为 (填“递增数列”或“递减数列”) (三)、等差中项的概念:

相关主题