搜档网
当前位置:搜档网 › 表面钝化硅纳米线的能带结构

表面钝化硅纳米线的能带结构

表面钝化硅纳米线的能带结构
表面钝化硅纳米线的能带结构

优质纳米晶硅薄膜的低温制备技术及其在太阳能电池中的应用进展

收稿日期:2008209211 3基金项目:韩山师范学院青年科研基金资助项目(0503) 作者简介:陈城钊(1975— ),男,广东潮州人,讲师,硕士.第2卷 第4期 材 料 研 究 与 应 用 Vo1.2,No.42008年12月 MA TERIAL S RESEARCH AND APPL ICA TION Dec .2008 文章编号:167329981(2008)0420450205 优质纳米晶硅薄膜的低温制备技术及其 在太阳能电池中的应用进展3 陈城钊1,邱胜桦1,刘翠青1,吴燕丹1,李 平1,余楚迎2,林璇英1,2 (1.韩山师范学院物理与电子工程系,广东潮州 521041;2.汕头大学物理系,广东汕头 515063) 摘 要:纳米晶硅薄膜是集晶体硅材料和氢化非晶硅薄膜优点于一体,可望广泛应用于薄膜太阳能电池、光存储器、发光二极管和薄膜晶体管等光电器件的一种新型功能材料.本文综述低温制备优质纳米晶硅薄膜技术的研究进展及其在薄膜硅太阳能电池上的应用.关键词:纳米晶硅薄膜;太阳能电池;低温制备;进展中图分类号:TM914.4 文献标识码:A 纳米晶硅(nc 2Si ζH )薄膜就是硅的纳米晶粒镶嵌在a 2Si ζH 网络里的一种硅纳米结构.由于它具 有较高的电导率(10-3~10-1Ω-1?cm -1)、宽带隙、高光敏性、高光吸收系数等优良的光电特性而引起学术界的重视.纳米晶硅薄膜同时具备宽带隙和高电导这两种太阳能电池窗口材料所需的优良性质,现已成为研究探索的热门纳米薄膜材料 [1] .除用于 制备薄膜太阳能电池外,在发光二极管、光存储器、隧穿二极管、薄膜晶体管以及单电子晶体管等光电器件方面也有潜在应用 [2] . 1 低温制备纳米晶硅薄膜的技术 为了制备适用于以玻璃为衬底的太阳能电池的 纳米晶硅薄膜,近年来发展了低温(<450℃)制膜技术.按成膜过程可分为两大类:一类是先制备非晶态材料,再固相晶化为纳米晶硅;另一类是直接在玻璃衬底上沉积纳米晶硅薄膜[2] . 1.1 固相晶化法 固相晶化(SPC )法的特点是非晶固体发生晶化的温度低于其熔融后结晶的温度.低造价太阳能电 池的纳米晶薄膜,一般以廉价的玻璃作衬底,以硅烷气为原材料,用PECVD 法沉积a 2Si ∶H 薄膜,然后再用热处理的方法使其转化为纳米晶硅薄膜.这种方法的优点是能制备大面积的薄膜,可进行原位掺杂,成本低,工艺简单,易于批量生产.常规的高温炉退火、金属诱导晶化、快速热退火、区域熔化再结晶等都属于固相晶化法.1.1.1 常规高温炉退火 该方法是在氮气保护下把非晶硅薄膜放入炉腔内退火,使其由非晶态转变为纳米晶态[3].非晶硅晶化的驱动力是晶相相对于非晶相较低的G ibbs 自由能.固相晶化过程主要由晶核的形成及晶核长大两步完成.形核率和生长速率都受温度的影响,所以纳米晶硅薄膜的晶粒尺寸受温度的影响很大.晶硅薄膜的晶粒尺寸除受温度的影响外,与初始非晶硅膜的结构状况也有密切的关系.有研究者采用“部分掺杂法”来增大晶粒尺寸,即在基底上沉积两层膜,下层进行磷掺杂,作为成核层,上层不掺杂,作为晶体生长层,退火后可获得较大的晶粒[4].1.1.2 金属诱导晶化 金属诱导晶化就是在非晶硅薄膜上镀一层金属

40-背面氮化硅钝化膜厚度对单晶硅太阳能电池的影响

第 12 届中国光伏大会暨国际光伏展览会论文(A 晶体硅材料及电池)
背面氮化硅钝化 氮化硅钝化膜厚度对单晶硅太阳能电池的影响 钝化膜厚度对单晶硅太阳能电池的影响
孟庆蕾, 钱洪强, 陆红艳 ,王振交 ,吴甲奇,韩培育, 姜勇飞,陈如龙,杨健,张光春,施正 荣
(无锡尚德太阳能电力有限公司 214028 qinglei.meng@https://www.sodocs.net/doc/1e8233931.html,)
摘要:背面局部接触电池可以减少背面复合。本文通过调节背面局部接触电池背场和硅基材之
间 SIN 钝化层不同的厚度,对电池电性能进行研究。电池 IV 参数表明三层氮化硅具有更佳的表 面钝化效果,硅太阳电池的转换效率、开路电压 Voc 和短路电流密度 Jsc 都有所提升。
关键词: 关键词:晶体硅太阳能电池 ;钝化 ;SINx背场;不同SINx厚度 1 前言
高效低成本是当今太阳能电池发展的两大趋 势。 通过硅片的减薄,可以不断地降低硅太阳电池制 造成本。但是当硅片厚度降低到一定程度时,长波 长的光子在被吸收前就有可能透过硅片。 所以, 随着硅片厚度的降低,电池背面需有一定的具有行 之有效的长波反射能力将没有被吸收的光子反射 回到电池内部,从而进行二次或者多次反射后的吸 收。 背面氮化硅膜钝化太阳电池在修复背表面态 方面有很大优势[3],德国Fraunhofer ISE 的 Schneiderlochner采用Al/PECVD SiNx 薄膜并以激 光烧结背电极技术制备的电池转换效率在10 cm×10 cm 上达到17.1% ,斯图加特大学采用的低
[1]
温背钝化技术和LFC 技术制备的电池的转换效率 达到20.5%[2]。 本文采用PECVD方法在单晶硅背面沉积不同 膜厚的氮化硅,研究不同膜厚的氮化硅对单晶硅太 阳电池的影响。
2 实验
取用体少子寿命在100μs左右单晶片原始硅片, 厚度在200μm左右,实测电阻率范围1~3?m。将实 验片分为两组,A组使用PECVD在硅片背面沉积约 180nmSINx,B组使用PECVD在硅片背面沉积约 270nmSINx。再进行光刻以及常规的印刷工艺,制 成电池片,测试不同SINx厚度对电池性能参数影 响,并通过Correscan、QSSPCD等测试手段进行分 析。
3 实验数据对比
表 1 不同SINx厚度电池性能比较 Voc [mV] 659.6 A组 180nmSINx 658.6 653.2 651.5 656 平均值 655.78 Isc [A] 5.988 6.014 5.928 6.035 6.045 6.002 EFF [%] 19.35 19.5 19.03 18.99 19.55 19.284 FF [%] 75.86 76.2 76.08 74.77 76.35 75.852 Rs [Ohm] 0.004 0.0039 0.0039 0.0044 0.004 0.00404 Rsh [Ohm] 228.3 110.4 197.3 323.6 229.9 217.9

纳米材料的制备技术及其特点

纳米材料的制备技术及其特点 一纳米材料的性能 广义地说,纳米材料是指其中任意一维的尺度小于100nm的晶体、非晶体、准晶体以及界面层结构的材料。当小粒子尺寸加入纳米量级时,其本身具有体积效应、表面效应、量子尺寸效应和宏观量子隧道效应等。从而使其具有奇异的力学、电学、光学、热学、化学活性、催化和超导特性,使纳米材料在各种领域具有重要的应用价值。通常材料的性能与其颗粒尺寸的关系极为密切。当晶粒尺寸减小时, 晶界相的相对体积将增加,其占整个晶体的体积比例增大,这时,晶界相对晶体整体性能的影响作用就非常显著。此外,由于界面原子排列的无序状态,界面原子键合的不饱和性能都将引起材料物理性能上的变化。研究证实,当材料晶粒尺寸小到纳米级时,表现出许多与一般材料截然不同的性能,如高硬度、高强度和陶瓷超塑性以及特殊的比热、扩散、光学、电学、磁学、力学、烧结等性能。而这些特性主要是由其表面效应、体积效应、久保效应等引起的。由于纳米粒子有极高的表面能和扩散率,粒子间能充分接近,从而范德华力得以充分发挥,使得纳米粒子之间、纳米粒子与其他粒子之间的相互作用异常激烈,这种作用提供了一系列特殊的吸附、催化、螯合、烧结等性能。 二纳米材料的制备方法

纳米材料从制备手段来分,一般可归纳为物理方法和化学方法。 1 物理制备方法 物理制备纳米材料的方法有: 粉碎法、高能球磨法[4]、惰性气体蒸发法、溅射法、等离子体法等。 粉碎法是通过机械粉碎或电火花爆炸而得到纳米级颗粒。 高能球磨法是利用球磨机的转动或振动,使硬球对原料进行强烈的撞击,研磨和搅拌,将金属或合金粉碎为纳米级颗粒。高能球磨法可以将相图上几乎不互溶的几种元素制成纳米固溶体,为发展新材料开辟了新途径。 惰性气体凝聚- 蒸发法是在一充满惰性气体的超高真空室中,将蒸发源加热蒸发,产生原子雾,原子雾再与惰性气体原子碰撞失去能量,骤冷后形成纳米颗粒。由于颗粒的形成是在很高的温度下完成的,因此可以得到的颗粒很细(可以小于10nm) ,而且颗粒的团、凝聚等形态特征可以得到良好的控制。 溅射技术是采用高能粒子撞击靶材料表面的原子或分子交换能量或动量,使得靶材表面的原子或分子从靶材表面飞出后沉积到基片上形成纳米材料。常用的有阴极溅射、直流磁控溅射、射频磁控溅射、离子束溅射以及电子回旋共振辅助反应磁控溅射等技术。 等离子体法的基本原理是利用在惰性气氛或反应性气氛中

纳米材料和纳米结构

纳米材料和纳米结构 1.纳米微粒尺寸的评估 在进行纳米微粒尺寸的评估之前,首先说明如下几个基本概念: (1)关于颗粒及颗粒度的概念 (i)晶粒:是指单晶颗粒,即颗粒内为单相,无晶界。 (ii)一次颗粒:是指含有低气孔率的一种独立的粒子,颗粒内部可以有界面,例如相界、晶界等。 (iii)团聚体:是由一次颗粒通过表面力或固体桥键作用形成的更大的颗粒。团聚体内含有相互连接的气孔网络。团聚体可分为硬团聚体 和软团聚体两种。团聚体的形成过程使体系能量下降。 (iv)二次颗粒:是指人为制造的粉料团聚粒子。例如制备陶瓷的工艺过程中所指的“造粒”就是制造二次颗粒。 纳米粒子一般指一次颗粒,它的结构可以是晶态、非晶态和准晶,可以是单相、多相结构。只有一次颗粒为单晶时,微粒的粒径才与晶粒尺寸(晶粒度)相同。 (2)颗粒尺寸的定义对球形颗粒来说,颗粒尺寸(粒径)是指其直径。对不规则颗粒,尺寸的定义常为等当直径,如体积等当直径、投影面积直径等。 粒径评估的方法很多,这里仅介绍几种常用的方法。 A 透射电镜观察法 用透射电镜可观察纳米粒子平均直径或粒径的分布。 该方法是一种颗粒度观察测定的绝对方法,因而具有可靠性和直观性。首先将那米粉制成的悬浮液滴在带有碳膜的电镜用Cu网上,待悬浮液中的载液(例如乙醇)挥发后,放入电镜样品台,尽量多拍摄有代表性的电镜像,然后由这些照片来测量粒径。测量方法有以下几种:(i)交叉法:用尺或金相显微镜中的标尺任意的测量约600颗粒的交叉长度,然后将交叉长度的算术平均值乘上一统一因子(1.56)来获得平均粒径;(ii)测量约100个颗粒中每个颗粒的最大交叉长度,颗粒粒径为这些交叉长度的算术平均值。(iii)求出颗粒的粒径或等当半径,画出粒径与不同粒径下的微粒数的分布图,将分布曲线中峰值对应的颗粒尺寸作为平均粒径。用这种方法往往测得的颗粒粒径是团聚体的粒径,这是因为在制备超微粒子的电镜观察样品时,首先需用超声波分散法,使超微粉分散在载液中,有时候很难使它们全部分散成一次颗粒,特别是纳米粒子很难分散,结果在样品Cu网上往往存在一些团聚体,在观察时容易把团聚体误认为是一次颗粒。电镜观察法还存在一个缺点就是测量结果缺乏统计性,这是因为电镜观察用的粉体是极少的,导致观察到的粉体的粒子分布范围并不代表整个粉体的粒径范围。 B X射线衍射线线宽法(谢乐公式) 电镜观察法测量得到的是颗粒度而不是晶粒度。X射线衍射线宽法是测定颗粒晶粒度的最好方法。当颗粒为单晶时,该法测得的是颗粒度。颗粒为多晶时,测得的是组成单个颗粒的单个晶粒的平均晶粒度。这种测量方法只适用晶态的纳

纳米材料的表面界面问题

纳米材料的表面、界面问题 目录 摘要 (2) 1 纳米粒子和纳米固体的表面、界面问题 (3) 纳米微粒的表面效应 (3) 纳米固体的界面效应 (3) 纳米材料尺度效应导致的热学性能问题 (4) 纳米材料尺度效应导致的力学性能问题 (4) 纳米材料尺度效应导致的相变问题 (4) 2. 金属纳米材料的表面、界面问题 (5) 高性能铜(银)合金中的高强高导机理问题 (5) 金属复合材料的强化模型和物理机制问题 (5) 原子尺度上的Cu/X界面研究 (6) 3 纳米材料表面、界面效应的研究成果综述 (9) 参考文献 (11)

摘要 纳米材料包含纳米微粒和纳米固体两部分,纳米微粒的粒子直径与电子的德布罗意波长相当,并且具有巨大的比表面;由纳米微粒构成的纳米固体又存在庞大的界面成分。强大的表面和界面效应使纳米材料体现出许多异常的特性和新的规律,这些特性和规律使其展现出广阔的应用前景。其中,在宏观尺度上制造出具有纳米结构和纳米效应的高性能金属材料,并揭示这些材料的组织演化特征以实现功能调控,是金属材料学科面临的重大科学问题和需要解决的核心关键技术。本文将对纳米材料的表面、界面效应进行介绍并重点阐述金属纳米材料界面、尺度与材料塑变、强化关系的研究进展。 关键词:纳米材料;表面效应;复合材料 、

1 纳米粒子和纳米固体的表面、界面问题 纳米粒子是指颗粒尺度在范围的超细粒子,它的尺度小于通常的微粉,接近于原子簇。是肉眼和一般显微镜看不见的微小粒子[1]。只能用高倍的电子显微镜进行观察。最早日本名古屋大学上田良二教授给纳米微粒下了一个定义:用电子显微镜能看到的微粒被称为纳米微粒[2]。 纳米固体是由纳米微粒压制活特殊加工而成的新型固体材料,它可以是单一材料,也可以是复合材料。纳米固体最早是由联邦德国萨尔兰大学格莱特等人在80年代初首先制成的。他们用气相冷凝发制得具有清洁表面的纳米级超级微粒子,在超高真空下加压形成固体材料。 纳米微粒的表面效应 随着微粒粒径的减小,其比表面积大大增加,位于表面的原子数目将占相当大的比例。例如粒径为5nm时,表面原子的比例达到50%;粒径为2nm时,表面原子的比例数猛增到80%;粒径为1nm时,表面原子比例数达到99%,几乎所有原子都处于表面状态。庞大的表面使纳米微粒的表面自由能,剩余价和剩余键力大大增加。键态严重失配、出现了许多活性中心,表面台阶和粗糙度增加,表面出现非化学平衡、非整数配位的化学价,导致了纳米微粒的化学性质与化学平衡体系有很大差别,我们把这些差别及其作用叫做纳米微粒的表面效应[3]。 从电镜研究中也可以看出,由于强烈的表面效应使得纳米微粒的微观结构处于不断地变化之中。 纳米固体的界面效应 由纳米微粒制成的纳米固体,不同于长程有序的晶态固体,也不同于长程无序短程有序的非晶态固体,而是处于一种无序状态更高的状态。格莱特认为,这类固体的晶界有“类气体”的结构,具有很高的活性和可移动性。从结构组成上看它是由两种组元构成,一是具有不同取向的晶粒构成的颗粒组元,二是完全无序结构各不相同的晶界构成的界面组元。由于颗粒尺寸小,界面组元占据了可以与颗粒组元相比拟的体积百分数。例如当颗粒粒径为5-50nm时构成的纳米固体,

制备硅纳米晶体新的有效方法

制备硅纳米晶体新的有效方法 作者:Belle Dumé,李清旭译 引用网址:https://www.sodocs.net/doc/1e8233931.html,/eprint/abs/1999.html 相关网址:https://www.sodocs.net/doc/1e8233931.html,/articles/news/8/10/14/1 摘要/内容: 美国Minnesota 大学的工程人员发明了一种室温下在等离子体中制造硅纳米颗 粒的新方法。新方法解决了现有的基于等离子体的制备方法中的问题,可以制 造出尺寸相同的纳米颗粒。研究人员说这种晶体颗粒可以用到新的电子器件中,譬如说单个纳米颗粒晶体管(A Bapat et al. 2004 https://www.sodocs.net/doc/1e8233931.html,/abs/physics/0410038)。 相对于非晶态(无定型)硅来说,晶态硅有许多好的特性,可以用于高速电子 学(high-speed electronics)中,不过现有的等离子体合成技术(plasma synthesis techniques)总是得到非晶态(无定型)硅。并且得到的纳米颗粒 或者存在很多缺陷,或者尺寸变化范围很大。 Uwe Kortshagen和他的同事们所发展的新技术没有这些缺点,可以得到真正意 义上的无缺陷晶态纳米颗粒,并且颗粒的尺寸只在一个较小的范围内变化。 Kortshagen和合作者在一个窄的约23厘米长的石英管里注入95%的氦和氩以及5%的硅烷(SiH4),然后他们在距基电极10厘米距离的环状电极上加上一个13.56兆赫200瓦的功率,可以得到不稳定的由明亮的等离子体滴构成的细丝状的等离子体。现有的等离子体合成法使用稳定均匀的等离子体。

等离子体中的高能电子使硅烷分解得到硅原子,并且重组得到硅颗粒。利用透射电子显微镜(TEM)可以发现得到的纳米颗粒尺寸介于20-80纳米之间,并且主要呈立方体形状。 “现在,我们还没有完全明白晶体硅的形状为什么这么好,或者为什么会形成晶体。”Kortshagen 告诉 PhysicsWeb,“不过,我们相信细丝状的等离子体起到了重要作用,它把硅颗粒加热到比周围气体高几百度的温度,颗粒中的原子可以进行自我调节,找到一个能量有利的形态。” 研究人员现在希望把这种方法推广到其他像砷化镓,氮化镓这些有商用价值的材料的制备中。

纳米材料特性

《纳米材料导论》作业 1、什么是纳米材料?怎样对纳米材料进行分类? 答:任何至少有一个维度的尺寸小于100nm或由小于100nm的基本单元组成的材料称作纳米材料。它包括体积分数近似相等的两部分:一是直径为几或几十纳米的粒子,二是粒子间的界面。纳米材料通常按照维度进行分类。原子团簇、纳米微粒等为0维纳米材料。纳米线为1维纳米材料,纳米薄膜为2维纳米材料,纳米块体为3维纳米材料,及由他们组成的纳米复合材料。 按照形态还可以分为粉体材料、晶体材料、薄膜材料。 2、纳米材料有哪些基本的效应?试举例说明。 答:纳米材料的基本效应有:一、尺寸效应,纳米微粒的尺寸相当或小于光波波长、传导电子的德布罗意波长、超导态的相干长度或投射深度等特征尺寸时,周期性的边界条件将被破坏,声、光、电、磁、热力学等特征性即呈现新的小尺寸效应。出现光吸收显著增加并产生吸收峰的等离子共振频移; 磁有序态转为无序态;超导相转变为正常相;声子谱发生改变等。例如,纳米微粒的熔点远低于块状金属;纳米强磁性颗粒尺寸为单畴临界尺寸时,具有很高的矫顽力;库仑阻塞效应等。二、量子效应,当能级间距δ大于热能、磁能、静磁能、静电能、光子能量或超导态的凝聚能时,必须考虑量子效应,随着金属微粒尺寸的减小,金属费米能级附近的电子能级由准连续变为离散能级的现象和半导体微粒存在不连续的最高被占据分子轨道和最低未被占据分子轨道,能隙变宽的现象均称为量子效应。例如,颗粒的磁化率、比热容与所含电子的奇、偶有关,相应会产生光谱线的频移,介电常数变化等。 三、界面效应,纳米材料由于表面原子数增多,晶界上的原子占有相当高的 比例,而表面原子配位数不足和高的表面自由能,使这些原子易与其它原子相结合而稳定下来,从而具有很高的化学活性。引起表面电子自旋构象和电子能谱的变化;纳米微粒表面原子运输和构型的变化。四、体积效应,由于纳米粒子体积很小,包含原子数很少,许多现象不能用有无限个原子的块状物质的性质加以说明,即称体积效应。久保理论对此做了些解释。 3、纳米材料的晶界有哪些不同于粗晶晶界的特点? 答:纳米晶的晶界具有以下不同于粗晶晶界结构的特点:1)晶界具有大量未被原子占据的空间或过剩体积,2)低的配位数和密度,3)大的原子均方间距,4)存在三叉晶界。此外,纳米晶材料晶间原子的热振动要大于粗晶的晶间原子的热振动,晶界还存在有空位团、微孔等缺陷,它们与旋错、晶粒内的位错、孪晶、层错以及晶面等共同形成纳米材料的缺陷。 4、纳米材料有哪些缺陷?总结纳米材料中位错的特点。 答:纳米材料的缺陷有:一、点缺陷,如空位,溶质原子和杂质原子等,这是一种零维缺陷。二、线缺陷,如位错,一种一维缺陷,位错的线长度及位错运动的平均自由程均小于晶粒的尺寸。三、面缺陷,如孪晶、层错等,这是一种二维缺陷。纳米晶粒内的位错具有尺寸效应,当晶粒小于某一临界尺寸时,位错不稳定,趋向于离开晶粒,而当粒径大于该临界尺寸时,位错便稳定地存在于晶粒 T 内。位错与晶粒大小之间的关系为:1)当晶粒尺寸在50~100nm之间,温度<0.5 m

硅纳米线温度传感器及其特点

硅纳米线温度传感器及其特点 摘要 利用气液固相法(VLS)制备硅纳米线(SiNWs),结晶的方向和结构良好,用旋涂(SOD)法进行非原位n型掺杂。非原位掺杂过程中使用基于固态扩散的SOD 技术,该SOD技术分为涂层和驱动两个步奏。我们对含磷的硅纳米线在适当的温度和时间下进行研究,本实验取950℃保持5到60分钟。掺杂的纳米线很容易做成一个具有良好分辨率和响应速度的温度传感器。对不同掺杂浓度的SiNWs 温度传感器的校准工作已经完成。本实验测定浓度为的SiNWs传感器具有最好的分辨率(6186Ω/℃)和灵敏度。 关键词- SiNWs;VLS合成;非原位掺杂;SOD;温度传感器 I 背景 目前,硅是电子器件的重要材料。材料和工具的创新,通过“自上而下”的制造方法使电子器件的尺寸不断减小。随着尺寸的减小,“自上而下”的制造流程会出现越来越多的问题;因此,“自下而上”的制造方法更具指导意义。一维的纳米结构就是采用“自下而上”的制造方法。一维纳米结构材料硅纳米线和碳纳米管,是常用的研究纳电子学的材料,因为它们的形态、尺寸和电子的特性比整块材料优越。然而,碳纳米管材料在合成金属或半导体纳米管的控制,半导体纳米管掺杂的控制,限制了碳纳米管材料的应用。VLS制备的半导体纳米线,可以克服碳纳米管的局限性。硅纳米线(SiNWs)作为活性物质具有研究意义,因为硅纳米线可以把一维输运和传统的成熟的Si工艺制造流程组合在一起。因此,硅纳米线被认为是场效应晶体管,传感器件,光学器件等纳米电学材料的重要组成部分。 此外,硅掺杂源的选择和掺杂浓度的控制,已经在传统的集成电路工艺(固体扩散,离子注入等)中被广泛研究。然而,硅纳米线主要是在VLS法中的气相过程进行原位掺杂。但是,原位掺杂生成的硅纳米线结构难以控制;例如,常用的掺杂剂气体乙硼烷,在VLS法中用于生长SiNWs硅烷气体,会导致侧壁线额外的生长;乙硼烷浓度过高会导致非晶硅壳周围形成晶体SiNWs;这些因素会导致SiNWs轴方向的掺杂不均匀。非原位掺杂与SiNWs生长的掺杂过程分开,避免了因SiNWs侧壁生长导致掺杂剂的变化或SiNWs结构的变化。非原位扩散使用旋涂法(SOD),在硅工艺上是十分成熟的。这种方法曾在VLS法进行磷掺杂生成SiNWs实验中简单介绍过。对SiNWs进行非原位掺杂,最适合用固态旋涂法控制掺杂物,而且对硅纳米线和硅晶结构造不成损害。适当温度和时间下的固态扩散决定了SiNWs的数量。 本实验中,通过旋涂法对VLS法生长的SiNWs晶体进行非原位掺杂时,要先进行退火处理。SiNWs与不同的方向衬底结合起来;非常有益于通过传统集成电路制造流程,制造高分辨率、高灵敏度的温度传感器。SiNWs温度传感器的特性在实验中测量和报告。 II传感器的制造和实验 首先,通过VLS法并利用金作催化剂在硅基板上生成SiNWs。在洁净的p 衬底(111方向)涂金膜,然后加热使金膜蒸发溅射到纳米颗粒上形成金纳米线。

最新纳米结构与纳米材料25个题目+完整答案资料

1.什么是纳米材料?其内涵是什么?(从零、一、二、三维考虑) 2.纳米材料的四大效应是什么?对每一效应举例说明。 3.纳米材料的常用的表征方法有哪些? 4.用来直接观察材料形态的SEM、TEM、AFM对所测定的样品有哪些特定要求?从它们的图像中能够得到哪些基本信息? 5.纳米颗粒的高表面活性有何优缺点?如何利用? 6.在纳米颗粒的气相合成中涉及到哪些基本环节?气相合成大致可分为哪四种?气相成核理论的机制有哪两种? 7.溶胶-凝胶法制备纳米颗粒的基本过程是怎样的? 8.用溶胶-凝胶技术结合碳纳米管的生长机理,可获得密度不同的碳纳米管阵列(也叫纳米森林),简要阐述其主要步骤及如何控制碳纳米管的分布密度? 9.改变条件可制备不同晶粒大小的二氧化钛,下图分别为两种晶粒尺寸不同的二氧化钛的XRD图与比表面积数据。请用Scherrer 方程、BET比表面积分别估算这两种二氧化钛的晶粒尺寸(XRD测试时所用的 = 1.5406?,锐钛矿相二氧化钛的密度是3.84 g/cm3)(默写出公式并根据图中的数据来计算)。 10.氧化物或者氮化物纳米材料具有许多特殊的功能,请以一种氧化物或者氮化物为例,举出其三种主要的制备方法(用到的原料、反应介质、主要的表征手段)、主要用途(与纳米效应有关的用途)、并介绍这种物质的至少两种晶相。 11.举出五种碳的纳米材料,阐述其一维材料与二维材料的结构特点、用途。 12.简述纳米材料的力学性能、热学性能与光学性能有怎样的变化? 13.什么叫化学气相沉积法,它与外场结合又可衍生出哪些方法?简述VLS机制。 14.纳米半导体颗粒具有光催化性能的主要原因是什么?光催化有哪些具体应用 15.利用机械球磨法制备纳米颗粒的主要机制是什么?有何优、缺点? 16 何为“自催化VLS生长”?怎样利用自催化VLS生长实现纳米线的掺杂? 17.液相合成金属纳米线,加入包络剂(capping reagent)的作用是什么? 18.何为纳米材料的模板法合成?它由哪些优点?合成一维纳米材料的模板有哪些? 19.试结合工艺流程图分别说明氧化铝模板的制备过程以及氧化铝模板合成纳米线阵列的过程 20.从力学特性、电学特性和化学特性来阐述碳纳米管的性质,它有哪些主要的应用前景? 21.如何提高传统光刻技术中曝光系统的分辩率? 22.试比较电子束刻蚀和离子束刻蚀技术的异同点和优缺点。 23.比较极紫外光刻技术和X射线光刻技术的异同。 24.何为纳米材料的自组装?用于制备纳米结构的微乳液体系一般有几个组成部分? 25 何谓“取向搭接Oriented attachment”“奥斯德瓦尔德熟化Ostwald ripening”?

晶体硅太阳电池的氮化硅表面钝化研究

第36卷 第6期2002年6月 西 安 交 通 大 学 学 报 JOURNAL OF XI′AN J IAO TON G UN IV ERSITY Vol.36 №6 J un.2002 文章编号:0253-987X(2002)0620651204 晶体硅太阳电池的氮化硅表面钝化研究 杨 宏1,王 鹤1,于化丛2,奚建平2,胡宏勋2,陈光德1 (1.西安交通大学理学院,710049,西安; 2.上海交通大学太阳能研究所) 摘要:为了提高晶体硅太阳电池的光电转换效率,研究了用等离子增强化学气相沉积(PECVD)的SiN x:H作为晶体硅太阳电池的表面钝化及减反射膜对电池性能的影响,并采用不同的工艺路线制备了不同类型的电池.实验发现:同SiN x:H比较,SiN x:H/SiO2双层光学减反射结构对晶体硅太阳电池能起到更加有效的表面钝化作用,提高了太阳电池的光电转换效率.基于界面物理,提出了一种新的能带模型,解释了用不同实验方法制作的晶体硅太阳电池性能的差异. 关键词:太阳电池;表面钝化;SiN x:H;等离子增强化学气相沉积 中图分类号:TM91414 文献标识码:A Investigation on Passivating Silicon Nitride Surface of Crystalline Silicon Solar Cells Y ang Hong1,W ang He1,Y u Huacong2,Xi Jianpi ng2,Hu Hongx un2,Chen Guangde1 (1.School of Sciences,Xi′an Jiaotong University,Xi′an710049,China; 2.Institute of Solar Energy,Shanghai Jiaotong University) Abstract:In order to improve photoelectric conversion efficiency of crystalline silicon solar cells,some effects of surface passivation quality and antireflection properties of silicon nitride prepared by plasma enhanced chemical vapour deposition on crystalline silicon solar cells are investigated.All kinds of crys2 talline silicon solar cells were prepared by different process methods.It was found that the silicon ni2 tride/silicon oxide double layer optical antireflection coatings structure shows excellent passivation properties for crystalline solar cells compared to silicon nitride,so photoelectric conversion efficiency of crystalline silicon solar cells is enhanced.Based on interface physics,a new energy band model of sili2 con nitride/silicon oxide/silicon is presented,differences of efficiency of crystalline silicon solar cells prepared by different methodes are explained by this model. K eyw ords:solar cells;surf ace passivation;silicon nit ri de;plasm a enhanced chem ical vapour deposi2 tion 目前,适于作晶体硅太阳电池光学减反射膜的材料有SiO2、TiO x、SiN x:H等薄膜材料.SiO2的折射率(114)太低,光学减反射效果不好;TiO x的折射率虽然接近晶体硅太阳电池最佳光学减反射膜的 收稿日期:2001210211. 作者简介:杨 宏(1968~),男,讲师. 基金项目:西安交通大学博士学位论文基金资助项目.

纳米材料论文

纳米材料的特性与应用 摘要:纳米材料在结构、光电和化学性质等方面的诱人特征,引起物理学家、材料学家和化学家的浓厚爱好。80年代初期纳米材料这一概念形成以后,世界各国对这种材料给予极大关注。它所具有的独特的物理和化学特性,使人们意识到它的发展可能给物理、化学、材料、生物、医药等学科的研究带来新的机遇。纳米材料的应用前景十分广阔。近年来,它在化工、催化、涂料等领域也得到了一定的应用,并显示出它的独特魅力。 关键词:纳米材料特性应用 1. 纳米发展简史 1959年,着名物理学家、诺贝尔奖获得者理查德。费曼预言,人类可以用小的机器制作更小的机器,最后实现根据人类意愿逐个排列原子、制造产品,这是关于纳米科技最早的梦想。 1991年,美国科学家成功地合成了碳纳米管,并发现其质量仅为同体积钢的1/6,强度却是钢的10倍,因此称之为超级纤维.这一纳米材料的发现标志人类对材料性能的发掘达到了新的高度。1999年,纳米产品的年营业额达到500亿美元。 2.什么是纳米材料 纳米(nm)是长度单位,1纳米是10-9米(十亿分之一米),对宏观物质来说,纳米是一个很小的单位,不如,人的头发丝的直径一般为7000-8000nm,人体红细胞的直径一般为3000-5000nm,一般病毒的直径也在几十至几百纳米大小,金属的晶粒尺寸一般在微米量级;对于微观物质如原子、分子等以前用埃来表示,1埃相当于1个氢原子的直径,1纳米是10埃。 一般认为纳米材料应该包括两个基本条件:一是材料的特征尺寸在1-100nm之间,二是材料此时具有区别常规尺寸材料的一些特殊物理化学特性。 3. 纳米材料的特性 广义地说,纳米材料是指在三维空间中至少有一维处在纳米尺度范围(1-100nm)或由他们作为基本单元构成的材料。 3.1表面与界面效应 这是指纳米晶体粒表面原子数与总原子数之比随粒径变小而急剧增大后所引起的性质上的变化。例如粒子直径为10纳米时,微粒包含4000个原子,表面原子占40%;粒子直径为1纳米时,微粒包含有30个原子,表面原子占99%。主要原因就在于直径减少,表面原子数量增多。再例如,粒子直径为10纳米和5纳米时,比表面积分别为90米2/克和180米2/克。如此高的比表面积会出现一些极为奇特的现象,如金属纳米粒子在空中会燃烧,无机纳米粒子会吸附气体等等。 3.2小尺寸效应

纳米硅

纳米硅指的是直径小于5纳米(10亿(1G)分之一米)的晶体硅颗粒。 编辑本段纳米硅粉 纳米硅粉具有纯度高,粒径小,分布均匀等特点。比表面积大,高表面活性,松装密度低,该产品具有无毒,无味,活性好。纳米硅粉是新一代光电半导体材料,具有较宽的间隙能半导体,也是高功率光源材料。 主要用途: 可与有机物反应,作为有机硅高分子材料的原料 金属硅通过提纯制取多晶硅。 金属表面处理。 替代纳米碳粉或石墨,作为锂电池负极材料,大幅度提高锂电池容量编辑本段纳米硅防水剂 一、性能特点 白色乳液,无毒,无刺激味,不燃烧,PH值12,密度1.15~1.2。用于砖瓦、水泥、石膏、石灰、涂料、石棉、珍珠岩、保温板等基面上具有优异的防水抗渗效果。有防止建筑物风化、冻裂及外墙保洁、防污、防霉、防长青苔之功能;质量可靠,耐久性好,耐酸碱,耐候性优良,对钢筋无锈蚀,且使用安全,施工方便。砂浆抗渗性能≥S14,混凝土抗渗性能≥S18。技术性能符合JC474-1999[砂浆、混凝土防水剂]标准及JC/T902-2002标准 二、使用方法 1、喷涂施工: 使用前先将基面清理干净(特别是油污、青苔),将纳米硅防水剂加8倍清水搅拌均匀,用喷雾器或刷子直接在干燥的基面上施工,纵横至少连续两遍(上一遍没干时施工第二遍),对于1:2.5砂浆的毛面,大约可渗透1mm深,有效寿命可达5~10年,每公斤本剂每遍可施工约40~50m2,施工后24小时内不得受雨淋水浸,4℃以下停止施工。常温下干燥后即有优良的防水效果,一周后效果更佳(冬季固化时间较长)。试验表明:固化后的防水试块高温300℃反复锻烧20次及-18℃反复冷冻20次后,防水效果没有明显变化。稀释液现配现用,当天用完。 2、防水砂浆施工: 清理基层泥沙、杂物、油污等,灰砂比控制在1:2.5~3(425#硅酸盐水泥、中砂含泥量小于3%);纳米硅防水剂加水8-15倍(体积比)可直接用于配制防水砂浆,水灰比≤0.5,实际净防水剂用量占水泥的3~5%。

硅纳米线太阳能电池总结

太阳能电池的量子效率是指太阳能电池的电荷载流子数 目与照射在太阳能电池表面一定能量的光子数目的比率。因此,太阳能电池的量子效率与太阳能电池对照射在太阳能电池表面的各个波长的光的响应有关。 外量子效率(External Quantum Efficiency, EQE), 太阳能电池的电荷载流子数目与外部入射到太阳能电池表 面的一定能量的光子数目之比。 内量子效率(Internal Quantum Efficiency, IQE),太 阳能电池的电荷载流子数目与外部入射到太阳能电池表面 的没有被太阳能电池反射回去的,没有透射过太阳能电池的,一定能量的光子数目之比。 硅纳米线太阳能电池 基于硅纳米线太阳能电池的金属箔进行了阐述【foil - 铝箔】。此类设备的 主要优点是讨论,通过光的反射率,电压,电流和外部量子效率数据一个单元的设计,采用薄非晶硅层上沉积形成的纳米线阵列P - N结。一 个有前途的1.6 mA/cm2的电流密度为1.8平方厘米电池获得,并广阔的外部量 子效率测定的最大值为12%,在690纳米。“。2007年美国物理研究所。 近年来,一直存在一个显着的,复活在可再生能源系统的兴趣。太阳能转换 特别感兴趣,因为是丰富的源。今天的绝大多数鈥檚商业太阳能电池模块是基于 晶体硅,但有越来越多的薄膜的兴趣,所谓的第二代太阳能电池,以及第三代高 效率/低成本太阳能电池,一些需要使用的纳米结构的概念。基于纳米线净重的 太阳能电池是一种很有前途的阶级由于几个性能和光伏太阳能设备处理启用的 利益,包括直接路径这样的几何形状所带来的电荷传输纳米结构。【photovoltaic - 光伏】 纳米线和纳米棒,定义中的应用这里有宽高比5:1太阳能电池已试图在几个设备的配置和材料系统。纳米线/棒功能的太阳能电池的最新展示

纳米材料与纳米结构21个题目+完整答案

1.简单论述纳米材料的定义与分类。 2.什么是原子团簇? 谈谈它的分类. 3.通过Raman 光谱中任何鉴别单壁和多臂碳纳米管? 如何计算单壁碳纳米管直径? 4.论述碳纳米管的生长机理。 5.论述气相和溶液法生长纳米线的生长机理。 6.解释纳米颗粒红外吸收宽化和蓝移的原因。 7.论述光催化的基本原理以及提高光催化活性的途径。 8.什么是库仑堵塞效应以及观察到的条件? 9.写出公式讨论半导体纳米颗粒的量子限域效应和介电限域效应对其吸收边,发光峰的影响。 10.纳米材料中的声子限域和压应力如何影响其Raman 光谱。 11.论述制备纳米材料的气相法和湿化学法。 12.什么是纳米结构,并举例说明它们是如何分类的,其中自组装纳米结构形成的条件是什么。 13.简单讨论纳米颗粒的组装方法 14.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 15.论述一维纳米结构的组装,并介绍2种纳米器件的结构。 16.简单讨论纳米材料的磁学性能。 17.简述“尺寸选择沉淀法”制备单分散银纳米颗粒的基本原理 18.简述光子晶体的概念及其结构 19.目前人们已经制备了哪些纳米结构单元、复杂的纳米结构和纳米器件。并说明那些纳米结构应该具有增强物理和化学性 能。 20.简单论述单电子晶体管的原理。 21.简述纳米结构组装的工作原理。 1.简单论述纳米材料的定义与分类。 答:最初纳米材料是指纳米颗粒和由它们构成的纳米薄膜和固体。 现在广义: 纳米材料是指在三维空间中至少有一维处在纳米尺度范围,或由他们作为基本单元构成的材料。 如果按维数,纳米材料可分为三大类: 零维:指在空间三维尺度均在纳米尺度,如:纳米颗粒,原子团簇等。 一维:指在空间有两处处于纳米尺度,如:纳米丝,纳米棒,纳米管等。 二维:指在三维空间中有一维处在纳米尺度,如:超薄膜,多层膜等。 因为这些单元最具有量子的性质,所以对零维,一维,二维的基本单元,分别又具有量子点,量子线和量子阱之称。

氮化硅薄膜的钝化作用对太阳能电池片性能的影响分析和研究

氮化硅薄膜的钝化作用对太阳能电池片 性能的影响分析和研究 摘要 作为一种器件表面介质膜,SiNx薄膜已被广泛应用于IC以及太阳能光伏器件的制造中。在高效太阳能电池研究中,发射结表面钝化和减反射一直是其研究的主题。电池正面发射结不仅要求表面钝化层有优良的钝化性能,同时也要求介质层能够与表面层减反射膜一起产生很好的减反射效果,从而进一步提高太阳电池器件的光生电流、开路电压以及电池效率。 本文阐述了高效太阳电池研究中正面发射结上的钝化与减反射工艺与原理,重点对PECVD法制备SiNx的钝化机制,H 钝化进行了详细的分析。主要对生产中常使用的管式PECVD和板式PECVD 制备的薄膜,通过少子寿命测试仪(WT2000)检测少子寿命,椭偏仪测试膜厚和折射率,积分反射仪测试反射率以及利用HF腐蚀来检验薄膜致密性等手段对薄膜性能进行了分析和比较。又对板式PECVD 制备薄膜条件进行了优化。研究发现,氮化硅最佳的沉积条件是:温度370℃,SiH4:NH3=500:1600,时间3min;获得了沉积氮化硅后硅片少子寿命高钝化效果好、膜厚与折射率搭配好反射率低的工艺条件。 关键词:氮化硅薄膜;PECVD;减反膜;钝化;太阳能电池

THE PASSIVATION OF SILICON NITRIDE FILM ON SOLAR CELLS ANALYSIS AND RESEARCH ABSTRACT As a dielectric thin film of device, SiNx has been widely used in IC and Solar cells manufacturing . In the research and investigation of high efficiency silicon solar cell, the passivation of front emitter and anti reflection has been their focus. Because,for the front emitter, we need it have excellent passivation quality and good antireflection property, in this way to improve the Isc an d Uoc, further more to get much high efficiency. In this thesis we describe the passivation & Antireflection of high efficient Silicon Solar cells on the front emmiter and then we focus on PECVD analysising the Mechanism of hydrogen passivation. In the experiments I used the tubular and plate PECVD preparing silicon nitride thin film.Then,I texted minority carrier lifetime by minority carrier lifetime tester(WT2000),film thickness and refractive index by ellipsometer,reflectivity by D8 integral reflectivity,and using HF solution tested the film density.These were used to ailalyze the properties of silicon nitride films.Another,Improving the condition of the plate PECVD deposition .The results show that the temperature of deposition is 370, SiH4:NH3=500:1600, time:3min.In this condition Silicon have a good passivation quality, film thickness and refractive index well matching and low reflectance. KEY WORDS: silicon nitride film ; PECVD; ACR; passivation; silicon solar cells

相关主题