搜档网
当前位置:搜档网 › 高三数学复习微专题之平面向量篇矩形大法教师

高三数学复习微专题之平面向量篇矩形大法教师

高三数学复习微专题之平面向量篇矩形大法教师
高三数学复习微专题之平面向量篇矩形大法教师

一、 知识清单

1. 极化恒等式:如图,+=AD AB AC 2 ① -=CB A B A C

②,则: ①2

+②2

得:AC AD BC AB +=+242

2

22 ;①2-②2

得:AC AD BC AB ?=-4422

推广:AC AB AC BC AB AB AC cosA ?=?=?+-2

222

速记方法:?==-+-a b a b a b 4()()22,=++=+-a b a b a b 2

()()2222

2. 矩形大法:如图,由极化恒等式可得

+=+PO BD 2PD PB 42

2

22①+=+PO AC 2

PA PC 422

22 ②

因为BD=AC ,所以PD PB PA PC +=+2222,

速记方法:矩形外一点到矩形对角顶点的平方和相等。

推广1:若ABCD 为平行四边形,则有PA PC PD PB =+-+-AC 2

)(BD 2

2

2

2

22

=-?=

-AC AM BC 4

422

=4

1

0,且对于边AB 上任一点P ,恒有?≥?PB PC P B PC 00

。则( ) A.∠=ABC 90 B. ∠=BAC 90 C.=AB AC D. =AC BC

解析:D 为BC 中点,由极化恒等式有:?=-PC PD BC 4

PB 422

则当PD 最小时,PB

????? ?PC ????? 最小, 所以过D 作AB 垂线,垂足即为P 0,作AB 中点E ,则CE ⊥AB ,即AC=BC 。

3. 已知向量a b e ,,是平面向量,e 是单位向量. ?-++===b e a b a b a ()12,3,0,求-a b 的范围? 解析:由?-++=b e a b a ()10,得-?-=e b e a ()()0

如图,===OA a OB b OE e ,, ,构造矩形ACBE ,由矩形大法有

+=+OE OC OA OB 222

2,则=OC

==∈-+=-+-AB CE OC OE OC OE a b [,]

[2

3

1,231]

高三数学复习微专题之平面向量篇

第三讲:极化恒等式与矩形大法

解析:由极化恒等式有:AB 16推广2:若P 为平面外一点,上述性质仍成立。二、典型例题1.(2019浙江模拟卷)在?ABC 中,M 是BC 的中点,AM =3,BC =10,则A

B A ?

C =_________.

2.(2019山东模拟)在?ABC 中,P 0是边AB 上一定点,满足P B AB

4.向量a b e ,,是平面向量,e 是单位向量. ?-++===b e a b a b a ()22,3,0,求-a b ,?a b 范围? 解析:由题得-?-=-e b e a ()()1,===OA a OB b OE e ,, ,构造平行四边形ACBE ,

由极化恒等式:-=-?-?=-=e b e EB EC AB a EA 4

1()()22

由平行四边形大法:+-+=

=--OE OC OA OB EC AB 2

()()22

2

2

2

22

,即=OC 10 =

=+∈-+++=-+-AB EC a b 4[(101)4,(101)4][15210,15210]2222

?==∈---+----a b a b a b a b 22

[101,101]()13()2

2

2

2

三、 强化练习

1. 设正?ABC 的面积为2,边AB AC ,的中点分别为D E ,,M 为线段DE 上的动点,则

?+MB MC BC 2

的最小值为 .

2.?ABC 外接圆O 半径为1,且∠=AOB 120,则?AC CB 的取值范围是 . -22

[,0)(0,]31

3.已知平行四边形ABCD 的面积为6,=AB 2,点P 是平行四边形ABCD 所在平面内的一个动点,且满足=PC 2,则?PA PB 的最小值 .C

A .-4

B .-2

C .0

D .2

4. 如图,C ,D 以AB 为直径的圆O 上的动点,已知AB =2,则?AC BD 的最大值是 ( )A

A. 21

5. 已知ABC ?,满足

AB AC AB AC AB AC AB AC ||||++=+||

3219()

,点D 为线段AB 上一动点,若DA DC ?的最小值为-3,则ABC ?的面积S =( )D

A.9

B.

6.记M 的最大值和最小值分别为M max 和M min .若平面向量a b c ,,满足==?a b a b =?+-=c a b c 222

)

(. 则( )A -=

+A a c

2.37max

+=

+B a c 2.37max -=

+C a c

2.37min

+=

+D a c .37

min

7.点P 是底边长为2的正三棱柱表面上的动点,MN 是该棱柱内切球的一条直径,则

PM PN 的取值范围是 . 0,4][

8.向量a b e ,,是平面向量,e 是单位向量.若==-?-=a b a e b e 2,0,)

()(则-a b 的最小值是( )A

A 1

B 1

C .3

D .3

9.如图,已知圆O 的半径为2,P 是圆内一定点,OP=1,圆O 上的两动点A ,B 满足⊥PA PB ,存在

点C 使PACB 构成矩形,则?OC OP 的取值范围是 [

10.向量a b c ,,满足===c a b 12,则--?c a c b )

()(的最大值是 ; 最小值是 . -8

[,3]1

高中数学平面向量doc

专题讲座 高中数学“平面向量” 一、整体把握“平面向量”教学内容 (一)平面向量知识结构图 (二)重点难点分析

本专题内容包括:平面向量的概念、运算及应用. 课标要求: 平面向量(约12课时) (1)平面向量的实际背景及基本概念 通过力和力的分析等实例,了解向量的实际背景,理解平面向量和向量相等的含义,理解向量的几何表示。(2)向量的线性运算 ①通过实例,掌握向量加、减法的运算,并理解其几何意义。 ②通过实例,掌握向量数乘的运算,并理解其几何意义,以及两个向量共线的含义。 ③了解向量的线性运算性质及其几何意义。 (3)平面向量的基本定理及坐标表示 ①了解平面向量的基本定理及其意义。 ②掌握平面向量的正交分解及其坐标表示。 ③会用坐标表示平面向量的加、减与数乘运算。 ④理解用坐标表示的平面向量共线的条件。 (4)平面向量的数量积

①通过物理中“功”等实例,理解平面向量数量积的含义及其物理意义。 ②体会平面向量的数量积与向量投影的关系。 ③掌握数量积的坐标表达式,会进行平面向量数量积的运算。 ④能运用数量积表示两个向量的夹角,会用数量积判断两个平面向量的垂直关系。 (5)向量的应用 经历用向量方法解决某些简单的平面几何问题、力学问题与其他一些实际问题的过程,体会向量是一种处理几何问题、物理问题等的工具,发展运算能力和解决实际问题的能力。 依据课标要求,并结合前面的分析可知:新概念、新运算的定义,向量运算和向量运算的几何意义是本专题的重点,平面向量基本定理是坐标表示(几何代数化)的关键,也是本专题教学的难点。 二、“平面向量”教与学的策略 (一)在概念教学中,依据概念教学的方法,建构概念知识体系 本专题的教学中,向量、向量的运算等都是新定义的概念,如何让这些概念的出现自然轻松,还能让学生迅速把握住本质,达成理解?不妨遵循概念教学的方法。 比如说:“向量的概念”教学中,可从力、位移等实例引入,进行抽象概括,形成向量的概念。之后,提出“温度、功是不是向量?”这样的问题,通过比较,对向量的概念进行辨析,在此基础上,抓住向量的两个要点:大小、方向进行拓展,按如下表格整理,将向量概念精致化。 概念辨析:

高三第二轮复习平面向量复习专题

数学思维与训练 高中(三) ------------向量复习专题 向量思想方法和平面向量问题是新考试大纲考查的重要部分,是新高考的热点问题。题型多为选择或填空题,向量作为中学数学中的一个重要工具在三角、函数、解几、立几等问题解决中处处闪光。最近几年的考试中向量均出现在解析几何题中,在解析几何的框架中考查向量的概念和方法、考查向量的运算性质、考查向量几何意义的应用,并直接与距离问题、角度问题、轨迹问题等相联系。 附Ⅰ、平面向量知识结构表 1. 考查平面向量的基本概念和运算律 此类题经常出现在选择题与填空题中,主要考查平面向量的有关概念与性质,要求考生深刻理解平面向量的相关概念,能熟练进行向量的各种运算,熟悉常用公式及结论,理解并掌握两向量共线、垂直的充要条件。 1.(北京卷) | a |=1,| b |=2,c = a + b ,且c ⊥a ,则向量a 与b 的夹角为 ( ) A .30° B .60° C .120° D .150° 2.(江西卷·理6文6) 已知向量 ( ) A .30° B .60° C .120° D .150° 3.(重庆卷·理4)已知A (3,1),B (6,1),C (4,3),D 为线段BC 的中点,则向 量与 的夹角为 ( C ) A . B . C . D .- 4.(浙江卷)已知向量≠,||=1,对任意t ∈R ,恒有| -t |≥| -|,则 ( ) 向量 向量的概念 向量的运算 向量的运用 向量的加、减法 实数与向量的积 向量的数量积 两个向量平行的充要条件两个向量垂直的充要条件 定比分点公式 平移公式 在物理学中的应用 在几何中的应用

(完整版)平面向量练习题集答案

平面向量练习题集答案 典例精析 题型一向量的有关概念 【例1】下列命题: ①向量AB的长度与BA的长度相等; ②向量a与向量b平行,则a与b的方向相同或相反; ③两个有共同起点的单位向量,其终点必相同; ④向量AB与向量CD是共线向量,则A、B、C、D必在同一直线上. 其中真命题的序号是. 【解析】①对;零向量与任一向量是平行向量,但零向量的方向任意,故②错;③显然错;AB与CD 是共线向量,则A、B、C、D可在同一直线上,也可共面但不在同一直线上,故④错.故是真命题的只有①. 【点拨】正确理解向量的有关概念是解决本题的关键,注意到特殊情况,否定某个命题只要举出一个反例即可. 【变式训练1】下列各式: a?; ①|a|=a ②(a?b) ?c=a?(b?c); ③OA-OB=BA; ④在任意四边形ABCD中,M为AD的中点,N为BC的中点,则AB+DC=2MN; ⑤a=(cos α,sin α),b=(cos β,sin β),且a与b不共线,则(a+b)⊥(a-b). 其中正确的个数为() A.1 B.2 C.3 D.4 a?正确;(a?b) ?c≠a?(b?c);OA-OB=BA正确;如下图所示,【解析】选D.| a|=a MN=MD+DC+CN且MN=MA+AB+BN, 两式相加可得2MN=AB+DC,即命题④正确; 因为a,b不共线,且|a|=|b|=1,所以a+b,a-b为菱形的两条对角线, 即得(a+b)⊥(a-b). 所以命题①③④⑤正确.

题型二 与向量线性运算有关的问题 【例2】如图,ABCD 是平行四边形,AC 、BD 交于点O ,点M 在线段DO 上,且DM = DO 31,点N 在线段OC 上,且ON =OC 3 1 ,设AB =a , AD =b ,试用a 、b 表示AM ,AN ,MN . 【解析】在?ABCD 中,AC ,BD 交于点O , 所以DO =12DB =12(AB -AD )=1 2 (a -b ), AO =OC =12AC =12(AB +AD )=1 2(a +b ). 又DM =13DO , ON =1 3OC , 所以AM =AD +DM =b +1 3DO =b +13×12(a -b )=16a +56 b , AN =AO +ON =OC +1 3OC =43OC =43×12(a +b )=2 3(a +b ). 所以MN =AN -AM =23(a +b )-(16a +56b )=12a -16 b . 【点拨】向量的线性运算的一个重要作用就是可以将平面内任一向量由平面内两个不共线的向量表示,即平面向量基本定理的应用,在运用向量解决问题时,经常需要进行这样的变形. 【变式训练2】O 是平面α上一点,A 、B 、C 是平面α上不共线的三点,平面α内的动点P 满足OP =OA +λ(AB +AC ),若λ=1 2 时,则PA ?(PB +PC )的值为 . 【解析】由已知得OP -OA =λ(AB +AC ), 即AP =λ(AB +AC ),当λ=12时,得AP =1 2(AB +AC ), 所以2AP =AB +AC ,即AP -AB =AC -AP , 所以BP =PC , 所以PB +PC =PB +BP =0, 所以PA ? (PB +PC )=PA ?0=0,故填0.

20高考数学平面向量的解题技巧

第二讲平面向量的解题技巧 【命题趋向】 由2007年高考题分析可知: 1.这部分内容高考中所占分数一般在10分左右. 2.题目类型为一个选择或填空题,一个与其他知识综合的解答题. 3.考查内容以向量的概念、运算、数量积和模的运算为主. 【考点透视】 “平面向量”是高中新课程新增加的内容之一,高考每年都考,题型主要有选择题、填空题,也可以与其他知识相结合在解答题中出现,试题多以低、中档题为主. 透析高考试题,知命题热点为: 1.向量的概念,几何表示,向量的加法、减法,实数与向量的积. 2.平面向量的坐标运算,平面向量的数量积及其几何意义. 3.两非零向量平行、垂直的充要条件. 4.图形平移、线段的定比分点坐标公式. 5.由于向量具有“数”与“形”双重身份,加之向量的工具性作用,向量经常与数列、三角、解析几何、立体几何等知识相结合,综合解决三角函数的化简、求值及三角形中的有关问题,处理有关长度、夹角、垂直与平行等问题以及圆锥曲线中的典型问题等. 6.利用化归思想处理共线、平行、垂直问题向向量的坐标运算方面转化,向量模的运算转化为向量的运算等;利用数形结合思想将几何问题代数化,通过代数运算解决几何问题.【例题解析】 1. 向量的概念,向量的基本运算 (1)理解向量的概念,掌握向量的几何意义,了解共线向量的概念. (2)掌握向量的加法和减法. (3)掌握实数与向量的积,理解两个向量共线的充要条件. (4)了解平面向量的基本定理,理解平面向量的坐标的概念,掌握平面向量的坐标运算.

(5)掌握平面向量的数量积及其几何意义,了解用平面向量的数量积可以处理有关长度、角度和垂直的问题,掌握向量垂直的条件. (6)掌握平面两点间的距离公式. 例1(2007年北京卷理)已知O 是ABC △所在平面内一点,D 为BC 边中点,且 2OA OB OC ++=0u u u r u u u r u u u r ,那么( ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r 命题意图:本题考查能够结合图形进行向量计算的能力. 解: 22()(,22.OA OB OC OA DB OD DC OD DB DC OA OD AO OD ∴∴++=++++=-+==)=0,0,u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r u u u r 故选A . 例2.(2006年安徽卷)在ABCD Y 中,,,3AB a AD b AN NC ===u u u r r u u u r r u u u r u u u r ,M 为BC 的中点,则MN =u u u u r ______.(用a b r r 、表示) 命题意图: 本题主要考查向量的加法和减法,以及实数与向量的积. 解:343A =3()AN NC AN C a b ==+u u u r u u u r u u u r u u u r r r 由得,12 AM a b =+u u u u r r r , 所以,3111()()4 2 4 4 MN a b a b a b =+-+=-+u u u u r r r r r r r . 例3.(2006年广东卷)如图1所示,D 是△ABC 的边AB 上的中点,则向量 =CD ( ) (A )BA BC 2 1+- (B ) BA BC 2 1-- (C ) BA BC 2 1- (D )BA BC 2 1+ 命题意图: 本题主要考查向量的加法和减法运算能力. 解:BA BC BD CB CD 2 1+-=+=,故选A. 例4. ( 2006年重庆卷)与向量a r =71,,22b ? ?= ???r ?? ? ??27,21的夹解相等,且模为1的向量是 ( ) (A) ?? ?- ??53,5 4 (B) ?? ?- ??53,5 4或?? ? ??-53,54 (C )?? ?- ??31,3 22 (D )?? ?- ??31,3 22或?? ? ? ?- 31,3 22 命题意图: 本题主要考查平面向量的坐标运算和用平面向量处理有关角度的问题. 解:设所求平面向量为,c r 由433,,, 1. 555c c ???? =-= ? ?????r 4或-时5 另一方面,当222274134312525,,cos ,. 55271432255a c c a c a c ?? ?+?- ?????? =-=== ????????????+++- ? ? ? ?????????r r r r r r r 时

2021年高中数学-平面向量专题

第一部分:平面向量的概念及线性运算 欧阳光明(2021.03.07) 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 的(或称) 平面向量是自由向量 零向量长度为的向量;其方向是任意的记作0 单位向量长度等于的 向量 非零向量a的单位向量为± a |a| 平行向量方向或的非零向量 0与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0的相反向量为0 2.向量的线性运算 向量运算定义法则(或几何 意义) 运算律 加法求两个向量和的运算(1)交换律: a+b=b+a. (2)结合律: (a+b)+c=a+(b+c). 减法求a与b的相反向量-b 的和的运算叫做a与b 的差 法则 a-b=a+(-b) 数乘求实数λ与向量a的积的 运算 (1)|λa|=|λ||a|. (2)当λ>0时,λa的方向与a的方向; 当λ<0时,λa的方向与a的方向;当λ =0时,λa=0. λ(μa)=λμa; (λ+μ)a=λa+μa; λ(a+b)=λa+λb. 向量a(a≠0)与b共线的条件是存在唯一一个实数λ,使得b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线

段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说,即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线(或重合)的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合. 三.基础自测 1.化简OP →-QP →+MS →-MQ → 的结果等于________. 2.下列命题:①平行向量一定相等;②不相等的向量一定不平行;③平行于同一个向量的两个向量是共线向量; ④相等向量一定共线.其中不正确命题的序号是_______. 3.在△ABC 中,AB →=c ,AC →=b.若点D 满足BD →=2DC →,则AD → =________(用b 、c 表示). 4.如图,向量a -b 等于() A .-4e1-2e2 B .-2e1-4e2 C .e1-3e2 D .3e1-e2 5.已知向量a ,b ,且AB →=a +2b ,BC →=-5a +6b ,CD → =7a -2b ,则一定共线的三点是 () A .A 、B 、DB .A 、B 、C C .B 、C 、DD .A 、C 、D 四.题型分类深度剖析 题型一 平面向量的有关概念 例1 给出下列命题: ①若|a|=|b|,则a =b ;②若A ,B ,C ,D 是不共线的四点,则AB →=DC → 是四边形ABCD 为平行四边形的充要条件;③若a =b ,b =c ,则a =c ;④a =b 的充要条件是|a|=|b|且a ∥b ;⑤若a ∥b ,b ∥c ,则a ∥c.其中正确的序号是________. 变式训练1 判断下列命题是否正确,不正确的请说明理由. (1)若向量a 与b 同向,且|a|=|b|,则a>b ; (2)若|a|=|b|,则a 与b 的长度相等且方向相同或相反; (3)若|a|=|b|,且a 与b 方向相同,则a =b ; (4)由于零向量的方向不确定,故零向量不与任意向量平行; (5)若向量a 与向量b 平行,则向量a 与b 的方向相同或相反; (6)若向量AB →与向量CD → 是共线向量,则A ,B ,C ,D 四点在一条直线上; (7)起点不同,但方向相同且模相等的几个向量是相等向量; (8)任一向量与它的相反向量不相等 题型二 平面向量的线性运算 例2 如图,以向量OA →=a ,OB →=b 为边作?OADB ,BM →=13BC →,CN →=13 CD →,用a 、b 表示OM →、ON →、MN → . 变式训练2 △ABC 中,AD →=23 AB →,DE ∥BC 交AC 于E ,BC 边上的中线AM 交DE 于N.设AB →=a ,AC → =b ,用a 、b 表示向 量AE →、BC →、DE →、DN →、AM →、AN →. 题型三 平面向量的共线问题 例3 设e1,e2是两个不共线向量,已知AB →=2e1-8e2,CB →=e1+3e2,CD → =2e1-e2. (1)求证:A 、B 、D 三点共线; (2)若BF → =3e1-ke2,且B 、D 、F 三点共线,求k 的值.

平面向量练习题(附答案)

平面向量练习题 一.填空题。 1. BA CD DB AC +++等于________. 2.若向量=(3,2),=(0,-1),则向量2-的坐标是________. 3.平面上有三个点A (1,3),B (2,2),C (7,x ),若∠ABC =90°,则x 的值为________. 4.向量a 、b 满足|a |=1,|b |=2,(a +b )⊥(2a -b ),则向量a 与b 的夹角为________. 5.已知向量a =(1,2),b =(3,1),那么向量2a -21b 的坐标是_________. 6.已知A (-1,2),B (2,4),C (4,-3),D (x ,1),若与CD 共线,则|BD |的值等于________. 7.将点A (2,4)按向量=(-5,-2)平移后,所得到的对应点A ′的坐标是______. 8. 已知a=(1,-2),b=(1,x),若a ⊥b,则x 等于______ 9. 已知向量a,b 的夹角为ο120,且|a|=2,|b|=5,则(2a-b )·a=______ 10. 设a=(2,-3),b=(x,2x),且3a ·b=4,则x 等于_____ 11. 已知y x 且),3,2(),,(),1,6(--===∥,则x+2y 的值为_____ 12. 已知向量a+3b,a-4b 分别与7a-5b,7a-2b 垂直,且|a|≠0,|b|≠0,则a 与b 的夹角为____ 13. 在△ABC 中,O 为中线AM 上的一个动点,若AM=2,则()OA OB OC +u u u r u u u r u u u r 的最小值是 . 14.将圆22 2=+y x 按向量v =(2,1)平移后,与直线0=++λy x 相切,则λ的值为 . 二.解答题。 1.设平面三点A (1,0),B (0,1),C (2,5). (1)试求向量2+的模; (2)试求向量与的夹角;

高三数学平面向量知识点与题型总结(文科)

知识点归纳 一.向量的基本概念与基本运算 1、向量的概念: ①向量:既有大小又有方向的量 向量不能比较大小,但向量的模可以比较大小. ②零向量:长度为0的向量,记为0 ,其方向是任意的,0 与任意向量平行 ③单位向量:模为1个单位长度的向量 ④平行向量(共线向量):方向相同或相反的非零向量 ⑤相等向量:长度相等且方向相同的向量 2、向量加法:设,AB a BC b == ,则a +b =AB BC + =AC (1)a a a =+=+00;(2)向量加法满足交换律与结合律; AB BC CD PQ QR AR +++++= ,但这时必须“首尾相连” . 3、向量的减法: ① 相反向量:与a 长度相等、方向相反的向量,叫做a 的相反向量 ②向量减法:向量a 加上b 的相反向量叫做a 与b 的差,③作图法:b a -可以表示为从b 的终点指向a 的终点的向量(a 、b 有共同起点) 4、实数与向量的积:实数λ与向量a 的积是一个向量,记作λa ,它的长度与方向规定如下: (Ⅰ)a a ?=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时,λa 的方向与a 的 方向相反;当0=λ时,0 =a λ,方向是任意的 5、两个向量共线定理:向量b 与非零向量a 共线?有且只有一个实数λ,使得b =a λ 6、平面向量的基本定理:如果21,e e 是一个平面内的两个不共线向量,那么对这一平面内的任一向量a ,有且只有一对实数21,λλ使:2211e e a λλ+=,其中不共线的向量21,e e 叫做表示这一平面内所有向量的一组基底 二.平面向量的坐标表示 1平面向量的坐标表示:平面内的任一向量a 可表示成a xi yj =+ ,记作a =(x,y)。 2平面向量的坐标运算: (1) 若()()1122,,,a x y b x y == ,则()1212,a b x x y y ±=±± (2) 若()()2211,,,y x B y x A ,则()2121,AB x x y y =-- (3) 若a =(x,y),则λa =(λx, λy) (4) 若()()1122,,,a x y b x y == ,则1221//0a b x y x y ?-= (5) 若()()1122,,,a x y b x y == ,则1212a b x x y y ?=?+? 若a b ⊥ ,则02121=?+?y y x x

2020届天津市滨海新区高三居家专题讲座学习反馈检测数学试题(B卷)(解析版)

2020届天津市滨海新区高三居家专题讲座学习反馈检测数学 试题(B 卷) 一、单选题 1.已知全集{U x =是小于7的正整数},集合{1,3,6}A =,集合{2,3,4,5}B =,则 =U A B ?( ) A .{3} B .{1,3,6} C .{2,4,5} D .{1,6} 【答案】D 【分析】先求出U B ,再求U A B . 【详解】 {U x x =是小于7的正整数}{}1,2,3,4,5,6=, {}=1,6U B ∴,{}=1,6U A B ∴?. 故选:D. 2.设x ∈R .则“3x ≤”是“230x x -≤”的( ). A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分又不必要条件 【答案】B 【分析】根据充分必要条件的定义判断. 【详解】3x ≤时,例如1x =-,则2340x x -=>,不是充分的, 230033x x x x -≤?≤≤?≤,必要性成立. 因此应是必要不充分条件. 故选:B . 【点睛】本题考查充分必要条件的判断,解题方法是用充分必要条件的定义进行.本题也可从集合的包含角度求解. 3.设0.3 13a -??= ? ?? ,2 1log 3b =, 3 lg 2 c =,则,,a b c 的大小关系为( ) A .b a c << B .c b a << C .b c a << D .a b c << 【答案】C 【分析】根据指数函数的单调性以及对数函数的单调性分别判断出,,a b c 的取值范围,

从而可得结果. 【详解】 0.3011 ()()133->=,1a ∴>, 2 21 log log 103 b =<=, 0b ∴<, 3 0lg1lg lg101 2 =<<=,01c ∴<<, b c a ∴<<, 故选:C . 【点睛】方法点睛:解答比较大小问题,常见思路有两个:一是判断出各个数值所在区间(一般是看三个区间()()(),0,0,1,1,-∞+∞ );二是利用函数的单调性直接解答;数值比较多的比大小问题也可以两种方法综合应用. 4.在2 5 2 ()x x -的二项展开式中,7x 的系数为( ) A .10- B .10 C .5- D .5 【答案】A 【分析】求出二项式展开式的通项,即可求出7x 的系数. 【详解】2 52()x x -的二项展开式的通项为() ()52 10315522r r r r r r r T C x C x x --+??=?-=- ??? , 令1037r -=,解得1r =, 故7x 的系数为()1 1 5210C -=-. 故选:A. 5.如图,圆柱内有一内切球(圆柱各面与球面均相切),若圆柱的侧面积为4π,则球的体积为( ) A . 32 3 π B . 43 π C .4π D .16π 【答案】B 【分析】设圆柱底面半径为r ,则内切球的半径也是r ,圆柱的高为2r ,利用圆柱的侧

平面向量专题

平面向量专题

向量专题 ☆零向量:长度为0的向量,记为0 ,其方向是任意的, 与任意向量平行 ☆单位向量:模为1个单位长度的向量 向量0 a 为单位 向量?|0 a |=1 ☆平行向量(共线向量):方向相同或相反的非零向量平 行向量也称为共线向量 ☆向量加法AB BC +=AC 向量加法有“三角形法则”与“平 行四边形法则”:AB BC CD PQ QR AR +++++=,但这时必须“首 尾相连”. ☆实数与向量的积: ①实数λ与向量a 的积是一个向量,记作λa ,它的长 度与方向规定如下: (Ⅰ)a a ?=λλ; (Ⅱ)当0>λ时,λa 的方向与a 的方向相同;当0<λ时, λa 的方向与a 的方向相反;当0=λ时,0 =a λ,方向是任意 的 ☆两个向量共线定理: 向量b 与非零向量a 共线?有且只有一个实数λ,使得b =a λ ☆平面向量的基本定理: 如果2 1 ,e e 是一个平面内的两个不共线向量,那么对这

一平面内的任一向量a ,有且只有一对实数2 1 ,λλ使: 2211e e a λλ+=,其中不共线的向量2 1 ,e e 叫做表示这一平面内所有向量的一组基底 ☆平面向量的坐标运算: (1) 若()()1 1 2 2 ,,,a x y b x y ==,则()1212,a b x x y y ±=±±,12 12 a b x x y y ?=?+? (2) 若()()2 2 1 1 ,,,y x B y x A ,则() 2 121,AB x x y y =-- (3) 若a =(x,y),则λa =(λx, λy) (4) 若()()1 1 2 2 ,,,a x y b x y ==,则12 21//0 a b x y x y ?-= (5) 若()()1 1 2 2 ,,,a x y b x y ==,则a b ⊥,0 212 1 =?+?y y x x ☆向量的运算向量的加减法,数与向量的乘积,向量的数量(内积)及其各运算的坐标表示和性质 ☆两个向量的数量积: 已知两个非零向量a 与b ,它们的夹角为θ,则a · b =︱a ︱·︱b ︱cos θ 叫做a 与b 的数量积(或内积) 规定00a ?= ☆向量的投影:︱b ︱cos θ=|| a b a ?∈R ,称为向量 b 在a 方向上的投影投影的绝对值称为射影 ☆数量积的几何意义: a · b 等于a 的长度与b 在a 方向上的投影的乘积 ☆向量的模与平方的关系:2 2 ||a a a a ?== ☆乘法公式成立: ()()2 2 22 a b a b a b a b +?-=-=-;

平面向量简单练习题

试卷第1页,总5页 一、选择题 1.已知三点)143()152()314(--,,、,,、,,λC B A 满足⊥,则λ的值 ( ) 2.已知)2 , 1(-=,52||=,且//,则=( ) 5.已知1,2,()0a b a b a ==+= ,则向量b 与a 的夹角为( ) 6.设向量(0,2),==r r a b ,则, a b 的夹角等于( ) 7.若向量()x x a 2,3+=和向量()1,1-=→b 平行,则 =+→→b a ( ) 8.已知()()0,1,2,3-=-=b a ,向量b a +λ与b a 2-垂直,则实数λ的值为( ). 9.设平面向量(1,2)a = ,(2,)b y =- ,若向量,a b 共线,则3a b + =( ) 10.平面向量a 与b 的夹角为60 ,(2,0)a = ,1b = ,则2a b + = 11.已知向量()1,2=,()1,4+=x ,若//,则实数x 的值为 12.设向量)2,1(=→a ,)1,(x b =→,当向量→→+b a 2与→→-b a 2平行时,则→→?b a 等于 13.若1,2,,a b c a b c a ===+⊥ 且,则向量a b 与的夹角为( ) 142= ,2||= 且(b a -)⊥a ,则a 与b 的夹角是 ( ) 15.已知向量AB =(cos120°,sin120°),AC =(cos30°,sin30°),则△ABC 的形状为 A .直角三角形 B .钝角三角形 C .锐角三角形 D .等边三角形 17.下列向量中,与(3,2)垂直的向量是( ). A .(3,2)- B .(2,3) C .(4,6)- D .(3,2)- 18.设平面向量(3,5),(2,1),2a b b ==--= 则a ( ) 19.已知向量)1,1(=a ,),2(n =b ,若b a ⊥,则n 等于 20. 已知向量,a b 满足0,1,2,a b a b ?=== 则2a b -= ( ) 21.设向量a =(1.cos θ)与b =(-1, 2cos θ)垂直,则cos 2θ等于 ( ) 23.化简AC - BD + CD - AB = 25.如图,正方形ABCD 中,点E ,F 分别是DC ,BC 的中点,那么=EF ( )

高三数学复习微专题之平面向量篇矩形大法教师

一、 知识清单 1. 极化恒等式:如图,+=AD AB AC 2 ① -=CB A B A C ②,则: ①2 +②2 得:AC AD BC AB +=+242 2 22 ;①2-②2 得:AC AD BC AB ?=-4422 推广:AC AB AC BC AB AB AC cosA ?=?=?+-2 222 速记方法:?==-+-a b a b a b 4()()22,=++=+-a b a b a b 2 ()()2222 2. 矩形大法:如图,由极化恒等式可得 +=+PO BD 2PD PB 42 2 22①+=+PO AC 2 PA PC 422 22 ② 因为BD=AC ,所以PD PB PA PC +=+2222, 速记方法:矩形外一点到矩形对角顶点的平方和相等。 推广1:若ABCD 为平行四边形,则有PA PC PD PB =+-+-AC 2 )(BD 2 2 2 2 22 =-?= -AC AM BC 4 422 =4 1 0,且对于边AB 上任一点P ,恒有?≥?PB PC P B PC 00 。则( ) A.∠=ABC 90 B. ∠=BAC 90 C.=AB AC D. =AC BC 解析:D 为BC 中点,由极化恒等式有:?=-PC PD BC 4 PB 422 则当PD 最小时,PB ????? ?PC ????? 最小, 所以过D 作AB 垂线,垂足即为P 0,作AB 中点E ,则CE ⊥AB ,即AC=BC 。 3. 已知向量a b e ,,是平面向量,e 是单位向量. ?-++===b e a b a b a ()12,3,0,求-a b 的范围? 解析:由?-++=b e a b a ()10,得-?-=e b e a ()()0 如图,===OA a OB b OE e ,, ,构造矩形ACBE ,由矩形大法有 +=+OE OC OA OB 222 2,则=OC ==∈-+=-+-AB CE OC OE OC OE a b [,] [2 3 1,231] 高三数学复习微专题之平面向量篇 第三讲:极化恒等式与矩形大法 解析:由极化恒等式有:AB 16推广2:若P 为平面外一点,上述性质仍成立。二、典型例题1.(2019浙江模拟卷)在?ABC 中,M 是BC 的中点,AM =3,BC =10,则A B A ? C =_________. 2.(2019山东模拟)在?ABC 中,P 0是边AB 上一定点,满足P B AB

高考数学平面向量及其应用习题及答案 百度文库

一、多选题 1.在ABC ?中,内角,,A B C 的对边分别为,,,a b c 若,2,6 A a c π ===则角C 的大小 是( ) A . 6 π B . 3 π C . 56 π D . 23 π 2.已知点()4,6A ,33,2 B ??- ?? ? ,与向量AB 平行的向量的坐标可以是( ) A .14,33?? ??? B .97,2?? ??? C .14,33?? - - ??? D .(7,9) 3.在ABC 中,AB =1AC =,6 B π =,则角A 的可能取值为( ) A . 6 π B . 3 π C . 23 π D . 2 π 4.已知向量()1,0a =,()2,2b =,则下列结论正确的是( ) A .()25,4a b += B .2b = C .a 与b 的夹角为45° D .() //2a a b + 5.已知ABC ?是边长为2的等边三角形,D ,E 分别是AC 、AB 上的两点,且 AE EB =,2AD DC =,BD 与CE 交于点O ,则下列说法正确的是( ) A .1A B CE ?=- B .0OE O C += C .3OA OB OC ++= D .ED 在BC 方向上的投影为 76 6.ABC 中,2AB =,30ACB ∠=?,则下列叙述正确的是( ) A .ABC 的外接圆的直径为4. B .若4A C =,则满足条件的ABC 有且只有1个 C .若满足条件的ABC 有且只有1个,则4AC = D .若满足条件的ABC 有两个,则24AC << 7.在△ABC 中,角A ,B ,C 所对边分别为a ,b ,c ,b =15,c =16,B =60°,则a 边为( ) A . B . C .8 D . 8.ABC 中,4a =,5b =,面积S =c =( ) A B C D .9.八卦是中国文化的基本哲学概念,如图1是八卦模型图,其平面图形记为图2中的正八

2018高考数学精英备考专题讲座圆锥曲线.docx

圆锥曲线 圆锥曲线是高考命题的热点,也是难点 .纵观近几年的高考试题,对圆锥曲线的定义、几何性质等的考查多以选择填空题的形式出现,而圆锥曲线的标准方程以及圆锥曲线与平面向量、三 角形、直线等结合时 ,多以综合解答题的形式考查 ,属于中高档题 ,甚至是压轴题 ,难度值一般控制在0.3~ 0.7 之间. 考试要求⑴了解圆锥曲线的实际背景;⑵掌握椭圆的定义、几何图形、标准方程及简 单几何性质;⑶了解双曲线的定义、几何图形和标准方程,知道其简单几何性质;⑷了解抛物 线的定义、几何图形、标准方程,知道其简单几何性质;⑸了解圆锥曲线的简单应用;⑹掌握 数形结合、等价转化的思想方法. 题型一圆锥曲线的定义及应用 例 1⑴已知点 F 为椭圆x2 y 2 1 的左焦点,M是此椭圆上的动点, A(1,1)是一定点 ,则95 |MA|| MF | 的最大值和最小值分别为________. 6 ,离心率为7 ⑵已知双曲线的虚轴长为, F1、F2分别是它的左、右焦点 ,若过F1的直线与 2 双曲线的左支交于A、B两点 ,且| AB|是| AF|与 |BF|的等差中项则 | AB | ________. 22, 点拨:题⑴可利用椭圆定义、三角形的三边间关系及不等式性质求最值;题⑵是圆锥曲线 与数列性质的综合题 ,可根据条件先求出双曲线的半实轴长a的值 ,再应用双曲线的定义与等差中项 的知识求 | AB |的值. 解:⑴设椭圆右焦点为F1,则 |MF ||MF1 | 6,∴|MA||MF | |MA | |MF1 | 6 .又|AF1| |MA| |MF1| |AF1|(当M、A、F1共线时等号成立).又|AF1|2,∴|MA| |MF | 6 2 , |MA||MF | 6 2.故|MA|| MF | 的最大值为6 2 ,最小值为6 2 . 2b6 c7 ,解得a2.∵A、在双曲线的左支上 ,∴| AF2||AF1 |2a , ⑵依题意有 a23 c 2a2b2 |BF2 || BF1 | 2a,∴|AF2||BF2 |(| AF1 | | BF1 |)4a.又|AF2 | |BF2| 2|AB|,|AF1| |BF1| |AB|. ∴ 2| AB | | AB | 4a ,即 | AB | 4a .∴ | AB | 4 2 3 83. 易错点:在本例的两个小题中,⑴正确应用相应曲线的定义至关重要,否则求解思路受阻; ⑵忽视双曲线定义中的两焦半径的大小关系容易出现解题错误;⑶由M 、 A、F1三点共线求出 | MA | | MF | 的最值也是值得注意的问题. 变式与引申

(完整word版)高中数学-平面向量专题.doc

第一部分:平面向量的概念及线性运算 一.基础知识自主学习 1.向量的有关概念 名称定义备注 向量既有又有的量;向量的大小叫做向量 平面向量是自由向量的(或称) 零向量长度为的向量;其方向是任意的记作 0 单位向量长度等于的非零向量 a 的单位向量为± a 向量|a| 平行向量方向或的非零向量 0 与任一向量或共线共线向量的非零向量又叫做共线向量 相等向量长度且方向的向量两向量只有相等或不等,不能比 较大小 相反向量长度且方向的向量0 的相反向量为 0 2.向量的线性运算 向量运算定义法则 (或几何 运算律意义 ) 加法求两个向量和的运算 求 a 与 b 的相反向量- b 减法的和的运算叫做 a 与 b 的差 (1)交换律: a+ b= b+ a. (2)结合律: (a+ b)+ c= a+ (b+c). a- b= a+ (- b) 法则 求实数λ与向量 a 的积的(1)|λa|= |λ||a|. ;λ(μa)=λμa; 数乘 (2)当λ>0 时,λa 的方向与 a 的方向 运算当λ<0 时,λa 的方向与 a 的方向;当λ (λ+μ)a=λa+μa; =0 时,λa= 0. λ(a+ b)=λa+λb. 3.共线向量定理 向量 a(a≠0)与 b 共线的条件是存在唯一一个实数λ,使得 b=λa. 二.难点正本疑点清源 1.向量的两要素 向量具有大小和方向两个要素.用有向线段表示向量时,与有向线段起点的位置没有关系.同向且等长的有向线段都表示同一向量.或者说长度相等、方向相同的向量是相等的.向量只有相等或不等,而没有谁大谁小之说, 即向量不能比较大小. 2.向量平行与直线平行的区别 向量平行包括向量共线 (或重合 )的情况,而直线平行不包括共线的情况.因而要利用向量平行证明向量所在直线平行,必须说明这两条直线不重合.

2020-2021年高考数学试题汇编平面向量(精华总结)

2021年高考数学试题汇编平面向量 (北京4) 已知O 是ABC △所在平面内一点,D 为BC 边中点,且2OA OB OC ++=0u u u r u u u r u u u r , 那么( A ) A.AO OD =u u u r u u u r B.2AO OD =u u u r u u u r C.3AO OD =u u u r u u u r D.2AO OD =u u u r u u u r (辽宁3) 若向量a 与b 不共线,0≠g a b ,且?? ??? g g a a c =a -b a b ,则向量a 与c 的夹角为( D ) A .0 B .π 6 C .π3 D .π2 (辽宁6) 若函数()y f x =的图象按向量a 平移后,得到函数(1)2y f x =+-的图象,则向量a =( A ) A .(12)--, B .(12)-, C .(12)-, D .(12), (宁夏,海南4) 已知平面向量(11) (11)==-,,,a b ,则向量1322 -=a b ( D ) A.(21)--, B.(21)-, C.(10)-, D.(12), (福建4)

对于向量,,a b c 和实数λ,下列命题中真命题是( B ) A .若=0g a b ,则0a =或0b = B .若λ0a =,则0λ=或=0a C .若22=a b ,则=a b 或-a =b D .若g g a b =a c ,则b =c (湖北2) 将π2cos 3 6x y ??=+ ??? 的图象按向量π24 ?? =-- ??? , a 平移,则平移后所得图象的解析式为( A ) A.π2cos 234x y ??=+- ??? B.π2cos 234x y ?? =-+ ??? C.π2cos 2312x y ?? =-- ??? D.π2cos 2312x y ?? =++ ??? (湖北文9) 设(43)=,a ,a 在b 上的投影为52 2 ,b 在x 轴上的投影为2,且||14≤b ,则b 为( B ) A .(214), B .227??- ?? ? , C .227? ?- ?? ? , D .(28), (湖南4) 设,a b 是非零向量,若函数()()()f x x x =+-g a b a b 的图象是一条直线,则必有( A ) A .⊥a b B .∥a b C .||||=a b D .||||≠a b (湖南文2) 若O E F ,,是不共线的任意三点,则以下各式中成立的是( B ) A .EF OF OE =+u u u r u u u r u u u r B .EF OF OE =-u u u r u u u r u u u r

《数学学科发展前沿专》专题讲座

第一章行列式及其应用 行列式的概念是由莱布尼兹最早提出来的.日本著名的“算圣”关孝和在1683年的著作《解伏题之法》中就提出了行列式的概念及算法.与莱布尼茨从线性方程组的求解入手不同,关孝和从高次方程组消元法入手对这一概念进行阐述.行列式的发明应归功于莱布尼兹和关孝和两位数学家,他们各自在不同的地域以不同的方式提出了这个概念. 1683年,日本数学家关孝和在《解伏题之法》中第一次提出了行列式这个概念。该书中提出了乃至的行列式,行列式被用来求解高次方程组。1693年,德国数学家莱布尼茨从三元一次方程组的系统中消去两个未知量得到了一个行列式。这个行列式不等于零,就意味着有一组解同时满足三个方程。由于当时没有矩阵这个概念,莱布尼茨用数对来表示行列式中元素的位置:ij代表第i行第j列。1730年,苏格兰数学家科林?麦克劳林在他的《论代数》中已经开始阐述行列式的理论,其间记载了用行列式解二元、三元和四元一次方程组的解法,并给出了四元一次方程组一般解的正确形式。1750年,瑞士的加布里尔?克莱姆首次在他的《代数曲线分析引论》给出了元一次方程组求解的法则,用于确定经过五个点的一般二次曲线的系数,但并没有给出证明。此后,行列式的相关研究逐渐增加。1764年,法国的艾蒂安?裴蜀在论文中提出的行列式的计算方法简化了克莱姆法则,给出了用结式来判别线性方程组的方法。法国人的亚历山德?西奥菲勒?范德蒙德在1771年的论著中首次将行列式和解方程理论分离,对行列式单独作出阐述。此后,数学家们开始对行列式本身进行研究。1772年,皮埃尔-西蒙?拉普拉斯在论文《对积分和世界体系的探讨》中推广了范德蒙德著作里面将行列式展开为若干个较小的行列式之和的方法,提出了子式的定义。1773年,约瑟夫?路易斯?拉格朗日发现了的行列式与空间中体积之间的联系:原点和空间中三个点所构成的四面体的体积,是它们的坐标所组成的行列式的六分之一。 行列式被称为“determinant”最早是由卡尔?弗里德里希?高斯在他的《算术研究》中提出的。“determinant”有“决定”意思,这是由于高斯认为行列式能够决定二次曲线的性质。高斯还提出了一种通过系数之间加减来求解多元一次方程组的方法,即现在的高斯消元法。 十九世纪,行列式理论得到进一步地发展并完善。此前,高斯只不过将“determinant”这个词限定在二次曲线所对应的系数行列式中,然而奥古斯丁?路易?柯西在1812年首次将“determinant”一词用来表示行列式。柯西也是最早将行列式排成方阵并将其元素用双重下标表示的数学家。柯西还证明了曾经在雅克?菲利普?玛利?比内的书中出现过但没有证明的行列式乘法定理。 十九世纪五十年代,凯莱和詹姆斯?约瑟夫?西尔维斯特将矩阵的概念引入数学研究中。行列式和矩阵之间的密切关系使得矩阵论蓬勃发展的同时也带来了许多关于行列式的新结果。 行列式是现行高中普通课程标准(实验)中新增加内容,安排在选修4—2中,行列式作为高等代数的基础内容安排在中学数学课程中为高中学生理解数学基本原理、思想、方法,培养学生数学知识的迁移能力,进一步学习提供必要的数学准备。行列式作为一种重要的数学工具引进,从更高的角度、更便捷地解决了中学数学中的问题。本文结合中学数学课程内容,将从空间几何、平面几何、解析几何、高中代数等方面探究行列式在中学数学领域中的应用。 一、行列式在平面几何中的应用 一些平面几何问题,按照传统的中学数学解题方法,一般比较困难,利用行列式的知识解题可以将复杂的理论问题转化为简单的计算问题。 例1 证明不存在格点三角形是正三角形。 证明:(反证法)假设存在格点三角形是正三角形。

相关主题