搜档网
当前位置:搜档网 › 汽车碰撞模拟分析流程

汽车碰撞模拟分析流程

汽车碰撞模拟分析流程
汽车碰撞模拟分析流程

ANSYS

汽车碰撞分析流程Flow Chart of Auto Impact Analysis

Prepared By 史志远

Date: Nov.1, 2004

汽车碰撞模拟分析流程

一、碰撞安全性试验介绍:

在汽车模拟分析的过程中,提高汽车碰撞安全性的目的是在汽车发生碰撞时确保乘员生存空间、缓和冲击、防止发生火灾等等。但是从碰撞事故分析中可知,汽车碰撞事故的形态也千差万别,所以对汽车碰撞安全性能的评价也必须针对不同的碰撞形态来进行。按事故统计结果,汽车碰撞事故主要可分为正面碰撞、侧面碰撞、追尾碰撞和翻车等几种类型。但随着公路条件的改善,正面碰撞和侧面碰撞形态成了交通事故中最常见的碰撞形式。

按照碰撞试验的目的区分,现在碰撞试验大体可以分为三类:

1)由政府法规要求的强制性试验:例如FMVSS208、ECE R94法规规定的正面碰撞

试验,FMVSS214、ECE R95法规规定的侧面碰撞试验等等;

2)由汽车制造厂自己制定的碰撞试验方法:例如用于提出改善汽车碰撞安全性的新

措施等等;

3)为消费者提供信息的试验:例如美国、欧洲等国家实施的新车评价程序(NCAP),

汽车安全法规中规定了达到政府规定的最低安全性能要求,NCAP以更高的车速

进行正面碰撞试验,以展示汽车产品的碰撞安全性能。

由于法规试验是政府强制实施的,所以,汽车碰撞试验法规是人们关注的热点。下表列出了一些美国FMVSS, 欧洲ECE的汽车被动安全性法规的试验项目。

二、人体伤害评价指标:

在碰撞试验或碰撞模拟分析的过程中,都使用了标准的碰撞试验假人,通过测量假人的响应计算出伤害的指标,用于定量的评价整车及安全部件的保护效能。

1) Hybrid III假人家族的伤害评价基准值:

下表列出了正面碰撞试验用的Hybrid III假人家族的伤害评价基准值。Hybrid III第50百分位男性假人是目前生物保真性最好的正面碰撞试验假人,另外,为了评价汽车对不同身材乘员的安全保护性能,按比例方法开发了第95百分位男性的大身材假人和第5百分位女性的小身材假人。

2)侧面碰撞假人的伤害评价基准值:

下表所示为目前使用的用于侧面碰撞用的假人SID, EuroSID-1的伤害评价基准值:

3) 伤害评价指标的计算

a . 头部伤害指标HIC (Head Injury Criterion)

定量地评价头部碰撞忍受能力地基础是Wanyne State 耐力曲线WSTC, Versace 对WSTC 进行了进一步地研究,提出了新地头部伤害指标HIC :

[])()1(m a x 125

.2122

1

t t adt t t HIC t t --=? (1)

式中: a - 头部质心点地合成加速度,g ; t1, t2 - 碰撞过程中地任意两个时刻,s ;

通常把最大地积分区间取为36ms, 即要求t2-t1 <=36ms 。当HIC 仅限于做头部接触碰撞伤害评价时,将积分区间取为15ms 即可。 b . 粘性指标VC (Viscous Criterion)

胸骨的挤压量指标不能很好地反应较高速度碰撞造成地伤害地可能性,对于更高地速度冲击,挤压变形速度对伤害显得更重要。

粘性指标VC是变形速度V(t) 和相对挤压变形量C(t)的乘积。VC的单位与速度单位相同,为m/s,试验表明,造成严重伤害的概率为25%时的忍受水平VCmax =1m/s。

c.胸部伤害指数TTI (Thoracic Trauma Index)

TTI 是用于胸部侧面碰撞时伤害评价的指标,计算TTI所用的加速度值是从第12根肋骨上得到的,对胸部伤害相关系数较大的是侧面加速度峰值,当然,还要考虑人体的质量和年龄。

TTI = 1.4 * AGE + 0.5 * (RIBY + T12Y) * MASS/Mstd (2)

式中:TTI -胸部伤害指数,g;

AGE -人体的年龄,岁;

RIBY -第4、8根肋骨的侧面加速度峰值,g;

T12Y -第12肋骨处的侧面加速度峰值,g;

MASS -人体的质量,kg;

Mstd -标准人体的质量,Mstd =75 kg。

对于50%的假人,TTI可简化为:

TTI = 0.5 * (RIBY + T12Y) (3) 三、汽车碰撞分析的软件介绍:

前后处理软件:eta/VPG3.0

简介:VPG软件是ETA在对各大汽车厂商(如FORD、GM、DAIMLER-CHRYSLER、KIA等)近20年合作的工程咨询和技术服务过程中,积累了丰富的汽车业CAE技术服务经验而开发出的整车仿真软件。eta/VPG3.0 分为三个模块:

VPG/PrePost: 前后处理器模块:

前处理包括:支持多种CAD数据格式,强大的网格自动划分功能,焊点的生成,100%支持LS-DYNA的关键字,支持多种CAE数据格式等等;

图1. eta/VPG3.0 前处理界面

后处理包括:云纹图的动画显示(显示应力,应变,变形等) ,强大的GRAPH功能等等;(X-Y曲线表示能量,力,位移,加速度,速度的变化历程等)

VPG/Structure: 结构模块:

它是耐久性分析的环境,它包括:悬挂模块(Suspension), 轮胎模型(Tire) 和路面库(Road) ;

1) VPG/Structure 中Road库的类型有:

图2. Road库中的路面类型

图3. Road库中的路面类型

2) VPG/Structure中的悬挂模型有:

图4. 前后悬挂的类型

图5. MACPHERSON A-ARM悬挂示意图

3) VPG/Structure的轮胎模型:

图6. VPG 轮胎示意图

VPG/Safety: 安全模块:

它能帮助我们方便进行碰撞与安全性分析。它包括:美国和欧洲的各种碰撞法规,各种碰撞工具如运动壁障小车、头部模型以及摆锤模型等,还有家人模型,安全带模型等等。

1) VPG/Safety包括的碰撞法规有:

图7. VPG/Safety 的碰撞法规

2) VPG3.0的假人模型有:

图8. VPG/Safety的假人模型

图9. VPG/Safety的假人模型示意图

3) VPG3.0的运动壁障小车:

图10. VPG/Safety的运动壁障模型示意图

计算软件:LS-DYNA (version 970-PC)

简介:LS-DYNA是一个通用非线性瞬态动力分析有限元软件,特别适合求解各种二维、三维非线性结构的高速碰撞、爆炸和金属成型等非线性动力冲击问题,其分布存储显式并行求解器提供了最快的计算速度,可运行在Unix, Linux 和Windows Clusters环境下。

LS-DYNA还拥有更多的分析功能,包括:热耦合分析,流体动力学,流体-结构交互作用、光顺质点流体动力(SPH) 、无网格分析(EFG) 等。

LS-DYNA 可以解决高速碰撞、复杂的金属成型等问题,可以无缝地解决多物理场、多相位、多工况等方面的问题;它作为通用的多物理仿真软件,用户可以通过各种功能的组合将其运用到许多领域的分析。

LS-DYNA可以运用在:汽车碰撞及乘员安全性分析;爆炸、穿甲分析;发动机的包容性分析;板材冲压成型模拟。

四、汽车碰撞模拟分析的一般流程:

由于用实际的车来做碰撞分析(特别在设计开发阶段)一方面价格周期比较长,另外一个方面价格比较昂贵,所以,大量的碰撞模拟试验都在计算机上完成。而且,随着计算机技术的飞速发展,使这种分析模拟工作不但成为可能,而且越来越方便,越来越在设计开发过程中占有主导地位。下面就以侧面碰撞分析(正面碰撞也相类似)为例,来阐述如何在计算机上模拟整车的前碰撞分析的过程和方法并能够验证eta/VPG软件(含求解器Ls-dyna)在使用过程中的性能。

1)将车模型的CAD数据导入VPG3.0:(Import)

在VPG前处理中,有多种CAD数据类型的接口,包括:UG,CATIA,IGES,PRO-E,STEP等等,如图所示。VPG3.0 可以直接将这些类型的数据读进来。

图11. VPG3.0与CAD数据的接口

2)用网格的自动划分功能划分网格:(Auto-Mesh)

在VPG3.0中有一个强大的网格自动划分功能:即TOPOLOGY MESH功能。利用次功能可以将读入的CAD模型数据划分成网格,在划分的过程中,可以同时选取整个模型的面来划分,也可以对单个面逐一划分,这样划分出来的网格质量比较好,看起来也很光滑。设置的参数如下:

图12. TOPOLOGY MESH 参数设置

在表中你可以设置这样一些参数:单元网格的大小(ELEMENT SIZE),,忽略孔的大小(IGNORE HOLE SIZE),面与面的间隙(SURFACE BDY GAP),还有一些控制网格质量的参数,如翘曲度(WARPAGE),,锥度(TAPER),单元的长宽比值(ASPECT RATIO) 等等。一般我们选用的网格的大小为10mm左右,其他参数都可以选用默认值。如果整车模型的单元大小一样的话,那么整车模型的单元数就会比较多,因此,为了减少模型的大小,在碰撞分析不是很重要的地方,相应的网格尺寸可以取大一些,例如,如果是该模型已经确认好了要用于模拟前碰撞分析,那么对于车的前部的网格要求质量比较高,网格的大小也可以小一点,而车后

部的网格可以划得粗略一些,网格的大小也可以相应的大一些;如果该模型已经确认好了要

用于模拟侧碰撞分析,那么运动壁障车所要碰撞的那一侧边门网格要密一些,结构也要齐全一些,而对于它的对立面,网格尺寸可以大一些,甚至侧边门可以不画,用质量块单元来代替,所以,这是要视具体情况而定。

3)网格质量检查(Model Check)

在网格进行自动划分以后,需要对自动划分的网格进行质量检查。其实,每个公司或者每个人对网格质量的认识有所不同,因此,不同的人就可能会有不同的网格质量标准,而ETA 在多年的项目工程分析过程中也形成了一套自己的标准,对于VPG3.0里各项检查功能来讲,将ETA自己的网格质量的标准设置成默认值,用户按照这个网格质量标准检查完的模型,在计算分析完所得到的结果也就比较可靠。具体的检查项目如图所示:

图13. 模型检查功能

在对网格质量进行检查的过程中,如果存在网格质量不好的单元,可以用VPG3.0网格的自动修复功能(AUTO REPAIR功能)对其进行网格的自动修复,或者手工进行修改。自动网格划分的结果如下图所示:

图14. 车身的有限元网格示意图

4)创建焊点(Spotweld)及质量块单元(Trim Mass)

在创建有限元模型的时候,建立焊点是一项重要的工作,在VPG3.0中多种连接方式可以提供给用户。一般情况下,在LS-DYNA中,可以定义成*CONSTRAINED_NODAL_RIGID _BODY,也可以定义成*CONSTRAINED_SPOTWELD。在本模型中,一共产生了2000多个焊点,定义的方式是*CONSTRAINED_SPOTWELD。

有限元模型中,质量块单元代表的是一些非结构质量,它是由于一些结构在创建有限元模型的时候被忽略了,例如电池,备用胎,仪表盘上的部件等等,但是在分析模拟的时候,如果这些部件完全不考虑的话,那么对整车模型的质量就会有影响,所以,我们就用一些质量块单元来代替这些被忽略部件的作用。在创建的时候,质量块单元的位置取在被忽略部件的质心,它有两种连接方式,一种是直接连接在节点上,另一种是当质心离连接点比较远的

时候通过刚性连接来连接。焊点和质量块如下图所示。

图15. 焊点与质量块单元示意图

5)创建悬挂(Suspension)

悬挂的产生:

对于汽车的悬挂模型,如果用户有该悬挂的CAD模型,则可以按照前面所说的方法:可以将该CAD模型导入到VPG3.0中,然后利用网格自动划分功能对其进行网格划分来得到汽车悬挂的有限元模型,这里产生的悬挂是有二维或三维单元组成的。

但对VPG3.0来讲,还有另外一种方法,那就是在VPG/Structure 模块中,它包含有自动产生悬挂的功能,我们可以利用这个功能来产生悬挂的。在VPG中的Suspension菜单下,它有两种前悬挂和八种后悬挂,用户可以根据汽车的悬挂来选择一种悬挂类型, 产生的过程中界面比较友好,用户可以自己修改悬挂的几何参数以及弹簧的刚度,阻尼系数等等参数。用户也可以在该悬挂基础上继续进行修改,直到与汽车的真实悬挂一致,这里产生的悬挂都是有一维单元组成的。如果通过VPG3.0自动产生的悬挂需要进行几何位置上的调整,才能让悬挂和车身处于适当的位置,以便于悬挂和车身的连接。

●悬挂与车身的连接:

在悬挂与车身之间有多处需要连接,调节后的悬挂与周围部件的连接关系如下图所示。

图16. 焊点与质量块单元示意图

6)创建轮胎(Tire):

在VPG/Structure 模块中,包含有自动产生轮胎的功能,因此,在这个模型中,我们就是利用这个功能来产生轮胎的。

●轮胎的产生:

用VPG30来产生轮胎的过程中,需要定义一些参数,如下图所示。

(a). 定义轮胎压力:VPG产生的轮胎它是可变形的轮胎,不是刚性的轮胎,而且在VPG 轮胎中带有安全气囊的,因此,在定义轮胎时需要定义轮胎的胎压。

(b). 定义轮胎的几何参数:对于轮胎的几何参数,都可以用VPG提供的默认值,用默认值的好处是:这样产生的轮胎和实际一个这样的轮胎的刚度比较接近,不需要用户自己去调

节轮胎的刚度。

(c). 定轮胎的重量和同时产生轮胎的个数;

(d). 轮胎的材料和特性:在轮胎产生的同时,VPG会给轮胎的各个部位赋予材料与厚度,材料包括橡胶材料,刚性材料,弹性材料等等。

图17. 产生轮胎时参数的设置

轮胎与悬挂的连接:

VPG中,轮胎和车轴之间可以定义成旋转的,它可以用一种铰接来定义。连接用的铰接以及轮胎和悬挂的连接如下图所示。

图18. 轮胎和车轴之间的连接方式

图19. 轮胎和车轴之间的连接示意图

7)在VPG3.0前处理中定义车身材料、单元特性以及接触:

在VPG3.0前处理中,对于LS-DYNA的各种卡片是100%支持的,因此,如果用户需要定义任何卡片,都可以直接通过VPG3.0的前处理功能完成,这对于用户是很方便的。

对于悬挂和轮胎,如果是用VPG3.0自动产生的,则这部分单元的材料以及单元特性在自动产生的过程中VPG也相应的创建并且也赋给了这些部件,只需对车身上的材料和单元特性需要到VPG3.0的前处理中去赋值。如果悬挂和轮胎也是通过用户自己划分网格产生的,

汽车碰撞模拟实验台设计

目录 1 绪论 (1) 1.1 课题来源与国内外现状 (1) 1.1.1 研究背景 (1) 1.1.2 汽车安全性的种类 (1) 1.1.3 汽车模拟碰撞的研究 (2) 1.1.4 本课题主要内容 (3) 2. 碰撞试验台结构特点和技术要求 (4) 2.1 结构特点和技术要求 (4) 2.2 缓冲过程建模 (4) 3. 碰撞试验台的设计和计算 (5) 3.1 碰撞试验台的总体设计 (5) 3.2 导轨机构的设计和计算 (5) 3.3 小车的选择和设计及释放机构 (6) 3.4 墙体的选择 (7) 3.5 传动装置 (7) 4. 减速缓冲装置的设计和计算 (9) 4.1 减速缓冲器的种类 (9) 4.2 吸能缓冲器 (9) 4.3 多孔式液压缓冲器 (11) 4.4 圆槽减速缓冲器的设计计算 (14) 4.4.1 液压缓冲器的设计原理 (14) 4.4.2 缓冲器的结果设计 (19) 4.4.3 液压缓冲器装配图 (21) 4.4.4 驻退液 (22) 4.4.5 缓冲装置的运动 (22) 结论 (24) 致谢 (25) 参考文献 (26) 附录一液压缸体设计VB编程代码 (28) 附录二加速度曲线VB编程代码 (30) 附录三液压缸设计数据表 (31) 附录四液压缸圆槽设计数据表 (33)

1.1 课题来源与国内外现状 随着科技的进步、经济的发展、人民生活水平的不断提高,汽车己经成为人们学习、工作、生活中不可缺少的代步工具,对人们的生活、生产产生了深刻的影响。作为一种便捷的现代化交通工具,汽车在给人们带来极大便利的同时,也因其造成的交通事故给人类的生命和财产安全带来了严重威胁。随着全球汽车保有量的不断增加,交通事故也随之增加,交通事故己经成为全球范围内的一大社会问题。 这是一组让人膛目结舌的数字。美国的汽车保有量为1.3亿辆,每年道路交通死亡4万人左右;日本的汽车保有量近8000万辆,每年道路交通死亡1.1万人,去年降到8000人。中国的汽车保有量是3000万辆,每年道路交通死亡近11万人,单车事故率相当于美国的近13倍,日本的近40倍。除去交通状况等客观因素,一个不可回避的原因就是中国汽车安全系数低,我国交通事故的严重程度由此可想而知。随着我国道路交通状况的不断改善,我国汽车的保有量不断增加,车速也逐渐提高,交通事故总量和所造成的人员伤亡与财产损失近年来也呈上升趋势。加强道路交通系统和汽车安全的研究,预防交通事故,是需要全社会共同关注和迫切改善的重要课题[1-2]。 汽车安全性问题与汽车的各种性能等直接或间接有关,对其研究最初是与提高汽车的整车性能的研究交织在一起的。随着二战后汽车工业的持续发展,到60年代中期,西方发达国家中汽车的保有量和汽车的动力性能有了明显的提高,公路上的车流密度和车流速度己达到了一个空前高的水平,汽车事故发生率空前高涨,汽车安全性受到了公众和政府部门的高度重视。从这一时期开始,各国相继制定或修订了安全法规,如美国的汽车安全标准FMVSS等[3]。在这些法规的制约下,以及为了提高汽车产品的竞争力,各大汽车制造商和一些研究机构开展了汽车安全性的专门研究。汽车安全性研究逐渐从汽车技术研究的其他领域分离出来形成了一个独立的分支。 1.2 汽车安全性的种类 汽车安全性可划分为主动安全性和被动安全性[4-5]。被动安全性是指汽车发

汽车碰撞虚拟仿真

(一)研究目的 随着社会的发展,科技在飞速得更新,汽车受到越来越多的人的青睐,成为人们的代步工具。然而,随着汽车的不断增加,汽车交通事故也越来越多,如何更好地了解事故原因减少汽车事故成为了重点。由于现如今的大学生汽车事故试验实验涉及到的人身安全、汽车设备昂贵,汽车操作危险性高,实验损坏后不易修复等问题,使得学生实验操作机会很少,而且不敢深入实验,达不到预定的实验效果。通过软件仿真,就可以很好地解决这个问题。 (二)研究内容 “汽车碰撞”虚拟实验仿真汽车爆胎,汽车正碰、侧碰、追尾、汽车刹车不及时等实验。 (三)国内外研究现状及发展动态 由于计算机软、硬件的发展和汽车市场的竞争日益激烈,国际上近20年来,汽车碰撞的计算机仿真技术发展迅速。进入80年代,欧美等先进国家推出了用于汽车碰撞仿真的商业化软件包,这些功能强大的软件包在安全车身开发、事故鉴定分析、碰撞受害者保护、碰撞试验用标准假人开发和人体生物力学等研究工作中发挥了较大作用。 国内一些高校和科研机构正在积极从事汽车碰撞理论与仿真技术的研究。尽管总体上与国外相比还有很大差距,但预计不久的将来,在我国会有适于工程应用的仿真软件问世,汽车碰撞的计算机仿真技术将会有更为广泛的应用。车辆碰撞计算机仿真技术的一个主要应用方面就是交通事故的再现,辅助事故处理人员快速、高质量地进行现

场勘察、参数计算和事故分析,进而研究事故发生的原因,探求避免事故、减少损失的策略。 (四)创新点与项目特色 “汽车碰撞”虚拟实验项目是基于多媒体、仿真和虚拟现实等技术,在计算机上实现的机械操作虚拟实验环境,实验者可以像在真实的环境中一样完成各种预定的实验项目,所取得的实验效果等价于甚至优于在真实环境中所取得的效果。机械安全工程虚拟实验平台项目的开发、建设与应用彻底打破空间、时间限制,提高实验的效率和效果;有利于减少资源消耗与环境污染;避免真实实验和操作所带来的各种危险。 (五)技术路线、拟解决的问题及预期效果 1、“汽车碰撞”虚拟实验仿真汽车爆胎,汽车正碰、侧碰、追尾,汽车刹车不及时等实验。 重点解决以上实验的计算机虚拟仿真的软件实现,以及足够的容错、纠错能力。 2、前期工作关于有关被仿真实验项目、要求、注意事项、实验过程等都已经确定;马上要开展的工作重点在于有关开发软件的确定以及相关编程技巧的掌握与熟练。 3、预期成果与形式: 虚拟实验平台实现以下基本功能: 1.完全基于Web:分布在各地的用户只要访问特定的地址或者在实验机房进行实验。

浅谈汽车碰撞安全研究

汽车碰撞与安全研究 车辆工程陈国强 摘要:汽车的碰撞安全性问题是当今世界汽车工业亟需解决的一大难题,提高汽车碰撞性能的最基本的途径是发展汽车碰撞安全性设计与改进技术。文中主要介绍了汽车碰撞技术的发展现状,国内外相关的法规,并对汽车碰撞安全性的设计方法,如经验法、解析法、多刚体动力学法、试验法以及有限元方法进行了归类和总结。 关键词:汽车碰撞;安全;现状与发展 Abstract: Vehicle passive safety issue is a big and urgent problem for world-wide automobile industry to solve as soon as possible. The basic approach of protecting people from being hurt or killed in an accident is to improve crashworthiness of vehicles. This paper starts with discussing theories and methods for vehicle passive safety design, which included experiential methods, analytic methods, multi-body dynamics methods, crash test methods and the finite element method. Key words: Auto collision; safety; current conditions and development 0 引言 科学技术的发展,汽车己经成为人们生活中必不可少的交通工具。而在汽车交通事故中每年的死伤人数,常常超过世界的局部战争,交通事故已经成为人类社会的重大公害之一。从全世界的统计数字来看,每年因道路交通事故而死亡的人数已高达50多万人[1]。与世界其他各国相比,我国的汽车总拥有量只占5%,而交通事故死亡人数却占100%[2],并且碰撞事故中的死亡率也大大高于欧美、日本等工业发达国家,其中除了人为的因索外,车辆本身的碰撞安全性达不到要求是一个重要因素。因此,汽车的碰撞安全性问题,已成为近十多年来汽车工业的主要研究问题和攻关方向,世界各发达国家都对汽车碰撞安全性做出强制性要求,并建立了各自的法规。 1 汽车碰撞国内外法规 最早的汽车碰撞安全性法规诞生于60年代中期的美国[3],在此之前,世界上并没有任何对车辆的碰撞安全性能进行要求限制的法规,一些有关汽车碰撞安全性问题的研究主要是依赖于汽车生产厂家的自觉性及对公众的责任感。1965年,美国汽车工业部门拨款一千万美元给密西根大学建立公路交通安全研究所[4]。1966年,设立了运输部,并颁布了公路安全法规和国家交通与汽车安全法规,其中的汽车安全法规即著名的FMVSS系列法规[5],它提

基于虚拟试验的轿车正面碰撞安全性分析(正式)

编订:__________________ 审核:__________________ 单位:__________________ 基于虚拟试验的轿车正面碰撞安全性分析(正式) Deploy The Objectives, Requirements And Methods To Make The Personnel In The Organization Operate According To The Established Standards And Reach The Expected Level. Word格式 / 完整 / 可编辑

文件编号:KG-AO-2394-61 基于虚拟试验的轿车正面碰撞安全 性分析(正式) 使用备注:本文档可用在日常工作场景,通过对目的、要求、方式、方法、进度等进行具体的部署,从而使得组织内人员按照既定标准、规范的要求进行操作,使日常工作或活动达到预期的水平。下载后就可自由编辑。 一、引言 长期以来,轿车安全性能一直是汽车工业界非常关注的课题。用实车碰撞试验可测定轿车安全性能,但因其需在实物样机上安装各种测试设备,进行实地试验,成本高、时间长,所以探索新的试验方法一直是汽车工业界所追求的目标。随着计算机技术的发展和各种应用软件的出现,人们可以用计算机来模拟轿车碰撞试验。利用虚拟现实技术设计的汽车虚拟试验场可逼真地实现试验过程,通过交互改变汽车设计参数、试验道路环境,可以验证设计方案,从而达到缩短设计周期、降低开发成本、提高产品质量的目的。与传统的实车试验相比,应用虚拟试验场具有快速、逼真、可重复性等特点,可无危险、无损坏地进行碰

汽车碰撞分析与估损样题

《汽车碰撞分析与估损》复习题 1.以下有关风险的说法哪个是不正确的? A.风险是肯定能发生的客观存在; B. 风险具有可预见性; C.风险必然会造成物质损失或人身伤害; D.风险发生的时间和造成的损失大小具有不确定性。 2.甲乙两人在讨论保险的概念,甲说:保险的法律关系是一种有一定代价的权利义务关系,与一般的损害赔偿的法律关系不同;乙说:被保险人以支付保险费来换取风险保障的权利,所以保险费的支付是取得风险保障的代价。谁正确? A.只有甲正确; B.只有乙正确; C.两人都正确; D.两人都不正确。 3.机动车辆损失险属于以下哪一类保险? A.商业保险; B.政策保险; C.社会保险; D.强制保险。 4.对于机动车交通事故责任强制保险条例中的有关概念,甲说:第三者是指被保险机动车发生道路交通事故的受害人,包括被保险机动车本车人员和被保险人。乙说:被保险人是指投保人,其他驾驶人不能视为被保险人。谁正确? A.只有甲正确; B.只有乙正确; C.两人都正确; D.两人都不正确。 5.一辆汽车在交通事故责任强制保险有效期内发生事故,交警检测发现驾驶员属醉酒驾车,保险公司的以下哪种处置方式最得当? A.不予赔偿; B.仅在强制保险责任限额范围内对被保险车辆的损失进行赔偿; C.仅在强制保险责任限额范围内对受伤的人员进行赔偿; D.先在强制保险责任限额范围内垫付抢救费用,然后向被保险人追偿。 6.在对事故车进行勘查定损时,如果发现事故车已超过几年未经车管部门检验即视为报废汽车? A.半年; B.一年; C.二年; D.三年。

7.在汽车与障碍物碰撞的单方事故中,以下哪种碰撞事故最为少见? A.尾部碰撞; B.前角碰撞; C.后角碰撞; D.侧面碰撞。 8.甲说:在汽车碰撞事故中,如果撞击力指向汽车的质心,对车辆造成的损坏要比偏离质心的撞击力造成的损坏更大一些;乙说:在正面碰撞事故中,如果驾驶员在碰撞前急踩制动,汽车在障碍物上的碰撞点一般比不踩制动时的碰撞点低。谁正确? A.只有甲正确; B.只有乙正确; C.两人都正确; D.两人都不正确。 9.甲说:如果事故车在碰撞中受损十分严重,可能会造成全损;乙说:全损是指估算出来的事故车维修费比购置一辆新车还贵。谁正确? A.只有甲正确; B.只有乙正确; C.两人都正确; D.两人都不正确。 10. 事故车修理厂在对事故车进行修理时一般参照以下哪种单据? A. 修理任务单; B. 估损单; C. 报价单; D. 数据表。 11. 甲说:事故车在开始修理前没必要一定进行清洗;乙说:清洗事故车的目的是将泥浆、污垢、蜡质及水溶性污染物清除掉,以确保喷漆质量。谁正确? A.只有甲正确; B.只有乙正确; C.两人都正确; D.两人都不正确。 12. 甲说:对事故车的测量可用来确定车辆损坏的程度;乙说:对事故车的测量可用来确定车辆损坏的方位。谁正确? A.只有甲正确; B.只有乙正确; C.两人都正确; D.两人都不正确。 13. 在碰撞事故中,车身焊点将撞击力传递给整车构件,因此它们是整车结构的()。A.刚性连接点; B.柔性连接点;

汽车碰撞模拟分析流程

汽车碰撞模拟分析流程-标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

ANSYS 汽车碰撞分析流程Flow Chart of Auto Impact Analysis Prepared By 史志远 Date: Nov.1, 2004

汽车碰撞模拟分析流程 一、碰撞安全性试验介绍: 在汽车模拟分析的过程中,提高汽车碰撞安全性的目的是在汽车发生碰撞时确保乘员生存空间、缓和冲击、防止发生火灾等等。但是从碰撞事故分析中可知,汽车碰撞事故的形态也千差万别,所以对汽车碰撞安全性能的评价也必须针对不同的碰撞形态来进行。按事故统计结果,汽车碰撞事故主要可分为正面碰撞、侧面碰撞、追尾碰撞和翻车等几种类型。但随着公路条件的改善,正面碰撞和侧面碰撞形态成了交通事故中最常见的碰撞形式。 按照碰撞试验的目的区分,现在碰撞试验大体可以分为三类: 1)由政府法规要求的强制性试验:例如FMVSS208、ECE R94法规规定的正面碰撞试 验,FMVSS214、ECE R95法规规定的侧面碰撞试验等等; 2)由汽车制造厂自己制定的碰撞试验方法:例如用于提出改善汽车碰撞安全性的新 措施等等; 3)为消费者提供信息的试验:例如美国、欧洲等国家实施的新车评价程序 (NCAP), 汽车安全法规中规定了达到政府规定的最低安全性能要求,NCAP以 更高的车速进行正面碰撞试验,以展示汽车产品的碰撞安全性能。 由于法规试验是政府强制实施的,所以,汽车碰撞试验法规是人们关注的热点。下表列出了一些美国FMVSS, 欧洲ECE的汽车被动安全性法规的试验项目。 表一 FMVSS 与 ECE 的一些汽车安全性法规

汽车正面碰撞仿真建模与分析作业指导书

1 主题内容和适用范围 1.1本标准规定了零部件几何模型处理的基本方法; 1.2本标准规定了零部件有限元模型的命名方法; 1.3本标准规定了白车身与底盘有限元模型的网格划分与检测的基本方法; 1.4本标准规定了白车身与底盘有限元模型的焊点、螺栓、铆钉连接的基本方法; 1.5本标准规定了汽车正面碰撞仿真分析的基本参数设置、操作流程、评价方法。 1.6本标准适用于M1类车辆正面碰撞仿真分析。 2 引用标准 2.1 CMVDR 294 —关于正面碰撞乘员保护的设计准则 2.2 GB 11557-1998—防止汽车转向机构对驾驶员伤害的规定 3 术语 3.1整车质量—整车整备质量+两位法定假人质量 3.2 HIC—头部性能指标 3.3 ThPC—胸部性能指标 3.4 FPC—大腿性能指标 3.5保护系统—用来约束和保护乘员内部安装件及装置 4 零部件几何模型的处理 在UG中处理白车身数模,需检查各总成内部零件的干涉和各总成之间的干涉,同时对一些缺失的面和有质量问题的面进行修补。对

于对称件,可先去掉一半。具体操作可参照样车的实际结构进行必要的几何处理(见附录-1) 5 零部件有限元模型的命名方法 模型处理好后,将各零件以iges格式分别输出,并以三维数模对应的零件号命名。 6 有限元网格划分标准 6.1 整车网格尺寸规定 6.1.1 对于B柱之前的零件,单元尺寸初步定在8-12mm,可根据零件的复杂程度适当的减小尺寸,但是决不能小于5mm,其间需考虑单元的过渡(如顶盖,地板等结构),以确保网格连续、平滑、均匀、美观;对于B柱之后的零件,可适当增大网格尺寸,初步定在20-30mm; 6.1.2 对于倒角,半径小于5mm时可删去,半径在5-10mm之间时划分一个单元,半径大于10mm时划分两个单元; 6.1.3 对于孔,半径小于5mm时可删去,半径大于5mm时应保证孔边沿上至少有4个节点; 6.1.4 对于对称件,网格划分完后镜像生成完整的网格模型。 6.2 网格检查标准

汽车碰撞理论阐述及碰撞事故再现

汽车碰撞理论阐述及碰撞事故再现 摘要:受出行车辆与日俱增、交通环境日益复杂以及驾驶人员道德素质和驾车水平等诸多因素的影响,交通事故越来越多,因而需要对汽车碰撞事故进行再现,以为安全评价对其作一个公平而科学的鉴定。对此,本文从汽车碰撞理论出发,就碰撞事故进行再现。 关键词:汽车碰撞;理论阐述;事故再现 我国每年因汽车碰撞引发的交通事故不仅数量惊人,损失严重,而且屡禁不止,居高不下,这无疑对交通安全构成了威胁。而通过汽车碰撞事故再现,可明确事故责任归属,对事故加以科学鉴定,同时基于对车辆和人员的安全评价,既利于车辆设计的优化,也可为交通安全管理提供重要依据,足以见得,再现汽车碰撞事故的意义重大。 1. 汽车碰撞的理论阐述 1.1.塑性碰撞理论分析 若发生汽车碰撞后,车辆之间并不存在相对运动可被视为塑性碰撞,且经试验证明,当汽车碰撞速度相对较高时属于塑性碰撞,此时会涉及能量损失,遵循能量守恒定律,从而汽车碰撞过程符合和,又因汽车发生塑性碰撞后速度相同,发现汽车碰撞的严重程度与车辆的相对速度为正比关系,与车辆质量为反比关系,与碰撞前汽车速度没有关系,

但塑性碰撞下的能量损失与两车碰撞前相对速度的平方为正比关系,与碰撞汽车自身质量为反比关系[1]。 1.2.刚体碰撞理论分析 若汽车发生碰撞后,大部分车体基本完好,且能量损失较小并局限于变形位置,故可将其视为刚体碰撞,如汽车交通事故中的正面碰撞便属于刚体碰撞,因能量和动量守恒,故有,而在碰撞后有,由于人体伤害度主要取决于减速度,所以根据上式可以发现,汽车碰撞作用下的伤害度与两车碰撞的相对速度为正比关系,与其质量为反比关系,而与撞前速度没有关系,进而得知质量较小的汽车在碰撞事故中受伤较重。 1.3.弹塑性碰撞理论分析 若汽车在碰撞过程中既发生了弹性变形,也发生了塑性变形,需要同时将两者纳入考虑范围较为合理[2]。为便于汽车碰撞性质的区分,在此提出了这一恢复系数,且当=0时代表塑性碰撞,当 =1时代表刚体碰撞,当0< <1时代表弹塑性碰撞,同时其能量损失满足条件,可见其与汽车质量、碰撞性质、撞前汽车的相对速度有关。 2.汽车碰撞事故再现及安全评价分析 2.1.获取汽车碰撞参数的一般步骤和方法 汽车碰撞参数的获取是事故再现的基础条件和重要参考,所以掌握参数获取的步骤和方法尤为关键。具体包括

各种汽车防撞系统

第三章汽车主动防撞系统的总体工程 3.1 各种汽车防撞系统的比较 对于车辆安全来说,最主要的判断依据是两车之间的相对距离和相对速度信息,当本车以较高的速度接近前方车辆时,如果两车之间的距离太近,很容易造成追尾事故。因此,常用的防装系统都将车辆之间的相对距离最为最主要检测任务。 汽车雷达按照其探测方向的不同,主要分为倒车雷达和前视雷达两种,汽车倒车雷达由于探测距离较短,一般运用超声波或红外探测两种方式构成,该项技术已经比较成熟,国内外已经有相应的产品。而相比较来说,在高速公路中由于车速快,要求防撞雷达探测距离要长,故高速公路的防撞系统要求较高。而且在恶劣天气情况下,如雨,雪,雾等天气,以及前方车辆尾部卷起的气沫灰尘所造成视野不良等情况时,防撞预警系统应向驾驶人员提供前方车辆和障碍物的距离,相对速度等信息;在危险临近的情况下,通过警报系统发出声光警报,在极度危险的情况下可以采取转向和制动措施,从而避免碰撞,追尾等事故的发生。 目前的高速公路防撞系统按工作方式分主要有激光,超声波,红外等一些测量方法,不同的方式工作过程和工作原理上有不同之处,但它们主要作用都是通过不同的测量方法判断前方车辆与本车辆的相对距离,并根据两车之间的危险性程度做出相应的预防措施。为了更好的了解各种系统的工作原理,下面对不同的探测方式进行详细的介绍。 2.4激光测距 激光测距仪是一种光子雷达系统,它具有测量时间短,量程大,精度高等优点,在许多领域得到了广泛应用。目前在汽车上应用较广的激光测距系统可以分为非成像式激光雷达和成像式雷达。 非成像式激光雷达根据激光束传播时间确定距离。激光束在传播路上遇到前车发生反射。测量从发射时刻到反射回到发射点经过的时间t,便可以计算出车距。其计算公式同超声波测距共识,不同的是速度v为光速,v=3×108m/s。 从高功率窄脉冲激光器发射出来的激光脉冲经发射物镜聚焦成一定形状的光束后,用扫描镜左右扫描,向空间发射,照射在前方车辆或者其他目标上,其反射光经扫描镜,接受物镜及回输光纤,被导入到信号处理装置内光电二极管,利用计算器计数激光二极管启动脉冲与光电二极管的接受脉冲间的时间差,即可求得目标距离。利用扫描镜系统中的位置探测器测定反射镜的角度即可测出目标的方位。 成像式激光雷达又可分为扫描成像激光雷达和非扫描成像激光雷达。扫描激光成像雷达把激光雷达同二维光学扫描镜结合起来,利用扫描器控制出射激光的方向,通过对整个现场进行逐点扫描测量,即可获得视场内目标目标的三维信息。但扫描成像激光雷达普遍纯在成像速度过慢的问题。这有待于软件,硬件的进一步改善。非扫描成像式激光雷达将光源发出的经过强度调制的激光经分束器系统分为多束光后沿不同方向射出。照射待测区域。被测物体表面散射的光经微通道图像增强板(MCP)混频输出后,由面阵CCD等二维成像器接收,CCD每个像元的输出信号提供了相应成像区的距离信息。利用信息融合技术即可重建三维图像。由于非扫描成像激光雷达测点数目大大减少,从而提高了三维成像速度。 在汽车测距系统中,非成像激光雷达更具有使用价值。同成像式激光雷达相比,具有造价低,速度快,稳定性高等特点。 由于激光雷达测距仪工作环境处于高速运动的车体重,震动大,对其稳定性,可靠性提出了较高的要求,其体积也受到了一定的限制,同时还要考虑省电,低价,对人眼安全等因素。这些决定了其光源只能采用半导体激光器。已处于使用阶段的激光雷达所需要的光学元件在市场上有售,价格比较高。目前,在汽车

汽车碰撞模拟实验台设计

汽车碰撞模拟实验台设计 1 绪论 1.1 课题来源与国内外现状 随着科技的进步、经济的发展、人民生活水平的不断提高,汽车己经成为人们学习、工作、生活中不可缺少的代步工具,对人们的生活、生产产生了深刻的影响。作为一种便捷的现代化交通工具,汽车在给人们带来极大便利的同时,也因其造成的交通事故给人类的生命和财产安全带来了严重威胁。随着全球汽车保有量的不断增加,交通事故也随之增加,交通事故己经成为全球范围内的一大社会问题。 这是一组让人膛目结舌的数字。美国的汽车保有量为1.3亿辆,每年道路交通死亡4万人左右;日本的汽车保有量近8000万辆,每年道路交通死亡1.1万人,去年降到8000人。中国的汽车保有量是3000万辆,每年道路交通死亡近11万人,单车事故率相当于美国的近13倍,日本的近40倍。除去交通状况等客观因素,一个不可回避的原因就是中国汽车安全系数低,我国交通事故的严重程度由此可想而知。随着我国道路交通状况的不断改善,我国汽车的保有量不断增加,车速也逐渐提高,交通事故总量和所造成的人员伤亡与财产损失近年来也呈上升趋势。加强道路交通系统和汽车安全的研究,预防交通事故,是需要全社会共同关注和迫切改善的重要课题[1-2]。 汽车安全性问题与汽车的各种性能等直接或间接有关,对其研究最初是与提高汽车的整车性能的研究交织在一起的。随着二战后汽车工业的持续发展,到60年代中期,西方发达国家中汽车的保有量和汽车的动力性能有了明显的提高,公路上的车流密度和车流速度己达到了一个空前高的水平,汽车事故发生率空前高涨,汽车安全性受到了公众和政府部门的高度重视。从这一时期开始,各国相继制定或修订了安全法规,如美国的汽车安全标准FMVSS等[3]。在这些法规的制约下,以及为了提高汽车产品的竞争力,各大汽车制造商和一些研究机构开展了汽车安全性的专门研究。汽车安全性研究逐渐从汽车技术研究的其他领域分离出来形成了一个独立的分支。 1.2 汽车安全性的种类 汽车安全性可划分为主动安全性和被动安全性[4-5]。被动安全性是指汽车发生不可避免的交通事故后,能够对车内乘员或车外行人进行保护,以免发生伤害或使伤害减低到最低程度的性能。目前,汽车被动安全性研究内容包括车身结构抗撞性研究、碰撞生物力学研究以及乘员约束系统及安全驾驶室内饰组件的开发研究这三个方面。

汽车碰撞仿真技术

汽车碰撞安全技术 学号:2009********** 班级:2009级****** 姓名:******* 球撞板建模仿真分析实验 (一)试验目的 巩固汽车仿真分析基础知识,使对仿真分析有更深的认识,学习Hyperworks、LS-DYNA 软件基础,学习仿真分析的基本思想和基本方法步骤。 (二)试验设备 计算机、Hyperworks软件和LS-DYNA软件。 (三)试验原理 仿真分析主要分为数据前处理、后处理和分析计算等几个阶段,本实验主要通过建立球和板的几何模型、画分网格、给球和板富裕材料和截面属性、加载边界条件、建立在和条件、接触处理、定义控制卡片。删除临时阶段、节点重新排号、将文件导出成KEY文件、运营LS0DYNA进行分析仿真等步骤,模拟球撞板的过程,得出响应的仿真动画和仿真计算结果。(四)仿真步骤 1)建模过程 首先建立临时节点,并以此建立球模型和板模型。球为以临时节点为球心,5mm为半径;板距离球心的距离为5.5mm,即板和球的最小距离为0.5mm。 2)画网格 利用hypermesh画出球和板的二位网格。 3)定义模型特性 给ball和plane定义材料为20号刚体材料,其杨氏模量分别为200000和100000,泊松比均为0.3。 4)定义边界条件 将plane板上最外面的四行节点分别建成4个set。 5)建立载荷条件 定义球的位移,即给定球向板方向的距离,由此模拟球撞击板的过程。 6)定义接触 先做出两个用于接触的sagment,在这两个sagment上建立接触关系。 7)定义控制卡片 即建立Analysis-control cards (1)选择Control_Enegy,将hgen设置为2,return; (2)按next找到Control_Termination,将ENDTIM设为0.0001s,return; (3) 按next找到Control_Time_step,将DTINIT设为1*10-6s,将TSSFAC设置为0.6,点击return; (4) 按next找到DATABASE_BINARY_D3PLOT,将DT设置为5*10-6,return; (5) 按next找到DATABASE_OPTION,将MATSUM设置为1*10-6,将RCFORC设置为1*10-6,return. 8)删除临时节点 进入Geom中的temp nodes面板,删除临时节点。 9)节点重新排号 在tool-renumber面板中重新排序

汽车碰撞理论4

浅谈汽车碰撞理论与仿真方法 摘要:本文主要介绍了汽车碰撞理论基本内容以及仿真方法。首先,概述了汽车碰撞理论的特点、基本原理,着重阐述了汽车碰撞的基本形式,对其中包括汽车对刚体的碰撞、汽车对汽车的正面碰撞、汽车对汽车的追尾碰撞,汽车对汽车的侧面碰撞等内容,对如何鉴别区分这几种碰撞形式做了简单的方法分析。特别对刚体碰撞、正面碰撞、追尾碰撞等做了详细的介绍,重点在于阐明了碰撞速度的基本计算方法。其次,片面的描述了汽车碰撞仿真方法,以汽车正面碰撞有限元仿真模拟、汽车侧面碰撞仿真方法为例,简单介绍了它们的语运用步骤。 关键词:碰撞原理;碰撞形式;碰撞速度;碰撞模拟 1.引言:汽车结构安全设计和交通事故的科学分析都要求掌握汽车肇事特征与碰撞的基本规律。问题的难点在于,在碰撞过程中,汽车在瞬态力的作用下车身结构产生快速的非线性大变形,单单从刚体运动学、动力学来推断碰撞前的车速是不可能的,必须深入研究在碰撞过程中汽车结构的弹塑性性能及相关的变形、能量、速度、加速度及撞击力的变化规律,从而确定这些特征参量与碰撞速度的非线性关系。研究汽车碰撞过程中碰撞速度与结构变形的关系是汽车改型、开发及设计中十分重要的基础性研究,它对于现代道路交通事故鉴定分析的重要性逐渐引起人们的关注。美国国家道路安全局从!台汽车碰撞试验中给出汽车的刚度系数及其变形计算方法,日本著名的汽车交通事故鉴定专家林洋先生多次指明:“汽车车身作为碰撞物体的特性至关重要,这是因为必须根据汽车车身的损坏状态反推出碰撞事故的产生过程。”在他的著作中给出了汽车典型碰撞过程的汽车变形与碰撞速度的经验公式。美、日汽车试验研究成果中给出低速下汽车碰撞速度与汽车车身变形的线性关系。它的重要价值不仅指出几个典型碰撞下车速判别定量依据,更重要的指明了汽车碰撞速度与结构变形的深入研究方向的重要意义,这也是本课题系统研究的指导原则。 2.汽车碰撞理论基本概述 2.1汽车碰撞的特点 碰撞是瞬间物理过程,碰撞时间极短,它携带碰撞体的很多信息[]1。严格的讲,汽车碰 撞具有以下特点: 1)是车辆之间相互交换运动能量的现象; 2)是相互挤压、通过车身的损坏和固定物的损坏来消耗一部分运动能量; 3)是部分相互损坏而另一部分相互推斥的现象; 4)不仅有运动能量的交换,有时还伴有将部分运动能量转换成角运动的现象; 5)车辆与乘员之间有剧烈的相对运动,这就是乘员的二次碰撞,即乘员受伤害的原因之一; 6)碰撞过程及其短,一般在0.1-0.2s时间内发生。 乘员的运动,以摩擦功的形式消耗掉。碰撞后的运动时间一般为数秒。碰撞与碰撞后的运动是人力根本无法左右的纯物理现象,碰撞与碰撞后的运动结果,将造成车辆损失、

汽车碰撞模拟分析流程

ANSYS 汽车碰撞分析流程Flow Chart of Auto Impact Analysis Prepared By 史志远 Date: Nov.1, 2004

汽车碰撞模拟分析流程 一、碰撞安全性试验介绍: 在汽车模拟分析的过程中,提高汽车碰撞安全性的目的是在汽车发生碰撞时确保乘员生存空间、缓和冲击、防止发生火灾等等。但是从碰撞事故分析中可知,汽车碰撞事故的形态也千差万别,所以对汽车碰撞安全性能的评价也必须针对不同的碰撞形态来进行。按事故统计结果,汽车碰撞事故主要可分为正面碰撞、侧面碰撞、追尾碰撞和翻车等几种类型。但随着公路条件的改善,正面碰撞和侧面碰撞形态成了交通事故中最常见的碰撞形式。 按照碰撞试验的目的区分,现在碰撞试验大体可以分为三类: 1)由政府法规要求的强制性试验:例如FMVSS208、ECE R94法规规定的正面碰撞 试验,FMVSS214、ECE R95法规规定的侧面碰撞试验等等; 2)由汽车制造厂自己制定的碰撞试验方法:例如用于提出改善汽车碰撞安全性的新 措施等等; 3)为消费者提供信息的试验:例如美国、欧洲等国家实施的新车评价程序(NCAP), 汽车安全法规中规定了达到政府规定的最低安全性能要求,NCAP以更高的车速 进行正面碰撞试验,以展示汽车产品的碰撞安全性能。 由于法规试验是政府强制实施的,所以,汽车碰撞试验法规是人们关注的热点。下表列出了一些美国FMVSS, 欧洲ECE的汽车被动安全性法规的试验项目。

二、人体伤害评价指标: 在碰撞试验或碰撞模拟分析的过程中,都使用了标准的碰撞试验假人,通过测量假人的响应计算出伤害的指标,用于定量的评价整车及安全部件的保护效能。 1) Hybrid III假人家族的伤害评价基准值: 下表列出了正面碰撞试验用的Hybrid III假人家族的伤害评价基准值。Hybrid III第50百分位男性假人是目前生物保真性最好的正面碰撞试验假人,另外,为了评价汽车对不同身材乘员的安全保护性能,按比例方法开发了第95百分位男性的大身材假人和第5百分位女性的小身材假人。 2)侧面碰撞假人的伤害评价基准值: 下表所示为目前使用的用于侧面碰撞用的假人SID, EuroSID-1的伤害评价基准值:

用高中物理知识分析汽车碰撞理论

汽车碰撞地理论分析,具有高中物理知识地就可以看懂! 当前汽车地碰撞实验地一个陷阱就是:不同车型都是对着质量和强度都是无限大地被撞物冲击.然后以此作为证据,来证明自己汽车地安全性其实是差不多地,这是极端错误地. 个人收集整理勿做商业用途 举个例子:拿鸡蛋对着锅台碰,你可以发现所有地鸡蛋碎了,而且都碎得差不多,于是可以得出鸡蛋地安全性都差不多.可是你拿两个鸡蛋对碰呢,结果是一边损坏一半吗?个人收集整理勿做商业用途 错!你会发现,一定只有一个鸡蛋碎了,同时另一个完好无损! 问题出现了:为什么对着锅台碰都差不多,但是鸡蛋之间对碰却永远只有一个碎了?这个实验结果与汽车碰撞有关系吗?个人收集整理勿做商业用途 原因就在于:当结构开始溃败时,刚度会急剧降低.让我们仔细看一下鸡蛋碰撞地过程吧!,两个鸡蛋开始碰撞一瞬间,结构都是完好地,刚性都是最大;,随着碰撞地继续,力量越来越大,于是其中一个刚性较弱地结构开始溃败;,不幸发生了,开始溃败地结构刚度急剧降低,于是,开始溃败就意味着它永远溃败,于是所有地能量都被先溃败地一只鸡蛋吸走了. 个人收集整理勿做商业用途 我们在看看汽车之间地碰撞吧(撞锅台,大家地结果当然都一样!).,开始,两车地结构都是完好地,都在以刚性对刚性;,随着碰撞地继续,力量越来越大,于是刚性较弱地车地结构开始溃败,大家熟知地碰撞吸能区开始工作;,不幸再次发生,因为结构变形,车地结构刚度反而更急剧降低,于是开始不停地"变形、吸能";,在车地吸能区溃缩到刚性地驾驶仓结构之前,另一车地主要结构保持刚性,吸能区不工作.个人收集整理勿做商业用途结论:两车对碰,其中一个刚度较低地,吸能区结构将先溃败并导致刚度降 低,最终将承受所有形变,并吸收绝大部分地碰撞能量. 个人收集整理勿做商业用途这就是为什么你总可以看到,两车碰撞时,往往一车地结构几乎完好无损,另一车已经是稀哩哗啦拖去大修! 回到最近一个一直很热地话题:钢板地厚度对安全性有影响吗?答案不仅是肯定地,而且大得超出你地想象:钢板薄%不是意味着安全性下降%或者损失增大%,而是意味着你地吸能区将先对手而工作,并将持续工作到被更硬地东西顶住(可能是你地驾驶舱),并承担几乎全部地碰撞形变损失!个人收集整理勿做商业用途 总结:在车与车地碰撞中,输家通吃.所以一个拿汽车地刚度开玩笑地车厂,它根本不在乎你地生命. 你永远不能在碰撞实验中看到,不同车型之间地碰撞.因为哪怕就弱那么一 点,结果就是零和一地区别!太惨了!看到就没人买了!个人收集整理勿做商业用途附:一些特殊例子地解释: 一,轻微碰撞,两车地车灯都碎了.解释:强度高地车灯先碰碎了强度低地车灯,但是在继续地过程中,被后面强度更高地金属杠撞碎.所以在碰撞地瞬间,还是只有一个破碎!个人收集整理勿做商业用途 二,中等碰撞,车防撞杠有轻微痕迹,车严重变形.解释:塑胶防撞杠弹性大,所以实际上两车地吸能区地前杠直接隔着杠相抵.强度高地那个吸能区不变形,强度低地那个吸能区变形后,导致较严重地严重损坏. 个人收集整理勿做商业用途 三,猛烈碰撞,两车地吸能区都溃败了.解释:,刚度低地车吸能区先溃败退缩,一直到被刚性很强地驾驶舱结构抵住.,如果还有能量,车车头吸能区不敌车驾驶舱,也开始溃败吸能.,最后如果还有能量,两车驾驶仓结构直接碰撞.聪明地你应该可以看出,刚度高地车驾驶员在缓冲两次后才发生驾驶舱地直接碰撞,你希望是在那个车里面!个人收集整理勿做商业用途

汽车碰撞模拟实验台设计

1绪论 1.1课题来源与国内外现状 随着科技的进步、经济的发展、人民生活水平的不断提高,汽车己经成为人们学习、工作、生活中不可缺少的代步工具,对人们的生活、生产产生了深刻的影响。作为一种便捷的现代化交通工具,汽车在给人们带来极大便利的同时,也因其造成的交通事故给人类的生命和财产安全带来了严重威胁。随着全球汽车保有量的不断增加,交通事故也随之增加,交通事故己经成为全球范围内的一大社会问题。 这是一组让人膛目结舌的数字。美国的汽车保有量为1.3亿辆,每年道路交通死亡4万人左右;日本的汽车保有量近8000万辆,每年道路交通死亡1.1万人,去年降到8000人。中国的汽车保有量是3000万辆,每年道路交通死亡近11万人,单车事故率相当于美国的近13倍,日本的近40倍。除去交通状况等客观因素,一个不可回避的原因就是中国汽车安全系数低,我国交通事故的严重程度由此可想而知。随着我国道路交通状况的不断改善,我国汽车的保有量不断增加,车速也逐渐提高,交通事故总量和所造成的人员伤亡与财产损失近年来也呈上升趋势。加强道路交通系统和汽车安全的研究,预防交通事故,是需要全社会共同关注和迫切改善的重要课题[1-2]。 汽车安全性问题与汽车的各种性能等直接或间接有关,对其研究最初是与提高汽车的整车性能的研究交织在一起的。随着二战后汽车工业的持续发展,到60年代中期,西方发达国家中汽车的保有量和汽车的动力性能有了明显的提高,公路上的车流密度和车流速度己达到了一个空前高的水平,汽车事故发生率空前高涨,汽车安全性受到了公众和政府部门的高度重视。从这一时期开始,各国相继制定或修订了安全法规,如美国的汽车安全标准FMVSS等[3]。在这些法规的制约下,以及为了提高汽车产品的竞争力,各大汽车制造商和一些研究机构开展了汽车安全性的专门研究。汽车安全性研究逐渐从汽车技术研究的其他领域分离出来形成了一个独立的分支。 1.2 汽车安全性的种类 汽车安全性可划分为主动安全性和被动安全性[4-5]。被动安全性是指汽车发生不可避免的交通事故后,能够对车内乘员或车外行人进行保护,以免发生伤害或使伤害减低到最低程度的性能。目前,汽车被动安全性研究内容包括车身结构抗撞性研究、碰撞生物力学研究以及乘员约束系统及安全驾驶室内饰组件的开发研究这三个方面。 汽车被动安全性研究方法包括试验研究和计算机仿真研究两种[6]。汽车被动安全

用高中物理知识分析汽车碰撞理论

从吸能说起看汽车碰撞理论分析 汽车碰撞的理论分析,具有高中物理知识的就可以看懂! 当前汽车的碰撞实验的一个陷阱就是:不同车型都是对着质量和强度都是无限大的被撞物冲击。然后以此作为证据,来证明自己汽车的安全性其实是差不多的,这是极端错误的。 举个例子:拿鸡蛋对着锅台碰,你可以发现所有的鸡蛋碎了,而且都碎得差不多,于是可以得出鸡蛋的安全性都差不多。可是你拿两个鸡蛋对碰呢,结果是一边损坏一半吗? 错!你会发现,一定只有一个鸡蛋碎了,同时另一个完好无损! 问题出现了:为什么对着锅台碰都差不多,但是鸡蛋之间对碰却永远只有一个碎了?这个实验结果与汽车碰撞有关系吗? 原因就在于:当结构开始溃败时,刚度会急剧降低。让我们仔细看一下鸡蛋碰撞的过程吧!1,两个鸡蛋开始碰撞一瞬间,结构都是完好的,刚性都是最大;2,随着碰撞的继续,力量越来越大,于是其中一个刚性较弱的结构开始溃败;3,不幸发生了,开始溃败的结构刚度急剧降低,于是,开始溃败就意味着它永远溃败,于是所有的能量都被先溃败的一只鸡蛋吸走了。 我们在看看汽车之间的碰撞吧(撞锅台,大家的结果当然都一样!)。1,开始,两车的结构都是完好的,都在以刚性对刚性;2,随着碰撞的继续,力量越来越大,于是刚性较弱的A车的结构开始溃败,大家熟知的碰撞吸能区开始工作;3,不幸再次发生,因为结构变形,A车的结构刚度反而更急剧降低,于是开始不停的"变形、吸能";4,在A车的吸能区溃缩到刚性的驾驶仓结构之前,另一车的主要结构保持刚性,吸能区不工作。 结论:两车对碰,其中一个刚度较低的,吸能区结构将先溃败并导致刚度降低,最终将承受所有形变,并吸收绝大部分的碰撞能量。 这就是为什么你总可以看到,两车碰撞时,往往一车的结构几乎完好无损,另一车已经是稀哩哗啦拖去大修! 回到最近一个一直很热的话题:钢板的厚度对安全性有影响吗?答案不仅是肯定的,而且大得超出你的想象:钢板薄20%不是意味着安全性下降20%或者损失增大20%,而是意味着你的吸能区将先对手而工作,并将持续工作到被更硬的东西顶住(可能是你的驾驶舱),并承担几乎全部的碰撞形变损失! 总结:在车与车的碰撞中,输家通吃。所以一个拿汽车的刚度开玩笑的车厂,它根本不在乎你的生命。 你永远不能在碰撞实验中看到,不同车型之间的碰撞。因为哪怕就弱那么一点,结果就是零和一的区别!太惨了!看到就没人买了! 附:一些特殊例子的解释: 一,轻微碰撞,两车的车灯都碎了。解释:强度高的车灯先碰碎了强度低的车灯,但是在继续的过程中,被后面强度更高的金属杠撞碎。所以在碰撞的瞬间,还是只有一个破碎! 二,中等碰撞,B车防撞杠有轻微痕迹,A车严重变形。解释:塑胶防撞杠弹性大,所以实际上两车的吸能区的前杠直接隔着杠相抵。强度高的那个吸能区不变形,强度低的那个吸能区变形后,导致较严重的严重损坏。 三,猛烈碰撞,两车的吸能区都溃败了。解释:1,刚度低的A车吸能区先溃败退缩,一直到被刚性很强的驾驶舱结构抵住。2,如果还有能量,B车车头

汽车碰撞试验

细说乘用车碰撞试验 文/图景升 随着汽车数量的增加和行驶速度的不断提高,行车安全越来越重要。 而在所有汽车事故当中,与碰撞有关的事故占90%以上。汽车碰撞是不 可避免的,那么如何减少碰撞时对人员的伤害?世界各国都在研究制定 日趋严格的碰撞试验方法和标准。 相信大多数的读者都没有见过车辆的碰撞试验,对国内目前乘用车 所做的碰撞试验种类以及试验方法也缺乏了解。为了能让大家全面、细 致、直观地了解关于乘用车碰撞试验方面的知识,笔者深入碰撞试验的 第一线,在国家轿车质量监督检验中心碰撞实验室同事的帮助下,将目 前国内所做的所有乘用车碰撞试验总结整理出来,与大家共赏。 “乘用车正面碰撞的乘员保护”是目前国内在汽车碰撞方面惟一强制实施的标准,所有车辆都必须通过此项试验。自2006年7月1日开始又有两项碰撞标准将实施,分别是:“汽车侧面碰撞的乘员保护”和“乘用车后碰撞燃油系统安全要求”。另外,还有一项推荐性标准是“乘用车正面偏置碰撞的乘员保护”,3、5年后很可能也会被纳入国标当中。除此之外,还有四项碰撞试验偶尔也会做,不过都是厂方的行为,主要是作为安全带和安全气囊的匹配试验和车辆研发阶段的性能试验。 对于以上八项碰撞试验,本文都将从国内外情况、试验方法和考核指标三方面进行详细地介绍。100%重叠正面碰撞 美国和日本都比较注重100%重叠刚性固定壁障的碰撞试验,美国的碰撞速度是56km/h,日本的碰撞速度是55km/h,两者相差不多,并且都采用了40%的偏置碰撞作为补充。我国目前惟一施行的强制性检验项目便是100%重叠刚性固定壁障的碰撞试验,试验速度为48~50km/h。欧洲在碰撞试验方面比较注重对事故形态的模拟,而完全发生正面100%重叠的碰撞事故并不多见,所以欧洲并没有强制实施100%重叠的正面碰撞试验,相反,对40%重叠的偏置碰撞要求相当严格。 试验方法看起来比较简单,只要保证试验车辆以一定的速度撞击壁障便可以了(厂方可以要求以高于国标的速度撞击,只要检测指标满足要求,同样认为该车合格;厂方也可以要求以更低的速度撞击,不过只能作为安全带和安全气囊的匹配试验),不过对试验场地和设施的要求非常严格,试验车辆的准备工作也非常严谨复杂。首先,试验场地应足够大,以容纳跑道、壁障等试验设施,并且必须保证壁障前至少5m 的跑道水平光滑。其次,作为主要试验设施的刚性碰撞壁障,其实就是一个钢筋混凝土制成的水泥墩子,其长、宽、高和总质量都有明确规定:前部宽度不小于3m,高度不小于1.5m,厚度应保证其质量不低于70吨。刚性壁障的前表面必须平整并且与地面垂直,就像一面墙一样, 并要覆以2cm厚的胶合板。其它设施如灯光、高速摄像机等也有相当 严格的要求。 车辆准备是一项非常细腻并且十分重要的工作,首先试验车辆应 能反映出该系列产品的特征,应包括正常安装的所有装备,并处于正 常运行状态,一些零部件可以被等质量代替,但不得对测量结果造成 影响。其次,试验车辆质量应是整备质量,燃油箱应注入90%油箱容 积的水,所有其它系统(制动系、冷却系等)应排空,排除液体的质量应予以补偿。最后,对乘员舱进行相当严格的调整:转向盘应处于中间位置,在加速过程结束时,转向盘处于自由状态,且处于制造厂规定的车辆直线行驶时的位置;车窗玻璃应处于关闭位置,为便于测量,经厂商同意,车窗玻璃也可以打开,

相关主题