搜档网
当前位置:搜档网 › 1550nm高功率窄线宽DFB蝶形封装激光器(40-60mw)

1550nm高功率窄线宽DFB蝶形封装激光器(40-60mw)

1550nm高功率窄线宽DFB蝶形封装激光器(40-60mw)
1550nm高功率窄线宽DFB蝶形封装激光器(40-60mw)

1550nm高功率窄线宽DFB蝶形封装激光器(40-60mw)

描述:采用量子阱结构的DFB 激光器,内置半导体制冷器,先进的激光焊接工艺实现蝶形尾纤式封装,结构紧凑,体积小,在光纤通信领域得到广泛应用;半导体制冷器高精度温度控制下,激光器功率高稳定、波长高稳定的优势,该激光器的线宽低至200khz一下,使得激光器在光纤传感器领域得到广泛应用。

产品特点主要应用

MQW-DFB量子阱结构低阈值电流、高斜率效率气密性封装

高可靠性、高稳定性光纤通信

光仪表(光源、OTDR)光纤气体传感器(光源)

极限参数

参数符号单位参数值

激光二极管正向电流If(LD)mA500

激光二极管反向电压Vr(LD)V 2

背光探测器工作电流If(PD)mA 2

背光探测器反向电压Vr(PD)V 20

致冷器工作电流ITEC A 2.4

致冷器工作电压VTEC V 2.9

工作温度Topr ℃-20~+70

储存温度Tstg ℃-40~+85

管脚焊接温度/时间Tsld ℃/s 260/10

技术参数

参数符号单位最小值典型值最大值出纤功率P0 mw 40 60

阈值电流Ith ma 50 80

工作电压V o V 1.6 3

线宽Lw khz 150 200 中心波长λ c nm 1550

波长随温度变化漂移系数Δλ/T nm 0.1

波长随电流变化漂移系数Δλ/I Nm 0.01

背光监视电流Im mA 0.1 2

背光探测器暗电流Id nA 10

边模抑制比SMSR Db 35

芯片工作温度T ℃25

热敏电阻@25℃R KΩ10

封装尺寸

引脚定义01

引脚定义02

1550nm窄线宽激光器

1550nm窄线宽激光器 1550nm窄线宽采用蝶形封装,内置背光PD、隔离器、TEC和热敏电阻,输出功率可达60mW以上。 线宽30K-2MHZ可选。具有低工作电流,高效率,高稳定性的特点。与我公司提供的配套驱动电路一 起使用,可以获得高稳定性 窄线宽激光光源。图片仅供参考,尺寸以实物为准,我公司(深圳市飞博 源光电)热忱为您提供,具体性能指标见每支设备参数. 特 点 ·窄线宽·高稳定性 ·高效率·蝶形封装 ·内置监视器·内置TEC 1热敏电阻 8接地 2热敏电阻 9接地 3LD负极(-)10无 4监视器正极(+)11激光器正极,接地 5监视器负极(-)12激光器RF 6TEC(+)13激光器正极,接地 7TEC(-)14无 性能指标 参数符号测试条件最小典型最大单位光学输出功率PO CW40??mW

波长Pf=40mW,CW1540-1560nm 线宽 (-3dB 宽度) Pf=40mW,CW (FOL15DCWD-A**-B) --2MHz 边模抑制比SMSR Pf=40mW,CW3545dB 光隔离度Iso-25--dB 相对强度躁声RIN Pf=40mW,CW, OpRL<-25dB*2), 100MHz

1550nm高功率窄线宽DFB蝶形封装激光器(40-60mw)

1550nm高功率窄线宽DFB蝶形封装激光器(40-60mw) 描述:采用量子阱结构的DFB 激光器,内置半导体制冷器,先进的激光焊接工艺实现蝶形尾纤式封装,结构紧凑,体积小,在光纤通信领域得到广泛应用;半导体制冷器高精度温度控制下,激光器功率高稳定、波长高稳定的优势,该激光器的线宽低至200khz一下,使得激光器在光纤传感器领域得到广泛应用。 产品特点主要应用 MQW-DFB量子阱结构低阈值电流、高斜率效率气密性封装 高可靠性、高稳定性光纤通信 光仪表(光源、OTDR)光纤气体传感器(光源) 极限参数 参数符号单位参数值 激光二极管正向电流If(LD)mA500 激光二极管反向电压Vr(LD)V 2 背光探测器工作电流If(PD)mA 2 背光探测器反向电压Vr(PD)V 20 致冷器工作电流ITEC A 2.4 致冷器工作电压VTEC V 2.9 工作温度Topr ℃-20~+70 储存温度Tstg ℃-40~+85 管脚焊接温度/时间Tsld ℃/s 260/10 技术参数 参数符号单位最小值典型值最大值出纤功率P0 mw 40 60 阈值电流Ith ma 50 80 工作电压V o V 1.6 3 线宽Lw khz 150 200 中心波长λ c nm 1550 波长随温度变化漂移系数Δλ/T nm 0.1 波长随电流变化漂移系数Δλ/I Nm 0.01 背光监视电流Im mA 0.1 2 背光探测器暗电流Id nA 10 边模抑制比SMSR Db 35 芯片工作温度T ℃25 热敏电阻@25℃R KΩ10

封装尺寸 引脚定义01

引脚定义02

窄线宽可调谐半导体激光器

第32卷 第2期 南开大学学报(自然科学) V ol.32 №21999年6月A cta Scientiar um N atur alium U niv er sitatis N ank aiensis Jun.1999窄线宽可调谐半导体激光器 *a 吕福云 刘玉洁 袁树忠 魏振兴 李 加 张光寅 (南开大学物理科学学院,天津,300071)(教育部光学信息技术科学开放研究实验室,天津,300071) 摘 要 研究了一种利用光栅弱耦合外腔改善可见光半导体激光器性能的方法,并对650nm 半导体激光器进行了实验,外腔镜由一个闪耀光栅构成,通过转动光栅角度,获得了窄线宽单模激光输出,谱线宽度0.1pm,线宽压窄比达9800,边模抑制比>20,并且在约20nm 的荧光谱宽基础上得到约5nm 波长的连续调谐范围. 关键词:弱耦合;可调谐半导体激光器;窄线宽 0 引 言 目前普遍采用内腔和外腔两类调谐技术.而外腔调谐是较为广泛采用的一种方法,它在现有普通半导体激光器的基础上,通过外腔选模压窄线宽,得到较好的输出特性,且具有灵活可行和调谐效果好的特点.以前国内外外腔调谐的研究大多集中在光纤通信窗口,即研究1350~1560nm 附近的波长调谐技术,且获得了较理想的结果[1,2] .本文把外腔调谐技术推广到研究可见光波段的半导体激光器,实验中采用了650nm 的半导体激光器,它在原子吸收监测系统及喇曼谱仪等技术中具有很强的应用背景 . 图1 半导体激光器外腔调谐示意图 Fig 1Scheme of the external -cavity semiconductor laser 常见外腔调谐技术包括两种方式,即强耦合和 弱耦合方式.前者指通过对半导体激光器出光端面 镀增透(AR)膜等手段,使得外腔镜的反射率大于出 光端面的反射率,从而使外腔反馈占主要地位;后者 则不对激光器出光端面镀增透膜,使内腔反馈仍占 较为主要的地位.两种情况都能有效地压窄激光线 宽,而强耦合情形的调谐范围更大,弱耦合情形则更 为灵活方便.1 实验装置和调谐原理 外腔调谐的装置结构如图1所示.半导体激光器 的输出光经透镜组准直后获得水平的平行光,入射到光栅外腔上,经光栅分光,将一级衍射反馈回激光 器有源区,与有源区内光场相互作用,造成各纵模间的增益差,增益较大,满足激光激发条件的纵模起振激发,而增益较小的模式就被损耗掉.通过改变光栅外腔反馈光的波长,就可获得不同波长的激光输出,从而实现波长调谐.此外,由于半导体激光器的谱线宽度满足[3]a 收稿日期:1998-10-05 *攀登计划B 项目

窄线宽光纤激光器的应用

窄线宽光纤激光器的应用 单频光纤激光器具有线宽超窄、频率可调、相干长度超长以及噪声超低等独特性能,借用微波雷达上的FMCW技术可对超远距离的目标进行超高精度的相干探测,从而会改变市场对光纤传感、激光雷达和激光测距等固有观念,继续把激光器应用革命进行到底。 光库通讯提供的单频光纤激光器拥有世界上独一无二的美国专利技术,可以十分低地成本解决激光 光束质量和激光功率的矛盾,从而研制出了该款极具竞争优势的单频可调光纤激光器。 关键词:5cm腔长 FMCW 混频相干探测 AFR光纤激光器的特点 光库通讯提供的1550nm光纤激光器最大的特点就是线宽超窄至2Khz,频率稳定性好于10Mhz,具有超长相干长度和超低噪声,就是比世界上最好的DFB激光器都高出2个数量级。该款激光器输出功率可达150mW,边模抑制比高于50dB,热调协范围20Ghz,同时兼备50Mhz/V的线性PZT调制功能。 除了对人眼安全的1550nm激光器外,光库通讯还提供同样性能的1000nm左右的光纤激光器,同时2000nm 的光纤激光器也正在计划之中。将来,光库通讯还会推出波长覆盖1000-1550nm全光纤化的单频、高功率脉冲光纤激光器。欢迎您的关注。 核心技术 请见图1为我们激光器的结构图,激光器腔由左右两端的光纤光栅和中间极短的有源光纤组成。该设计方案充分利用了我们美国合作方的专利技术,高浓度、铒/镱离子共掺有源光纤可以确保我们的激光器的腔长度少于5cm,这是传统光纤技术所不可能完成的任务! 如此短的腔长极合适超高稳定性和跳模自由的单频激光工作。该种激光器的线宽典型值为2Khz,而且都是线偏光输出。结构紧凑和高稳定性能的光纤激光器就可以在如此短的激光腔基础上完成制作。 图1:激光器结构 在光纤传感中的应用 光库通讯的超窄线宽光纤激光器可以应用于分布式光纤传感系统,对远至10公里的目标进行探测、定位和分类。它的基本应用原理就是频率调制连续波技术(FMCW),该技术能为核电站,石油/天然气管道,军事基地以及国防边界提供低成本的、全分布式的传感安全保护。 在FMCW技术中,激光输出频率围绕它的中心频率不断变化,而激光的一部分光被耦合进一个有固定反射率的参考臂中,在外差相干探测系统中,该参考臂就充当了一个本地振荡器(LO)的作用。充当传感作用的是另一跟很长的光纤,请见图2。从传感光纤反射回来的激光与来自本地振荡器的参考光一起混合产生一个光拍频,该频率与它所经历的时间延迟差相对应。传感光纤上的远处信息就可以通过测量光谱分析仪上的光电流的拍频来获取。传感光纤上的分布式反射可以是最简单的瑞利后向散射。通过这种相干探测技术,

窄线宽可调谐半导体激光器的驱动电路

盐城师范学院 毕业论文 (2011-2012学年度) 物电学院电子信息工程专业 班级08(3)学号08223129 课题名称窄线宽可调谐半导体激光器的驱动电路学生姓名蒋峰 指导教师沈法华

2012年5月20日

目录 1、绪论 (4) 2、工作原理 (5) 2.1半导体激光器原理 (5) 2.2窄线宽原理 (7) 2.3可调谐原理 (9) 2.3.1 基于电流控制技术 (9) 2.3.2 基于机械控制技术 (10) 2.3.3 基于温度控制技术 (10) 3、特性参数 (10) 3.1工作波长 (10) 3.2光谱宽度 (11) 3.3功率特性 (11) 3.3.1 小功率 (11) 3.3.2 高功率 (11) 3.4频率稳定性 (12) 4、可调谐半导体激光器的高精密驱动电源与稳频电路设计 (12) 4.1半导体激光器电路设计原理与实现 (12) 4.1.1 半导体激光器驱动方式简介 (12) 4.1.2 电路设计指标 (13) 4.1.3 驱动电路设计 (14) 4.2控温电路的设计与实现 (15) 4.2.1 基准采样电路 (15) 4.2.2 差分放大电路 (15) 4.2.3 自动控制电路 (15) 4.3控流电路的设计与实现 (16) 4.4微分稳频电路的设计与实现 (16) 总结 .................................................................................................. 错误!未定义书签。致谢 . (18) 参考文献 (18)

激光器封装简要说明

QCL in butterfly package 图1,封装好的激光器外形 上图包括外壳,引脚,激光出射窗口,热沉,TEC模块,热敏电阻,激光器模块。 外壳:尺寸2*2.5*1cm3 材质要求:底部采用传热性较好的纯铜,并在内部与TEC模块紧密接触(用导热胶与TEC制热面粘结),侧面与顶部可采用其他材料。 两边对称引脚接口,位于侧面的中上部位,以较方便连接内部 部件为宜。 透镜窗口,高度在侧面中部以上,位于前侧面的中心位置,方 便激光的输出以及内部激光器的放置,大小以透镜为标准。引脚:两边对称排列2*4根,圆柱形,铜质,直径1.27mm,长度3.5cm,引脚间距2mm。 激光出射窗口:使用材料BaF2。

热沉:使用导热系数较大的纯铜(也可以采用其他材质,视条件而定,要求导热系数较好)。厚度不小于0.15cm。 TEC模块:1.5*1.5*0.33cm3。底部与外壳紧密接触,上部与热沉接触良好,TEC 周围使用隔热材料做成的隔热圈,减少制热面产生的热量向制冷面传递。热敏电阻:采用贴片式热敏电阻。 激光器模块:封装详细结构如图2。 图2,激光器模块封装建议图 如图2所示为激光器模块封装的建议图; *所提供的激光器裸管中阳极与阴极(此处阳极,阴极是为了方便表达,封装时对应为裸管的上下表面)表层都没有镀上欧姆接触层,在封装激光器模块前需在激光器上下两面镀上欧姆接触层,皆为Ti/Au(40/120nm),在上表面为了使得金丝能与欧姆接触层更好的连接,需再镀上5um厚的Au。 阴极(基板为)铜或铝,它与激光器的阴极短接,作为激光器的阴极来使用,同时也是为了较快地散热,它的厚度见附图。基板的下方应加一层导热性好的绝缘层,使得激光器基板与热沉有较好的电隔离,且不影响其导热性能。 中间红色一层为绝缘层,采用高绝缘材料,其厚度见附图。 上面一层为阳极接触层,同样可以用铜片或者铝片(首先选择铜),阳极的铜板不一定要求与图示上所画大小,但要求保持较低的电阻。阳极上面的两个黑色方块为阳极触点,用8根细金丝(或者铜丝)与激光器的阳极连接。

半导体激光器封装技术及封装形式

半导体激光器封装技术及封装形式 半导体激光器的概念半导体激光器是用半导体材料作为工作物质的激光器,由于物质结构上的差异,不同种类产生激光的具体过程比较特殊。常用工作物质有砷化镓(GaAs)、硫化镉(CdS)、磷化铟(InP)、硫化锌(ZnS)等。激励方式有电注入、电子束激励和光泵浦三种形式。半导体激光器件,可分为同质结、单异质结、双异质结等几种。同质结激光器和单异质结激光器在室温时多为脉冲器件,而双异质结激光器室温时可实现连续工作。 半导体激光器的工作原理半导体激光器是依靠注入载流子工作的,发射激光必须具备三个基本条件: (1)要产生足够的粒子数反转分布,即高能态粒子数足够的大于处于低能态的粒子数;(2)有一个合适的谐振腔能够起到反馈作用,使受激辐射光子增生,从而产生激光震荡;(3)要满足一定的阀值条件,以使光子增益等于或大于光子的损耗。 半导体激光器工作原理是激励方式,利用半导体物质(即利用电子)在能带间跃迁发光,用半导体晶体的解理面形成两个平行反射镜面作为反射镜,组成谐振腔,使光振荡、反馈,产生光的辐射放大,输出激光。 半导体激光器优点:体积小、重量轻、运转可靠、耗电少、效率高等。 半导体激光器的封装技术一般情况下,半导体激光器的发光波长随温度变化为0.2-0.3nm/℃,光谱宽度随之增加,影响颜色鲜艳度。另外,当正向电流流经pn结,发热性损耗使结区产生温升,在室温附近,温度每升高1℃,半导体激光器的发光强度会相应地减少1%左右,封装散热;时保持色纯度与发光强度非常重要,以往多采用减少其驱动电流的办法,降低结温,多数半导体激光器的驱动电流限制在20mA左右。 但是,半导体激光器的光输出会随电流的增大而增加,很多功率型半导体激光器的驱动电流可以达到70mA、100mA甚至1A级,需要改进封装结构,全新的半导体激光器封装设计理念和低热阻封装结构及技术,改善热特性。例如,采用大面积芯片倒装结构,选用导

DFB蝶形封装激光器

DFB 蝶形封装激光器 1,描述 分布式反馈特定波长激光器, 波长1550±2nm,输出光功率≥10mw,内置 光隔离器, 带制冷的14脚蝶形外壳,直径为900um 紧套管,长度为1m 的 单模尾纤,连接器FC/APC 2,性能规格 2.1,极限值 参数 符号 最小 最大 单位 激光器反向电压 V RLMAX — 2.0 V 正向电流 I FLMAX — 150 mA 工作温度范围 T O -20 70 ℃ 贮藏温度范围 T stg -40 85 ℃ 光电二极管反向电压 V RPDMAX — 10 V 光电二极管正向电流 I FPDMAX — 2 mA 热敏电阻温度 — — 100 ℃ 制冷器工作电流 — — 1.9 A 2.2,电特性 参数 符号 测试条件 最小 典型 最大 单位 峰值光功率 P P — 10 — — mW 阈值电流 I TH CW — 14 25 mA 驱动电流 — P O =10mW — 100 — mA 激光器正向电压 V LF P O =10mW — 1.4 2.0 V 激光器工作温度 T LD — 22 — 30 ℃ 监视器反向压 V RMON — 3 5 10 V 监视器电流 I RMON P O =10mW 0.01 — 2 mA 监视器暗电流 I D I F =0mA,V R MON =5V — 0.01 0.1 μA 输入阻抗 Z IN — — 25 — Ω 热敏电阻电流 I TC — 10 — 100 μA 热敏电阻阻抗 R TH T L =25℃ 9.5 — 10.5 k Ω 制冷器电流 I TEC T L =25℃, T around =70℃ — — 1.2 A 制冷器电压 V TEC T L =25℃, T around — — 3.5 V

1550nm高效窄线宽光纤激光器

1550nm高效窄线宽光纤激光器** 伍波**,刘永智,刘爽,张谦述,代志勇 (电子科技大学光电信息学院,四川成都610054) 摘要:研制了一种采用双光纤光栅法布里-珀罗(FBG F-P)腔选模的线形腔结构窄线宽光纤激光器。激光器以高掺杂Er3+光纤为增益介质,结合非相干技术,利用全光纤型法拉第旋转器(FR)抑制空间烧孔效应,通过2个短FBG F-P腔选模,产生了稳定的1550nm单频激光输出。采用两端976nm LD抽运方式,阈值抽运光功率为11mW,在抽运光功率为145mW时输出信号光功率为73mW。光-光转换效率为50%,斜率效率达55%。采用延迟自外差方法精确测量光纤激光器线宽,实验中使用了10km单模光纤延迟线,由于测量精度的限制,得到线宽小于10kH z。研究表明,这种光纤激光器具有输出功率高、线宽窄和信噪比高的特点,可用于高精度的光纤传感器系统。 关键词:激光技术;光纤激光器;窄线宽;光纤光栅法布里-珀罗(FBG F-P)腔;法拉第旋转器(FR) 中图分类号:TN253文献标识码:A文章编号:1005-0086(2007)07-0770-03 1550nm Hig h Efficient Narrow Lin ew id th Fib er Laser WU Bo**,LIU Yong-Zhi,LIU Shuang,ZH ANG Qian-shu,DAI Zh-i yong (School of Optoelectronic Information,University of Electronic Science and Technolog y,Chengdu610064,China) A bs tra ct:A high efficient narrow li newidth fiber laser based on fiber Bragg grating Fabry-Perot(FBG F-P)cavity was demonstrted.The spatial hole burning effect was restrained by fi ber Faraday rotator(FR).Two short FBG F-P cavities as narrow band width filters discrimi nated and selected the laser longitudi nal modes efficiently.Stable single frequency1550nm laser was acquired.Pumped by two976nm LD,the fiber laer exhi bi ted a11mW threshold.The73mW output power was obtai ned upon the maximu m145mW pump power.The opti ca-l optical efficciency was50%and the slope effi ci ency was 55%.T he3d B linewidth of laser was less than10kHz,measured b y the delayed sel-f heterod yne method with10km mono-mode fiber.T he high power narrow linewid th fi ber lasr can be used in high resolution fiber sensor system. Key words:laser technology;fiber laser narrow linewidth;fiber Bragg grating Fabry-Perot(FBG F-P)cavi ty;Fara-day rotator(FR) 1引言 窄线宽光纤激光器作为光纤激光传感器光源,具有对电磁场的干扰、安全、体积小和可远程控制等特性[1,2]。目前,获得单纵模窄线宽光纤激光器有3种方案。1)通过控制腔内相遇光波的偏振状态来消除驻波效应引起的空间烧孔的非相干技术[3,4];2)在激光腔中加入未抽运掺杂光纤来选频,并抑制跳模的饱和吸收体[5~7];3)短腔光纤激光器,包括DFB光纤激光器和短腔DBR光纤激光器[8~10]。比较3种方案发现,方案1和方案2需要使用多个偏振控制器,且多为环形腔结构,控制难,转换效率低,输出功率极低;而方案3结构简单,输出功率超过200mW,斜率效率达24%,难点在于采用怎样的抽运方式在短增益光纤上实现高输出功率,以及怎样实现特殊封装。超短腔DBR结构光纤激光器国内也有研究,但是激光器效率低,输出功率最大仅为11mW,且线宽限制在MH z范围[11,12]。 本文研制了一种采用双光纤光栅布里-珀罗(FBG F-P)腔选模的高掺Er3+线形腔窄线宽光纤激光器。该光纤激光器结合了非相干技术,输出功率高,能量转换效率高,线宽极窄,并具有结构简单、全光纤化和信噪比高等特点,可应用于高精度的光纤传感系统。 2窄线宽光纤激光器实验结果 光纤激光器主要由2个FBG F-P腔和高掺Er3+光纤线形腔构成,实验装置如图1所示。激光器的增益介质为高掺Er3+光纤,长度为3m,在978nm波长处峰值吸收系数为17 dB/m,在1550nm波长处峰值吸收系数为30dB/m。实验中,采用了双向抽运方式,抽运光源为中心波长976nm的LD,LD 1与LD2的最大抽运功率分别为76mW和69mW。由于在线形腔结构中容易产生空间烧孔效应,引起多纵模振荡,所以 光电子#激光 第18卷第7期2007年7月Journal of Optoelectronics#Laser V ol.18N o.7Jul.2007 *收稿日期:2006-08-11修订日期:2006-11-07 *基金项目:国家自然科学基金资助项目(60377021) **E-m ail:w-bo@https://www.sodocs.net/doc/221344082.html,

浅谈大功率半导体激光器列阵封装技术

浅谈大功率半导体激光器列阵封装技术 摘要:现如今,科学和信息技术高速发展,大功率 半导体激光器列阵在工业、军事、医疗等诸多领域都有重要的应用。大功率半导体激光器阵列可广泛用于激光加工、激光测距、激光存储、激光显示、激光照明、激光医疗等。半导体激光芯片外延生长技术大功率半导体激光器的发展与 其外延芯片结构的研究设计紧密相关。近年来,美、德等国家在此方面投入巨大,并取得了重大进展。对大功率半导体激光器阵列封装技术的研究,可以增大器件性能和转换效率,具有重大意义。 关键字:“大功率”;“半导体激光器”;“列阵”;“激光”;“芯片” 1 管芯(bar)封装 在半导体激光器列阵的封装过程中,管芯封装管芯封装的好坏直接关系到管芯的导电、导热、焊接强度等。这个封装过程对半导体激光器列阵寿命和可靠性有巨大影响。在封装过程中,焊料与其它金属层生成的金属间化合物、焊料烧结过程中产生的空洞等对焊料性能有很大影响,焊料是管芯的导电导热通道,焊料性能的好坏直接影响到管芯的工作,影响半导体激光器列阵的寿命和可靠性。

在半导体激光器列阵的制作过程中,管芯上要制作 Ti/Pt/Au、Au/Ge/Ni等欧姆接触层,无氧铜上要镀Ni和Au。金属之间会生成复杂的金属间化合物(IMC),对bar的封装有较大影响。半导体激光器列阵在工作时,热沉提供良好的散热条件。但大功率半导体激光器列阵产生的热量很大,管芯温度仍然很高。这种情况下合金焊料各成分之间、焊料和芯片上的金属层之间存在扩散现象,产生IMC,由于IMC在列阵存放和工作时的过度生长和热疲劳,会对焊料结的可靠性产生不利的影响。由于IMC易碎的特性会使焊料焊接处机械强度变弱或导致界面的分层。它们对激光器的寿命和可靠性会产生影响。 2 焊料空洞 半导体激光器列阵的封装中,用于管芯(bar)焊接的焊料的选取与制备过程是极其关键的问题。因为焊料直接和管芯接触,是管芯和热沉之间的导电和导热通道。半导体激光器列阵工作时电流可高达100A。这些电流通过焊料流入管芯,而通过的横截面只有1mm×10mm。焊料要承受很高的电流密度,要求焊料有好的导电性、抗电迁移性。半导体激光器列阵热能散出的通道也是焊料,所以焊料要有良好的导热性和抗热迁移性。热量不能及时地传导出去,就会积聚在焊料附近,产生大的温度梯度而发生热迁移,在焊料中产生空洞,严重影响了焊料的导热性和导电性,使列阵管芯温度升高。

半导体激光器工艺知识详解

半导体激光器工艺知识详解 半导体激光器是指以半导体材料为工作物质的激光器,又称半导体激光二极管(LD),是20世纪60年代发展起来的一种激光器。半导体激光器的工作物质有几十种,例如砷化镓(GaAs)、硫化镉(CdS)等,激励方式主要有电注入式、光泵式和高能电子束激励式三种。半导体激光器从最初的低温(77K)下运转发展到室温下连续工作;从同质结发展成单异质结、双异质结、量子阱(单、多量子阱)等多种形式。半导体激光器因其波长的扩展、高功率激光阵列的出现以及可兼容的光纤导光和激光能量参数微机控制的出现而迅速发展。 半导体激光器的体积小、重量轻、成本低、波长可选择,其应用遍布临床、加工制造、军事,其中尤以大功率半导体激光器方面取得的进展最为突出。 半导体激光器的工作原理激光产生原理 半导体激光器是一种相干辐射光源,要使它能产生激光,必须具备三个基本条件: (1)增益条件:建立起激射媒质(有源区)内载流子的反转分布,在半导体中代表电子能量的是由一系列接近于连续的能级所组成的能带,因此在半导体中要实现粒子数反转,必须在两个能带区域之间,处在高能态导带底的电子数比处在低能态价带顶的空穴数大很多,这靠给同质结或异质结加正向偏压,向有源层内注人必要的载流子来实现。将电子从能量较低的价带激发到能量较高的导带中去。当处于粒子数反转状态的大量电子与空穴复合时,便产生受激发射作用。 (2)要实际获得相干受激辐射,必须使受激辐射在光学谐振腔内得到多次反馈而形成激光振荡,激光器的谐振腔是由半导体晶体的自然解理面作为反射镜形成的,通常在不出光的那一端镀上高反多层介质膜,而出光面镀上减反膜。对F—p腔(法布里一珀罗腔)半导体激光器可以很方便地利用晶体的与P—n结平面相垂直的自然解理面一面构成F—P 腔。 (3)为了形成稳定振荡,激光媒质必须能提供足够大的增益,以弥补谐振腔引起的光损耗及从腔面的激光输出等引起的损耗,不断增加腔内的光场。这就必须要有足够强的电流

相关主题