搜档网
当前位置:搜档网 › 基于Labview的压力测试系统

基于Labview的压力测试系统

基于Labview的压力测试系统
基于Labview的压力测试系统

基于L a b v i e w的压力测

试系统

集团标准化小组:[VVOPPT-JOPP28-JPPTL98-LOPPNN]

现代检测技术综合设计报告

课程设计题目:基于虚拟仪器的压力测量系统

学院名称:电子与信息工程学院

专业:电气工程及其自动化

班级:电气12-1 姓名:杨育新学号

同组者姓名:

指导教师:黄晶

日期:~

目录

一、任务

书................................

..................1

二、总体设计方案

2.1 现代测控技术发展概述.....................................1

2.2 自动检测系统的原理框图...................................2

三、压力传感器

3.1 传感器的选择.............................................2

3.2 工作原理.................................................2

3.3 工作特性.................................................3

四、硬件设计

4.1 应变片的测量转换电路.....................................3

4.2 电桥的放大电路...........................................4

4.3 压力测量的总电路图...........................................5

五、Labview软件设计

5.1 程序流程图的设计..........................................6

5.2 前面板的设计.............................................6

5.3 实验框图的设计...................................

........8六、调试情况及结论

6.1 程序的调试..............................................12

6.2 实验结论...................................

.............14七、课程设计心得体会.......................................14

参考资料.....................................................14

一、任务书

用虚拟仪器Labview软件来编写压力测量系统。

要求如下:

1、利用Labview和适当压力传感器设计一个压力测量系统

2、系统包括:系统开关、当前测量值、超限报警

3、压力测量上下限、压力变化趋势

4、测量过程统计数据(平均值、标准差等)

5、前面板登陆界面等

二、总体设计方案

2.1 现代测控技术发展概述

近些年来,随着半导体、计算机技术的发展,新型或具有特殊功能的传感器不断涌现出来,检测装置也向小型化。固体化及智能化方向发展,应用领域也越加宽广。上至茫茫太空,下至海底、井下,大致工业生产系统,小至家用电器、个人用品,人们都可以发现自动检测技术的广泛应用。

现代测控系统大多以微型计算机为核心,能完成较高层次的自动化检测和控制,在不同程度上具有“智能”技术。如基于网络的测控技术、基于虚拟仪器(VI)的测控技术、基于雷达与无线通信的测控技术,以及基于全球卫星定位系统(GPS)的测控技术等。

现代测控技术隶属于现代信息技术,是以电子、测量及控制等学科为基础,融合了电子技术、计算机技术、网络技术、信息处理技术、测试测量技术、自动控制技术、仪器仪表技术等多门技术,利用现代最新科学研究方法和成果,对测控系统进行设计和实现的综合性技术。当前,检测技术的发展趋势主要体现在一下几个方面。

1、不断提高检测系统的测量精度、量程范围、延长使用寿命、提高可靠性。

2、应用新技术和新的物理、化学效应,开拓检测领域。

3、发展集成化、功能化的传感器。

4、采用计算机技术,使自动检测技术智能化。

5、发展网络化传感器及网络化检测系统。

虚拟仪器融合了仪器仪表技术、计算机技术、高速总线技术以及图形软件编程等技术。计算机在显示方式、存储能力、处理器性能、网络等方面的优势,使虚拟仪器具有多种优势。

测量精度高、速度快、可重复性好、系统组建时间短、测量功能易于扩展等优点,有最终取代大量的传统仪器成为仪器领域主流产品的趋势。

虚拟仪器是上世纪90年代初期出现的一种新型仪器,它将许多以前由硬件完成的信号处理工作交由计算机软件进行处理,这种测试仪器的硬件化功能软件化,给测试仪器带来了深刻的变化,因此虚拟仪器代表了当前测试仪器发展的方向之一。

虚拟仪器是在计算机的显示屏上虚拟了传统仪器面板的计算机化仪器,它尽可能多的将原来由硬件电路完成的信号调理和信号处理的功能,代替为计算机的程序来完成。这种硬件功能能软件化,是虚拟仪器的一大特征。操作人员在计算机的屏幕上利用指点设备操作虚拟的仪器,就像操作真实的仪器一样,完成对被测量的采集、显示、分析、处理、存储及数据生成。其特点是在通过硬件平台确定后,可由软件而不是硬件来决定仪器的功能。仪器的功能是用户

根据需要由应用软件来定义的,而不是事先由厂家定义好了的。因此用户不必购买多台不同功能的传统仪器,在现代测控应用中有着广泛的应用前景。

总之,自动检测技术的蓬勃发展适用了国民经济发展的迫切需要,是一门充满希望和活力的新兴技术,目前取得的进展已十分瞩目,今后还将有更大的发展。

2.2 自动检测系统的原理框图

图2-1 自动检测系统原理框图

其中,信号调理电路包括信号放大和滤波,其作用是对信号进行必要的调理。

三、 压力传感器 压力传感器是工业实践中最为常用的一种传感器,一般普通的输出为模拟信号,模拟信号是指信息参数在给定范围内表现为连续的信号。 或在一段连续的时间间隔内,其代表信息的特征量可以在任意瞬间呈现为任意数值的信号。而我们通常使用的压力传感器主要是利用制造而成的,这样的传感器也称为压电传感器。

力学传感器的种类繁多,如电阻应变片压力传感器、半导体应变片压力传感器、谐振式压力传感器、压阻式力传感器、电感式压力传感器、电容式压力传感器及电容式加速度传感器等。下面就简单介绍一下该实验中所用到的电阻应变传感器的工作原理和工作特性。

3.1 传感器的选择

现代传感器在原理和结构上千差万别,如何根据具体的测量目的、测量对象以及测量环境合理地选用传感器,是在进行某个量的测量时首先要解决的问题。当传感器确定之后,与之相配套的测量方案和测量设备也就可以确定了。

在选择传感器时,我们所要考虑的因素是:根据测量对象与测量环境确定传感器的类型、灵敏度、响应特性、线性范围、稳定性及精度。综合上述考虑因素,本次课程设计我们选用电阻应变片来完成任务。

3.2 工作原理

在了解电阻应变传感器时,我们首先认识一下电阻应变片这一元件。电阻应变片是一种将被测件上的应变变化转换成为一种电信号的敏感器件。它是压阻式应变传感器的主要组成部分之一。电阻应变片应用最多的是金属电阻应变片和半导体应变片两种。通常是将应变片通过胶水粘贴在一个弹性体上,当弹性体手里发生变化时,电阻应变片也一起产生形变,使应变片的阻值发生变化,从而使加在电阻两端上的电压发生变化。这种应变片在受力时产生的阻值变化通常较小,一般这种应变片都组成应变电桥,并通过后续的仪表放大器进行放大,再传输给处理电路显示。

电阻应变式传感器是利用电阻应变片将应变转换为电阻变化的传感器,传感器由在弹性元件上粘贴电阻应变敏感元件构成。当被测物理量作用在弹性元件上时,弹性元件的变形引起应变敏感元件的阻值变化,通过转换电路将其转变成电量输出,电量变化的大小反映了被测物理量的大小。 电阻应变片的工作原理是导体或半导体材料在外界里的作用下,会产生及楔形变,其电阻值也将随着发生变化的现象,这种现象也叫做应变效应。金属导体的电阻值可用下是来表示:

2r

l A l R πρρ== (1)

式中:ρ——金属导体的电阻率(m cm /2?Ω)

A ——导体的截面积(cm 2)

l ——导体的长度(m )

我们以金属丝应变电阻为例,当金属丝受到外力作用时,其长度和截面积都会发生变化,从上式中可以很容易的看出,其电阻值会发生改变,假如金属丝受外力作用而伸长时,其长度增加,而截面积减少,电阻值便会增大。当金属丝受外力作用而压缩时,长度减小而截面积增加,电阻值则会减小。只要测出加在电阻两端的变化(通常是测量电阻两端的电压),即可获得应变金属丝的应变。

3.3 工作特性

电阻式应变片传感器的优点是精度高,测量范围广,寿命长,结构简单,频响特性好,能在恶劣条件下工作,易于实现小型化、繁体化和品种多样化。

它的缺点是对于大应变有较大的非线性、输出信号较弱,但可采取一定的补偿措施,因此它广泛应用于自动测试和控制技术中。

四、硬件设计

4.1 应变片的测量转换电路

金属应变片的电阻变化范围很小,如果直接用欧姆表测量其电阻值的变化将十分困难,且误差很大,所以必须使用不平衡电桥来测量这一微小的变化量,将转换为输出电压U 0。

在不平衡电阻电桥中,可以用电阻传感器来代替某一桥臂的电阻,或某几个桥臂的电阻。当电阻传感器的阻值有所变化时,电桥失去平衡,计算机可以依据电桥的输出电压来计算出被测值。下图 为不平衡电桥的结构图:

图4-1 不平衡电桥的结构

设电桥的各臂的电阻分别为R1R2R3R4,它们可以全部或部分是应变片。由于直流放大器的输入电阻比电桥电阻大得多,因此可将电桥输出端看成开路,这种电桥称为电压输出桥,输出电压U 0为:

()()S

U R R R R R R R R U 432142310++-= (2)

由上式可知,若R 1R 3=R 2R 4,则输出的电压必为零,此时电桥处于平衡状

态,称为平衡电桥。应变片工作时,其电阻变化R ?,此时有不平衡电压输出: R

R U U ?=40 (3)

上式表明,若相邻两桥臂的应变极性一致,即同为拉应变或压应变时,实处电压为两者之差,若不同时,则输出电压为两者之和。

电桥供电电压U 越高,输出电压U 0越大,但是,当U 大时,电阻应变片通

过的电流也大,若超过电阻应变片所允许通过的最大工作电流,传感器就会出现蠕变和零漂现象。基于这些原因可以合理的进行温度补偿和提高传感器的测量灵敏度。利用不平衡电桥来连接电路可以有效的进行温度补偿和提高传感器的测量灵敏度。

4.2 信号处理电路

4.2.1 信号放大电路

信号放大电路用于将传感器或经基本转换电路输出的微弱信号不失真地加以放大,以便于进一步加工和处理。图4-2为差动减法放大电路,该电桥的放大电路由差动减法电路来实现,将单臂传感器的电阻变化转换成输出电压的变化。

图4-2 差动减法放大电路

如图4-3为压力测量电路的二级放大电路,滑动变阻器0602和0603分别调节AD620和OP07的放大倍数。

图4-3 放大电路

4.2.2 信号滤波原理

滤波电路是只允许一定频率范围内的信号成分正常通过,而限制另一部分频率成分通过的电路。滤波电路常用于滤去整流输出电压中的纹波,一般由电抗元件组成,如在负载电阻两端并联电容C,或与负载串联电感器L,以及由电容、电感组成的各种复式滤波电路。

在该硬件接线电路中,在多处地方采用了滤波电路来对信号进行调整。具体接线图见图4-4所示。

4.3压力测量的总电路图

当加在应变片上的压力变化时,应变片的阻值发生变化,桥式电路输出由此产生的电压信号,电位器w0601为空载调零电阻,可以提高系统的精确度。由于压力传感器输出的信号比较微弱,该信号经由AD260进行一级放大后,再进入OP07进行二级放大。电位器RW0602和RW0603分别为一级放大和二级放大反馈电阻。压力测量的实验原理如下图所示:

图4-4 压力测量的硬件电路图

五、Labview软件设计

图2:该部位的功能是用来对测量数据的上下限参数的设置,以及测量数据超过上下限的一个报警提醒功能。超过界限后,相应的提示灯会变为绿色。

图2

图3:该部位的功能是得到模拟量压力的平均值和标准差。

图3

图4:该部位是对整个压力测试系统进行停止操作时使用的。

图4

5.3 实验框图的设计

本系统程序框图设计主要包括数据的测量与采集、模拟数据读取、数据处理及显示、子程序的打开或关闭等,其中有些模块直接调用LABVIEW中的库函数,如乘除法、定时器等,还有一些模块则需要用户进行自定义设计实现如下图5:该部位是登陆界面上显示压力测试系统和用户登录该名称的。

图5

如下图6:该部位是用户输入自己的用户名和密码,若输入都为正确,则可以顺利进行子VI。当前用户名为:yyx密码为123456。若输入用户名有误,则会显示一下图7,则会显示“用户名错误,请重新输入”,下一个连接点的端口则会显示“F”代表False,代表出现了错误。若密码错误,则会显示图8的样子,也会出现错误现象,让你无法登陆。

图6

图7

图8

图9该部位代表用户已经登录页面,正在连接子VI界面中,系统正在登录过程中,该部位

我利用滑动杆显示系统登陆的过程,更加有真实感。那条墨绿色的线连接到我的

Angela.vi 这个系统。

图9

图10为调用节点,而图11为调用节点的即时帮助信息。类别右键选择类——VI服务器—

—VI,在调用方法处右键选择方法——运行VI。

图5.2-10 图5.2-11

图12为属性节点,图13为属性节点的即使帮助信息。在选择类处选择VI,在名称1处右键选择全部转换为写入,再右键属性工具栏——可见,右键属性选择属性——前面板窗口——打开。其余的也根据需要依次设置。

图5.2-12 图5.2-13

若用户系统登录成功,将会自动跳到Angela.vi的子文件中运行。若系统登录不成功,出现用户密码,则会出现图5.2-13。

图5.2-13

图5.3-14为压力测量系统登陆界面的总体框图(每隔1s出现一个随机数)

图5.3-14

图5.3-15则表示任意随机获取模拟量压力值,500表示范围。

图5.3-15

图5.3-16表示一个被上限值和下限值规定的压力输入模拟量。右边图5.3-17则是对该物件的介绍。

图5.3-16 图5.3-17

图5.3-18表示的是在500个随机模拟量中任意取20个,求出压力的平均值和标准差。

图5.3-18

图5.3-19

图5.3-20表示的是毫秒计时器,定时1000毫秒,说明1秒钟采样一个压力值,速度会慢一点。看起来更加清楚点。

图5.3-20 图5.3-21

图5.3-22表示输入压力模拟量大于上限值,则输出为“TRUE”,布尔灯则会亮。

图5.3-22 图5.3-24

图5.3-24表示输入压力模拟量小于下限值,则输出为“TRUE”,布尔灯则会亮。与上述大于同理。

图5.3-24

六、调试情况及结论

仪器驱动程序主要用来初始化虚拟仪器,并设置特定的参数和工作方式,使虚拟仪器保持正常的工作状态,LABVIEW已经为采集卡配备了驱动程序。将硬件的USB接口接至电脑,对其进行相应的选项的选择,将压力曲线的程序框图中的随即数组用DAQ助手来代替,开始实验进行数据处理。因一些原因,以下的调试中没有连接硬件,只是用随机数组来进行模拟。

6.1 程序的调试

运行LABVIEW程序,进入压力测量系统的登录界面,如图6-1:

在用户名和密码处输入正确的账户(用户名:yyx,密码:123456),如图6-2:

图6-1

图6-3是还没有输入模拟量的时候压力测试图表。

图6-3

图6-4是模拟量超出上限值,产生上限报警。

图6-4

图6-5是模拟量超出下限值,下限报警。

按下停止按钮,则按下“停止”按钮,则运行停止。

6.2 实验结论

从以上的图中可以清楚的看出该系统可以快速准确的实验模拟压力的测量和显示,并且能够实现指定用户的登录,完成了设计任务。

由于时间的原因和实验室硬件的有限,我在做这个任务的过程中并没有用到数据采集卡,因此在我的软件设计中,我只有模拟的数据,而没有DAQ助手形成的数据采集。

七、课程设计心得体会

这次课程设计让我了解了虚拟仪器(LABVIEW)在编写实际应用程序时重要作用,进一步增强了我理论应用实践的能力。在没有学习过LABVIEW之前,我接触了C语言,作为一种编程的工具,LABVIEW与C语言还是有很大的相似之处,如数据的类型、模块化的编辑特点等,但经过一段时间的学习,我发现LABVIEW采用了图形化的编写方式比C语言更加简单,不过在设计过程中我也遇到了一些困难,在设计和排版过程中还存在一些问题。经过查询资料,反复的修改和讨论,使得我的设计有了进一步的完善。

本次课程设计是对我很好的一次磨练,虽然少了自己对硬件的连接,但是通过自己对硬件电路接线的分析,我也有很大的收获。通过这次的任务,我不仅学到了新知识,而且对课程设计文档的撰写方法也又一次的巩固。

此次课程设计的顺利完成要感谢黄老师的辛勤指导和同学的相互学习交流,让我收获很大,为以后的学习打下基础。

参考文献:

[1]梁森,王侃夫等.自动检测技术及应用[M].第二版.北京:机械工业出版社.2011.

[2]黄松岭,吴静等.虚拟仪器设计基础教程[M].北京:清华大学出版社.2008.

基于LabVIEW的温度检测系统

基于LabVIEW的温度检测系统

摘要 温度是个基本的物理量,他是工业生产过程中最普遍,最重要的工艺参数之一。随着工业的不断发展,对温度测量的要求也越来越高,而且测量范围也越来越广。合理的温度范围和精确地温度的测量队提高产品的质量、产量,降低消耗,实现工业生产自动化,均有积极作用,因此温度检测技术的研究具有重大意义。 本系统是一个基于LabVIEW的温度检测系统,采用多点温度检测,能检测较大区域内的温度变化,主要包括上位机和下位机两个部分。下位机使用的DS18B20传感器和AT89C51单片机。上位机和下位机的通讯方式是串口通讯。上位机使用的是虚拟仪器LabVIEW,主要功能是实时温度的显示,温度曲线时间轴的显示,历史温度曲线的显示以及超限温度报警。 关键字:Labview 温度测量

ABSTRACT The temperature is a basic physical quantity, it is one of the most common industrial processes, the most important process parameters. With the continuous development of industry, the requirements for temperature measurement is also getting higher and higher, and the increasingly wide range of measurement. Reasonable temperature range and accurate temperature measurement team to improve product quality, production, reduce consumption, to achieve the automation of industrial production, had an active role in temperature sensing technology is of great significance. This system is a temperature sensing system based on LabVIEW, using multi-point temperature detection can detect temperature changes within the larger area, including two parts of the upper and lower machine. The next bit machine using the DS18B20 sensors and AT89C51 microcontroller. The upper and lower machine communication is serial communication. The host computer using a virtual instrument LabVIEW, the main function is to display real-time temperature, the temperature curve Timeline display, alarm display and gauge the temperature of the historical temperature curve. Keywords: LabVIEW Temperature survey

基于LabVIEW的温度测量及数据采集系统设计

LabVIEW技术大作业 题目:基于LabVIEW的温度测量及数据采集系统设计学院(系):信息与通信工程学院 班级:通信133 学号:xxxxxxxxx 姓名:xxxxxx

一、设计背景 LABVIEW最初就是为测试测量而设计的,因而测试测量也就是现在LABVIEW最广泛的应用领域。经过多年的发展,LABVIEW在测试测量领域获得了广泛的承认。至今,大多数主流的测试仪器、数据采集设备都拥有专门的LabVIEW驱动程序,使用LabVIEW可以非常便捷的控制这些硬件设备。同时,用户也可以十分方便地找到各种适用于测试测量领域的LabVIEW工具包。这些工具包几乎覆盖了用户所需的所有功能,用户在这些工具包的基础上再开发程序就容易多了。有时甚至于只需简单地调用几个工具包中的函数,就可以组成一个完整的测试测量应用程序。 二、系统方案 本设计的程序框图和前面板图分别是图1.1和图1.2,“温度测量及数据采集系统.vi”是一个测量温度并将测试数据输出到文件的VI。此VI中的温度是用一个20至40的随机整数来代替的,测试及采集100个温度值,每隔0.25秒测一次,共测定25秒。在数据采集过程中,VI将在前面板的波形图上实时地显示测量结果。采集过程结束后,波形图上显示出温度数据曲线,数组中显示每次的温度测量数据,并在显示控件中显示测试中温度的最大值、最小值和平均值,同时把测量的温度值以文件的形式存盘。

图1.1温度测量及数据采集程序框图 1.2温度测量及数据采集前面板图

二、系统各模块介绍 2.1循环模块 For循环用于将某段程序循环执行指定的次数, 是总数接线端,指定For循环内部代码执行的次数。如将0或负数连接至总数接线端,For循环不执行。 是计数接线端,表示完成的循环次数。第一次循环的计数为0。 本设计使用for循环将循环内的程序循环100次。

传感器课程设计(基于labview的pt100温度测量系统)

目录 第一章方案设计与论证 (2) 第一节传感器的选择 (2) 第二节方案论证 (3) 第三节系统的工作原理 (3) 第四节系统框图 (4) 第二章硬件设计 (4) 第一节PT100传感器特性和测温原理 (5) 第二节信号调理电路 (6) 第三节恒流源电路的设计 (6) 第四节TL431简介 (8) 第三章软件设计 (9) 第一节软件的流程图 (9) 第二节部分设计模块 (10) 总结 (11) 参考文献 (11)

第一章方案设计与论证 第一节传感器的选择 温度传感器从使用的角度大致可分为接触式和非接触式两大类,前者是让温度传感器直接与待测物体接触,而后者是使温度传感器与待测物体离开一定的距离,检测从待测物体放射出的红外线,达到测温的目的。在接触式和非接触式两大类温度传感器中,相比运用多的是接触式传感器,非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器,其中将温度变化转换为电阻变化的称为热电阻传感器,将温度变化转换为热电势变化的称为热电偶传感器。 热电阻传感器可分为金属热电阻式和半导体热电阻式两大类,前者简称热电阻,后者简称热敏电阻。常用的热电阻材料有铂、铜、镍、铁等,它具有高温度系数、高电阻率、化学、物理性能稳定、良好的线性输出特性等,常用的热电阻如PT100、PT1000等。近年来各半导体厂商陆续开发了数字式的温度传感器,如DALLAS公司DS18B20,MAXIM公司的MAX6576、MAX6577,ADI公司的AD7416等,这些芯片的显著优点是与单片机的接口简单,如DS18B20该温度传感器为单总线技术,MAXIM公司的2种温度传感器一个为频率输出,一个为周期输出,其本质均为数字输出,而ADI公司的AD7416的数字接口则为近年也比较流行的I2C总线,这些本身都带数字接口的温度传感器芯片给用户带来了极大的方便,但这类器件的最大缺点是测温的范围太窄,一般只有-55~+125℃,而且温度的测量精度都不高,好的才±0.5℃,一般有±2℃左右,因此在高精度的场合不太满足用户的需要。 热电偶是目前接触式测温中应用也十分广泛的热电式传感器,它具有结构简单、制造方便、测温范围宽、热惯性小、准确度高、输出信号便于远传等优点。常用的热电偶材料有铂铑-铂、铱铑-铱、镍铁-镍铜、铜-康铜等,各种不同材料的热电偶使用在不同的测温范围场合。热电偶的使用误差主要来自于分度误差、延伸导线误差、动态误差以及使用的仪表误差等。

基于labview温度监测系统

课题基于labview的温度监测系统班级 12电信 学号 201210350120 姓名邹临昌 时间 2015.12 .12-2016.1.12 景德镇陶瓷学院

摘要:本课题介绍了虚拟仪器概况及其发展背景;通过对虚拟仪器的学习和研究,运用软件工具,实现温度显示系统的模拟。实现系统软件设计思路是:利用LabVIEW中的各种控件,实现温度数据采集显示。利用虚拟仪器的优越性实现了基于操作系统下的交通终端服务系统的展示部分。 关键字:labVIEW,温度,数据采集 引言 美国国家仪器公司推出的LabVIEW不仅是一个图形化编程语言,而且是一个广泛应用于虚拟测控系统的虚拟仪器平台,它与数据采集卡一起构成虚拟测试仪器,其测试系统的构建可以通过图形化的语言描述,组态容易,设计简单,广泛应用于测量与控制。 LabVIEW是虚拟仪器领域中最具有代表性的图形化编程开发平台[1] ,是目前国际上首推并应用最广的数据采集和控制开发环境之一,主要应用于仪器控制、数据采集、数据分析、数据显示等领域,并适用于多种不同的操作系统平台。与传统程序语言不同,LabVIEW采用强大的图形化语言(G 语言)编程,面向测试工程师而非专业程序员,编程非常方便,人机交互界面直观友好,具有强大的数据可视化分析和仪器控制能力等特点。使用LabVIEW 开发环境,用户可以创建32位的编译程序,从而为常规的数据采集、测试、测量等任务提供了更快的运行速度。LabVIEW是真正的编译器,用户可以创建独立的可执行文件,且该文件能够脱离开发环境而单独运行。

1.1虚拟仪器的优势 1.经济实惠 2.方便适用 3.提高测试效果 4.开放且灵活 远程虚拟仪器的优势在于不受地域限制,功能可由用户自己定义,且构建容易,所以使用面极为广泛,是科研、开发、测量、检测、计量、测控等领域不可多得的好工具,更值得一提的是它可应用在高危险的区域进行在线的数据采集和检测[5]。使测量人员的工作不但摆脱了地理位置和条件的限制,还可以通过Intcrnet把所采集到的数据自动地转送到另一台计算机进行评估。

基于某labView地温度采集系统设计

基于LabVIEW的温度采集系统设计 摘要:设计了基于LabV IEW的温度采集系统。它利用DS18B20数字温度传感器和STC公司生产的STC89C52单片机采集被测环境温度,将测得的数据经串口传给计算机。计算机利用LabV IEW的V ISA读取串口数据并进行处理和显示,实现基于V ISA的串口温度采集。 关键词:温度传感器;单片机;LabV IEW;温度采集 1引言 虚拟仪器(Virtual Instrument)是基于计算机的软硬件测试平台,它可代替传统的测量仪器。LabVIEW是由美国国家仪器公司(National Instruments Co.)推出的、主要面向计算机测控领域的虚拟仪器软件开发平台,是一种基于图形开发、调试和运行的集成化环境[1]。 利用LabVIEW设计的数据采集系统,可模拟采集各种信号,但是配备NI公司的数据采集板卡比较贵,因此,可以选择单片机小系统作为前端数据采集系统,进行采集数据,然后通过RS-232串口通讯将数据送给计算机,在LabVIEW开发平台下,对数据进行各种处理、分析并对信号进行存储、显示和打印,从而实现了一种在LabVIEW环境下的单片机数据采集系统。 2 温度采集系统设计 本系统采用STC公司生产STC89C52单片机作为温度数据采集和传输的主控芯片,温度传感器采用单总线方式的集成数字温度传感器DS18B20。采集得到的数据利用单片机经串口通信的方式传输至计算机的串口。计算机上位机软件采用数据处理能力超强的LabV IEW软件编写,利用其所带的V ISA驱动进行串口的数据采集和处理,实现了基于V ISA的串口温度采集。 2.1温度采集系统的硬件设计 本系统以AT89C51为中央处理单元,利用DS18B20数字温度传感器对温度信号进行采集,采集到的信号被送到AT89C51中, 将采集到的温度值在LCD上显示并通过串口发送到上位机,其原理图如1所示(见附录1)。 2.1.1 中央处理单元——STC89C51 本设计选用的中央处理单元是STC89C52单片机,STC89C52是一种带8K字节闪烁可编程可擦除只读存储器(FPEROM—Falsh Programmable and Eras-able Read Only Memory)的低电压,高性能CMOS8位微处理器,俗称单片机。单片机的可擦除只读存储器可以反复擦除。该器件采用ATMEL高密度非易失存储器制造技

LabView的温度监测系统

传感器技术与应用课程设计 设计题目:___ _基于LabView的温度监测系统_______ 班级:__________ _电信08-1班________________ 学号:__________ _ __29号____________________ 姓名:_______ _ _李锦明 _______ _________ 指导老师:_____ ____ ___张静_ ________________ 设计时间:__________2011年12月5日_ _________

摘要 随着信息领域各种技术的发展,在数据采集方面的技术也取得了很大的进步,采集数据的信息化是目前社会的主流发展方向。各种领域都用到了数据采集,在石油勘探,地震数据采集领域已经得到应用。随着测控技术的迅猛发展,以虚拟仪器为核心的数据采集系统已经在测控领域中占到了统治地位。 数据采集系统是将现场采集到的数据进行处理、传输显示、储存等操作。数据采集系统主要功能是把模拟信号变成数字信号,并进行分析、处理、存储和显示。温度数据采集系统广泛的应用于人们的日常生活中。 本文主要介绍了利用labview实现温度采集系统的设计过程,系统结构时利用了labview的虚拟仪器技术,由labview虚拟系统自生成温度信号,通过温度的采集实现对温度数据的采集,预处理,分析,储存和显示。全文的内容主要包括:虚拟仪器的发展,labview虚拟仪器的介绍,温度采集系统的制作与调试最后是自己在本次制作中的不足与展望。 关键词:labview ,虚拟仪器,温度监测系统

目录 中文摘要 (1) 一概述 (3) 1.1研究背景 (3) 1.1.1温度的研究背景 (3) 1.1.2 LABVIEW的发展 (3) 1.2研究的意义 (4) 二设计的任务以及要求 (4) 2.1设计的任务 (4) 2.2设计的要求 (4) 三系统化设计 (4) 3.1系统设计方案 (4) 3.1.1 结构框图 (4) 3.2.2 系统工作原理 (5) 3.2单元模块设计 (5) 3.2.1单元模块的设计 (7) 3.2.2单元模块的链接 (9) 四系统调试 (8) 4.1 前面板布置 (8) 4.2 系统运行以及分析 (8) 五结论与展望 (9) 六仪器设备清单 (9) 参考文献 (9)

基于Labview的温度采集系统

基于Labview 的温度采集系统 摘要:随着工业的不断发展,对温度测量的要求越来越高,而且测量范围也越来越广。本设计用LabView 软件在PC 机上编程实现了多点温度采集、动态图形显示、数据存储、报警、数据分析等功能,并重点对基于LabVIEW 的虚拟温度采集系统的设计进行了讨论。 关键词:LabVIEW; 温度采集 0 引言 进入21世纪以来,作为测试技术的一个分支,虚拟仪器的开发和研制在国内得到了飞速的发展。它可以利用计算机显示器的显示功能来模拟传统仪器的控制面板,以多种形式表达输出检测结果。目前,常用的温度采集系统绝大部分是由集成温度传感器和单片机构成的,设计过程繁琐、调试期长、修改不方便。本文借助LabVlEW 图形化软件开发系统,用软件代替DAQ 数据采集卡设计的这种虚拟温度采集系统,比以前的更易修改且成本低、周期短。 1 设计思想 该系统的功能框图如图所示。 本温度采集系统的设计采用软件代替了DAQ 数据采集卡,使用Demo read voltage 子程序来仿真电压测量,然后把所测得的电压值转换成摄氏或华氏温度读数。 在数据采集过程中,实时地显示数据。当采集的温度值大于设定的高限报警数值时,就会点亮高报警红色灯,同时触发条件结构里的事件发生,使系统发出蜂呜温度采集系统 实 时 温 度 显 示 保存数据 报警设定 数值计算 显示转换

声。当采集过程结束后,在图表上画出数据波形,并算出最大值、最小值和平均值,并自动产生数据文件的头文件,它包括操作者名字和文件名,将采集的数据附在头文件后面,以供查询。 2 子程序设计 2.1 温度计子程序 温度计界面程序如下图所示。在框图程序中设定温度计的标尺范围为0.0到100.0,在前面板窗口中放入竖直开关控制用下选择“温度值单位”,即选择以华氏还是摄氏显示。 2.2 实现步骤 1、点击框图程序窗口的空白处,弹出功能模板,从弹出的菜单中选择所需的对象。本程序用到下面的对象: Multiply(乘法)功能,将读取电压值乘以100.00,以获得华氏温度。 Subtract(减法)功能,从华氏温度中减去32.0,以便转换成摄氏温度。 Divide(除法)功能,把相减的结果除以1.8以转换成摄氏温度。 Select(选择)功能(Comparison子模板)。取决于温标选择开关的值,该功能输出华氏温度(当选择开关为false)或者摄氏温度(选择开关为True)数值。 Demo Read Voltage VI程序(Tutorial子模板)。该程序模拟从DAQ卡的0通道读取电压值,并把所测得的电压值转换成华氏或摄氏读数。 随机数产生功能(Numeric子模板),用于产生随机温度值。 数值常数。用连线工具,点击要连接一个数值常数的对象,并选择Create Constant功能。若要修改常数值,用标签工具双点数值,再写入新的数值。

基于LabVIEW的温度采集系统设计

虚拟仪器是将仪器技术、计算机技术、总线技术和软件技术紧密的融合在一起,利用计算机强大的数字处理能力实现仪器的大部分功能,打破了传统仪器的框架,形成的一种新的仪器模式。 本设计采用USB5935数据采集卡,运用虚拟仪器及其相关技术于温度采集系统的设计。该系统具有数据同时采集、采集数据实时显示、存储与管理、报警记录等功能。 本文首先概述了测控技术和虚拟仪器技术,探讨了虚拟仪器的总线及其标准、框架结构、LabVIEW开发平台,然后介绍了数据采集的相关理论,给出了数据采集系统的硬件结构图。在分析本系统功能需求的基础上,介绍了程序模块化设计中用到的技术,最后一章给出了本设计的前面板图。 关键字:虚拟仪器;数据采集;LabVIEW

1.1 引言 测控技术在现代科学技术、工业生产和国防科技等诸多领域中应用十分广泛,它的现代化已被认为是科学技术、国防现代化的重要条件和明显标志。20世纪70年代以来,计算机、微电子等技术迅猛发展,在其推动下,测控仪器与技术不断进步,相继诞生了智能仪器、PC仪器、VXI仪器、虚拟仪器及互换性虚拟仪器等微机化仪器及其自动测控系统,计算机与现代化仪器设备间的界限日渐模糊,测控领域和范围不断拓宽[1]。 近年来,以计算机为中心、以网络为核心的网络化测控技术与网络化测控系统得到越来越多的应用,尤其是在航空航天等国防科技领域。网络化的测控系统大体上由两部分组成:测控终端与传输介质,随着个人计算机的高速发展,测控终端的位置越来越多的被个人计算机所占据,其中,软件系统是计算机系统的核心,甚至是整个测控系统的灵魂,应用于测控领域的软件系统称为监控软件。传输介质组成的通信网络主要完成数据的通信与采集,这种数据采集系统是整个测控系统的主体,是完成测控任务的主力。因此,这种“监控软件-数据采集系统”构架的测控系统结构在很多领域都得到了广泛的应用,并形成了一套完整的理论[1]。 1.2 课题背景 虚拟仪器(VI)是计算机技术和传统的仪器技术相结合的产物,是仪器发展的一个重要方向。LabVIEW是一个基于图形化编程语言的虚拟仪器软件开发工具。本文重点介绍了虚拟仪器的界面,LabVIEW应用,并设计了一个基于虚拟仪器的数字化温度测量和控制系统,阐述了系统开发过程中数据的采集和软硬件的设计,虚拟仪器设备可以由使用者自己定义,这意味着可以自由地组合计算机平台,硬件(包括传统仪器),软件,以及各种实现应用所需要的附件。这种灵活性在由供应商定义,功能固定,独立的传统仪器上是很难达到的。常用的数字万用表,示波器,信号发生器,数据记录仪,以及温度和压力监控仪器就是这种传统仪器的代表。从传统仪器设备向虚拟仪器设备的转变,为现代实验带来了更多实际的利益,同时也促进着实验手段不断更新。 1.3 本设计所做的工作 本设计以两个独立通道进行设计,从传感器来的模拟输入信号,经过信号调理后,输入到USB5935数据采集卡,然后经过USB总线送入PC机,由软件进行数据处理,包括采样波形的实时显示,并进行历史数据保存,边采集边保存,还有实时报警并记录处理等功能。

传感器课程设计(基于labview的pt100温度测量系统)重点

目录 第一章方案设计与论证 ............................................................................................ 2第一节传感器的选择 (2) 第二节方案论证 ........................................................................................................ 3第三节系统的工作原理 ............................................................................................ 3第四节系统框图 ........................................................................................................ 4第二章硬件设计 .......................................................................................................... 4第一节PT100传感器特性和测温原理 . ................................................................... 5第二节信号调理电路 ................................................................................................ 6第三节恒流源电路的设计 ........................................................................................ 6第四节 TL431简介 .................................................................................................... 8第三章软件设 计 ........................................................................................................... 9 第一节软件的流程图 ................................................................................................ 9第二节部分设计模块 ...............................................................................................10总 结 ..................................................................................................................................11参考文献 . (11) 第一章方案设计与论证 第一节传感器的选择 温度传感器从使用的角度大致可分为接触式和非接触式两大类, 前者是让温度传感器直接与待测物体接触, 而后者是使温度传感器与待测物体离开一定的距离, 检测从待测物体放射出的红外线, 达到测温的目的。在接触式和非接触式两大类温度传感器中, 相比运用多的是接触式传感器, 非接触式传感器一般在比较特殊的场合才使用,目前得到广泛使用的接触式温度传感器主要有热电式传感器, 其中将温度变化转换为电阻变化的称为热电阻传感器, 将温度变化转换为热电势变化的称为热电偶传感器。

LabView的温度监测系统

传感器技术与应用课程设计 设计题目:___ _基于LabView的温度监测系统_______班级:__________ _电信08-1班________________ 学号:__________ _ __29号____________________ 姓名:_______ _ _李锦明 _______ _________ 指导老师:_____ ____ ___张静_ ________________ 设计时间:__________2011年12月5日_ _________

摘要 随着信息领域各种技术的发展,在数据采集方面的技术也取得了很大的进步,采集数据的信息化是目前社会的主流发展方向。各种领域都用到了数据采集,在石油勘探,地震数据采集领域已经得到应用。随着测控技术的迅猛发展,以虚拟仪器为核心的数据采集系统已经在测控领域中占到了统治地位。 数据采集系统是将现场采集到的数据进行处理、传输显示、储存等操作。数据采集系统主要功能是把模拟信号变成数字信号,并进行分析、处理、存储和显示。温度数据采集系统广泛的应用于人们的日常生活中。 本文主要介绍了利用labview实现温度采集系统的设计过程,系统结构时利用了labview的虚拟仪器技术,由labview虚拟系统自生成温度信号,通过温度的采集实现对温度数据的采集,预处理,分析,储存和显示。全文的内容主要包括:虚拟仪器的发展,labview虚拟仪器的介绍,温度采集系统的制作与调试最后是自己在本次制作中的不足与展望。 关键词:labview,虚拟仪器,温度监测系统

目录 中文摘要 ..................................................................................................................... 1 一概述 ....................................................................................................................... 3 1.1研究背景3? 1.1.1温度的研究背景 .................................................................................. 3 1.1.2 LABVIEW的发展?3 1.2研究的意义 (4) 二设计的任务以及要求4? 2.1设计的任务 ................................................................................................ 4 2.2设计的要求4? 三系统化设计 ........................................................................................................... 43.1系统设计方案4? 3.1.1结构框图4? 3.2.2 系统工作原理 (5) 3.2单元模块设计 (5) 3.2.1单元模块的设计7? 3.2.2单元模块的链接 .................................................................................. 9 四系统调试 (8) 4.1前面板布置 (8) 4.2系统运行以及分析………………………………………………………………….8五结论与展望9? 六仪器设备清单 ....................................................................................................... 9 参考文献 (9)

利用LabVIEW开发虚拟温度测试系统

利用LabVIEW开发虚拟温度测试系统 LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语言的显着区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式。 温度是机械工业生产和科学研究实验中的一个非常重要的参数,许多系统的工作都是在一定的温度范围内进行的,需要测量温度和控制温度的场合及其广泛。 1 虚拟仪器技术与LabVIEW简介 虚拟仪器(virtual instrument)是基于计算机的仪器。计算机和仪器的密切结合是目前仪器发展的一个重要方向。粗略地说这种结合有两种方式,一种是将计算机装入仪器,其典型的例子就是所谓智能化的仪器。随着计算机功能的日益强大以及其体积的日趋缩小,这类仪器功能也越来越强大,目前已经出现含嵌入式系统的仪器。另一种方式是将仪器装入计算机。以通用的计算机硬件及操作系统为依托,实现各种仪器功能。虚拟仪器主要是指这种方式。上面的框图反映了常见的虚拟仪器方案。 虚拟技术、计算机通信技术与网络技术是信息技术的三大核心技术,其中虚拟仪器是虚拟技术的一个重要组成部分。在虚拟仪器系统中,用灵活、强大的计算机软件代替传统仪器的某些硬件,用人的智力资源代替许多物质资源,特别是在系统中应用计算机直接参与测试信号的产生和测量特征的解析,使仪器中的一些硬件甚至整件仪器从系统中“消失”,而由计算机的软硬件资源来完成它们的功能。 LabVlEW是美国NI公司推出的一种基于G语言的虚拟仪器软件开发工具,是目前国际上应用最广泛的虚拟仪器软件平台之一,主要应用于仪器控制、数据采集、数据显示等领域,可应用于Windows、Macintosh、UNIX等多种操作系统平台。设计者可以像搭积木一样,轻松组建测量系统,构造自己的仪器面板,而无需进行任何烦琐的计算机代码的编写。即使用户没有多少编程经验,同样也能利用LabVIEW来开发自己的应用程序。 2 系统设计方案

基于LabVIEW的温度测量及数据采集系统设计

基于LabVIEW的温度测量及数据采集 系统设计

LabVIEW技术大作业 题目:基于LabVIEW的温度测量及数据采集系统设计 学院(系):信息与通信工程学院 班级:通信133 学号:xxxxxxxxx 姓名:xxxxxx

一、设计背景 LABVIEW最初就是为测试测量而设计的,因而测试测量也就是现在LABVIEW最广泛的应用领域。经过多年的发展,LABVIEW在测试测量领域获得了广泛的承认。至今,大多数主流的测试仪器、数据采集设备都拥有专门的LabVIEW驱动程序,使用LabVIEW能够非常便捷的控制这些硬件设备。同时,用户也能够十分方便地找到各种适用于测试测量领域的LabVIEW工具包。这些工具包几乎覆盖了用户所需的所有功能,用户在这些工具包的基础上再开发程序就容易多了。有时甚至于只需简单地调用几个工具包中的函数,就能够组成一个完整的测试测量应用程序。 二、系统方案 本设计的程序框图和前面板图分别是图1.1和图1.2,“温度测量及数据采集系统.vi”是一个测量温度并将测试数据输出到文件的VI。此VI中的温度是用一个20至40的随机整数来代替的,测试及采集100个温度值,每隔0.25秒测一次,共测定25秒。在数据采集过程中,VI 将在前面板的波形图上实时地显示测量结果。采集过程结束后,波形图上显示出温度数据曲线,数组中显示每次的温度测量数据,并在显示控件中显示测试中温度的最大值、最小值和平均值,同时把测量的温度值以文件的形式存盘。

图1.1温度测量及数据采集程序框图

1.2温度测量及数据采集前面板图 二、系统各模块介绍 2.1循环模块 For循环用于将某段程序循环执行指定的次数,是总数接线端,指定For循环内部代码执行的次数。如将0或负数连接至总数接线端,For循环不执行。是计数接线端,表示完成的循环次数。第一次循环的计数为0。 本设计使用for循环将循环内的程序循环100次。 2.1 for循环 2.2等待模块

基于labview的温度测量

基于labview的温度测量

1.系统设计 1.1 系统总体设计方案 设计框图如下所示: 图1 系统总体设计框图 1.2 单元电路方案的论证与选择 硬件电路的设计是整个实验的关键部分,我 们在设计中主要考虑了这几个方面:电路简单易懂,较好的体现物理思想;可行性好,操作方便。在设计过程中有的电路有多种备选方案,我们综合各种因素做出了如下选择。 1.2.1 温度信号采集电路的论证与选择 方案:本系统中我们采用MF58型高精度负温度系数热敏电阻器及其外围电路,组成温度信号采 LabVIE W 温 度 信 号 温度控制继电 继电器控

集电路。相比较方案一,方案二后续电路较复杂,且需进行温度标定,但由于此方案能够较好的体现物理思想,通过实验标定温度,可以使我们更好的理解模拟信号与数字信号的转化,故我们采用了此方案。 MF58型高精度负温度系数热敏电阻器有许多优点:稳定性好,可靠性高;阻值范围宽:0.1-1000K ;阻值精度高;由于玻璃封装,可在高温和高温等恶劣环境下使用;体积小、重量轻、结构坚固,便于自动化安装(在印制线路板上);热感应速度快、灵敏度高。故我们采用此温敏元件。 1.2.2 温度控制接口电路的论证与选择 我们采用频压转化电路将频率信号转化成电压信号,进而控制加热与降温电路工作。选用集成式频率/电压转换器LM2907,配以外加电路,能将经PC机处理后输出的频率信号转换为直流电压信号,电压信号控制继电器(相当于开关)工作从而使电路联通,电风扇或加热丝工作。 在一定范围内,LM2907的频率和电压转换可成线性关系,可以实现电热丝加热功率和风扇

基于labview的人体温度监测系统设计【开题报告】

毕业设计开题报告 测控技术与仪器 基于labview的人体温度监测系统设计 1选题的背景、意义 LabVIEW是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C和BASIC开发环境,但是LabVIEW与其他计算机语言的显著区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW使用的是图形化编辑语言G编写程序,产生的程序是框图的形式[1]。 与C和BASIC一样,LabVIEW也是通用的编程系统,有一个完成任何编程任务的庞大函数库。LabVIEW的函数库包括数据采集、GPIB、串口控制、数据分析、数据显示及数据存储,等等。LabVIEW也有传统的程序调试工具,如设置断点、以动画方式显示数据及其子程序(子VI)的结果、单步执行等等,便于程序的调试。 虚拟仪器(virtual instrumention)是基于计算机的仪器。计算机和仪器的密切结合是目前仪器发展的一个重要方向[2]。粗略地说这种结合有两种方式,一种是将计算机装入仪器,其典型的例子就是所谓智能化的仪器。随着计算机功能的日益强大以及其体积的日趋缩小,这类仪器功能也越来越强大,目前已经出现含嵌入式系统的仪器。另一种方式是将仪器装入计算机。以通用的计算机硬件及操作系统为依托,实现各种仪器功能。虚拟仪器主要是指这种方式。下面的框图反映了常见的虚拟仪器方案。随着现代检测技术的发展,在工业领域需要对现场数据进行实时采集、检测,例如在发电厂、钢铁厂、化工领域的生产中都需要对大量数据进行现场采集,而温度采集又是非常重要的部分。当然对人体温度的检测就更是极为重要。 1.2温度传感器的介绍 本系统的温度测量是使用Pt100热电阻来实现的。PT100,又叫铂电阻,热电阻,是一种温度传感器,铂电阻温度系数为0.0039×/℃,0℃时电阻值为100Ω,电阻变化率为0.3851Ω/℃。

基于单片机labview的温度测量系统设计

串口收发电路的温度测量单片机系统设计

设计目录 第一部分电路设计 (3) 1.1 温度采集电路 (3) 1.2 串口收发电路 (7) 1.3 温度显示电路 (9) 第二部分上位机软件 (10) 2.1 基于Labview的温度检测设计 第三部分程序代码…………………………………………..

电路设计 1.1温度采集电路 本设计采用热敏电阻,通过飞利浦公司生产的AD转换芯片PCF9591采集热敏电阻的温度信息,总体电路图如下 PCF8591简介 描述 PCF8591是一个单片集成、单独供电、低功耗、8-bit CMOS数据获取器件。PCF8591具有4个模拟输入、1个模拟输出和1个串行I2C总线接口。PCF8591的3个地址引脚A0, A1和A2可用于硬件地址编程,允许在同个I2C总线上接入8个PCF8591器件,而无需额外的硬件。在PCF8591器件上输入输出的地址、控制和数据信号都是通过双线双向I2C总线以串行的方式进行传输。 特性 【1】单独供电 【2】PCF8591的操作电压范围2.5V-6V 【3】低待机电流 【4】通过I2C总线串行输入/输出

【5】PCF8591通过3个硬件地址引脚寻址 【6】PCF8591的采样率由I2C总线速率决定 【7】4个模拟输入可编程为单端型或差分输入 【8】自动增量频道选择 【9】PCF8591的模拟电压范围从VSS到VDD 【10】PCF8591内置跟踪保持电路 【11】8-bit逐次逼近A/D转换器 【12】通过1路模拟输出实现DAC增益 引脚信息 AIN0~AIN3:模拟信号输入端。 A0~A3:引脚地址端。 VDD、VSS:电源端。(2.5~6V) SDA、SCL:I2C 总线的数据线、 时钟线。 OSC:外部时钟输入端,内部时钟 输出端。 EXT:内部、外部时钟选择线,使 用内部时钟时EXT 接地。 AGND:模拟信号地。 AOUT:D/A 转换输出端。 VREF:基准电源端。 PCF8591操作 内部地址寄存器

基于Labview的温度测试系统

基于Labview的温度测控系统设计 ——温度测控仪 摘要现在人们主要使用传统仪器进行温度测量,传统仪器主要靠硬件来实现,开发费用高,数据也无法编辑。对于复杂的温度测试任务,利用传统仪器就难以实现对大量数据的处理与显示。而利用虚拟仪器,用户不仅可以实现较为复杂的温度测控任务,而且还可以根据自己的实际需要对系统中的参数进行定义,实现各种各样的测试要求。虚拟仪器不仅功能强大,而且使用时操作简单,设备维护改进的费用也很低。 本次设计主要是利用NI PCI-6251数据采集卡、温度传感器来实现对温度数据的采集,通过USB口与计算机连接并使用Labview软件对数据进行分析处理,使该系统具备温度越界报警、实时数据显示、数据存储及历史数据查询等功能。 论文主要介绍了温度测控系统软件部分的设计方案,包括数据采集、数据分析、数据存储显示与报警和温度调节五个模块,并且说明了各个模块的具体设计思路。 关键词:数据采集卡,虚拟仪器,Labview ABSTRACT Now people use traditional instruments for temperature measurement, the traditional instrument mainly uses the hardware, the development costs high, the data cannot be edited. For the temperature test task complicated by the traditional instruments, it is difficult to realize and display of large amounts of data. And the use of virtual instrument, users can not only realize the temperature measurement and control task is more complex, but also can according to their actual needs to

LabVIEW的测温系统设计

LabVIEW的测温系统设计 LabVIEW 是一种程序开发环境,由美国国家仪器(NI)公司研制开发的,类似于C 和BASIC 开发环境,但是LabVIEW 与其他计算机语言的显着区别是:其他计算机语言都是采用基于文本的语言产生代码,而LabVIEW 使用的是设 计一个仪器,首先要考虑确定其功能,然后根据其功能确定需要设计前面板和 程序框本文所测温度变化范围:-20~+120℃,精度要求0.5 级。通过曲线拟合法对系统进行标定,即可求出测温范围内任一电压对应的温度。 2.2 温度测试系统的信号调理 此温度传感器用温度变送器进行信号调理,温度变送器的工作原理是:采用 热电阻作为测温元件,从测温元件输出的信号送到变送模块,经过稳压滤波、 运算放大、非线性校正和反方向保护等处理电路,转换为与温度成线性关系的4~20 mA 电流信号输出,在信号输出端加一个220 Ω的电阻转换成0.88~4.4 V 的电压信号输出。 2.3 温度测试系统的数据采集 模块化设计数据采集,数据采集模块的设计对后续的数据显示和分析结果以 及整个系统功能的实现,具有直接影响,利用NI 公司的DAQ(Data AcquisitiON)卡及其驱动程序设计这一模块,充分利用集成的功能全面的 DAQ 函数库和子VI,设计可以实现对数据采集的控制,包括触发控制、通道 控制等的数据采集模块。 2.4 温度测试系统的程序框图 在进行温度测试时,先确定哪个通道对温度信号进行采集,然后对系统进行 调试,调试好后开始数据采集及存储和备份,当温度超过用户所设定的极限值时,温度测试系统会报警提示,当温度在允许的范围内时,测试系统对所采集

相关主题