搜档网
当前位置:搜档网 › 大学物理课后习题答案第九章

大学物理课后习题答案第九章

大学物理课后习题答案第九章
大学物理课后习题答案第九章

第9章 电稳感应和电磁场 习题及答案

1. 通过某回路的磁场与线圈平面垂直指向纸面内,磁通量按以下关系变化:

23(65)10t t Wb -Φ=++?。求2t s =时,回路中感应电动势的大小和方向。 解:310)62(-?+-=Φ

-

=t dt

d ε 当s t 2=时,V 01.0-=ε

由楞次定律知,感应电动势方向为逆时针方向

2. 长度为l 的金属杆ab 以速率υ在导电轨道abcd 上平行移动。已知导轨处于均匀磁

场B ?中,B ?的方向与回路的法线成60°角,如图所示,B ?的大

小为B =kt (k 为正常数)。设0=t 时杆位于cd 处,求:任一时刻t 导线回路中感应电动势的大小和方向。

解:任意时刻通过通过回路面积的磁通量为

202

1

60cos t kl t Bl S d B m υυ==?=Φρρ

导线回路中感应电动势为 t kl t

m

υε-=Φ-

=d d 方向沿abcda 方向。

3. 如图所示,一边长为a ,总电阻为R 的正方形导体框固定于一空间非均匀磁场中,磁场方向垂直于纸面向外,其大小沿x 方向变化,且)1(x k B +=,0>k 。求: (1)穿过正方形线框的磁通量;

(2)当k 随时间t 按t k t k 0)(=(0k 为正值常量)变化时,线框中感生电流的大小和方向。 解:(1)通过正方形线框的磁通量为

??=?=Φa S Badx S d B 0ρρ?+=a dx x ak 0)1()2

1

1(2a k a +=

(2)当t k k 0=时,通过正方形线框的磁通量为

)2

1

1(02a t k a +

=Φ 正方形线框中感应电动势的大小为

dt d Φ=

ε)2

1

1(02a k a += 正方形线框线框中电流大小为

)2

11(02a R k a R I +==ε

,方向:顺时针方向

4.如图所示,一矩形线圈与载有电流t I I ωcos 0=长直导线共面。设线圈的长为b ,宽为a ;0=t 时,线圈的AD 边与长直导线重合;线圈以匀速度υρ

垂直离开导线。求任一时刻线圈中的感应电动势的大小。

解:建立图示坐标系,长直导线在右边产生的磁感应强度大小为

x

I B πμ20=

t 时刻通过线圈平面的磁通量为

???=ΦS S d B ρρbdx x I a t t ?+=υυπμ20t

a

t Ib υυπμ+=ln 20 t

a

t t b I υυωπμ+=

ln

cos 200 任一时刻线圈中的感应电动势为

]ln sin )(cos [200t

a

t t t a t t a b I dt d i υυωωυωπμε+++=Φ-

= 5.如图所示,在两平行载流的无限长直导线的平面内有一矩形线圈。两导线中的电流方向相反、大小相等,且电流以

t

I

d d 的变化率增大,求: (1)任一时刻线圈内所通过的磁通量; (2)线圈中的感应电动势。

解:(1) 任一时刻通过线圈平面的磁通量为 r l r

I

r l r

I

a

b b

a

d d

m d π2d π200?

?

++-=

Φμμ

)(d

a

d b a b Il

+-+=

ln ln π

20μ (2) 线圈中的感应电动势为

t

I

b a b d a d l t d d ln ln π2d d 0)(+-+=Φ-

=με 6. 如图所示,长直导线AB 中的电流I 沿导线向上,并以

12-?=s A dt

dI

的变化率均匀增长。导线附近放一个与之共面的直角三角形线框,其一边与导线平行,位置及线框尺寸如图所示。求此线框中产生的感应电动势的大小和方向。

解:建立图示的坐标系,在直角三角形线框上x 处取平行于y 轴的宽度为dx 、高度为y 的窄条。由几何关系得到 2.02+-=x y (SI)

I

A B

C

D

b a

υρ

t υ

O

x

通过此窄条的磁通量为

=?=ΦS d B d ρρydx x I

)(5.0020+πμdx x x I )

((5.002)

2.020++-=πμ

O

x

y

通过直角三角形线框的磁通量为

?Φ=Φd dx x x I

b

?

++-=0

)05

.02

.02(

μ

I b I Ib 8001059.205.005

.0ln 15.0-?=++-

=πμπμ (SI) 三角形线框中产生的感应电动势为

V dt

dI dt d 881018.51059.2--?-=?-=Φ-

=ε 感应电动势大小为8

5.1810V -? ,方向为逆时针方向。

7. 如图所示,长直导线通以电流I ,在其右方放一长方形线圈,两者共面.线圈长b ,

宽a ,线圈以速率υ垂直于直线平移远离。求:线圈离长直导线距离为d 时,线圈中感应电动势的大小和方向。

解:AB 、CD 运动速度υρ

方向与磁力线平行,不产生感应电动势。 DA 产生动生电动势为

?==??=A

D d

I b Bb l B πμυυυε2d )(01?

BC 产生电动势为

)

(π2d )(02d a I b

l B C

B

+-=??=?

μυυε?

回路中总感应电动势为

)11

(π2021a

d d Ib +-=

+=υμεεε 方向沿顺时针。

8. 如图所示,载有电流I 的长直导线附近,放一导体半圆环MeN 与长直导线共面,且端点MN 的连线与长直导线垂直。半圆环的半径为b ,环心O 与导线相距a 。设半圆环以速率υ平行导线平移。求半圆环内感应电动势的大小和方向及MN 两端的电压

N M U U -。

解:作辅助线MN ,则在MeNM 回路中,沿υρ

方向运动时0d =m Φ

∴ 0=MeNM ε

即 MN MeN εε= 又∵ ?

+-<+-=

=

b

a b

a MN b

a b

a I dl B 0ln 2cos 0πυμπυε 所以MeN ε沿NeM 方向,大小为

b

a b

a I -+ln

20πυμ M 点电势高于N 点电势,即

b

a b

a I U U N M -+=

-ln

20πυμ 9. 如图所示,一长直导线中通有电流I ,有一垂直于导线、长度为l 的金属棒AB

在包含导线的平面内,以恒定的速度υρ

沿与棒成θ角的方向移动。开始时,棒的A 端到导线的距离为a ,求任意时刻金属棒中的动生电动势,并指出棒哪端的电势高。

解:建立图示坐标系,电流I 在其右边产生的磁感应强度大小为

x

I

B πμ20=

方向:垂直纸面向里 在棒上取l d ρ

,dl 段上的动生电动势为

dl B l d B d )2

cos()(θπ

υυε+=??=ρρρ

dx x

I

θυπμsin 20-

= AB 上的感应电动势为

??+++-

==θυθυθυπμεεcos cos 0 sin 2 t l a t a B

A A

B x

dx I

d

θ

υθ

υθυμcos cos ln

sin 20t a t l a I

+++π

-

=

电动势的方向从B 指向A ,A 端电势高。

10. 导线ab 长为l ,绕过O 点的垂直轴以匀角速ω转动,aO =3

l

,磁感应强度B ρ平行

于转轴,如图所示。试求:

(1)ab 两端的电势差; (2)b a ,两端哪一点电势高? 解:(1)在Ob 上取dr r r +→一小段 则 ?

=

=

320

2

9

2d l Ob l B r rB ωωε 同理 ?

=

=

30

218

1

d l Oa l B r rB ωωε 故 226

1

)92181(l B l B Ob aO ab ωωεεε=+-

=+= I a

l

A

B

θ

v ?

O

x

(2)0>ab ε 即0<-b a U U ,故b 点电势高。

11. 在两根平行放置相距为a 2的无限长直导线之间,有一与其共面的矩形线圈,线圈边长分别为l 和b 2,且l 边与长直导线平行,两根长直导线中通有等值同向稳恒电流I ,线

圈以恒定速度υρ

垂直直导线向右运动,如图所示。求:线圈运动到两导线的中心位置(即线圈的中心线与两根导线距离均为a )时,线圈中的感应电动势。

解:

20

000

22

11()22(ln(2)ln ln(22)ln(2))21111

()

222222x b x I B dS ldr

r a r

Il

x b x x b a x a Ilv d d dx dt dx dt x b x x b a x a

Ilv b

x a b a b μφπμπ

μφφεπμεπ+=?=--=+-++---===-+-++--=-=-??r r

12. 如图所示,金属杆AOC 以恒定速度υ在均匀磁场B 中垂直于磁场方向向上运动,已知AO OC L ==,求杆中的动生电动势。

解:AO 段上产生的动生电动势为

?

??=O

A

AO l d B ρ

ρρ)(υε?=L dl B 0

cos πυL B υ-=

OC 段上产生的动生电动势为

???=C O

AO l d B ρρρ)(υε?-=L

dl B 0

)cos(θπυ

θυcos L B -=

杆中的动生电动势为

OC AO εεε+=)cos 1(θυ+-=L B

方向由C 到A ,A 点电势高。

13. 磁感应强度为B ?

的均匀磁场充满一半径为R 的圆柱形空间,一金属杆放在如图所

示位置,杆长为R 2,其中一半位于磁场内、另一半在磁场外。当t

B

d d >0时,求:杆两端的感应电动势的大小和方向。

解:CB AC AB εεε+=

t

B

R B R t t AC d d 43)43(d d d d 21=--=Φ-=ε =Φ-=t

CB

d d 2εt B

R B R t d d 12π)12π(d d 22=--

故 t

B R R AB

d d )12π43(22+=ε

0d d >t

B

故 0>AB ε(即ε从B A →)

14.一同轴电缆由两个同轴圆筒构成,内筒半径为1.00mm ,外筒半径为7.00mm ,求每米该同轴电缆的自感系数(两筒的厚度可忽略)。

解:设电流I 由内筒流出、外筒流回,由安培环路定理i

I r B l d B ?∑=?=?02μπρ

ρ得

内、外筒之间,

∑=I I i r

I

B πμ20=

内、外筒之间每米长度所通过的磁通量:

??=?=Φ71Bdr S d B S ρρ?=7102dr r I πμ7ln 20π

μI

=

每米同轴电缆的自感系数:7ln 20

π

μ=Φ=

I L 15. 一无限长的直导线和一正方形的线圈如图所示放置(导线与线圈接触处绝缘)。求:

线圈与导线间的互感系数。

解:设长直电流为I ,其磁场通过正方形线圈的互感磁通为

?

=

=323

00122ln π

2d π2a a Ia

r r

Ia

μμΦ

∴ 2ln π

2012

a

I

M μΦ=

=

16. 一无限长圆柱形直导线,其截面上电流均匀分布,总电流为I 。求:导线内部单位长度上所储存的磁能。

解:在R r

<时 2

0π2R

Ir

B μ=

∴ 4

222002

π82R

r I B w m μμ== 取 r r V d π2d =(∵导线长1=l ) 则 ?

?

=

==

R

R

m I R

r

r I r r w W 0

2

04

320π

16π4d d 2μμπ

17.什么叫位移电流?它与传导电流有何区别? 答:通过电场中某一截面的电通量对时间的变化率称为通过该截面的位移电流。位移电

流和传导电流是两个不同的物理概念,它们的区别表现在两个方面:

(1)传导电流是由运动电荷产生,而位移电流是由变化的电场所引起。通常情况下,导体中主要是传导电流,位移电流可以忽略。而在电介质中的电流主要是位移电流,传导电流忽略不计。

(2)传导电流在导体中传播时会产生焦耳热,位移电流可以脱离导体传播且不产生焦耳热。

18.证明充电时平行板中的位移电流dt

dU

C

I d =,C 为平行板电容器的电容,U 为两极板的电势差。

证明:设平行板电容器极板面积为S ,极板间距为d ,则

S d

U ES DS S D D εε===?=Φρρ

而电容:d

S

C ε=

所以,CU D =Φ

则dt

dU

C

dt d I D d =Φ= 19. 给电容为C 的平行板电容器充电,传导电流为t

e i -=2.0 ( SI ),0=t 时电容器极

板上无电荷。求:

(1) 极板间电压U 随时间t 而变化的关系式;

(2) t 时刻极板间总的位移电流d I (忽略边缘效应)。 解:(1)传导电流与极板上电量的关系:dt

dq

i =

,所以 ???

-==t

t t q

dt e idt dq 0

2.0

=q )e 1(2.0t --

极板间电压U 随时间t 而变化的关系式

)e 1(2.0t C C q U --==

(2)位移电流:dt

dU

C I d =t e -=2.0

(资料素材和资料部分来自网络,供参考。可复制、编制,期待你的好评与关注)

大学物理 马文蔚 第五版 下册 第九章到第十一章课后答案

第九章振动 9-1一个质点作简谐运动,振幅为A,在起始时刻质点的位移为,且向x 轴正方向运动,代表此简谐运动的旋转矢量为() 题9-1图 分析与解(b)图中旋转矢量的矢端在x轴上投影点的位移为-A/2,且投影点的运动方向指向Ox轴正向,即其速度的x分量大于零,故满足题意.因而正确答案为(b). 9-2已知某简谐运动的振动曲线如图(a)所示,则此简谐运动的运动方程为() 题9-2图 分析与解由振动曲线可知,初始时刻质点的位移为–A/2,且向x轴负方向运动.图(b)是其相应的旋转矢量图,由旋转矢量法可知初相位为.振动曲线上给出质点从–A/2 处运动到+A处所需时间为 1 s,由对应旋转矢量图可知相应的相位差,则角频率,故选(D).本题也可根据振动曲线所给信息,逐一代入方程来找出正确答案. 9-3两个同周期简谐运动曲线如图(a)所示, x1 的相位比x2 的相位() (A)落后(B)超前(C)落后(D)超前 分析与解由振动曲线图作出相应的旋转矢量图(b)即可得到答案为(b).

题9-3图 9-4当质点以频率ν作简谐运动时,它的动能的变化频率为() (A)(B)(C)(D) 分析与解质点作简谐运动的动能表式为,可见其周期为简谐运动周期的一半,则频率为简谐运动频率ν的两倍.因而正确答案为(C). 9-5图(a)中所画的是两个简谐运动的曲线,若这两个简谐运动可叠加,则合成的余弦振动的初相位为() (A)(B)(C)(D) 分析与解由振动曲线可以知道,这是两个同振动方向、同频率简谐运动,它们的相位差是(即反相位).运动方程分别为和 .它们的振幅不同.对于这样两个简谐运动,可用旋转矢量法, 如图(b)很方便求得合运动方程为.因而正确答案为(D). 题9-5图 9-6 有一个弹簧振子,振幅,周期,初相.试写出它的运动方程,并作出图、图和图.

大学物理实验课后习题答案

一牛顿环的各环是否等宽?密度是否均匀?解释原因? 因为环是由空气劈上下表面反射的两束光叠加干涉形成的。劈的上表面变化在横向是不均匀的,故光程差也不是均匀变化的。所以各环是不等宽的环的密度也不是均匀的。各环不等宽,半径小的环宽,越到外边越窄,密度是不均匀的,牛顿环的半径公式是:半径r等于根号下(m+1/2)λR,其中m为环的级数。从公式可以看出,半径和环数并不是线性关系,这样环自然不均匀。计算可以知道,越往外环越密。 二牛顿环的干涉圆环是由哪两束相干光干涉产生的? 半凸透镜下表面和下底面上表面的两束反射光 三电桥由哪几部分组成?电桥平衡的条件? 由电源、开关、检流计桥臂电阻组成。 平衡条件是Rx=(R1/R2)R3 四接通电源后,检流计指针始终向一边偏转,试分析出现这种情况的原因? 指针向一侧偏转就说明发生了电子的定向移动了,这个应该没问题。 指针不偏转,有2种情况吧,其1呢是整个电路发生了断路或其他故障,还1种情况则是流过的电流太小,不足于使电表发生偏转或其偏转的角度肉眼根本看不到。 无论如何调节,检流计指针都不动,电路中可能出现故障是调节臂电阻断路或短路。。无论如何调节,检流计指针始终像一边偏而无法平衡,电路中有可能出现故障是有一个臂(非调节臂)的电阻坏了。(断路或短路) 五什么叫铁磁材料的磁滞现象? 铁磁物质经外磁场磁化到饱和以后,把磁场去掉。这些物质仍保留有剩余磁化强度。需要反方向加磁场才能把这剩余磁化强度变为零。这种现象称为铁磁的磁滞现象。也是说,铁磁材料的磁状态,不仅要看它现在所处的磁场条件;而且还要看它过去的状态。 六如何判断铁磁材料属于软.硬材料? 软磁材料的特点是:磁导率大,矫顽力小,磁滞损耗小,磁滞回线呈长条状;硬磁材料的特点是:剩磁大,矫顽力也大 用光栅方程进行测量的条件是什么? 条件是一束平行光垂直射入光栅平面上,光波发生衍射,即可用光栅方程进行计算。如何实现:使用分光计,光线通过平行光管射入,当狭缝位于透镜的焦平面上时,就能使射在狭缝上的光经过透镜后成为平行光 用光栅方程进行测量,当狭缝太窄或者太宽会怎么样?为什么? 缝太窄,入射光的光强太弱,缝太宽,根据光的空间相干性可以知道,条纹的明暗对比度会下降! 区别是,太窄了,亮纹会越来越暗,暗纹不变,直到一片黑暗! 太宽,暗条纹会逐渐加强,明纹不变,直到一片光明!

大学物理课后题答案

习 题 四 4-1 质量为m =的弹丸,其出口速率为300s m ,设弹丸在枪筒中前进所受到的合力 9800400x F -=。开抢时,子弹在x =0处,试求枪筒的长度。 [解] 设枪筒长度为L ,由动能定理知 2022121mv mv A -= 其中??-==L L dx x Fdx A 00)9 8000400( 9 40004002 L L - = 而00=v , 所以有: 22 300002.05.09 4000400??=-L L 化简可得: m 45.00 813604002==+-L L L 即枪筒长度为。 4-2 在光滑的水平桌面上平放有如图所示的固定的半圆形屏障。质量为m 的滑块以初速度0v 沿切线方向进入屏障内,滑块与屏障间的摩擦系数为μ,试证明:当滑块从屏障的另一端滑出时,摩擦力所作的功为() 12 1220-= -πμe mv W [证明] 物体受力:屏障对它的压力N ,方向指向圆心,摩擦力f 方向与运动方向相反,大小为 N f μ= (1) 另外,在竖直方向上受重力和水平桌面的支撑力,二者互相平衡与运动无关。 由牛顿运动定律 切向 t ma f =- (2) 法向 R v m N 2 = (3) 联立上述三式解得 R v a 2 t μ-= 又 s v v t s s v t v a d d d d d d d d t === 所以 R v s v v 2 d d μ -= 即 s R v v d d μ-=

两边积分,且利用初始条件s =0时,0v v =得 0ln ln v s R v +- =μ 即 s R e v v μ -=0 由动能定理 2 022 121mv mv W -= ,当滑块从另一端滑出即R s π=时,摩擦力所做的功为 () 12 1212122020220-=-=--πμ πμ e mv mv e mv W R R 4-3 质量为m 的质点开始处于静止状态,在外力F 的作用下沿直线运动。已知 T t F F π2sin 0=,方向与直线平行。求:(1)在0到T 的时间内,力F 的冲量的大小;(2)在0到2T 时间内,力F 冲量的大小;(3)在0到2T 时间内,力F 所作的总功;(4)讨论质点的运动情况。 [解]由冲量的定义?=1 2 d t t t F I ,在直线情况下,求冲量I 的大小可用代数量的积分,即 ?= 1 2 d t t t F I (1) 从t =0到 t=T ,冲量的大小为: ?= =T t F I 01d ?-=T T T t T F t T t F 0 00]2cos [2d 2sin πππ=0 (2) 从t =0到 t =T /2,冲量的大小为 π πππ0000 0022 2 2]2cos [2d 2sin d TF T t T F t T t F t F I T T T =-=== ?? (3) 初速度00=v ,由冲量定理 0mv mv I -= 当 t =T /2时,质点的速度m TF m I v π0== 又由动能定理,力F 所作的功 m F T m F mT mv mv mv A 22022 22022 20222212121ππ===-= (4) 质点的加速度)/2sin()/(0T t m F a π=,在t =0到t =T /2时间内,a >0,质点 作初速度为零的加速运动,t =T /2时,a =0,速度达到最大;在t =T /2到t =T 时间内,a <0,但v >0,故质点作减速运动,t =T 时 a =0,速度达到最小,等于零;此后,质点又进行下一

《大学物理》第二版-课后习题标准答案-第九章

《大学物理》第二版-课后习题答案-第九章

————————————————————————————————作者:————————————————————————————————日期:

习题精解 9-1.在气垫导轨上质量为m 的物体由两个轻弹簧分别固定在气垫导轨的两端,如图9-1所示,试证明物体m 的左右运动为简谐振动,并求其振动周期。设弹簧的劲度系数为k 1和k 2. 解:取物体在平衡位置为坐标原点,则物体在任意位置时受的力为 12()F k k x =-+ 根据牛顿第二定律有 2122()d x F k k x ma m dt =-+== 化简得 212 20k k d x x dt m ++ = 令2 12k k m ω+=则22 20d x x dt ω+=所以物体做简谐振动,其周期 12 22m T k k π π ω = =+ 9-2 如图9.2所示在电场强度为E 的匀强电场中,放置一电偶极矩P=ql 的电偶极子,+q 和-q 相距l ,且l 不变。若有一外界扰动使这对电荷偏过一微小角度,扰动消息后,这对电荷会以垂直与电场并通过l 的中心点o 的直线为轴来回摆动。试证明这种摆动是近似的简谐振动,并求其振动周期。设电荷的质量皆为m ,重力忽略不计。 解 取逆时针的力矩方向为正方向,当电偶极子在如图9.2所示位置时,电偶极子所受力矩为 sin sin sin 22 l l M qE qE qEl θθθ=--=- 电偶极子对中心O 点的转动惯量为 2 2 21 222 l l J m m ml ????=+= ? ????? 由转动定律知 2221sin 2d M qEl J ml dt θθβ=-==? 化简得 222sin 0d qE dt ml θθ+= 当角度很小时有sin 0θ≈,若令2 2qE ml ω= ,则上式变为

大学物理课后练习习题答案详解.docx

第一章质点运动学 1、( 习题: 一质点在 xOy 平面内运动,运动函数为 x = 2t, y = 4 t 2 8 。( 1)求质点的轨道方程; ( 2)求 t = 1 s 和 t = 2 s 时质点的位置、速度和加速度。 解:( 1)由 x=2t 得, y=4t 2 -8 ( 2)质点的位置 : r r 由 v d r / dt 则速度: r r 由 a d v / d t 则加速度: 则当 t=1s 时,有 r r 可得: y=x 2-8 r 即轨道曲线 r r (4t 2 r 2ti 8) j r r r v 2i 8tj r r a 8 j r r r r r r r 2i 4 j , v 2i 8 j , a 8 j 当 t=2s 时,有 r r r r r r r r r 4i 8 j , v 2i 16j , a 8 j 2、(习题): 质点沿 x 在轴正向运动,加速度 a kv , k 为常数.设从原点出发时速度为 v 0 ,求运动方程 x x(t) . 解: dv kv v 1 t kdt v v 0 e kt dt dv v 0 v dx v 0e k t x dx t kt dt x v 0 (1 e kt ) dt v 0 e k 3、一质点沿 x 轴运动,其加速度为 a 4 t (SI) ,已知 t 0 时,质点位于 x 10 m 处,初速度 v 0 .试求其位置和时间的关系式. 解: a d v /d t 4 t d v 4 t d t v t 4t d t v 2 t 2 dv d x 2 x t 2 3 2 x t d t x 2 t v /d t t /3+10 (SI) x 0 4、一质量为 m 的小球在高度 h 处以初速度 v 0 水平抛出,求: ( 1)小球的运动方程; ( 2)小球在落地之前的轨迹方程; v v ( 3)落地前瞬时小球的 dr , dv , dv . dt dt dt 解:( 1) x v 0 t 式( 1) y 1 gt 2 式( 2) v v 1 2 v h r (t ) v 0t i (h - gt ) j 2 2 ( 2)联立式( 1)、式( 2)得 y h 2 gx 2 2v 0 v v v v v v ( 3) dr 2h dr v 0i - gt j 而落地所用时间t 所以 v 0i - 2gh j dt g dt v v dv g 2 t g 2gh dv v 2 2 2 ( gt ) 2 dt g j v x v y v 0 dt 2 2 1 2 ( gt ) ] 2 2gh) [v 0 ( v 0 1 2

大学物理实验课后答案

实验一霍尔效应及其应用 【预习思考题】 1.列出计算霍尔系数、载流子浓度n、电导率σ及迁移率μ的计算公式,并注明单位。 霍尔系数,载流子浓度,电导率,迁移率。 2.如已知霍尔样品的工作电流及磁感应强度B的方向,如何判断样品的导电类型? 以根据右手螺旋定则,从工作电流旋到磁感应强度B确定的方向为正向,若测得的霍尔电压为正,则样品为P型,反之则为N型。 3.本实验为什么要用3个换向开关? 为了在测量时消除一些霍尔效应的副效应的影响,需要在测量时改变工作电 流及磁感应强度B的方向,因此就需要2个换向开关;除了测量霍尔电压,还要测量A、C间的电位差,这是两个不同的测量位置,又需要1个换向开关。总之,一共需要3个换向开关。 【分析讨论题】 1.若磁感应强度B和霍尔器件平面不完全正交,按式(5.2-5)测出的霍尔系数比实际值大还是小?要准确测定值应怎样进行? 若磁感应强度B和霍尔器件平面不完全正交,则测出的霍尔系数比实际值偏小。要想准确测定,就需要保证磁感应强度B和霍尔器件平面完全正交,或者设法测量出磁感应强度B和霍尔器件平面的夹角。 2.若已知霍尔器件的性能参数,采用霍尔效应法测量一个未知磁场时,测量误差有哪些来源? 误差来源有:测量工作电流的电流表的测量误差,测量霍尔器件厚度d的长度测量仪器的测量误差,测量霍尔电压的电压表的测量误差,磁场方向与霍尔器件平面的夹角影响等。 实验二声速的测量 【预习思考题】 1. 如何调节和判断测量系统是否处于共振状态?为什么要在系统处于共振的条件下进行声速测定? 答:缓慢调节声速测试仪信号源面板上的“信号频率”旋钮,使交流毫伏表指针指示达到最大(或晶体管电压表的示值达到最大),此时系统处于共振状态,显示共振发生的信号指示灯亮,信号源面板上频率显示窗口显示共振频率。在进行声速测定时需要测定驻波波节的位置,当发射换能器S1处于共振状态时,发射的超声波能量最大。若在这样一个最佳状态移动S1至每一个波节处,媒质压缩形变最大,则产生的声压最大,接收换能器S2接收到的声压为最大,转变成电信号,晶体管电压表会显示出最大值。由数显表头读出每一个电压最大值时的位置,即对应的波节位置。因此在系统处于共振的条件下进行声速测定,可以容易和准确地测定波节的位置,提高测量的准确度。 2. 压电陶瓷超声换能器是怎样实现机械信号和电信号之间的相互转换的? 答:压电陶瓷超声换能器的重要组成部分是压电陶瓷环。压电陶瓷环由多晶结构的压电材料制成。这种材料在受到机械应力,发生机械形变时,会发生极化,同时在极化方向产生电场,这种特性称为压电效应。反之,如果在压电材料上加交

大学物理(第四版)课后习题及答案 质点

题1.1:已知质点沿x 轴作直线运动,其运动方程为3322)s m 2()s m 6(m 2t t x --?-?+= 。求(l )质点在运动开始后s 0.4内位移的大小;(2)质点在该时间内所通过的路程。 题1.1解:(1)质点在4.0 s 内位移的大小 m 3204-=-=?x x x (2)由 0)s m 6()s m 12(d d 232=?-?=--t t t x 得知质点的换向时刻为 s2=P t (t = 0不合题意) 则:m 0.8021=-=?x x x m 40x 242-=-=?x x 所以,质点在4.0 s 时间间隔内的路程为 m 4821=?+?=x x s 题1.2:一质点沿x 轴方向作直线运动,其速度与时间的关系如图所示。设0=t 时,0=x 。试根据已知的图t v -,画出t a -图以及t x -图。 题1.2解:将曲线分为AB 、BC 、CD 三个过程,它们对应的加速度值分别为 2A B A B AB s m 20-?=--=t t v v a (匀加速直线运动) 0BC =a (匀速直线) 2C D C D CD s m 10-?-=--= t t v v a (匀减速直线运动) 根据上述结果即可作出质点的a -t 图 在匀变速直线运动中,有 2002 1at t v x x + += 间内,质点是作v = 201s m -?的匀速直线运动,其x -t 图是斜率k = 20的一段直线。 题1.3:如图所示,湖中有一小船。岸上有人用绳跨过定滑轮拉船靠岸。设滑轮距水面高度为h ,滑轮到原船位置的绳长为0l ,试求:当人以匀速v 拉绳,船运动的速度v '为多少?

上海交大版大学物理第九章参考答案

版权归原著所有 本答案仅供参考 习题9 9-1.在容积3V L =的容器中盛有理想气体,气体密度为ρ=L 。容器与大气相通排出一部分气体后,气压下降了。若温度不变,求排出气体的质量。 解:根据题意,可知: 1.78P atm =,01P atm =,3V L =。 由于温度不变,∴00PV PV =,有:00 1.783PV V L P = =?, 那么,逃出的气体在1atm 下体积为:' 1.78330.78V L L L =?-=, 这部分气体在1.78atm 下体积为:''V = 0'0.7831.78 PV L P ?= 则排除的气体的质量为:0.783'' 1.3 1.71.78 g L m V g L ρ??==?= 。 根据题意pV RT ν=,可得:m pV RT M = ,1V p RT p M m ρ== 9-2.有一截面均匀的封闭圆筒,中间被一光滑的活塞分割成两边。如果其中的一边装有某一温度的氢气,为了使活塞停留在圆筒的正中央,则另一边装入的同一温度的氧气质量为多少 解:平衡时,两边氢、氧气体的压强、体积、温度相同,利用pV RT ν=,知两气体摩尔数相同,即:H O νν=,∴ O H H O m m M M =,代入数据有: 1.6O m kg = 。 9-3.如图所示,两容器的体积相同,装有相同质量的氮气和氧气。用一内壁光滑的水平细玻璃管相通,管的正中间有一小滴水银。要保持水银滴在管的正中间,并维持氧气温度比氮气温度高30o C ,则氮气的温度应是多少

解:已知氮气和氧气质量相同,水银滴停留在管的正中央, 则体积和压强相同,如图。 由:mol m pV RT M =,有: 2222 (30)O N O N m m R T RT M M +=, 而:20.032O M kg =,20.028N M kg =,可得:3028 2103028 T K ?= =+ 。 9-4.高压氧瓶:7 1.310p Pa =?,30V L =,每天用51 1.010p Pa =?, 1400V L =,为保证瓶内6' 1.010p Pa ≥?,能用几天 解:由''pV p V =,可得:761.31030'390' 1.010pV Pa L V L p Pa ??===?, ∴'360V V V L ?=-=; 而:11'p V p V ?=?,有:615' 1.010********.010p V Pa L V L p Pa ????===?, 那么:能用的天数为36009400/L n L = =天 天 。 9-5.如图,长金属管下端封闭,上端开口,置于压强为0p 的大气中。在封闭端加热达11000T K =,另一端保持2200T K =,设温度沿管长均匀变化。现封闭开口端,并使管子冷却到100K ,求管内压强。 解:根据题意,管子一端11000T K =,另一端保持2200T K =, 所以,温度沿管长线性分布,设管长为l ,函数关系为: ()200T x kx =+,其中:l k 800 = 。 2 N 2 O

大学物理实验课后答案

(1)利用f=(D+d)(D-d)/4D 测量凸透镜焦距有什么优点? 答这种方法可以避免透镜光心位置得不确定而带来得测量物距与像距得误差。 (2)为什么在本实验中利用1/u+1/v=1/f 测焦距时,测量u与v都用毫米刻度得米尺就可以满足要求?设透镜由于色差与非近轴光线引起得误差就是1%。 答设物距为20cm,毫米刻度尺带来得最大误差为0、5mm,其相对误差为 0、25%,故没必要用更高精度得仪器。 (3)如果测得多组u,v值,然后以u+v为纵轴,以uv为横轴,作出实验得曲线属于什么类型,如何利用曲线求出透镜得焦距f。 答直线;1/f为直线得斜率。 (4)试证:在位移法中,为什么物屏与像屏得间距D要略大于4f? 由f=(D+d)(D-d)/4D →D2-4Df=d2→D(D-4f)=d2 因为d>0 and D>0 故 D>4f 1、避免测量u、ν得值时,难于找准透镜光心位置所造成得误差。 2、因为实验中,侧得值u、ν、f都相对较大,为十几厘米到几十厘米左右,而误差为1%,即一毫米到几毫米之间,所以可以满足要求。 3、曲线为曲线型曲线。透镜得焦距为基斜率得倒数。 ①当缝宽增加一倍时,衍射光样得光强与条纹宽度将会怎样变化?如缝宽减半,又怎样改变? 答: a增大一倍时, 光强度↑;由a=Lλ/b ,b减小一半 a减小一半时, 光强度↓;由a=Lλ/b ,b增大一倍。 ②激光输出得光强如有变动,对单缝衍射图象与光强分布曲线有无影响?有何影响? 答:由b=Lλ/a、无论光强如何变化,只要缝宽不变,L不变,则衍射图象得光强分布曲线不变(条纹间距b不变);整体光强度↑或者↓。

③用实验中所应用得方法就是否可测量细丝直径?其原理与方法如何? 答:可以,原理与方法与测单狭缝同。 ④本实验中,λ=632。8nm ,缝宽约为5*10^-3㎝,屏距L 为50㎝。试验证: 就是否满足夫朗与费衍射条件? 答:依题意: L λ=(50*10^-2)*(632、8*10^-9)=3、164*10^-7 a^2/8=(5*10^-5)^2/8=3、1*10^-10 所以L λ<20θ,(10θ人为控制在mv )03.050.3(±); 2)测量散热板在20θ附近得冷却速率。 4、试述稳态法测不良导体导热系数得基本原理。

大学物理课后习题答案(全册)

《大学物理学》课后习题参考答案 习 题1 1-1. 已知质点位矢随时间变化的函数形式为 )ωt sin ωt (cos j i +=R r 其中ω为常量.求:(1)质点的轨道;(2)速度和速率。 解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω= 消去t 可得轨道方程 222R y x =+ 2) j r v t Rcos sin ωωt ωR ωdt d +-== i R ωt ωR ωt ωR ωv =+-=2 122 ])cos ()sin [( 1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求: (1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。 解:1)由j i r )t 23(t 42++=可知 2t 4x = t 23y += 消去t 得轨道方程为:2)3y (x -= 2)j i r v 2t 8dt d +== j i j i v r 24)dt 2t 8(dt 1 1 +=+==??Δ 3) j v 2(0)= j i v 28(1)+= 1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单

位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。 解:1)j i r v 2t 2dt d +== i v a 2dt d == 2)21 22 12)1t (2] 4)t 2[(v +=+= 1 t t 2dt dv a 2 t +== n a == 1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。 解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为 2012 1 at t v y += (1) 图 1-4 2022 1 gt t v h y -+= (2) 21y y = (3) 解之 t = 1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,t v d d . 解:(1) t v x 0= 式(1) 2gt 2 1 h y -= 式(2) j i r )gt 2 1 -h (t v (t)20+= (2)联立式(1)、式(2)得 2 02 v 2gx h y -= (3) j i r gt -v t d d 0= 而 落地所用时间 g h 2t =

大学物理第九章振动学基础习题答案

第九章 振动学习题 9-1 一小球与轻弹簧组成的振动系统,按(m) 3ππ8cos 05.0??? ? ?+=t x ,的规律做自由振动,试求(1)振动的角频率、周期、振幅、初相、速度最大值和加速度最大值;(2)t=1s ,2s ,10s 等时刻的相位;(3)分别画出位移、速度和加速度随时间变化的关系曲线。 解:(1)ω=8πs -1,T=2π/ω=0.25s ,A=0.05m ,?0=π/3,m A ω=v ,2m a A ω= (2)π=8π3 t φ+ (3)略 9-2 一远洋货轮质量为m ,浮在水面时其水平截面积为S 。设在水面附近货轮的水平截面积近似相等,水的密度为ρ,且不计水的粘滞阻力。(1)证明货轮在水中做振幅较小的竖直自由运动是谐振动;(2)求振动周期。 解:(1)船处于静止状态时gSh mg ρ=,船振动的一瞬间()F gS h y mg ρ=-++ 得F gSy ρ=-,令k gS ρ=,即F ky =-,货轮竖直自由运动是谐振动。 (2 )ω== 2π2T ω==9-3 设地球是一个密度为ρ在隧道内做无摩擦运动。(1)证明此质点的运动是谐振动;(2)计算其振动周期。 解:以球心为原点建立坐标轴Ox 。质点距球心x 时所受力为 324433 x m F G G mx x πρπρ=-=- 令43 k G m πρ=,则有F kx =-,即质点做谐振动。 (2 )ω== 2πT ω== 9-4 A =2.0 ×10-2 m ,周期T =0.50s 。当t =0时,(1)物体在正方向端点;(2)物体在平衡位置,向负方向运动;(3)物体在x =1.0×10-2m 处,向负方向运动;(4)物体在x =-1.0×10-2 m 处,向正方向运动。求以上各种情况的振动方程。 解:ω=2π/T=4πs -1 (1)?0=0,0.02cos4(m)x t π= (2)?0=π/2,0.02cos 4(m)2x t ππ??=+ ?? ? (3)?0=π/3,0.02cos 4(m)3x t ππ??=+ ?? ? (4)?0=4π/3,40.02cos 4(m)3x t ππ??=+ ??? 9-5 有一弹簧,当其下端挂一质量为m 的物体时,伸长量为9.8 ×10-2 m 。若使物

大学物理课后习题答案详解

第一章质点运动学 1、(习题1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时速 度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -?? =0 00 )1(0 t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2g h d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理课后习题标准答案第六章

大学物理课后习题答案第六章

————————————————————————————————作者:————————————————————————————————日期:

第6章 真空中的静电场 习题及答案 1. 电荷为q +和q 2-的两个点电荷分别置于1=x m 和1-=x m 处。一试验电荷置于x 轴上何处,它受到的合力等于零? 解:根据两个点电荷对试验电荷的库仑力的大小及方向可以断定,只有试验电荷0q 位于点电荷q +的右侧,它受到的合力才可能为0,所以 2 00 200)1(π4)1(π42-=+x qq x qq εε 故 223+=x 2. 电量都是q 的三个点电荷,分别放在正三角形的三个顶点。试问:(1)在这三角形的中心放一个什么样的电荷,就可以使这四个电荷都达到平衡(即每个电荷受其他三个电荷的库仑力之和都为零)?(2)这种平衡与三角形的边长有无关系? 解:(1) 以A 处点电荷为研究对象,由力平衡知,q '为负电荷,所以 2 220)3 3(π4130cos π412a q q a q '=?εε 故 q q 3 3- =' (2)与三角形边长无关。 3. 如图所示,半径为R 、电荷线密度为1λ的一个均匀带电圆环,在其轴线上放一长为 l 、电荷线密度为2λ的均匀带电直线段,该线段的一端处于圆环中心处。求该直线段受到的 电场力。 解:先求均匀带电圆环在其轴线上产生的场强。在带电圆环上取dl dq 1λ=,dq 在带电圆环轴线上x 处产生的场强大小为 ) (4220R x dq dE += πε 根据电荷分布的对称性知,0==z y E E 2 3220)(41 cos R x xdq dE dE x += =πεθ R O λ1 λ2 l x y z

大学物理课后习题答案详解

第一章质点运动学 1、(习题 1.1):一质点在xOy 平面内运动,运动函数为2 x =2t,y =4t 8-。(1)求质点的轨道方程;(2)求t =1 s t =2 s 和时质点的位置、速度和加速度。 解:(1)由x=2t 得, y=4t 2-8 可得: y=x 2 -8 即轨道曲线 (2)质点的位置 : 2 2(48)r ti t j =+- 由d /d v r t =则速度: 28v i tj =+ 由d /d a v t =则加速度: 8a j = 则当t=1s 时,有 24,28,8r i j v i j a j =-=+= 当t=2s 时,有 48,216,8r i j v i j a j =+=+= 2、(习题1.2): 质点沿x 在轴正向运动,加速度kv a -=,k 为常数.设从原点出发时 速度为0v ,求运动方程)(t x x =. 解: kv dt dv -= ??-=t v v kdt dv v 001 t k e v v -=0 t k e v dt dx -=0 dt e v dx t k t x -??=000 )1(0t k e k v x --= 3、一质点沿x 轴运动,其加速度为a = 4t (SI),已知t = 0时,质点位于x 0=10 m 处,初速 度v 0 = 0.试求其位置和时间的关系式. 解: =a d v /d t 4=t d v 4=t d t ? ?=v v 0 d 4d t t t v 2=t 2 v d =x /d t 2=t 2 t t x t x x d 2d 0 20 ?? = x 2= t 3 /3+10 (SI) 4、一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程; (2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的 d d r t ,d d v t ,t v d d . 解:(1) t v x 0= 式(1) 2gt 21h y -= 式(2) 201 ()(h -)2 r t v t i gt j =+ (2)联立式(1)、式(2)得 2 2 v 2gx h y -= (3) 0d -gt d r v i j t = 而落地所用时间 g h 2t = 所以 0d -2gh d r v i j t = d d v g j t =- 2 202y 2x )gt (v v v v -+=+= 21 20 212202)2(2])([gh v gh g gt v t g dt dv +=+=

大学物理实验课后答案

大学物理实验课后答案 Final revision by standardization team on December 10, 2020.

(1)利用f=(D+d)(D-d)/4D 测量凸透镜焦距有什么优点 答这种方法可以避免透镜光心位置的不确定而带来的测量物距和像距的误差。(2)为什么在本实验中利用1/u+1/v=1/f 测焦距时,测量u和v都用毫米刻度的米尺就可以满足要求设透镜由于色差和非近轴光线引起的误差是1%。 答设物距为20cm,毫米刻度尺带来的最大误差为,其相对误差为%,故没必要用更高精度的仪器。 (3)如果测得多组u,v值,然后以u+v为纵轴,以uv为横轴,作出实验的曲线属于什么类型,如何利用曲线求出透镜的焦距f。 答直线;1/f为直线的斜率。 (4)试证:在位移法中,为什么物屏与像屏的间距D要略大于4f 由f=(D+d)(D-d)/4D → D2-4Df=d2→ D(D-4f)=d2 因为d>0 and D>0 故D>4f 1.避免测量u、ν的值时,难于找准透镜光心位置所造成的误差。 2.因为实验中,侧的值u、ν、f都相对较大,为十几厘米到几十厘米左右,而误差为1%,即一毫米到几毫米之间,所以可以满足要求。 3.曲线为曲线型曲线。透镜的焦距为基斜率的倒数。 ①当缝宽增加一倍时,衍射光样的光强和条纹宽度将会怎样变化如缝宽减半,又怎样改变 答: a增大一倍时, 光强度↑;由a=Lλ/b ,b减小一半 a减小一半时, 光强度↓;由a=Lλ/b ,b增大一倍。 ②激光输出的光强如有变动,对单缝衍射图象和光强分布曲线有无影响有何影响 答:由b=Lλ/a.无论光强如何变化,只要缝宽不变,L不变,则衍射图象的光强分布曲线不变 (条纹间距b不变);整体光强度↑或者↓。 ③用实验中所应用的方法是否可测量细丝直径其原理和方法如何 答:可以,原理和方法与测单狭缝同。 ④本实验中,λ=632。8nm,缝宽约为5*10^-3㎝,屏距L为50㎝。试验证: 是否满足夫朗和费衍射条件 答:依题意: Lλ=(50*10^-2)*(*10^-9)=*10^-7 a^2/8=(5*10^-5)^2/8=*10^-10 所以Lλ<

大学物理(上)课后习题标准答案

大学物理(上)课后习题答案

————————————————————————————————作者:————————————————————————————————日期: 2

3 第1章 质点运动学 P21 1.8 一质点在xOy 平面上运动,运动方程为:x =3t +5, y = 2 1t 2 +3t -4. 式中t 以 s 计,x ,y 以m 计。⑴以时间t 为变量,写出质点位置矢量的表示式;⑵求出t =1 s 时刻和t =2s 时刻的位置矢量,计算这1秒内质点的位移;⑶ 计算t =0 s 时刻到t =4s 时刻内的平均速度;⑷求出质点速度矢量表示式,计算t =4 s 时质点的速度;(5)计算t =0s 到t =4s 内质点的平均加速度;(6)求出质点加速度矢量的表示式,计算t =4s 时质点的加速度(请把位置矢量、位移、平均速度、瞬时速度、平均加速度、瞬时加速度都表示成直角坐标系中的矢量式)。 解:(1)j t t i t r )432 1()53(2 m ⑵ 1 t s,2 t s 时,j i r 5.081 m ;2114r i j v v v m ∴ 213 4.5r r r i j v v v v v m ⑶0t s 时,054r i j v v v ;4t s 时,41716r i j v v v ∴ 140122035m s 404r r r i j i j t v v v v v v v v v ⑷ 1 d 3(3)m s d r i t j t v v v v v ,则:437i j v v v v 1s m (5) 0t s 时,033i j v v v v ;4t s 时,437i j v v v v 24041 m s 44 j a j t v v v v v v v v v (6) 2d 1 m s d a j t v v v v 这说明该点只有y 方向的加速度,且为恒量。 1.9 质点沿x 轴运动,其加速度和位置的关系为2 26a x ,a 的单位为m/s 2, x 的单位为m 。质点在x =0处,速度为10m/s,试求质点在任何坐标处的速度值。 解:由d d d d d d d d x a t x t x v v v v 得:2 d d (26)d a x x x v v 两边积分 210 d (26)d x x x v v v 得:2322250x x v ∴ 31225 m s x x v 1.11 一质点沿半径为1 m 的圆周运动,运动方程为 =2+33t ,式中 以弧度计,t 以秒计,求:⑴ t =2 s 时,质点的切向和法向加速度;⑵当加速度 的方向和半径成45°角时,其角位移是多少? 解: t t t t 18d d ,9d d 2 ⑴ s 2 t 时,2 s m 362181 R a 2 222s m 1296)29(1 R a n ⑵ 当加速度方向与半径成ο45角时,有:tan 451n a a 即: R R 2 ,亦即t t 18)9(2 2 ,解得:9 2 3 t 则角位移为:32 2323 2.67rad 9 t 1.13 一质点在半径为0.4m 的圆形轨道上自静止开始作匀角加速度转动,其角加速度为 =0.2 rad/s 2,求t =2s 时边缘上各点的速度、法向加速度、切向加速度和合加速度。 解:s 2 t 时,4.02 2.0 t 1s rad 则0.40.40.16R v 1s m 064.0)4.0(4.022 R a n 2 s m 0.40.20.08a R 2 s m 22222s m 102.0)08.0()064.0( a a a n 与切向夹角arctan()0.0640.0843n a a

大学物理实验习题参考答案

习 题(参考答案) 2.指出下列测量值为几位有效数字,哪些数字是可疑数字,并计算相对不确定度。 (1) g =(9.794±0.003)m ·s 2 - 答:四位有效数字,最后一位“4”是可疑数字,%031.0%100794 .9003 .0≈?= gr U ; (2) e =(1.61210±0.00007)?10 19 - C 答:六位有效数字,最后一位“0”是可疑数字,%0043.0%10061210 .100007 .0≈?= er U ; (3) m =(9.10091±0.00004) ?10 31 -kg 答:六位有效数字,最后一位“1”是可疑数字,%00044.0%10010091 .900004 .0≈?= mr U ; (4) C =(2.9979245±0.0000003)8 10?m/s 答:八位有效数字,最后一位“5”是可疑数字 1.仪器误差为0.005mm 的螺旋测微计测量一根直径为D 的钢丝,直径的10次测量值如下表: 试计算直径的平均值、不确定度(用D 表示)和相对不确定度(用Dr 表示),并用标准形式表示测量结果。 解: 平均值 mm D D i i 054.210110 1 ==∑=

标准偏差: mm D D i i D 0029.01 10)(10 1 2 ≈--= ∑=σ 算术平均误差: m m D D i i D 0024.010 10 1 ≈-= ∑=δ 不确定度A 类分量mm U D A 0029.0==σ, 不确定度B 类分量mm U B 005.0=?=仪 ∴ 不确定度mm U U U B A D 006.0005.00029.0222 2≈+=+= 相对不确定度%29.0%100054 .2006 .0%100≈?=?= D U U D Dr 钢丝的直径为:%29.0)006.0054.2(=±=Dr D mm D 或 不确定度A 类分量mm U D A 0024.0==δ , 不确定度B 类分量mm U B 005.0=?=仪 ∴ 不确定度mm U U U B A D 006.0005.00024.0222 2≈+=+= 相对不确定度%29.0%100054 .2006 .0%100≈?=?= D U U D Dr 钢丝的直径为: %29.0)006.0054.2(=±=Dr D mm D ,%00001.0%1009979245 .20000003 .0≈?= Cr U 。 3.正确写出下列表达式 (1)km km L 310)1.01.3()1003073(?±=±= (2)kg kg M 4 10)01.064.5()13056430(?±=±= (3)kg kg M 4 10)03.032.6()0000030.00006320.0(-?±=±= (4)s m s m V /)008.0874.9(/)00834 .0873657.9(±=±= 4.试求下列间接测量值的不确定度和相对不确定度,并把答案写成标准形式。

相关主题