搜档网
当前位置:搜档网 › 无线温度参数设置

无线温度参数设置

无线温度参数设置

参数设置及数据协议解析

无线温度采集系统中接收器作为最终的数据接收终端,在数据与电脑或外部设备数据交换中起到了过度作用,一般接收到数据后传给电脑或者传个,然后处理器对数据做存储管理和处理。而与电脑或者数据交换的接口一般是\\。所以,为了方便用户使用,我们的无线采集接收器也同样提供\\三种形式。以下将一一介绍。PLC PLC RS232RS485USB RS232RS485USB 维恩科技 Rfinchina

RS -485

无线接收器简介

第一页

参数设置软件简介

第二页

参数设置流程

第三页

参数设置及数据协议解析

WWW .RFINCHINA .COM

WWW .RFINCHINA .

COM

指令型数据包格式

优点:RS485接口在工程中比RS232更实用

标准RS485接口接收器,结构合力外观大气

配吸盘天线效果图

有效数据包格式

第五页

第六页

通过以上数据格式和指令,用户结合具体案例情况自行设计上位机软件,

注意:温度值、温度下限、温度上限均是有符号数,以二进制补码形式构成,其他数据格式均为无符号数,。若用户已了解二进制补码计算过程,则可忽略以下计算示例或直接使用我们提供C程序代码即可。下述如无特殊说明,以0b开头数字为2进制表达形式,以0x开头数字为16进制表达形式。例1: 若温度值1(TMP1)为0xFF,温度值0(TMP0) 为0x83,温度换算步骤如下:

a) 则温度值 U_TMP = 0xFF83,即0b1111 1111 1000 0011,其最高位即位15为1则按序执行b)

b) 将U_TMP的16位数据按位取反后得,N_TMP = ~U_TMP = ~0xFF83 = 0x007C,即0b0000 0000 0111 1100c) 将N_TMP +1,即 N_TMP = N_TMP +1 = 0x007C + 0x0001 = 0x007D = 125(十进制)d) 由U_TMP可知,其最高位即位15为1,则温度为负值,即S_TMP = N_TMP = 125(十进制)e) 将S_TMP / 10,即S_TMP = S_TMP / 10 = 125 / 10 = 12.5 ℃例2: 若温度值1(TMP1)为0x0D,温度值0(TMP0) 为0x0C

a) 则温度值 U_TMP = 0x0D0C,即0b0000 1101 0000 1100,其最高位即位15为0则跳转执行d)b) 空c) 空

d) 由U_TMP可知,其最高位即位15为0,则温度为正值,即S_TMP = U_TMP = 0x0D0C = 3340(十进制)e) 将S_TMP / 10,即S_TMP = S_TMP / 10 = 3340 / 10 = 334.0 ℃

温度值、温度下限、温度上限,三者运算原理一致,故不赘述。由上述两例可总结得出C程序算法(仅参考):算法1:(熟悉单片机等微处理器开发人员容易接受此算法,但此算法效率低)

unsigned char tmp1 = 0xFC;Unsigned char tmp0 = 0xEB;

unsigned short u_tmp = (tmp1<<8) + 0xEB;signed short s_tmp;if(u_tmp & 0x8000)

s_tmp = - (~u_tmp+1) ; //负值Else

s_tmp = u_tmp; //正值

算法2:(精通C语言的开发人员更容易接受此算法,且此算法运算效率高)

unsigned char tmp1 = 0xFC;unsigned char tmp0 = 0xEB;

unsigned short u_tmp = (tmp1<<8) + 0xEB;signed short s_tmp = (signed short) u_tmp;s_tmp = s_tmp / 10;

反馈型数据包格式型号:RX01L39-485BZ

模块尺寸:长:100mm 宽:70mm 高度:24mm 两侧带固定翼状态指示:

绿色指示灯为电源指示灯(常亮),

红色指示灯为信号指示灯(当发送或接收完一次数据时亮,无数据收发时为灭)数据接口:RS485(从左至右)

天线接口:

默认配备可弯折天线,也可选配带延长线的吸盘天线便于工程安装数据协议:8-N-1 默认波特率38400

反馈值数据包格式

为了便于数据管理开发,我们开放通讯协议,以下描述数据类型和格式,对与想直接使用的用户,直接使用即可,具体细节欢迎交流.

我们主要推出无线温、湿度采集器主要有三种外形结构,以下对对应的设置开关和电源开关做出说明

表带型(如上中图):SET为设置开关(拨到左方为设置模式,拨到右方为采集模式),POWER为电源开关(拨到左方为开启,拨到右方为关闭)密封型(如上右图):打开外壳为SET设置开关(拨到->方向为设置模式),POWER为电源开关(拨到->方向为开启电源)

采集器设置(从机配置)步骤

1.关闭采集器电源,设置开关调整到参数设置模式然后上电,此时指示灯为长亮,表示已经进入设置模式

2.接收端串口与电脑相连,然后打开电源,然后打开设置软件,点读取可以读取才采集器的信息,注意软件最下方会显示状态信息。

3.如果要设置修改参数,先选择参数,然后点<写入配置>,注意设置软件下方会有状态提示信息,如果想验证可以再读取信息来比对

4.关闭采集器电源,设置开关调整到正常收发模式,,然后上电,即可按新的参数进行采集了,每次发送时指示灯会闪烁一次

中继器设置(如上左图)步骤

1.需要开关设置,上方为设置开关(拨到下方为设置模式,拨到上方为采集模式),下方为电源开关(拨到下方为开启,拨到上方为关闭)

2.接收端串口与电脑相连,然后上电,然后打开设置软件,第一次不要先点读取参数

3.如果要设置修改参数,先选择参数后点<写入配置>,注意设置软件下方会有提示信息,如果想验证可以再读取信息来比对

4.重启接收器就有效

备注:接收器的组编号、频率一定要跟该组的采集器的组编号一致。

基于单片机的无线温度采集系统的设计

图书分类号: 密级: 毕业设计(论文) 基于单片机的无线温度采集系统的设计DESIGN OF THE WIRELESS TEMPERATURE COLLECTION SYSTEM BASED ON MCU 学生姓名 班级 学号 学院名称 专业名称 指导教师 2009年5月8日

徐州工程学院学位论文原创性声明 本人郑重声明:所呈交的学位论文,是本人在导师的指导下,独立进行研究工作所取得的成果。除文中已经注明引用或参考的内容外,本论文不含任何其他个人或集体已经发表或撰写过的作品或成果。对本文的研究做出重要贡献的个人和集体,均已在文中以明确方式标注。 本人完全意识到本声明的法律结果由本人承担。 论文作者签名:日期:年月日 徐州工程学院学位论文版权协议书 本人完全了解徐州工程学院关于收集、保存、使用学位论文的规定,即:本校学生在学习期间所完成的学位论文的知识产权归徐州工程学院所拥有。徐州工程学院有权保留并向国家有关部门或机构送交学位论文的纸本复印件和电子文档拷贝,允许论文被查阅和借阅。徐州工程学院可以公布学位论文的全部或部分内容,可以将本学位论文的全部或部分内容提交至各类数据库进行发布和检索,可以采用影印、缩印或扫描等复制手段保存和汇编本学位论文。 论文作者签名:导师签名: 日期:年月日日期:年月日

摘要 随着信息领域各种技术的发展,在数据采集方面的技术也取得了长足的进步,采集数据的信息化是目前社会的发展主流方向。各种领域都用到了数据采集,在石油勘探、地震数据采集领域已经得到应用。 本课题提出一种基于单片机的无线温度采集系统方案,该方案是利用单片机控制DS18B20温度传感器采集温度、控制LED数码管实时显示温度值、控制NFR240L1进行数据的无线传输,并由单片机去把温度数据传至计算机进行存储。本系统中所用到的器件是STC 公司的STC89C52 单片机、数字温度传感器DS18B20和无线芯片NFR24L01,测量结果用七段段LED数码管显示采集的数字信息,并利用单片机串行口,通过RS-232 总线及通信协议将采集的数据传送到PC 机,进行进一步的存档、处理,并对测量结果进行显示和存储。 关键词单片机;温度采集;NFR24L01;数据传输;串口通信;

无线测温系统硬件

无线测温系统硬件 需求规格说明书 1 引言 1.1 项目背景 电力设备无线测温在线监测系统主要包括开关柜内母排接头测温、站内输电线路和电缆接头测温,将监测点的接头温度实时上报到变电站后台或远程主站系统进行显示、存储和越上下限预报警处理。当现场的接头接头温度越限和温升过快时,系统会立即主动上报紧急告警信息到站内后台或远程主站系统,由软件系统给出报警并同步向相关责任人发送短信,通知运行值班人员处理。 1.2 文档约定 文档编写风格一致,文档交流采用规范管理,有重要提示或需要特别注意的地方要用红色字体标注以方便阅读,起到提示的作用,所有涉及到开发进行中的变更必须通过文件正式通知,并由开发人员评估变更的可行性,项目需求分析结束后及表示项目设计开始,后续将产生费用,将履行合同和相关协议文档的签署,所签署的文档双方同时保留。 第2 页 2. 综合描述 2.1 主要功能 传感器端主要功能罗列: 1、实时采集变电站内各点的温度值; 2、温度值监测准确,不应有误报或拒报数据的现象;

3、采集的数据通过无线(433MHz 无线模块)发送给接收器端; 4、传感器端采取高能锂电池供电,运行稳定可靠; 5、每个传感器具有唯一的ID号,相互间不会产生干扰,不受高压电磁场干扰,可以将数据准确的发送出来; 6、体积小,重量轻,安装方便,外壳是耐高温缘缘材料,并由绝缘材料密封;(按我公司提供的现有壳体来做) 7、具有软件看门狗技术,不死机,; 8、采用了优化的微功耗工作模式,可以确保设备工作3年以上; 9、无线数据传输200米以上(视距) 接收器端主要功能罗列: 1、RS485数据传输接口,提供面向连接的服务,用于传输接收器 端的数据到PC,同时接收PC 发来的数据进行处理和转发;(附带RS485转433MHZ微波信号、RJ45接口、GPRS信号接口转换器) 2、大液晶显示器,面板上有翻屏按钮和设置按钮,可翻屏查看各 测点温度及电流值以及人工设置485地址等; 3、通过433MHz 无线模块与传感器端设备进行通信,构成星型网络,单个网络容量240 个传感器设备; 4、两路继电器输出,每路提供常开/常闭输出,即可远程控制,也可设置两路超限报警控制两路继电器输出,用于外接报警器或其它设备; 5、一路运行指示灯设备正常工作时周期性闪烁; 6、一路数据收发指示灯,当有数据收发时闪烁; 7、两路继电器状态指示灯,指示继电器当前的状态; 8、设备地址可以远程及本地设置; 9、蜂鸣器报警 10、220V电源供电,带12V电源输出接口 第3 页 3. 接收器外部接口需求 3.1 用户界面

一种无线温湿度检测装置的设计与实现

《自动化技术与应用》2010年第29卷第8期 Techniques of Automation & Applications | 103 经验交流 Technical Communications 一种无线温湿度检测装置的设计与实现 何祥宇,马 帅 (洛阳师范学院 物理与电子信息学院,河南 洛阳 471022) 摘 要:设计了一种基于温湿度数字式传感器的无线温湿度检测装置,以单片机为控制核心,采用数字式温湿度传感器来检测目标的 温度和湿度信息,利用软件编程完成温湿度信息的处理及系统功能实现,并通过LED显示相应测量数据。该装置具有温度及湿度数据的测量及显示、工作模式选择和无线通信等功能。 关键词:温湿度传感器;单片机;工作模式;无线通信 中图分类号:TP273+.5 文献标识码:B 文章编号:1003-7241(2010)08-0103-03 The Design and Realization of a Wireless T emperature and Hu-midity Detecting Equipment HE Xiang-yu, MA Shuai ( School of Physics and Electronic Information, Luoyang Normal University, Luoyang 471022 China ) Abstract: A kind of a wireless temperature and relative humidity detecting equipment is designed based on digital temperature-humidity sensor. It employs SCM as the core of controlling, adopts digital temperature-humidity sensor to detect temperature and relative humidity data of objects. The measurement data is processed by software and displayed by LED. The device has the function of temperature and relative humidity data displaying, operating mode selection,wireless communication, etc. Key words: temperature-humidity sensor; SCM; operating mode; wireless communication 收稿日期:2010-03-24 1 引言 温湿度的检测在暖通空调、电力系统、通信基站、食品加工、制药等行业有着非常广泛的应用,但一般湿度元件不经过标定和温度补偿,误差较大,而用于湿度标定和校准的仪器价格昂贵,从而给湿度测量的实际应用带来很大的困难和阻碍。文中选用瑞士Sensirion公司的SHT11数字式温湿度传感器,结合单片机技术和电子技术,设计了一种具有两种工作模式的温湿度检测装置,消除了一般湿度检测元件误差较大的缺点。该温湿度检测装置既可以单机工作,以单片机为处理和控制核心来实现温度和湿度信号的检测、处理及显示。又可以利用无线收发模块实现系统与计算机的无线通信,利用计算机实现数据的分析,处理及打印。该系统采用专用 集成电路,电路结构简单,工作稳定可靠,具有两种工作模式及无线数据传输等特点,特别适用于暖通空调、电力系统、通信基站、食品加工等行业的温湿度测量。 2 SHT 11温湿度传感器 SHT11的湿度检测运用电容式结构,利用不同保护下的微型结构检测电极系统与聚合物覆盖层来组成传感器芯片的电容,除保持电容式湿敏器件的原有特性外,还可以抵御来自外界的影响。由于它将温度传感器与湿度传感器结合在一起而构成了一个单一的个体,因而测量精度较高且可精确得出露点,同时不会产生由于温度与湿度传感器之间随温度梯度变化引起的误差。SHT11不仅将温度传感器和湿度传感器结合在一起,而且还将信号放大器、模/数转换器、校准数据存储器、标准I2C总线等电路全部集成在一个芯片内。SHT11的

无线无源温度检测原理(借鉴实操)

无线测温技术方案 (基于EH技术) 1.EH技术说明 1.1. EH技术简介 环境能量采集(EnergyHarvesting)技术具有可循环、无污染、低能耗等优点,它建立在微电子技术和微功耗技术的基础上,是近几年发展起来的一门新兴学科,它涵盖了太阳能、风能、热能、机械能、电磁能采集等诸多方面。能量收集技术应用范围极其广泛:交通、能源、物联网、航空航天、生物等等。把能量采集技术应用到电力设备的在线监测是一个前所未有的创新,必将为解决电网智能化运行提供一个全新的平台。 能量收集(EH)也称为能量积聚,使用环境能量为小型电子和电气器件提供电能。 能量收集系统包含能量收集模块和处理器/发送器模块。能量收集模块从光、振动、热或生物来源中捕获毫瓦级能量。可能的能源还来自手机天线塔等发出的射频。然后,电源经过调节并存储起来。系统随后按照所需的间隔触发,将能量释放给后续负载使用。 1.2.EH技术应用 在变电所、站的运行现场具有丰富的电磁能,对于电压高电流小的场源(如发射天线、馈线等),电场要比磁场强得多,对于电压低电流大的场源(如某些感应加热设备和模具),磁场要比电场大得多。因此我们认为高压设备内是一个工频电场和磁场能量非常密集的区域。我们正是利用微电子技术、低功耗技术以及能量管理技术收集高压设备中的电磁能,并将其能量转化为无线温度传感器所需之电源。 将EH技术应用于高压设备一次回路的无线测温,解决了传感器的能量需求问题,使得传感器摆脱了对传统电池的束缚,体积更小,可靠性更高,安装更方便,维护更简单,产品更环保,技术更先进。 2.基于EH技术的富邦电控FTZ600无线测温系统 2.1. 无线测温系统简介

开关柜温度在线监测方案V2.0

开关柜温度在线监测技术方案 珠海一多监测科技有限公司 二〇一七年十二月

目录 1 概述 (1) 2 监测范围 (1) 3 总体方案 (1) 3.1 系统拓扑图 (2) 3.2 监控中心 (2) 3.3 通讯方案 (2) 4 传感器配置 (3) 4.1 配置原则 (3) 4.2 现场安装 (3) 4.2.1 高压开关柜 (3) 5 主要监测设备 (5) 5.1 复合型无源无线电气量传感器 (5) 5.2 测温接收模块 (7) 5.2.1 接收模块功能 (7) 5.3 监测工作站 (8) 6 系统功能 (8) 6.1 主要功能 (8) 6.2 历史分析 (10) 6.3 智能告警 (11)

开关柜温度在线监测 1概述 开关柜是变电站的主要设备之一,在整个电力系统安全运行中起着举足轻重的作用。开关柜事故起因多为开关柜动触头、静触头、电缆接头、等处的虚接、材料老化、磨损、过载等原因造成接触电阻过大,运行中过热,最后导致绝缘烧损,形成线间或相间短路,瞬间引发火灾。 传统对开关柜的监测主要采用定期人工巡检方式。由于巡检间隔时间长,受人为因素影响大,且无法检查设备内部接点的温升情况,已无法满足供电可靠性的要求,无法适应现代变电设备的运行管理的需求,因此急需对现行的预防性维修制进行根本的变革,其发展方向必然是采用在线监测及诊断技术。 珠海一多监测科技有限公司是设备状态监测行业的领先企业,针对开关柜接点温度监测的需要,推出的开关柜温度在线监测系统,对开关柜动触头、静触头、电缆接头等容易发生异常温升的部位,采用接触式温度传感器实时检测被测点温度,解决设备带电运行状态下温度在线监测问题。 2监测范围 本项目对高压开关柜的接点温升状况和负载电流进行在线监测。监测数据通过就地集中显示装置集中接收后再上传到控制室。 3总体方案 开关柜温度在线监测系统具有电气接点温度和负载电流在线监测功能,主要在线监测开关柜断路器一次插头、电缆接头等电气连接部位的温度和电流。监测数据采用无线传输的方式集中接收后上传到监控室进行集中监控,实时监测和预警。

开关柜无线测温系统

开关柜无线测温系统 一、概述 电力传输系统中,高压开关柜作为其中的核心枢纽部分,起着关键性的作用,如何确保高压开关柜的正常运行是电网里面的一个相当重要课题。 开关柜内部众多的接触点会由于长期的使用导致高温氧化腐蚀、螺栓松动等原因造成接触电阻的增加,从而引起设备的过热、更甚至出现严重事故,因此实行设备运行的温度在线监测是很有必要的。 二、YC无线测温系统描述 YC无线测温系统专门设计用于高压设备的温度在线检测,采用高性价比的无线传输方式。YC系列的开关柜无线测温装置采用无线电传输温度信号,传感器安装在高压设备的最容易产生高温造成事故的螺栓接触点上,并且与接收装置之间无电气连接。在保证开关柜的原运行环境下,提供一种实时、高效、安全可靠的温度在线检测方法。

特征: ★ 采用超外差射频无线技术,工作在315MHz频段;ZigBee模式,工作在915MHz频段★ 直接序列扩频(DSSS),抗干扰能力更强 ★ 温度传感器一体化结构 ★ 自动传感器识别、无连线、安装简便 ★ 高达65535个无线传感器编址 ★ 极低的传感器耗电,电池寿命:>5年 ★具有低功耗、数据无线传输、精度高、响应速度快、操作灵活、组网方便等优势。

三、采用上位计算机实现集中温度监测 YC-12无线式温度监测仪,具有一个的RS-485接口,在无中继器的情况下,高达128个监测仪可组成一个测量网络,由上位计算机在线监测个仪器测量的温度。如图: 四、无线温度传感器在室外母线及开关柜测温中的应用

无线温度传感器设计用于室外母线接头和开关接点的温度监测,可用于以下设备的温度测量: ★ 高压开关柜动静触头 ★ 高压电缆接头 ★ 箱式变电站 ★ 高压母线接头 如图:

实验室行业中无线温湿度传感器监测解决方案及应用

实验室行业中无线温湿度传感器监测解决方案及应用 在实验室的监控项目中,不同实验室对温湿度都有要求,大部分实验都是在明确的温湿度环境中展开。在医药、生化、仪器校准、农业、建筑与电器等领域中,实验室环境条件直接影响着各种实验或检测的结果,每项实验的进行都需要精确可靠的监测仪器来提供准确的环境参数数据。深圳信立科技无线温湿度传感器为各领域实验室提供客观及无法篡改的温湿度记录数据。这里,盘点XL51无线温湿度传感器在各个领域实验室的运用。 1、病理学实验室 病理学实验过程中,切片机,脱水机,染色机,电子天平等仪器的使用对温度有比较严格的要求。例如电子天平应尽可能在环境温度较稳定的条件(温度变化每小时不大于5|℃)下使用。因此,这类实验室的温湿度状况需要实时监控和记录。XL51无线温湿度传感器可以实时精确采集、传输、记录温湿度数据.有助于各项实验的顺利进行。 2、抗生素实验室抗生素实验室 对温湿度环境有严格的要求般情况下冷处是2~8℃.阴凉处不超

过20℃。抗生素保存的温度过高或过低都会导致抗生素失活.并且不同种类抗生素的失活温度也各有不同.因此XL51无线温湿度传感器在这类实验室环境中的监测及记录是个重要的环节。 3、化学检测室 化学实验室般包涵多种实验室房间,如化学检测室.物理检测室.抽样室等。各房间的温湿度标准都不相同,每个房间需指定专人定时进行监测,监测频率通常为每天两次。使用XL51无线温湿度传感器,通过专业的组网连接,工作人员只需在中心控制台就可查看各个实验室温湿度状况,下载并保存实验过程中的温湿度数 4、实验动物房 动物实验室的环境要求以实验动物为主其湿度应维持在40%~60%RH之间,以老鼠为倒,它们若在相对湿度40%以下的环境生活,很容易发病掉尾而死亡。XL51无线温湿度传感器可通过组网报警等措施建立温湿度监测记录系统,有利于动物房压差、温湿度的控制.防止疾病的传播和避免动物的相互感染。 5、混凝土实验室

毕业论文——基于NRF24L01无线温度测量系统的设计与实现

毕业设计(论文) 基于NRF24L01无线温度测量系统的设计 与实现 教学系:信息工程系 指导教师: 专业班级: 学生姓名: 二零一二年六月

附件1 毕业设计(论文)任务书

附件2 毕业设计(论文)开题报告

注:1. 开题报告应根据教师下发的毕业设计(论文)任务书,在教师的指导下由学生独立撰写,在学院规定时间内完成; 2.设计的目的及意义至少800字,基本内容和技术方案至少400字; 3.指导教师意见应从选题的理论或实际价值出发,阐述学生利用的知识、原理、建立的模型正确与否、学生的论证充分否、学生能否完成课题,达到预期的目标

目录 摘要 (1) ABSTRAC (2) 1 绪论 (3) 1.1 研究背景 (3) 1.2 课题的国内外研究状况 (3) 1.3 本课题的研究内容 (4) 2系统方案分析与选择论证 (5) 2.1 系统方案设计 (5) 2.1.1 系统设计要求 (5) 2.1.2 主控芯片方案 (5) 2.1.3 无线通信模块方案 (5) 2.1.4 温度传感方案 (5) 2.1.5 显示模块方案 (6) 2.1.6 单片机与PC机通信模块 (6) 2.2 系统方案确定 (6) 3 无线温度采集系统的硬件电路设计 (8) 3.1 单片2.4GHz NRF24L01无线模块 (8) 3.1.1 NRF24L01芯片概述 (8) 3.1.2 引脚功能及描述 (8) 3.1.3 工作模式 (9) 3.1.4 工作原理 (9) 3.1.5 配置字 (10) 3.1.6 NRF24L01模块原理图 (10) 3.2 温度采集端 (11) 3.2.1 采集单元 (11) 3.2.2 控制单元 (15) 3.2.3 显示单元 (19) 3.2.4 传输单元 (19)

电气接点温度在线监测装置

电气接点温度在线监测装置 一、产品概述 电气接点温度在线监测装置采用国际上先进的无线传感器网络技术,以智能微处理器为核心,使用精密的数字式温度传感器,对40.5kV及以下供电系统移开式开关设备手车角头、固定式开关设备隔离开关触头、母线、电缆连接处以及电抗器绕组、干式变压器高压绕组等由于插接不良、接头松动、母线蠕动、表面氧化、电化腐蚀、超负荷、环温过高、通风不良等引起过热进行智能保护。 电气接点温度在线监测装置主要适用于户内各类高压开关设备的接头部、触头及母排的在线温度测量。电气接点温度在线监测装置二次部分与一次部分无任何电连接,传感器与主机信息交换是通过无线信号传送,不会影响系统的绝缘性能,使用更安全。 二、功能简介 电气接点温度在线监测装置最多可以在线监测12个点位的的温度(温升),通过无线传输,在主机的屏幕上实时显示,由主机对这些监测点的温度进行实时监控。 当任何一个监测点的温度超过设定温度后会输出三个级别报警提示(指示灯、显示值闪烁及三组无源继电器输出);产品提供RS485接口,MODBUS通讯协议,可以上传环境温湿度、各监测点的温度和电池电量等信息。 温度值的显示模式可以选择温升(相对于环境温度)或实际温度,上位机可以通过RS485接口对仪表的参数进行设置与读取,以及数据的采集。 电气接点温度在线监测装置还可以单独选择控制环境的温度或湿度,对于负载继电器可以选择温度与湿度各使用一组继电器,也可以选择共用一组继电器。温度控制负载的工作模式可以选择降温或升温,而湿度控制负载只能使用升温或除湿模式。 电气接点温度在线监测装置采用图形中文菜单界面,操作简单直观,并有报警记录查询功能。具体功能如下: 1、多路无线测量温度实时数据显示。 2、报警温度上、下限设定数据显示。

基于ZigBee的多点温度采集系统设计与实现

摘要:针对广阔空间环境温度采集系统对功耗及成本的要求,设计了基于无线传感网络技术的多点温度采集系统.以CC2430 为主控芯片,选用DS18B20 作为温度采集节点的传感器,基于ZigBee 协议栈构建无线网络实现主从节点之间数据的采集与传输,利用串口通信技术与PC 机通信,并编程实现数据处理、存储与显示。 1 引言 随着生产技术的提高, 环境温度指标越来越多的影响到生产效率、能源消耗和生活水平。不管是工业、农业、军事及气象领域, 还是日常生活环境, 都需要对温度进行监测。因而,设计可靠且实用的温度采集系统显得非常重要。 在传统的温度采集系统中, 节点一般采用有线连接方式, 布线繁琐, 扩展性和可移植性较差。尤其对于广阔空间环境中的温度采集,如果采用有线方式其成本和功耗都比较高。而ZigBee 作为一种新兴的短距离、低功耗、低成本的无线通信技术, 能广泛应用于工业控制、消费电子、家庭自动化、医疗监控各种领域。 本文设计了一种基于ZigBee 无线技术的多点温度采集系统, 实现了主从节点间数据的无线传输, 同时上位PC 机采用串口与主节点通信,并建立温度数据库,实现了数据的统一管理。该系统具有扩展性好、稳定可靠、维护方便等特点。 2 系统整体概述 本文设计的温度采集系统结构如图1 所示。系统采用ZigBee 星型网络拓扑结构,建立了一个主节点,四个从节点的无线传感网络,实现数据的无线传输。各个从节点连接数字温度传感器DS18B20 定时采集环境温度,并通过无线传感网

络将数据依次向主节点发送,主节点收到数据后通过串口传给上位PC 机,上位机将采集的数据存入数据库, 对数据进行分析处理, 并在监控界面显示温度实时变化曲线。 图1 温度采集系统结构图 3 系统硬件设计 3.1 主节点硬件设计 选择CC2430 作为主节点的处理器,该芯片是全球首款支持ZigBee 协议的

基于物联网的无线温度监控系统

西安邮电大学 专业课程设计报告书 系部名称:光电子技术系 学生姓名: 专业名称: 班级:光电 实习时间:2013年6月3日至2013年6月14日

基于物联网的无线温度监控系统 【一】项目需求分析 承温度、湿度和人类的生产、生活有着密切的关系,同时也是工业生产中最常见最基本的工艺参数,例如机械、电子、石油、化工等各类工业中广泛需要对温度湿度的检测与控制。并且随着人们生活水平的提高,人们对自己的生存环境越来越关注。而空气中温湿度的变化与人体的舒适度和情绪都有直接的影响,所以对温度湿度的检测及控制就非常有必要了。温度是物联系统中一个十分重要的物理量,对它的测量与控制有十分重要的意义。随着各类物联网的监控日益改善,各类器件的温度控制有了更高的要求,为了满足人们对温度监控与控制,本文设计了物联网家居系统中基于单片机的无线温度监控系统。随着信息科学与微电子技术的发展,温度的监控可以利用现代技术使其实现自动化和智能化。本次设计要求利用单片机及zibbee无线传输模块实现无线温度监测系统,实现温控范围调节及其超温范围报警 【二】实施方案及本人担的工作 1 .系统总体方案描述 系统设计分为2个部分,第一个部分实现温度的检测、显示和发送,第二个部分为数据的接收和显示。第一个设计模块中,利用单片机STC89C52控制温度传感器DS18B20定点检测和处理温度数据,并将当前温度显示在数码管上,接着单片机将采集的温度数据发送给单片机,再通过单片机控制,并将对接收到的温度数据进行一定的转换和处理,然后存放在寄存器中,等待下一步处理,再经过无线发送无线zigbee模块将显示的数据打包发送给第二个模块。第二个设计模块中,同样利用STC89C52单片机作为控制主体,先控制zigbee无线接收模块接收第一个模块发送的数据,然后将接收到数据在上位机上显示,整个过程就是这样。 2. 系统硬件构成 系统硬件方面主要由单片机最小系统,温度传感器DS18B20,4位共阳极数码管,还有zigbee无线收发模块,上位机显示模块组成,目的在于实现温度的准确检测和无线收发所检测的温度数据。 3.单片机最小系统设计 单片机最小系统的设计主要有五个部分组成,电源电路,复位电路,晶振电路,串口电路和控制主体的STC89C52单片机。 电源电路由一个六脚的按键开关,一个1K的电阻,一个10uF的极性电容和一个显示电路供电状态的发光二极管组成。开关为了适应各种情况下能够方便供电,开关外接有一个USB接口和一个DC-5V的标准电源接口作为供电设备使用。除此之外还设计了一个外接电源接口。电源电路如图2所示。

温度检测与控制实验系统论文

温度检测与控制实验系统设计 设计任务 1、设计参数 被测温度1200。C,最大误差不超过±1。C 2、设计要求 (1)被控对象为小型加热炉,供电电压220V AC,功率2kW,用可控硅控制加热炉温度;(2)通过查阅相关设备手册或上网查询,选择温度传感器、调节器、加热炉控制器等设备(包括设备名称、型号、性能指标等); (3)设备选型要有一定的理论计算; (4)用所选设备构成实验系统,画出系统结构图; (5)列出所能开设的实验,并写出实验目的、步骤、要求等。 课程设计评语 设计报告成绩(30%)设计过程成绩 (30%) 答辩成绩 (40%) 总成绩

摘要 本文介绍了一个简单的温度检测与控制系统的设计。该系统的被控对象为小型加热炉,供电电压为220VAC,功率2KW,被测温度1200度,误差不超过±1℃。本设计通过热电偶测量加热炉内液体的温度,将热电偶的输出信号直接传输到调节器,该调节器内部集成有变送器,并且可设定给定温度值,本实验为1200度。调节器将偏差信号输出到可控硅调功器,可改变晶闸管导通时间,从而调节输出平均电压的大小,实现加热炉温度的控制。 关键词: 热电偶调节器可控硅调功器

目录 第一章前言 (3) 第二章设备选型 (3) 2.1 温度传感器 (3) 2.2 调节器 (5) 2.3执行器 (7) 第四章系统结构图 (12) 第五章总结 (13) 参考文献 (13) 附录一:开设试验 (13)

第一章前言 温度是生活及生产中最基本的物理量,它表征的是物体的冷热程度。自然界中任何物理、化学过程都紧密的与温度相联系。在很多生产过程中,温度的测量和控制都直接和安全生产、提高生产效率、保证产品质量、节约能源等重大技术指标相联系。因此,温度的测量与控制在国民经济各个领域中均受到了相当程度的重视。在实际的生产实验环境下,由于系统内部与外界的热交换是难以控制的,其他热源的干扰也是无法精确计算的,因此温度量的变化往往受到不可预测的外界环境扰动的影响。为了使系统与外界的能量交换尽可能的符合人们的要求,就需要采取其他手段来达到这样一个绝热的目的,例如可以让目标系统外部环境的温度与其内部温同步变化。根据热力学第二定律,两个温度相同的系统之间是达到热平衡的,这样利用一个与目标系统温度同步的隔离层,就可以把目标系统与外界进行热隔离。另外,在大部分实际的环境中,增温要比降温方便得多。因此,对温度的控制精度要求比较高的情况下,是不允许出现过冲现象的,即不允许实际温度超过控制的目标温度。特别是隔热效果很好的环境,温度一旦出现过冲,将难以很快把温度降下来。这是因为很多应用中只有加热环节,而没有冷却的装置。同样道理,对于只有冷却没有加热环节的应用中,实际温度低于控制的目标温度,对控制效果的影响也是很大的。 第二章设备选型 2.1温度传感器 求测温度1200度,误差不超过±1℃,所以决定了只能用铂铑等贵金属材料热电偶。HAKK-WRR系列铂铑热电偶是一种传统的测温元件,具有热电性能稳定、抗氧化性强,适宜在氧化性、惰性气氛中连续使用。长期使用温度为1600℃,短期使用温度为1800℃。有纸记录仪其技术指标如下: 1、测温范围: 0~1800℃ 2、测温精度:< ± 0.5% t 3、时间常数:≤180s 4、绝缘电阻:5MΩ(20℃时) 5、规格尺寸:500,750,1000,1200(mm) HAKK-WRR系列铂铑热电偶又称高温贵金属热电偶,铂铑有单铂铑(铂铑10-铂铑)和双铂铑(铂铑30-铂铑6)之分,它们作为温度测量传感器,通常与温度变送器、调节器及显示仪表等配套使用,组成过程控制系统,用以直接测量或控制各种生产过程中0-1800℃范围内的流体、蒸汽和气体介质以及固体表面等温度。铂铑热电偶为贵金属热电偶。偶丝直径规定为0.5mm,允许偏差-0.015mm,其正极(BP)的名义化学成分为铂

无线温度测量系统设计

本科毕业论文(设计)题目无线温度测量系统设计 专业通信工程 作者姓名程丰收 学号2011201827 单位理工学院 指导教师黄慧 2015 年 6 月 教务处编

原创性声明 本人郑重声明:所提交的学位论文是本人在导师指导下,独立进行研究取得的成果。除文中已经引用的内容外,论文中不包含其他人已经发表或撰写过的研究成果,也不包含为获得聊城大学或其他教育机构的学位证书而使用过的材料。对本文的研究作出重要贡献的个人和集体,均在文中以明确的方式表明。本人承担本声明的相应责任。 学位论文作者签名:日期: 指导教师签名:日期:

1绪论.................................. 错误!未定义书签。 1.1 摘要 ................................................. 2 1.2 选题依据和意义 (3) 1.3 无线传感器网络技术研究背景及意义 (4) 1.4 无线传感器网络技术简介 (5) 1.5 未来前景展望 (6) 2 ZigBee协议简介 (7) 2.1 ZigBee的概述 (8) 2.2 ZigBee的网络基础 (9) 2.2.1 网络节点类型 (10) 2.2.2 网络拓扑形式 (11) 2.3 ZigBee的工作模式 (12) 3 核心板介绍 (13) 3.1 CC2530核心板 (14) 3.2 CC2530引脚描述 (11) 3.3 温度传感器介绍 (16) 3.3.1 DS18B20温度传感器特性 (12) 3.3.2 DS18B20管脚介绍 (18) 4 系统总体设计 (19)

HYCW无线测温在线监测系统技术方案

HYCW无线测温 在线监测系统技术方案

目录 目录 (1) 第一章概述 (2) 一、产品应用 (2) 二、产品设计思想 (2) 三、产品特色 (2) 四、对企业产生的效益: (3) 第二章无线测温系统的组成 (3) 一、主机 (3) 二、温度传感器 (4) 第三章具体方案 (5) 一、无线组网图 (6) 二、传感器安装描述 (6) 1.航空胶固定 (6) 2.卡子固定 (6) 三、产品常用现场安装示意图片 (7) 第四章无线测温系统后台软件 (7) 一、直观显示接头的温度 (7) 二、图示化功能菜单,汇集了系统的主要功能,简洁明了 (8) 三、功能强大的报警分析功能 (9) 四、历史记录分析,预测接头老化程度及火灾事故 (10) 五、灵活的参数设置,满足各种复杂的现场需求 (11) 六、功能完善的系统组态软件,随时适应现场变化 (11)

第一章概述 电气设备在运行中,伴随着一些安全问题,而这些问题具有突发性和不准确性,难以预知,应对这种情况,需要一种手段去解决。我公司开发了无线测温系统。它是工业的神经,它延长我们的视线,它十分接近隐患点。由此,我们可以提前感知,采取措施,降低避免事故。 电气设备的触点在长期运行过程中,因老化、松动或污染易造成间隙或接触电阻增大,在通流时引起持续发热,严重时将造成设备烧损甚至引发更大的事故。近年来,类似的事故已发生多起,已造成火灾和大面积的停电事故。 开关柜触头的温度很难实时监测,这是因为开关柜空间有限,但柜内元件较多,且高压带电元件大多裸露,常规的温度测量方法无法使用。无线测温系统已成为测温领域的趋势。 一、产品应用 具体应用在电气设备的各种触点、连接点,如开关触点、电缆接头、母线联接点、发电机和变压器引接线接头、电动机接线盒接头等,通过分布式安装在各个测温点上的传感器及时掌控易发热点的温度变化,在事故隐患产生时提前预警,避免事故的发生。 二、产品设计思想 首先系统采用分散式就地安装的温度传感器,与测温位置直接接触;然后通过无线方式将这些前端传感器采集的温度数据发送到测温主机的液晶显示屏上;无线测温主机可以根据自定义的温度进行相应的智能控制。之后无线测温主机通过RS485连接线将工控机相连,构成电气监控管理上位机系统;最后上位机在无线测温软件平台上进行数据存储,实时监控,智能分析,实施在线监测,在事故隐患产生时提前预警,有效避免事故的发生。 三、产品特色 1.安全性:体积小,等电位单点绝缘安装,不降低电气设备的安全性能。 2.可靠性:金属外壳设计,形成电屏蔽,在强电磁场下稳定工作。 3.准确性:采用NTC高精度感温元件,测量精度达到±0.5℃ 接触式测温,能快速准确地反映测温点温度变化 4.实时性:温度有变化即时发送,实时监测,快速反映。 温度无变化,10分钟发射一次,低功耗设计延长设备使用寿命 5.系统性:安装灵活组网简单,可融入企业电气自动化系统,数据共享快捷管理。

HCWS高压无线测温系统

1. 概述 HCWS无线测温系统是专门设计用于高压带电体的运行温度实时监测,该系统采用前沿的无线组网技术设计,实现了高压带电体温度远距离遥测。本产品密封性能良好,室内外均可安全使用。系统具有低功耗、等电位测量、数据无线传输、精度高、响应速度快、操作灵活、组网方便等优势。 2. 技术特点 (1) 采用2.4G 频段,工作在2400~2483.5MHz(ISM)频段。 (2) 直接序列扩频(DSSS),抗干扰能力更强。 (3) 温度传感器采用LTCC内置天线,体积最小。 (4) 极低的传感器耗电,电池寿命:> 5 年。 (5) 高达65535 个无线传感器编址。 (6) 自动传感器识别,无连线,安装简便。 (7) 传输距离:传感器与主机之间小于80米。 3. 高压开关柜射频无线测温系统结构 通过连续监测高压开关柜内触点或电缆接头的运行温度, 可确定触点和接头处的过热程度, 当发生超温或温度变化率越限时, 系统能够及时发出预警指示。 HCWS系统采用一台中心监测计算机,通过RS485工业总线,连接HCWS无线温度监测仪,每台HCWS都具有一个RS485接口,在无中继器的情况下,多达128个HCWS无线温度监测仪可组成一个无线遥测网络,每台HCWS无线温度监测仪相当于一个无线接入点,它可接入6‐18只无线温度传感器(户外空旷地域可以接入32到64只),系统的中心计算机在线监测所有HCWS无线温度监测仪所测量的温度。 4. 无线射频温度传感器 4.1 温度传感器工作原理 HCWS无线温度传感器用于测量高压带电物体表面的温度,如高压开关柜内的裸露触点、母线连接处、户外刀闸及变压器等的运行温度。无线温度传感器是由温度传感器、测量电路、单片机控制电路、无线调制接口和供电电路组成,如图4‐1 所示,传感器将温度信号通过2.4G无线网络发送到无线温度监测仪。 4.2 无线温度传感器性能指标 (1) 温度测量范围:‐55~+125。 (2) 精度:±0.5℃(‐20~+80℃)。

试验室温湿度和压差无线在线自动化监测解决方案

实验室温湿度和压差无线在线自动化监测解决方案 智能温度(智能温湿度传感器、实验室温湿度和压差无线在线自动化监测主要由设备层设备、智能网关、无线短信猫模块、网络交换机、采集计算机、数据服传感器、无线测控装置)服务器及监控管理软件等构成,本系统设计采用先进的软硬件技术和分层分布Web务器、式网络结构,针对客户的实际情况提供下列解决方案。 一、系统概况 适用于已建成的对环境温湿度或者安安装方便,基于无线传感网络的环境与安全监测系统,孵化生化又不方便重新对建筑进行工程施工的仓库,食品仓库、药品仓库、全要求较高的、实验室;电子厂房、机房;孵房、大棚、温室等。 的数据采集设备及无线传输设备和相关无自动化无线监测系统由深圳市信立科技有限公司线传感器组成。具备智能化、尺寸小、使用寿命长等特点,选用全工业级产品,在恶劣环境下稳定性好、精度高。 根据项目的实际情况,设计技术方案,设计中力求系统先进、可靠、经济实用和可靠、功能扩展方便,做到系统设计方案严谨、布局合理、设备选型合理。 1.1设计依据 根据现场监测要求内容,利用无线传感网络技术,开展对实验室冰柜和实验室环境进行温、湿度、压差强度动态监测,监测系统可增加其他监测指标。 1.2设计目的 利用无线传感器网络压差指标并执行相应的温湿度、压差控制,为了确定区域环境温湿度、并将监测信息通过无线方式传输等参数实时监测,技术对实验室环境参数(温湿度和压差)到监控后台,根据监控系统要求实现实时监测。 序区域名室内温度压差监冰柜监冰箱监设备布置情况 号称监测数量测数量测数量测数量 样本存路温度传感器个,1智能温度传感器11无无12 -2储区 路温度4个,样本制1个,智能温度传感器1智能温湿度传感器21212 路压差信号1台采集1备室信号,无线测控装置 1个,无线温度、压差传感器,配置1智能温湿度传感器试剂准11131 路温度传感器备区路压差和2 标本制智能温湿度传感器1个,无线温度、压差传感器,配置114111 路压差和备区2路温度传感器 智能温湿度传感器1个,无线温度、压差传感器,配置1115纯化区11 路压差和2路温度传感器 智能温湿度传感器1个,无线温度、压差传感器,配置16定量区1111 路压差和2路温度传感器 智能温湿度传感器1个,无线温度、压差传感器,配置17检测区1111 路压差和2路温度传感器 智能温湿度传感器1QC质控个,无线温度、压差传感器,配置111118 路压差和2路温度传感器室 智能温湿度传感器1预留实个,无线温度、压差传感器,配置119111 路压差和2-2验室路温度传感器

基于Cortex_M3智能无线温度测量系统设计

基于Cortex-M3智能无线温度测量系统设计 钟鼎 (中国地质大学机械与电子信息学院,湖北武汉430074) 摘要:设计了一种基于Cortex-M3内核的STM32F103RBT6为核心处理器的智能无线温度测量系统。系统采用 DS18B20数字温度传感器,并利用TC35I 模块接入GSM 网络,实现利用手机短信发送温度测量指令,手机短信接收 测量数据,该系统同时具有定时自检和温度报警功能,当处理器定时自检发现DS18B20出现故障时,系统会自动启用处理器内部温度传感器并短信报警。经实验证明,该系统测量精度最高可达0.0625度,适合在距离较远,不易布线的环境下使用。 关键词:Cortex-M3;STM32F103RBT6;DS18B20;TC35I ;温度测量中图分类号:TN98 文献标识码:A 文章编号:1674-6236(2011)21-0183-03 Intelligent wireless temperature measurement system based on Cortex-M3 ZHONG Ding (Mechanical and Electronic Information Institute ,China University of Geosciences ,Wuhan 430074,China ) Abstract:A system uses STM32F103RBT6processor which based on Cortex -M3core.By using DS18B20to measurement the temperature and using TC35I module to connect to the GSM network ,It achieves a function that using short message to send commands and receiving the measurement data by short message.The system also has a self -test function ,when the processor found the DS18B20fails ,it will automatically enable internal temperature sensor and send alarm message.It is suitable for long distance condition with a high precision. Key words:Cortex -M3;STM32F103RBT6;DS18B20;TC35I ;temperature measurement 收稿日期:2011-08-20 稿件编号:201108066 作者简介:钟鼎(1983—),男,湖南长沙人,硕士,助理工程师。研究方向:网络通信与安全。 温度测量[1]在家居生活和工业生产控制等领域都有着广泛的使用,随着电子技术的飞速发展,应用领域还在不断的扩展,基于单片机控制的温度测量系统也相继被提出,随着 ARM 公司最新Cortex 系列内核的推出,基于Cortex-M3内核 的高性价比的处理器受到了客户广泛欢迎,而在我国,GSM 网络超过95%的覆盖率也为无线通信和远程控制创造了良好的媒介,在某些特殊环境下,比如不易布线或者布线距离较长环境下,都会使测量系统的成本升高,而且数据在长距离的传输过程中极易受到干扰,利用技术成熟成本相对较低的GSM 网络,不仅不受传输距离的限制,而且具有较好的抗干扰能力,使用便携的手机发送短信控制来实现温度的实时测量是一种较好的方法。 1系统整体设计 智能温度测量系统主要由温度测量模块、GSM 模块、外 接EEPROM 、主控制器组成。主控制器使用意法半导体公司生产的STM32F103RBT6处理器,主要完成整个系统的运行和自检工作。温度测量模块使用DALLAS 公司的DS18B20数字温度传感器,GSM 模块使用西门子工业TC35I 模块,其支持中文短信功能,通过通用串口协议与主控制器通信,接收和发送主控制器的命令,当TC35I 模块接收到短消息命令后把命令发送给主控制器,主控制器分析短信命令,如为温度测量指令则开始测量温度,测量数据通过TC35I 模块发送回去,同时备份测量数据在外接EEPROM 中,整体结构框图如图1所示。 2 硬件电路设计 2.1 主控制器 意法半导体公司新推出的STM32F103RBT6,是基于 ARM 公司最新推出的V7平台的Cortex-M3内核。芯片[2-3]具 有128k FLASH ,20k SRAM ,2个SPI 接口,3个串口,一个 USB ,1个CAN ,51个IO 口。芯片的数据处理能力为 电子设计工程 Electronic Design Engineering 第19卷Vol.19第21期No.212011年11月Nov.2011 图1 系统整体结构 Fig.1Overall structure of system -183-

相关主题