搜档网
当前位置:搜档网 › 37-初中数学竞赛中常用重要定理

37-初中数学竞赛中常用重要定理

37-初中数学竞赛中常用重要定理
37-初中数学竞赛中常用重要定理

初中数学竞赛辅导

3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分

4、四边形两边中心的连线的两条对角线中心的连线交于一点

5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。

6、三角形各边的垂直一平分线交于一点。

7、从三角形的各顶点向其对边所作的三条垂线交于一点

8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL

9、三角形的外心,垂心,重心在同一条直线上。

10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上,

11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上

12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。

13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式:

r=(s-a)(s-b)(s-c)ss为三角形周长的一半

14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点

15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有

AB2+AC2=2(AP2+BP2)

16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有

n×AB2+m×AC2=(m+n)AP2+mnm+nBC2

17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD

18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上

19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC

20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形,

21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。

22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。

23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1

初中竞赛需要,重要

24、梅涅劳斯定理的逆定理:(略)

25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。

26、梅涅劳斯定理的应用定理2:过任意△ABC的三个顶点A、B、C作它的外接圆的切线,分别和BC、CA、AB的延长线交于点P、Q、R,则P、Q、R三点共线

27、塞瓦定理:设△ABC的三个顶点A、B、C的不在三角形的边或它们的延长线上的一点S连接面成的三条直线,分别与边BC、CA、AB或它们的延长线交于点P、Q、R,则BPPC×CQQA×ARRB()=1.

初中竞赛需要,重要

28、塞瓦定理的应用定理:设平行于△ABC的边BC的直线与两边AB、AC的交点分别是D、E,又设BE和CD交于S,则AS一定过边BC的中心M

29、塞瓦定理的逆定理:(略)

30、塞瓦定理的逆定理的应用定理1:三角形的三条中线交于一点

这个定理用塞瓦定理来证明将毫无几何美感,应该用中位线证明才漂亮

31、塞瓦定理的逆定理的应用定理2:设△ABC的内切圆和边BC、CA、AB分别相切于点R、S、T,则AR、BS、CT交于一点。

32、西摩松定理:从△ABC的外接圆上任意一点P向三边BC、CA、AB或其延长线作垂线,设其垂足分别是D、E、R,则D、E、R共线,(这条直线叫西摩松线)

初中竞赛的常用定理

33、西摩松定理的逆定理:(略)

34、史坦纳定理:设△ABC的垂心为H,其外接圆的任意点P,这时关于△ABC 的点P的西摩松线通过线段PH的中心。

35、史坦纳定理的应用定理:△ABC的外接圆上的一点P的关于边BC、CA、AB的对称点和△ABC的垂心H同在一条(与西摩松线平行的)直线上。这条直线被叫做点P关于△ABC的镜象线。

36、波朗杰、腾下定理:设△ABC的外接圆上的三点为P、Q、R,则P、Q、R关于△ABC交于一点的充要条件是:弧AP+弧BQ+弧CR=0(mod2∏).

37、波朗杰、腾下定理推论1:设P、Q、R为△ABC的外接圆上的三点,若P、Q、R关于△ABC的西摩松线交于一点,则A、B、C三点关于△PQR的的西摩松线交于与前相同的一点

38、波朗杰、腾下定理推论2:在推论1中,三条西摩松线的交点是A、B、C、P、Q、R六点任取三点所作的三角形的垂心和其余三点所作的三角形的垂心的连线段的中点。

39、波朗杰、腾下定理推论3:考查△ABC的外接圆上的一点P的关于△ABC 的西摩松线,如设QR为垂直于这条西摩松线该外接圆珠笔的弦,则三点P、Q、R的关于△ABC的西摩松线交于一点

40、波朗杰、腾下定理推论4:从△ABC的顶点向边BC、CA、AB引垂线,设垂足分别是D、E、F,且设边BC、CA、AB的中点分别是L、M、N,则D、E、F、L、M、N六点在同一个圆上,这时L、M、N点关于关于△ABC的西摩松线交于一点。

41、关于西摩松线的定理1:△ABC的外接圆的两个端点P、Q关于该三角形的西摩松线互相垂直,其交点在九点圆上。

42、关于西摩松线的定理2(安宁定理):在一个圆周上有4点,以其中任三点作三角形,再作其余一点的关于该三角形的西摩松线,这些西摩松线交于一点。43、卡诺定理:通过△ABC的外接圆的一点P,引与△ABC的三边BC、CA、AB分别成同向的等角的直线PD、PE、PF,与三边的交点分别是D、E、F,则

D、E、F三点共线。

44、奥倍尔定理:通过△ABC的三个顶点引互相平行的三条直线,设它们与△ABC的外接圆的交点分别是L、M、N,在△ABC的外接圆取一点P,则PL、PM、PN与△ABC的三边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线

45、清宫定理:设P、Q为△ABC的外接圆的异于A、B、C的两点,P点的关于三边BC、CA、AB的对称点分别是U、V、W,这时,QU、QV、QW和边BC、CA、AB或其延长线的交点分别是D、E、F,则D、E、F三点共线

46、他拿定理:设P、Q为关于△ABC的外接圆的一对反点,点P的关于三边BC、CA、AB的对称点分别是U、V、W,这时,如果QU、QV、QW与边BC、CA、AB或其延长线的交点分别为ED、E、F,则D、E、F三点共线。(反点:P、Q分别为圆O的半径OC和其延长线的两点,如果OC2=OQ×OP 则称P、Q两点关于圆O互为反点)

47、朗古来定理:在同一圆同上有A1B1C1D14点,以其中任三点作三角形,在圆周取一点P,作P点的关于这4个三角形的西摩松线,再从P向这4条西摩松线引垂线,则四个垂足在同一条直线上。

48、九点圆定理:三角形三边的中点,三高的垂足和三个欧拉点[连结三角形各顶点与垂心所得三线段的中点]九点共圆[通常称这个圆为九点圆[nine-point circle],或欧拉圆,费尔巴哈圆.

49、一个圆周上有n个点,从其中任意n-1个点的重心,向该圆周的在其余一点处的切线所引的垂线都交于一点。

50、康托尔定理1:一个圆周上有n个点,从其中任意n-2个点的重心向余下两点的连线所引的垂线共点。

51、康托尔定理2:一个圆周上有A、B、C、D四点及M、N两点,则M和N 点关于四个三角形△BCD、△CDA、△DAB、△ABC中的每一个的两条西摩松的交点在同一直线上。这条直线叫做M、N两点关于四边形ABCD的康托尔线。

52、康托尔定理3:一个圆周上有A、B、C、D四点及M、N、L三点,则M、N两点的关于四边形ABCD的康托尔线、L、N两点的关于四边形ABCD的康托尔线、M、L两点的关于四边形ABCD的康托尔线交于一点。这个点叫做M、N、L三点关于四边形ABCD的康托尔点。

53、康托尔定理4:一个圆周上有A、B、C、D、E五点及M、N、L三点,则M、N、L三点关于四边形BCDE、CDEA、DEAB、EABC中的每一个康托尔点在一条直线上。这条直线叫做M、N、L三点关于五边形A、B、C、D、E的康托尔线。

54、费尔巴赫定理:三角形的九点圆与内切圆和旁切圆相切。

55、莫利定理:将三角形的三个内角三等分,靠近某边的两条三分角线相得到一个交点,则这样的三个交点可以构成一个正三角形。这个三角形常被称作莫利正三角形。

这是我认为的平面几何中最漂亮最神奇的几个定理之一,但不用掌握

56、牛顿定理1:四边形两条对边的延长线的交点所连线段的中点和两条对角线的中点,三条共线。这条直线叫做这个四边形的牛顿线。

57、牛顿定理2:圆外切四边形的两条对角线的中点,及该圆的圆心,三点共线。

58、笛沙格定理1:平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。

59、笛沙格定理2:相异平面上有两个三角形△ABC 、△DEF ,设它们的对应顶点(A 和D 、B 和E 、C 和F)的连线交于一点,这时如果对应边或其延长线相交,则这三个交点共线。 60、布利安松定理:连结外切于圆的六边形ABCDEF 相对的顶点A 和D 、B 和E 、C 和F ,则这三线共点。

60、巴斯加定理:圆内接六边形ABCDEF 相对的边AB 和DE 、BC 和EF 、CD 和FA 的(或延长线的)交点共线。

高中竞赛中重要,一般称做帕斯卡定理,而且是圆锥曲线内接六边形

1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、 E 、F 且D 、E 、F 三点共线,则FB

AF EA CE DC BD ??=1

2、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上

有点D 、E 、F ,且满足FB

AF EA CE DC BD ??=1,则D 、E 、F 三点共线。 3、 塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、

M ,则

1=??PA

CP NC BN MB AM

4、 塞瓦定理的逆定理:设M 、N 、P 分别在△ABC 的

边AB 、BC 、CA 上,且满足1=??PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点。 5、 广勾股定理的两个推论:

推论1:平行四边形对角线的平方和等于四边平方和。

推论2:设△ABC 三边长分别为a 、b 、c ,对应边上中线长分别为m a 、m b 、m c

则:m a =2222221a c b -+;m b =2222221b c a -+;m c =222222

1c b a -+ 6、 三角形内、外角平分线定理:

内角平分线定理:如图:如果∠1=∠2,则有

AC

AB DC BD =

外角平分线定理:如图,AD 是△ABC 中∠A 的外角平分线交BC 的延长线与D , 则有AC AB DC BD =

7、 托勒密定理:四边形ABCD 是圆内接四边形,则有AB ·CD+AD ·BC=AC ·BD

8、 三角形位似心定理:如图,若△ABC 与△DEF 位似,则通过对应点的三直线AD 、BE 、

CF 共点于P

9、 正弦定理、在△ABC 中有R C c B b A a 2sin sin sin ===(R 为△ABC 外接圆半径) 余弦定理:a 、b 、c 为△ABC 的边,则有:

a 2=

b 2+

c 2-2bc ·cosA; b 2=a 2+c 2-2ac ·cosB; c 2=a 2+b 2-2ab ·cosC;

10、西姆松定理:点P 是△ABC 外接圆周上任意一点,PD ⊥BC ,PE ⊥AC ,PF ⊥AB ,D 、E 、F 为垂足,则D 、E 、F 三点共线,此直线称为西姆松线。

11、欧拉定理:△ABC 的外接圆圆心为O ,半径为R ,内切圆圆心为I ,半径为r,记OI=d,则有:d 2=R 2-2Rr.

12、 巴斯加线定理:圆内接六边形ABCDEF (不论其六顶点排列次序如何),其三组对边

AB 与DE 、BC 与EF 、CD 与FA 的交点P 、Q 、R 共线。

初二数学勾股定理测试题及答案

勾股定理测试题 体验勾股定理的探索过程,会运用勾股定理解决简单问题;会用勾股定理的逆定理判定直角三角形。 一、选择题 | 1.下列各数组中,不能作为直角三角形三边长的是( ) A. 9,12,15 B. 7,24,25 C. 6,8,10 D. 3,5,7 2.将直角三角形的各边都缩小或扩大同样的倍数后,得到的三角形( ) A. 可能是锐角三角形 B. 不可能是直角三角形 C. 仍然是直角三角形 D. 可能是钝角三角形 ! 3.在测量旗杆的方案中,若旗杆高为21m,目测点到杆的距离为15m,则目测点到杆顶的距离为(设目高为1m) ( ) 4.一等腰三角形底边长为10cm,腰长为13cm,则腰上的高为( ) A. 12cm B. C. D. ~ 二、填空题 5.如图,64、400分别为所在正方形的面积,则图中字母A所代表的正方形面积是_________ . 6.直角三角形两条直角边的长分别为5、12,则斜边上的高为. < 7.已知甲往东走了4km,乙往南走了3km,这时甲、乙两人相距. 8.一个长方形的长为12cm,对角线长为13cm,则该长方形的周长为. 9.以直角三角形的三边为边向形外作正方形P、Q、K,若SP=4,SQ=9,则Sk= . 三、解答题 @ 10.假期中,小明和同学们到某海岛上去探宝旅游,按照探宝图,他们登陆后先往东走8千米,又往北走2千米,遇到障碍后又往西走了3千米,再折向北走了6千米处往东一拐,仅走了1千米就找到宝藏,问登陆点A到宝藏埋藏点B的距离是多少千米

为正方形ABCD内一点,将△ABP绕B顺时针旋转90°到△CBE的位置,若BP=a.求:以PE 为边长的正方形的面积. / 12.已知:如图13,△ABC中,AB=10,BC=9,AC=17. 求BC边上的高. 13.拼图填空:剪裁出若干个大小、形状完全相同的直角三角形,三边长分别记为a、b、c,· 如图①.(1)拼图一:分别用4张直角三角形纸片,拼成如图②③的形状,观察图②③可发现,图②中两个小正方形的面积之和__________ (填“大于”、“小于”或“等于”)图③中小正方形 《 的面积,用关系式表示为________ .(2)拼图二:用4张直角三角形纸片拼成如图④的形状,观察图形可以发现,图中共有__________个正方形,它们的面积之间的关系是________ ,用 关系式表示为_____ .(3)拼图三:用8个直角三角形纸片拼成如图⑤的形状,图中3个正方>

初中数学竞赛定理大全

欧拉(Euler)线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的一半。

费尔马点: 已知P为锐角△ABC内一点,当∠APB=∠BPC=∠CPA=120°时,PA+PB+PC的值最小,这个点P称为△ABC的费尔马点。 海伦(Heron)公式:

塞瓦(Ceva)定理: 在△ABC中,过△ABC的顶点作相交于一点P的直线,分别 交边BC、CA、AB与点D、E、F,则(BD/DC)·(CE/EA)·(AF/FB)=1;其逆亦真。 密格尔(Miquel)点: 若AE、AF、ED、FB四条直线相交于A、B、C、D、E、F六点, 构成四个三角形,它们是△ABF、△AED、△BCE、△DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。

葛尔刚(Gergonne)点: △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则AE、BF、CD三线共点,这个点称为葛尔刚点。 西摩松(Simson)线: 已知P为△ABC外接圆周上任意一点,PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则D、E、F三点共线,这条直线叫做西摩松线。

黄金分割: 把一条线段(AB)分成两条线段,使其中较大的线段(AC)是原线段(AB) 与较小线段(BC)的比例中项,这样的分割称为黄金分割。 帕普斯(Pappus)定理: 已知点A1、A2、A3在直线l1上,已知点B1、B2、B3在直线l2上,且A1 B2与A2 B1交于点X,A1B3与A3 B1交于点Y,A2B3于A3 B2交于 点Z,则X、Y、Z三点共线。

初中数学勾股定理拔高综合训练含答案

初中数学勾股定理拔高综合训练 一.选择题(共15小题) 1.如图,在4×4方格中作以AB为一边的Rt△ABC,要求点C也在格点上,这样的Rt△ABC能作出() A.2个 B.3个 C.4个 D.6个 2.如图,以直角三角形a、b、c为边,向外作等边三角形,半圆,等腰直角三角形和正方形,上述四种情况的面积关系满足S1+S2=S3图形个数有() A.1 B.2 C.3 D.4 3.如图是由5个正方形和5个等腰直角三角形组成的图形,已知③号正方形的面积是1,那么①号正方形的面积是() A.4 B.8 C.16 D.32 4.分别以下列四组数为一个三角形的边长①6,8,10②5,12,13 ③8,15,16④4,5,6,其中能构成直角三角形的有() A.①④B.②③C.①②D.②④

5.如图,是由四个全等的直角三角形与中间的小正方形拼成的一个大正方形,如果正方形的面积是13,小正方形的面积是1,直角三角形的两条边是分别是a,b,则a+b和的平方的值() A.13 B.19 C.25 D.169 6.如图,一架25米的梯子AB靠在一座建筑物AO上,梯子的底部B距离建筑物AO的底部O有7米(即BO=7米),如果梯子顶部A下滑4米至A1,则梯子底部B滑开的距离BB1是() A.4米 B.大于4米C.小于4米D.无法计算 7.工人师傅从一根长90cm的钢条上截取一段后恰好与两根长分别为60cm、100cm的钢条一起焊接成一个直角三角形钢架,则截取下来的钢条长应为()A.80cm B. C.80cm或D.60cm 8.如图,A、B是4×5网格中的格点,网格中的每个小正方形的边长都是1,图中使以A、B、C为顶点的三角形是等腰三角形的格点C有() A.2个 B.3个 C.4个 D.5个 9.如图所示:数轴上点A所表示的数为a,则a的值是()

中学数学竞赛中常用的几个重要定理

数学竞赛中几个重要定理 1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ? ?=1 2、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F ,且 满足FB AF EA CE DC BD ? ?=1,则D 、E 、F 三点共线. 【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC 边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于点P. 证明:△MPQ ∽△ABC j M Q G A C B X Y P

【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC 【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.

【练习1】设凸四边形ABCD 的对角线AC 和BD 交于点M ,过M 作AD 的平行线分别交AB ,CD 于点E ,F ,交BC 的延长线于点O ,P 是以O 为圆心,以OM 为半径的圆上一点. 求证:∠OPF=∠OEP 【练习2】 在△ABC 中,∠A=900,点D 在AC 上,点E 在BD 上,AE 的延长线交BC 于F. 若BE :ED=2AC :DC ,则∠ADB=∠FDC D

塞瓦定理:设O是△ABC内任意一点,AO、BO、CO分别交对边于N、P、M,则1= ? ? PA CP NC BN MB AM 塞瓦定理的逆定理:设M、N、P分别在△ABC的边AB、BC、CA上,且满足1= ? ? PA CP NC BN MB AM , 则AN、BP、CM相交于一点. 【例1】B E是△ABC的中线,G在BE上,分别延长AG,CG交BC,AB于点D,F, 过D作DN∥CG交BG于N,△DGL及△FGM是正三角形. 求证:△LMN为正三角形. G C L M E D F N

初中数学竞赛常用公式

初中数学竞赛常用公式Last revision on 21 December 2020

初中数学常用公式 1 过两点有且只有一条直线 2 两点之间线段最短 3 同角或等角的补角相等 4 同角或等角的余角相等 5 过一点有且只有一条直线和已知直线垂直 6 直线外一点与直线上各点连接的所有线段中,垂线段最短 7 平行公理经过直线外一点,有且只有一条直线与这条直线平行 8 如果两条直线都和第三条直线平行,这两条直线也互相平行 9 同位角相等,两直线平行 10 内错角相等,两直线平行 11 同旁内角互补,两直线平行 12两直线平行,同位角相等 13 两直线平行,内错角相等 14 两直线平行,同旁内角互补 15 定理:三角形两边的和大于第三边 16 推论:三角形两边的差小于第三边 17 三角形内角和定理:三角形三个内角的和等于180° 18 推论1:直角三角形的两个锐角互余 19 推论2:三角形的一个外角等于和它不相邻的两个内角的和 20 推论3:三角形的一个外角大于任何一个和它不相邻的内角 21 全等三角形的对应边、对应角相等 22边角边公理(SAS):有两边和它们的夹角对应相等的两个三角形全等 23 角边角公理( ASA):有两角和它们的夹边对应相等的两个三角形全等 24 推论(AAS):有两角和其中一角的对边对应相等的两个三角形全等 25 边边边公理(SSS):有三边对应相等的两个三角形全等 26 斜边、直角边公理(HL):有斜边和一条直角边对应相等的两个直角三角形全等

27 定理1:在角的平分线上的点到这个角的两边的距离相等 28 定理2:到一个角的两边的距离相同的点,在这个角的平分线上 29 角的平分线是到角的两边距离相等的所有点的集合 30 等腰三角形的性质定理:等腰三角形的两个底角相等 (即等边对等角) 31 推论1:等腰三角形顶角的平分线平分底边并且垂直于底边 32 等腰三角形的顶角平分线、底边上的中线和底边上的高互相重合 33 推论3:等边三角形的各角都相等,并且每一个角都等于60° 34 等腰三角形的判定定理:如果一个三角形有两个角相等,那么这两个角所对的边也相等(等角对等边) 35 推论1:三个角都相等的三角形是等边三角形 36 推论 2:有一个角等于60°的等腰三角形是等边三角形 37 在直角三角形中,如果一个锐角等于30°那么它所对的直角边等于斜边的一半 38 直角三角形斜边上的中线等于斜边上的一半 39 定理:线段垂直平分线上的点和这条线段两个端点的距离相等 40 逆定理:和一条线段两个端点距离相等的点,在这条线段的垂直平分线上 41 线段的垂直平分线可看作和线段两端点距离相等的所有点的集合 42 定理1:关于某条直线对称的两个图形是全等形 43 定理 2:如果两个图形关于某直线对称,那么对称轴是对应点连线的垂直平分线 44定理3:两个图形关于某直线对称,如果它们的对应线段或延长线相交,那么交点在对称轴上 45逆定理:如果两个图形的对应点连线被同一条直线垂直平分,那么这两个图形关于这条直线对称

初二数学勾股定理教案(模板)

初二数学上册教案模板勾股定理(2课时) 一、教学目标及重点 1、教学目标 (1)经历探索勾股定理及验证勾股定理的过程,通过自主学习体验获取数学知识的感受,培养学生的思维能力和语言表达能力。 (2)运用勾股定理解决实际问题。 (3)了解有关勾股定理的历史,通过有关勾股定理的历史讲解,对学生进行德育教育。 2、教学重点:勾股定理及其应用。 3、教学难点:通过有关勾股定理的历史讲解,了解数学发展史,激发学习兴趣,对学生进行德育教育。 二、探索发现:(在教师的引领下,小组合作,探索学习) 通过此案例引出:勾股定理(商高定理、毕达哥拉斯定理、百牛定理)的渊源。 三、知识透析: 1.勾股定理:如果直角三角形两直角边分别为a、b,斜边为c,

那么: 即:直角三角形两直角边的 等于斜边的平方。 2.注意:(1)勾股定理的条件是:只有在直角三角形中才使用;(2)勾股定理的变形:222a =-b c ;222b =-a c 3.勾股定理验证方法:(教师引导学生通过面积计算,实现勾股定理证明) (1)赵爽证明: (2)伽菲尔德“总统证明法” 四、典例分析: 题型1:勾股定理 1.=90ABC C A B C ?∠∠∠∠V 例在中,,、、所对的边分别是a 、b 、c 。 (1)当a=3,b=4,则c= (2)若a=5,b=12,则c= 例2.一个等腰三角形的腰长为13cm ,底边长为10cm ,则底边上的高为?( )

(随堂练习:教材3页1、2) 题型2:勾股定理验证 例3.请您用下图验证勾股定理 例4.教材5页第三问 (随堂练习:教材6页中间) 题型3:勾股定理应用 例5.有两棵树,一棵高10米,另一棵高4m,两棵相距8米。一只鸟从一棵树的树梢飞到另一棵树的树梢,则小鸟至少飞行()(2013安顺中考) A.8米 B.10米 C.12米 D.14米 注:将应用题转化构造为直角三角形 例6.教材5页例题

2018初中数学竞赛勾股定理讲解学习

精品文档 初中数学竞赛专题选讲 勾股定理 一、内容提要 1. 勾股定理及逆定理:△ABC 中 ∠C =Rt ∠?a 2+b 2=c 2 2. 勾股定理及逆定理的应用 ① 作已知线段a 的2,3, 5……倍 ② 计算图形的长度,面积,并用计算方法解几何题 ③ 证明线段的平方关系等。 3. 勾股数的定义:如果三个正整数a,b,c 满足等式a 2+b 2=c 2,那么这三个正整数a,b,c 叫做 一组勾股数. 4. 勾股数的推算公式 ① 罗士琳法则(罗士琳是我国清代的数学家1789――1853) 任取两个正整数m 和n(m>n),那么m 2-n 2,2mn, m 2+n 2是一组勾股数。 ② 如果k 是大于1的奇数,那么k, 212-k ,2 12+k 是一组勾股数。 ③ 如果k 是大于2的偶数,那么k, 122-??? ??K ,122+?? ? ??K 是一组勾股数。 ④ 如果a,b,c 是勾股数,那么na, nb, nc (n 是正整数)也是勾股数。 5. 熟悉勾股数可提高计算速度,顺利地判定直角三角形。简单的勾股数有:3,4,5; 5, 12,13; 7,24,25; 8,15,17; 9,40,41。 二、例题 例1.已知线段a a 5a 2a 3a 5 a 求作线段5a a 分析一:5a =25a =224a a + 2a ∴5a 是以2a 和a 为两条直角边的直角三角形的斜边。 分析二:5a =2492 a a - ∴5a 是以3a 为斜边,以2a 为直角边的直角三角形的另一条直角边。 作图(略) 例2.四边形ABCD 中∠DAB =60ο,∠B =∠D =Rt ∠,BC =1,CD =2 求对角线AC 的长 解:延长BC 和AD 相交于E ,则∠E =30ο

37-初中数学竞赛中常用重要定理

初中数学竞赛辅导 3、三角形的三条中线交于一点,并且,各中线被这个点分成2:1的两部分 4、四边形两边中心的连线的两条对角线中心的连线交于一点 5、间隔的连接六边形的边的中心所作出的两个三角形的重心是重合的。 6、三角形各边的垂直一平分线交于一点。 7、从三角形的各顶点向其对边所作的三条垂线交于一点 8、设三角形ABC的外心为O,垂心为H,从O向BC边引垂线,设垂足不L,则AH=2OL 9、三角形的外心,垂心,重心在同一条直线上。 10、(九点圆或欧拉圆或费尔巴赫圆)三角形中,三边中心、从各顶点向其对边所引垂线的垂足,以及垂心与各顶点连线的中点,这九个点在同一个圆上, 11、欧拉定理:三角形的外心、重心、九点圆圆心、垂心依次位于同一直线(欧拉线)上 12、库立奇*大上定理:(圆内接四边形的九点圆) 圆周上有四点,过其中任三点作三角形,这四个三角形的九点圆圆心都在同一圆周上,我们把过这四个九点圆圆心的圆叫做圆内接四边形的九点圆。 13、(内心)三角形的三条内角平分线交于一点,内切圆的半径公式: r=(s-a)(s-b)(s-c)ss为三角形周长的一半 14、(旁心)三角形的一个内角平分线和另外两个顶点处的外角平分线交于一点 15、中线定理:(巴布斯定理)设三角形ABC的边BC的中点为P,则有 AB2+AC2=2(AP2+BP2) 16、斯图尔特定理:P将三角形ABC的边BC内分成m:n,则有 n×AB2+m×AC2=(m+n)AP2+mnm+nBC2 17、波罗摩及多定理:圆内接四边形ABCD的对角线互相垂直时,连接AB中点M和对角线交点E的直线垂直于CD 18、阿波罗尼斯定理:到两定点A、B的距离之比为定比m:n(值不为1)的点P,位于将线段AB分成m:n的内分点C和外分点D为直径两端点的定圆周上 19、托勒密定理:设四边形ABCD内接于圆,则有AB×CD+AD×BC=AC 20、以任意三角形ABC的边BC、CA、AB为底边,分别向外作底角都是30度的等腰△BDC、△CEA、△AFB,则△DEF是正三角形, 21、爱尔可斯定理1:若△ABC和三角形△都是正三角形,则由线段AD、BE、CF的重心构成的三角形也是正三角形。 22、爱尔可斯定理2:若△ABC、△DEF、△GHI都是正三角形,则由三角形△ADG、△BEH、△CFI的重心构成的三角形是正三角形。 23、梅涅劳斯定理:设△ABC的三边BC、CA、AB或其延长线和一条不经过它们任一顶点的直线的交点分别为P、Q、R则有BPPC×CQQA×ARRB=1 初中竞赛需要,重要 24、梅涅劳斯定理的逆定理:(略) 25、梅涅劳斯定理的应用定理1:设△ABC的∠A的外角平分线交边CA于Q、∠C的平分线交边AB于R,、∠B的平分线交边CA于Q,则P、Q、R三点共线。

初中数学竞赛定理大全.docx

欧拉( Euler )线: 同一三角形的垂心、重心、外心三点共线,这条直线称为三角形 的欧拉线; 且外心与重心的距离等于垂心与重心距离的一半。 九点圆: 任意三角形三边的中点,三高的垂足及三顶点与垂心间线段的中点,共九个点共圆,这个圆称为三角形的九点圆; 其圆心为三角形外心与垂心所连线段的中点,其半径等于三角形外接圆半径的 一半。 费尔马点: 已知 P 为锐角△ ABC内一点,当∠APB=∠ BPC=∠ CPA=120°时, PA +P B+PC的值最小,这个点 P 称为△ ABC的费尔马点。 海伦( Heron)公式: 塞瓦( Ceva)定理: 在△ ABC中,过△ ABC的顶点作相交于一点P 的直线,分别 交边 BC、CA、AB与点 D、E、F,则(BD/DC)·(CE/EA) ·(AF/FB) =1;其逆亦真。密格尔( Miquel )点:

若 AE、 AF、ED、 FB四条直线相交于 A、B、C、 D、E、F 六点, 构成四个三角形,它们是△ABF、△ AED、△ BCE、△ DCF, 则这四个三角形的外接圆共点,这个点称为密格尔点。 葛尔刚( Gergonne)点 : △ABC的内切圆分别切边AB、BC、CA于点D、E、F, 则 AE、 BF、 CD三线共点,这个点称为葛尔刚点。 西摩松( Simson)线: 已知 P 为△ ABC外接圆周上任意一点, PD⊥BC,PE⊥ACPF⊥AB,D、E、F为垂足, 则 D、E、F 三点共线,这条直线叫做西摩松线。 黄金分割: 把一条线段 (AB) 分成两条线段,使其中较大的线段 (AC)是原线段(AB) 与较小线段 (BC)的比例中项,这样的分割称为黄金分割。 帕普斯( Pappus)定理: 已知点 A 、A 、A 在直线 l 1上,已知点 B 、B 、B 在直线 l 2 上, 123123 且 A1 B2与 A2 B 1交于点 X,A1B3与 A3B1交于点 Y,A2 B 3于 A3 B2交于 点 Z,则 X、Y、Z 三点共线。

初中数学勾股定理

聚智堂学科教师辅导讲义 年级:课时数:学科教师: 学员姓名:辅导科目:数学辅导时间: 课题勾股定理 教学目的 1、勾股定理:直角三角形两直角边a、b的平方和等于斜边c的平方。(即:a2+b2=c2) 2、勾股定理的逆定理:如果三角形的三边长:a、b、c有关系a2+b2=c2,那么这个三角形是 直角三角形。 3、满足2 2 2c b a= +的三个正整数,称为勾股数。 教学内容 一、日校回顾 二、知识回顾 1. 勾股定理 如图所示,在正方形网络里有一个直角三角形和三个分别以它的三条边为边的正方形,通过观察、探索、发现正方形面积之间存在这样的关系:即C的面积=B的面积+A的面积,现将面积问题转化为直角三角形边的问题,于是得到直角三角形三边之间的重要关系,即勾股定理。 勾股定理:如果直角三角形两直角边分别为a,b,斜边为c,那么 2 2 2c b a= + 即直角三角形两直角边的平方和等于斜边的平方。 说明: (1)勾股定理只有在直角三角形中才适用,如果不是直角三角形,那么三条边之间就没有这种关系了。

(2)我国古代把直角三角形中较短的直角边称为勾,较长的直角边称为股,斜边称为弦。在没有特殊说明的情况下, 直角三角形中,a ,b 是直角边,c 是斜边,但有时也要考虑特殊情况。 (3)除了利用a ,b ,c 表示三边的关系外,还应会利用AB ,BC ,CA 表示三边的关系,在△ABC 中,∠B =90°,利 用勾股定理有2 2 2 AC BC AB =+。 2. 利用勾股定理的变式进行计算 由2 2 2 c b a =+,可推出如下变形公式: (1)2 2 2 b c a -=; (2)2 2 2 a c b -= (3)22b c a -= (4)22a c b -= (5)22b a c += (平方根将在下一章学到) 说明:上述几个公式用哪一个,取决于已知条件给了哪些边,求哪条边,要判断准确。 三、知识梳理 1、勾股定理的应用 勾股定理反映了直角三角形三边之间的关系,是直角三角形的重要性质之一,其主要应用有: (1)已知直角三角形的两边求第三边 (2)已知直角三角形的一边与另两边的关系。求直角三角形的另两边 (3)利用勾股定理可以证明线段平方关系的问题 2、如何判定一个三角形是直角三角形 (1) 先确定最大边(如c ) (2) 验证2 c 与2 2 b a +是否具有相等关系 (3) 若2 c =2 2 b a +,则△ABC 是以∠C 为直角的直角三角形;若2 c ≠2 2 b a + 则△ABC 不是直角三角形。

中学数学竞赛中常用的几个重要定理资料

中学数学竞赛中常用的几个重要定理

数学竞赛中几个重要定理 1、 梅涅劳斯定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点D 、E 、F 且D 、E 、F 三点共线,则FB AF EA CE DC BD ? ?=1 2、 梅涅劳斯定理的逆定理:如果在△ABC 的三边BC 、CA 、AB 或其延长线上有点 D 、 E 、 F ,且满足FB AF EA CE DC BD ? ?=1,则D 、E 、F 三点共线. 【例1】已知△ABC 的重心为G ,M 是BC 边的中点,过G 作BC 边的平行线AB 边于X ,交AC 边于Y ,且XC 与GB 交于点Q ,YB 与GC 交于 点P. 证明:△MPQ ∽△ABC j M Q G A C B X Y P

【例2】以△ABC的底边BC为直径作半圆,分别与边AB,AC交于点D和E,分别过点D,E作BC的垂线,垂足依次为F,G,线段DG和EF交于点M.求证:AM⊥BC 【例3】四边形ABCD内接于圆,其边AB,DC的延长线交于点P,AD和BC的延长线交于点Q,过Q作该圆的两条切线,切点分别为E,F.求证:P,E,F三点共线.

【练习1】设凸四边形ABCD的对角线AC和BD交于点M,过M作AD的平行线分 别交AB,CD于点E,F,交BC的延长线于点 O,P是以O为圆心,以OM为半径的圆上一点. 求证:∠OPF=∠OEP 【练习2】在△ABC中,∠A=900,点D在AC上,点E在BD 上,AE的延长线交BC于F. 若BE:ED=2AC:DC,则∠ADB=∠FDC D

塞瓦定理:设O 是△ABC 内任意一点,AO 、BO 、CO 分别交对边于N 、P 、M ,则 1=??PA CP NC BN MB AM 塞瓦定理的逆定理: 设M 、N 、P 分别在△ABC 的边AB 、BC 、CA 上,且满足 1=??PA CP NC BN MB AM ,则AN 、BP 、CM 相交于一点.

初中数学勾股定理知识点-+典型题及答案

初中数学勾股定理知识点-+典型题及答案 一、选择题 1.如图,已知ABC 中,4AB AC ==,6BC =,在BC 边上取一点P (点P 不与点B 、C 重合),使得ABP △成为等腰三角形,则这样的点P 共有( ). A .1个 B .2个 C .3个 D .4个 2.“赵爽弦图”巧妙地利用面积关系证明了勾股定理,是我国古代数学的骄傲,如图所示的“赵爽弦图”是由三角形较长直角边长为a ,较短直角边长为b ,若(a +b )2=21,大正方形的面积为13,则小正方形的面积为( ) A .3 B .4 C .5 D .6 3.如图,在△ABC 中,AC =BC ,∠ACB =90°,点D 在BC 上,BD =6,DC =2,点P 是AB 上的动点,则PC +PD 的最小值为( ) A .8 B .10 C .12 D .14 4.如图,已知45∠=MON ,点A B 、在边ON 上,3OA =,点C 是边OM 上一个动点,若ABC ?周长的最小值是6,则AB 的长是( ) A . 1 2 B . 34 C . 56 D .1

5.已知△ABC是腰长为1的等腰直角三角形,以Rt△ABC的斜边AC为直角边,画第二个等腰Rt△ACD,再以Rt△ACD的斜边AD为直角边,画第三个等腰Rt△ADE,…,依此类推,第n个等腰直角三角形的面积是( ) A.2n﹣2B.2n﹣1C.2n D.2n+1 6.一个直角三角形两边长分别是12和5,则第三边的长是() A.13B.13或15C.13或119D.15 7.下列命题中,是假命题的是( ) A.在△ABC中,若∠A:∠B:∠C=1:2:3,则△ABC是直角三角形 B.在△ABC中,若a2=(b+c) (b-c),则△ABC是直角三角形 C.在△ABC中,若∠B=∠C=∠A,则△ABC是直角三角形 D.在△ABC中,若a:b:c=5:4:3,则△ABC是直角三角形 8.有一个面积为1的正方形,经过一次“生长”后,在他的左右肩上生出两个小正方形,其中,三个正方形围成的三角形是直角三角形,再经过一次“生长”后,变成了上图,如果继续“生长”下去,它将变得“枝繁叶茂”,请你算出“生长”了2020次后形成的图形中所有的正方形的面积和是() A.1 B.2021 C.2020 D.2019 9.如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD是∠BAC的平分线.若P,Q分别是AD和AC上的动点,则PC+PQ的最小值是() A.24 5 B.5 C.6 D.8 10.如图,△ABC中,AB=AC,AD是∠BAC的平分线.已知AB=5,AD=3,则BC的长为()

初中数学《勾股定理》典型练习题

《勾股定理》典型例题分析 一、知识要点: 1、勾股定理 勾股定理:直角三角形两直角边的平方和等于斜边的平方。也就是说:如果直角三角形的两直角边为a、b,斜边为c ,那么 a2 + b2= c2。公式的变形:a2 = c2- b2, b2= c2-a2 。 2、勾股定理的逆定理 如果三角形ABC的三边长分别是a,b,c,且满足a2 + b2= c2,那么三角形ABC 是直角三角形。这个定理叫做勾股定理的逆定理. 该定理在应用时,同学们要注意处理好如下几个要点: ①已知的条件:某三角形的三条边的长度. ②满足的条件:最大边的平方=最小边的平方+中间边的平方. ③得到的结论:这个三角形是直角三角形,并且最大边的对角是直角. ④如果不满足条件,就说明这个三角形不是直角三角形。 3、勾股数 满足a2 + b2= c2的三个正整数,称为勾股数。注意:①勾股数必须是正整数,不能是分数或小数。②一组勾股数扩大相同的正整数倍后,仍是勾股数。常见勾股数有: (3,4,5 )(5,12,13 ) ( 6,8,10 ) ( 7,24,25 ) ( 8,15,17 )(9,12,15 ) 4、最短距离问题:主要运用的依据是两点之间线段最短。 二、考点剖析 考点一:利用勾股定理求面积 1、求阴影部分面积:(1)阴影部分是正方形;(2)阴影部分是长方形;(3)阴影部分是半圆. 2. 如图,以Rt△ABC的三边为直径分别向外作三个半圆,试探索三个半 圆的面积之间的关系.

3、如图所示,分别以直角三角形的三边向外作三个正三角形,其面积分别是S 1、S 2、S 3,则它们之间的关系是( ) A. S 1- S 2= S 3 B. S 1+ S 2= S 3 C. S 2+S 3< S 1 D. S 2- S 3=S 1 4、四边形ABCD 中,∠B=90°,AB=3,BC=4,CD=12,AD=13,求四边形ABCD 的面积。 5、在直线上依次摆放着七个正方形(如图4所示)。已知斜放置的三个正方形的面积分别是1、2、3,正放置的四个正方形的面积依次是 、 =_____________。 考点二:在直角三角形中,已知两边求第三边 1.在直角三角形中,若两直角边的长分别为1cm ,2cm ,则斜边长为 . 2.(易错题、注意分类的思想)已知直角三角形的两边长为3、2,则另一条边长的平方是 3、已知直角三角形两直角边长分别为5和12, 求斜边上的高. 4、把直角三角形的两条直角边同时扩大到原来的2倍,则斜边扩大到原来的( ) A . 2倍 B . 4倍 C . 6倍 D . 8倍 5、在Rt △ABC 中,∠C=90° S 3 S 2 S 1

高中数学竞赛平面几何中的几个重要定理

平面几何中几个重要定理及其证明 一、塞瓦定理 1.塞瓦定理及其证明 定理:在?ABC 内一点P ,该点与?ABC 的三个顶点相连所在的三条直线分别交?ABC 三边 AB 、BC 、CA 于点D 、E 、F ,且D 、E 、 F 三点均不是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. 证明:运用面积比可得ADC ADP BDP BDC S S AD DB S S ????==. 根据等比定理有 ADC ADC ADP APC ADP BDP BDC BDC BDP BPC S S S S S S S S S S ??????????-===-, 所以APC BPC S AD DB S ??=.同理可得APB APC S BE EC S ??=,BPC APB S CF FA S ??=. 三式相乘得1AD BE CF DB EC FA ??=. 注:在运用三角形的面积比时,要把握住两个三角形是“等高”还是“等底”,这样就可以产生出“边之比”. 2.塞瓦定理的逆定理及其证明 定理:在?ABC 三边AB 、BC 、CA 上各有一点D 、E 、 A B C D F P

F ,且D 、E 、F 均不是?ABC 的顶点,若1AD BE CF DB EC FA ??=,那么直线CD 、AE 、BF 三线共点. 证明:设直线AE 与直线BF 交 于点P ,直线CP 交AB 于点D /,则 据塞瓦定理有 //1AD BE CF D B EC FA ??=. 因为 1AD BE CF DB EC FA ??=,所以有//AD AD DB D B =.由于点D 、D /都在线段AB 上,所以点D 与D /重合.即得D 、E 、F 三点共线. 注:利用唯一性,采用同一法,用上塞瓦定理使命题顺利获证. 二、梅涅劳斯定理 3.梅涅劳斯定理及其证明 定理:一条直线与?ABC 的三 边AB 、BC 、CA 所在直线分别交 于点D 、E 、F ,且D 、E 、F 均不 是?ABC 的顶点,则有 1AD BE CF DB EC FA ??=. A B C D F P D / A B C D E F G

初中数学竞赛——勾股定理及其应用

初中数学竞赛勾股定理与应用 勾股定理直角三角形两直角边a,b的平方和等于斜边c的平方,即a2+b2=c2. 勾股定理逆定理如果三角形三边长a,b,c有下面关系: a2+b2=c2 那么这个三角形是直角三角形. 早在3000年前,我国已有“勾广三,股修四,径阳五”的说法.关于勾股定理,有很多证法,在我国它们都是用拼图形面积方法来证明的.下面的证法1是欧几里得证法. 证法1 如图2-16所示.在Rt△ABC的外侧,以各边为边长分别作正方形ABDE,BCHK,ACFG,它们的面积分别是c2,a2,b2.下面证明,大正方形的面积等于两个小正方形的面积之和.过C引CM∥BD,交AB于L,连接BG,CE.因为 AB=AE,AC=AG,∠CAE=∠BAG, 所以△ACE≌△AGB(SAS).而 所以 S AEML=b2.① 同理可证 S BLMD=a2.② ①+②得 S ABDE=S AEML+S BLMD=b2+a2, 即 c2=a2+b2. 证法2 如图2-17所示.将Rt△ABC的两条直角边CA,CB分别延长到D,F,使AD=a,BF=b.完成正方形CDEF(它的边长为a+b),又在DE上截取DG=b,在EF上截取EH=b,连接AG,GH,HB.由作图易知 △ADG≌△GEH≌△HFB≌△ABC, 所以 AG=GH=HB=AB=c, ∠BAG=∠AGH=∠GHB=∠HBA=90°, 因此,AGHB为边长是c的正方形.显然,正方形CDEF的面积等于正方形AGHB的面积与四个全等的直角三角形(△ABC,△ADG,△GEH,△HFB)的面积和,即 化简得 a2+b2=c2. 证法3 如图2-18.在直角三角形ABC的斜边AB上向外作正方形ABDE,延长CB,自E作EG⊥CB延长线于G,自D作DK⊥CB 延长线于K,又作AF, DH分别垂直EG于F,H.由作图不难证明,下述各直角三角形均与Rt△ABC全等: △AFE≌△EHD≌△BKD≌△ACB. 设五边形ACKDE的面积为S,一方面 S=S ABDE+2S△ABC,① 另一方面 S=S ACGF+S HGKD+2S△ABC.② 由①,② 所以 c2=a2+b2. 关于勾股定理,在我国古代还有很多类似上述拼图求积的证明方法,我们将在习题中展示其中一小部分,它们都以中国古代数学家的名字命名. 利用勾股定理,在一般三角形中,可以得到一个更一般的结论. 定理在三角形中,锐角(或钝角)所对的边的平方等于另外两边的平方和,减去(或加上)这两边中的一边与另一边在这边(或其延长线)上的射影的乘积的2倍.

初中数学公式定理比赛

九年级基础知识竞赛 班级 姓名 学号 1. 小数是无理数 2.2a = a m .a n = (a m ) n = a 0 = a p -= 3. 一个单项式中,所有字母的指数的 叫做这个单项式的次数。 4.因式分解的常用方法(1)提公因式法:ab-bc = (2)运用公式法: a 2 - b 2 = a 2-2ab+b 2 = 5、分式的分子和分母都乘以(或除以)同一个 的整式,分式的值不变。 分式的分子、分母与分式本身的符号,改变其中任何 个,分式的值不变。 6.一元二次方程)0(02≠=++a c bx ax 的求根公式:x= 7.一元二次方程)0(02≠=++a c bx ax 中根的判别式,通常用“?”来表示,即?= 8. 如果方程)0(02≠=++a c bx ax 的两个实数根是21x x ,,那么x 1+x 2= x 1x 2= 9.、不等式两边都加上(或减去)同一个数或同一个整式,不等号的方向 、不等式两边 都乘以(或除以)同一个正数,不等号的方向 、不等式两边都乘以(或除以)同一个负 数,不等号的方向 。 10.在一组数据,,,,21n x x x 这组数据的方差。通常用“2s ”表示,即2s = 11.点P(x,y)到x 轴的距离等于 ,点P(x,y)到y 轴的距离等于 ,点P(x,y)到原点的距离 等于 12.一般地,如果y= ,那么y 叫做x 的一次函数。y= ,y 叫做x 的正 比例函数。一次函数的图像都是 .一次函数有下列性质:(1)当k>0时,y 随x 的增 大而 (2)当k<0时,y 随x 的增大而 13、反比例函数中反比例系数的几何意义,过反比例函数)0(≠=k x k y 图像上任一点P 作x 轴、y 轴的垂线PM ,PN ,则所得的矩形PMON 的面积S= 。 14二次函数的解析式有三种形式:(1)一般式:y= (2)顶点式:y= (3)交点式:y= 15如果自变量的取值范围是全体实数,那么函数在顶点处取得最大值(或最小值),即 当x= 时y= 。 16一元二次方程中的ac 4b 2-=?,在二次函数中表示图像与x 轴是否有交点。当?>0时, 图像与x 轴有 交点;当?=0时,图像与x 轴有 交点;当?<0时,图像与x 轴 交点。 17、线段垂直平分线上的点和这条线段 相等。和一条线段 相 等的点,在这条线段的垂直平分线上。 18.角平分线上的点到这个角的 相等。到一个角的 相等的点在这个角 的平分线上。 19过一点 一条直线与已知直线垂直. 直线外一点与直线上各点连接的所有线段中, 最短。

初二数学勾股定理试题及参考答案

一.选择题(共18小题) 1.如图,在Rt△ABC中,∠ACB=90°,CD⊥AB,垂足为D,AF平分∠CAB,交CD于点E,交CB于点F.若AC=3,AB=5,则CE的长为() A.B.C.D. 2.如图,在△ABD中,∠D=90°,CD=6,AD=8,∠ACD=2∠B,则BD的长是() A.12 B.14 C.16 D.18 3.如图,直线l1∥l2,等腰Rt△ABC的直角顶点C在l1上,顶点A在l2上,若∠β=14°,则∠α=() A.31°B.45°C.30°D.59° 4.如图所示,AB=BC=CD=DE=1,AB⊥BC,AC⊥CD,AD⊥DE,则AE=() A.1 B.C.D.2 5.如图,两个较大正方形的面积分别为225,289,则字母A所代表的正方形的面积为()

A.4 B.8 C.16 D.64 6.2的算术平方根是() A.B.C.D.2 7.9的平方根为() A.3 B.﹣3 C.±3 D. 8.81的平方根是() A.﹣9 B.9 C.±9 D.±3 9.若2m﹣4与3m﹣1是同一个数的平方根,则m的值是() A.﹣3 B.﹣1 C.1 D.﹣3或1 10.下列说法正确的是() A.任何非负数都有两个平方根 B.一个正数的平方根仍然是正数 C.只有正数才有平方根 D.负数没有平方根 11.5的平方根是() A.±2.5 B.﹣C.D.± 12.在平面直角坐标系中,点P(﹣2,x2+1)所在的象限是() A.第一象限B.第二象限C.第三象限D.第四象限 13.在平面直角坐标系中,点P(m﹣3,4﹣2m)不可能在() A.第一象限B.第二象限C.第三象限D.第四象限 14.在平面直角坐标系中.点P(1,﹣2)关于x轴对称的点的坐标是()A.(1,2) B.(﹣1,﹣2)C.(﹣1,2)D.(﹣2,1) 15.点P(1,﹣2)关于y轴对称的点的坐标是() A.(1,2) B.(﹣1,2)C.(﹣1,﹣2)D.(﹣2,1) 16.点A(﹣3,2)关于y轴对称的点的坐标为() A.(3,﹣2)B.(3,2) C.(﹣3,﹣2)D.(2,﹣3)

竞赛常用定理--数学

几何篇 梅涅劳斯定理:当直线交三角形ABC三边所在直线BC、AC、A于点D、E、F时,(AF/FB)×(BD/DC)×(CE/EA)=1 以及逆定理:在三角形ABC三边所在直线上有三点D、E、F ,且(AF/FB)×(BD/DC)×(CE/EA)=1 ,那么D、E、F三点共线。 角元形式梅捏劳斯定理: (sin∠BAD/sin∠DAC)×(sin∠ACF/sin∠FCB)×(sin∠CBE/sin∠EBA)=1 塞瓦定理:指在△ABC内任取一点O,直线AO、BO、CO分别交对边于D、E、F,则(BD/DC)×(CE/EA)×(AF/FB)=1。 角元塞瓦定理:AD,BE,CF交于一点的充分必要条件是: (sin∠BAD/sin∠DAC)*(sin∠ACF/sin∠FCB)*(sin∠CBE/sin∠EBA)=1 逆定理:在△ABC的边BC,CA,AB上分别取点D,E,F, 如果(AF/FB)(BD/DC)(CE/EA)=1那么直线AD,BE,CF相交于同一点。”

正弦定理:在△ABC中,角A、B、C所对的边长分别为a、b、c,三角形外接圆的半径为R。则有: a/sinA=b/sinB=c/sinC=2R 余弦定理: ,在△ABC中,余弦定理可表示为: c2=a2+b2-2ab cosC a2=b2+c2-2bc cosA b2=a2+c2-2ac cosB 托勒密定理:指圆内接凸四边形两对对边乘积的和等 于两条对角线的乘积。 三弦定理:由圆上一点引出三条弦,中间一弦与最大角 正弦的积等于其余每条弦与不相邻角正弦的积之和。用图表述;圆上一点A,引出三条弦AB(左)、AC(右)、及中间弦AD,BC与AD交于P,根据《三弦定理》,有以下关系, ABsin∠CAP +ACsin∠BAP= ADsin∠BAC。 西姆松定理:过三角形外接圆上异于三角形顶点的 任意一点作三边的垂线,则三垂足共线。(此线常称为西 姆松线) 斯特瓦尔特定理设已知△ABC及其底边上B、C两 点间的一点D,则有 AB2·DC+AC2·BD-AD2·BC=BC·DC·BD。

2020年初二数学公式大全

初二公式定理大全 1、单独的一个数或一个字母也是单项式。 2、单项式中的数字因数叫做这个单项式的系数。 3、一个单项式中,所有字母的指数的和叫做这个单项式的次数。 4、几个单项式的和叫做多项式。在多项式中,每个单向式叫做多项式的项,其中,不含字母的项叫做常数项。 5、一般地,多项式里次数最高的项的次数,就是这个多项式的次数。 6、单项式和多项式统称整式。 7、所含字母相同,并且相同字母的指数也相同的项叫做同类项。几个常数项也是同类项。 8、把多项式中的同类项合并成一项,即把它们的系数相加作为新的系数,而字母部分不变,叫做合并同类项。 9、几个整式相加减,通常用括号把每个整式括起来,再用加减号连接:然后去括号,合并同类项。 10、幂的乘方,底数不变,指数相同。 11、同底数幂相乘,底数不变,指数相加。 12、幂的乘方,底数不变,指数相乘。 13、积的乘方,等于把积的每一个因式分别乘方,再把所得的幂相乘。 14、单向式与单向式相乘,把它们的系数、相同字母分别相乘,对于只在一个单向式里含有的字母,则连同它的指数作为积的因式。 15、单向式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。 16、多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。 17、两个数的和与这两个数的差的积=这两个数的平方差。这个公式叫做(乘法的)平方差公式。 18、两数和(或差)的平方=它们的平方和,加(或减)它们积的2倍。这两个公式叫做(乘法的)完全平方公式。 19、添括号时,如果括号前面是正号,括到括号里的各项都不变符号;如果括号前面是负号,括到括号里的各项都改变符号。 20、同底数幂相加,底数不变,指数相减。 21、任何不等于0的数的0次幂都等于1. 22、单向式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式。 23、多项式除以单向式,先把这个多项式的每一项除以这个单项式,再把所得的商相加。 24、吧一个多项式化成了几个整式的积的形式,像这样的式子变形叫做把这个多项式因式分解,也叫做把这个多项式分解因式。 25、ma+mb+mc,它的各项都有一个公共的因式m,我们把因式M叫做这个多项式各项的公因式。 由m(a+b+c)=ma+mb+mc,可得ma+mb+mc=m(a+b+c)

相关主题